
Less is More: How Fewer Results Improve Progressive Join Query
Processing

Xin Zhang

University of California, Riverside

xzhan261@ucr.edu

Ahmed Eldawy

University of California, Riverside

eldawy@ucr.edu

ABSTRACT
With the requirements to enable data analytics and exploration

interactively and efficiently, progressive data processing, especially

progressive join, became essential to data science. Join queries

are particularly challenging due to the correlation between input

datasets which causes the results to be biased towards some join

keys. Existing methods carefully control which parts of the input to

process in order to improve the quality of progressive results. If the

quality is not satisfactory, they will process more data to improve

the result. In this paper, we propose an alternative approach that

initially seems counter-intuitive but surprisingly works very well.

After query processing, we intentionally report fewer results to the

user with the goal of improving the quality. The key idea is that if

the output is deviated from the correct distribution, we temporarily

hide some results to correct the bias. As we process more data, the

hidden results are inserted back until the full dataset is processed.

The main challenge is that we do not know the correct output

distribution while the progressive query is running. In this work,

we formally define the progressive join problem with quality and

progressive result rate constraints. We propose an input&output

quality-aware progressive join framework (QPJ) that (1) provides
input control that decides which parts of the input to process; (2)

estimates the final result distribution progressively; (3) automat-

ically controls the quality of the progressive output rate; and (4)

combines input&output control to enable quality control of the

progressive results. We compare QPJ with existing methods and

show QPJ can provide the progressive output that can represent

the final answer better than existing methods.

CCS CONCEPTS
• Information systems → Query representation.

KEYWORDS
Progressive processing, progressive result quality control, progres-

sive equi-join, progressive spatial join

ACM Reference Format:
Xin Zhang and Ahmed Eldawy. 2023. Less is More: How Fewer Results

Improve Progressive Join Query Processing. In 35th International Conference

∗
This work was supported in part by the National Science Foundation (NSF) under

grants IIS-1838222, CNS-1924694, IIS-1954644, IIS-2046236.

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

SSDBM 2023, July 10–12, 2023, Los Angeles, CA, USA
© 2023 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0746-9/23/07.

https://doi.org/10.1145/3603719.3603728

on Scientific and Statistical Database Management (SSDBM 2023), July 10–12,
2023, Los Angeles, CA, USA. ACM, New York, NY, USA, 12 pages. https:

//doi.org/10.1145/3603719.3603728

1 INTRODUCTION
Data analysis on large datasets takes minutes or even hours to

complete due to big data volume and computation complexity [34].

The challenge becomes even greater when analysis involves mul-

tiple big datasets and expensive queries, such as join queries. To

address this issue, progressive query processing has emerged as a

popular tool [3, 4, 13–15, 35]. Progressive processing splits large

datasets into small batches and processes each data batch progres-

sively. Each progressive computation cycle takes a few seconds

to keep the users engaged and active [38]. Users can keep exam-

ining intermediate results without having to wait for the entire

computation to complete on the whole dataset [34]. Progressive

answers also enable users to start further processing early on. Data

visualization [7, 14, 35, 44] and aggregate queries [11, 15] are fre-

quently employed methods for analyzing progressive answers. Fig.1

shows an example of progressive equi-join over two datasets and

visualizes bar charts from the progressive answers in the result set.

In addition to data visualization and aggregate queries, synopses

maintenance [15, 24] is another form of further processing over

progressive results.

Existing progressive processing systems rely on main two tech-

niques to ensure the quality of progressive results: (1) Optimiz-

ing the progressive input before the query processing: these sys-

tems [11, 12, 14, 15, 18, 38] control the input that goes into query

processing. They manipulate the progressive input based on pre-

defined input computation goals. The goals can be the number of

items in progressive input, data distribution of progressive input,

and preference score function. (2) Optimizing results during query

processing: a process ingests and processes more input until the

output reaches a desired quality bound [7, 24, 35]. They manipulate

the query processing based on result quality goals, for example,

error bound or sample strategies. Both solutions can be viewed as

input control strategies.
The first solution directly returns results and ignores further

optimization, which can lead to misleading results. We use the ex-

ample in Fig.1 to discuss this limitation. In Fig.1, we join Tweets

dataset with CityState dataset by existing input control solution

Prism and our proposed solution QPJ . And we further aggregate

progressive results in pie charts to compare the progressive results

produced by the two solutions. Progressive solutions progressively

process the query and data in multiple rounds. QPJ and Prism [11]

produce different pie charts at 𝑟1, 𝑟2, and 𝑟3. The main caveat is

that progressive results may not accurately reflect the complete re-

sult. Poor quality progressive results can negatively impact further

https://doi.org/10.1145/3603719.3603728
https://doi.org/10.1145/3603719.3603728
https://doi.org/10.1145/3603719.3603728


SSDBM 2023, July 10–12, 2023, Los Angeles, CA, USA Xin Zhang and Ahmed Eldawy

24%

32%
22%

22%

17%
9%
11%63%

25%

20%
17%

38%

Connecticut
Kentucky
Oregon
Arizona

Complete Result

Tweets
58 Portland

59 Portland

…

CityState
Portland Oregon

Phoenix Arizona 

…

Progressive result for r1
Portland 58 Oregon

…

Progressive result for r2
Portland 1093 Oregon
Phoenix 1094 Arizona
Winsted 1095 Connecticut

…

Progressive result for r3
Louisville 29305 Kentucky
Louisville 29306 Kentucky
Tucson 29307 Arizona

... 
…

⋈ append r3

append ri

append r2

23%

28%21%

28% 20%

23%
23%

34%

10%
17%

17%
56%

16%

15%

26%

43%

𝒓𝟏 𝒓𝟐 𝒓𝟑

…

…

Solution QPJ

Solution  Prism

progressive 
result rate ρ

58%35%7%
𝒄𝒐𝒎𝒑𝒍𝒆𝒕𝒆

100%

Figure 1: Right side: Progressively join the Tweets with the CityState datasets. The progressive results are continually
appended to the result set. Left side: Visualize the first three round results. The upper results compute from input&output

quality control framework QPJ . The downside results compute from purely input quality control framework Prism.
analyses and mislead data scientists to have cognitive biases [34].

For instance, at round 𝑟1, users without prior knowledge will draw

a wrong conclusion by Prism’s progressive results that Arizona

state has more results than sum of other states. On the other side,

users with prior knowledge will pay more time waiting for accu-

rate results. In contrast, QPJ does not mislead users like Prism.

Pie charts produced by QPJ more closely resemble the complete

result than pie charts produced by Prism. In the example above,

we use similarity to the complete results as a metric to evaluate

the quality of progressive results. It is a widely used metric in the

literature [13, 14, 18, 34, 35, 38, 39]. We summarize other quality

metrics in existing systems in Section.2.

The second solution takes longer to process more data to reach

the computation goal, which can compromise the advantage of

quick response provided by progressive processing. Besides, they

might provide approximate answers [7, 24] instead of exact answers.

Therefore, a better strategy to control the quality of progressive re-

sults is needed, which provides verified progressive results without

sacrificing the advantages of progressive processing.

Another limitation in existing progressive systems are their lim-

ited applicability to different data processing tasks. In Section 2,

we review several querying processing systems. Many systems are

designed for either specific data types or specific query types, as

different data types and query types require different algorithms to

process. The data analytic tasks across a variety of real-world ap-

plications. Therefore, there is a need for a general and lightweight

system that can handle both spatial and relational data.

To address the limitations in existing systems, we proposed QPJ ,
a quality-aware framework for equi-join and spatial join queries.

QPJ employs a flexible input&output control mechanism to adjust

input and output individually in each progressive computation cycle.

The input control follows existing single-choice control frameworks

to batch and partition the progressive input. The output control

maximizes progressive output rate while preserving result quality

through distribution similarity to the estimated complete result.

QPJ temporarily hides some results in memory from the current

round and inserts them in the following rounds. Simply speaking,

outputting less with better quality. QPJ uses a flexible two-direction
weighted sampling strategy. It adopts the weighted sampling to add

results one by onewhen the size of the temporary hold result is large.

And it uses reverse weighted sampling to filter out results when the

size of the temporary hold result is small. Additionally, QPJ adopts

a dynamic strategy to estimate complete result distribution.

In summary, we make the following contributions:

• We introduce an input&output control quality-aware pro-

gressive join framework called QPJ in Section 3.

• We propose a solution to guarantee both progressive results’

quality and progressive results’ rate in Section 4 and 5.

• We provide a dynamic result estimation method. It combines

two selectivity estimation strategies and dynamically adjusts

weights for two estimation strategies in Section 5.

• We design weighted sampling and reverse weighted sam-

pling to construct progressive output results in Section 5.

• We compared QPJ with existing progressive join solutions

and showed QPJ can return progressive results better than

the existing solutions in Section 6.

2 RELATEDWORK
2.1 Data Analytics and Data Processing System
Table1 summarizes several recent systems which are designed for

data analytics and progress processing systems. We classify existing

systems according to four essential aspects of data analytics which

are represented by the columns. Each row in the table represents

one of the existing systems and our proposed system is highlighted

at the end. There are still lots of good data analytics systems, e.g.,

GeoSparkViz [44] Cloudberry [30], Voyager [19], Visclean [31],

NeuralCubes [20], LIBKDV [5], Tabula [22], etc, and join processing

frameworks, e.g., PSJ [39], BiStream [16], Poet [33], etc. The main

focuses of those systems cannot cover most of the columns in the

table, therefore, we did not list them in Table1.

Results return.To let users examine the results quickly, SJoin [24]

computes a small sample of the large data, and Marviq [7] returns

approximate results. Progressive processing systems enable users to

check the intermediate results of complex computations early with-

out waiting for the computation to finish [34]. In Table 1, most of

the systems SelectiveWanderJoin [15], IncVisage [35], Pangloss [14],

Prism [11], ContourJoin [12], and RRPJ [18, 38] are return progres-

sive results. Those systems compute the results progressively and

continuously return the partial results until the computation is

finished or users stop the query. QPJ is designed for large data

processing to enable user interactions in the computation.



Less is More: How Fewer Results Improve Progressive Join Query Processing SSDBM 2023, July 10–12, 2023, Los Angeles, CA, USA

System Results Return Quality Processing Control Join Support

SelectiveWanderJoin [15] Progressive None Input - Not quality control equi-join

IncVisage [35] Progressive Quality aware Input - During processing ×
Pangloss [14] Progressive Quality aware Input - Before processing ×
Prism [11] Progressive Quality aware Input - Before processing equi-join

ContourJoin [12] Progressive Quality aware Input - Before processing equi-join

SJoin [24] Approximate Quality aware Input - During processing equi-join

Marviq [7] Approximate Quality aware Input - During processing ×
RRPJ [18, 38] Progressive Quality aware Input - Before processing equi-join and spatial join

QPJ Progressive Quality aware Input&Output - Before and after processing equi-join and spatial join

Table 1: Summary of data analytics and data exploration systems.

Result quality and quality control. We summarize the three

quality control strategies into two categories: input control and

output control, by whether the frameworks optimize results after

query processing. SJoin [24] maintains the sample of join results

for dynamically updated data and does not provide the quality

metric for the sample. They continually refine the join sample

when the input data dynamic changes. SelectiveWanderJoin [15]

lets users examine the intermediate results or let users evaluate the

results. SelectiveWanderJoin adjusts the progressive input based

on users’ feedback and does not provide the default quality metric.

We categorize SelectiveWanderJoin into the input control system

but not the input quality control system.

IncVisage [35] computes the distance between the progressive

results and the estimated results. They incremental split and pro-

duce the visualized results. The visualized results are segments.

They continuously split segments if the distance to the estimated

results is below the quality bound. Marviq [7] computes the quality

by the similarity between the approximate results to the precise

results. They propose the Jaccard Similarity for scatterplot visual-

ization and a more general mean squared error quality function for

scatterplot visualization and heatmap visualization. Both IncVisage

and Marviq control the result quality during the query processing,

their algorithms are designed specifically for figure results.

Pangloss [14] follows the Sample+Seek [6] method to compute

the sample from the whole dataset as the progressive inputs. The

Sample+Seek method optimizes the expected distance between the

normalized distributions of the approximate answer and the precise

one [14]. Pangloss also computes the confidence interval through

the worst-case estimates. Prism [11] batch the input data based on

pre-computed partition and batch size. In each round, the progres-

sive input of each partition strictly follows the same batch id. Prism

returns progressive results in the same form and semantics as the

final results and also adjusts the granularity of the progressive input

regarding user feedback. ContourJoin [12] requires a pre-processing

step to rank the input data by user preference score in descending

order. The ContourJoin algorithm to divides the whole data into

small batches by contour lines. The contour line represents the

preference score bound of each data batch. ContourJoin evaluates

and ranks the quality of progressive results by the preference score

of the result tuple and returns results progressively in descending

order. RRPJ [18, 38] evaluates the quality of the results in terms of

result distribution. They use the result distribution to evaluate the

quality of the system. Pangloss, Prism, ContourJoin, and RRPJ are

input quality control systems by manipulating progressive inputs.

QPJ applies input&output control strategy for the results’ qual-

ity. It batches and partitions the input data by pre-defined goals.

Besides, QPJ also adjusts progressive output size to control the

distribution of progressive outputs. This makes QPJ more suitable

for data exploration, where users are generally not aware of the

data semantics and are not able to tune the system manually.

Processed queries. IncVisage [35] and Marviq [7] are designed

for processing queries on a single table. However, data analytics

tasks are complex and involve multiple datasets. IncVisage and Pan-

gloss [14, 20] can handle aggregate queries on multiple tables. Selec-

tiveWanderJoin [15], Prism [11], ContourJoin [12], and SJoin [24]

can process equi-join queries. RRPJ [18, 38] have two separate

frameworks to deal with both equi-join and spatial join queries.

To enable flexible future analytics of the query results, QPJ pro-

vides both aggregate results, e.g. results count, and the actual query

results to the user. Moreover, QPJ is designed for handling complex

queries, equi-join, and spatial join.

2.2 Sampling Methods
Tao [37] summarizes the algorithmic techniques for independent

sampling. Tao lists several sampling techniques, such as weighted

sampling and weighted range sampling, and also introduces meth-

ods to construct samples. SJoin [24] constructs uniform random

samples over join results. BlinkDB [17] constructs stratified sam-

ples to compute approximate results for online aggregation queries.

QPJ adopts a weighted without replacement sampling strategy.

3 QPJ FRAMEWORK OVERVIEW
In this section, we describe QPJ framework and introduce how it

progressive processes join queries.

3.1 QPJ architecture
QPJ is a quality-aware progressive query processing framework.

Fig.2 shows its architecture. It takes input parameters from users

and returns progressive results back to users. QPJ produces the

quality preserved progressive results in many rounds. The number

of rounds is given by the user, we call the data of each round as batch.
The QPJ consists of three components: partitioners, processors, and

a progressive results builder. They are drawn into different colors.

In the following, we introduce the usage of QPJ by the join

queries because it involves multiple datasets. Single dataset pro-

cessing follows a similar process as join queries processing. Assume

there are two input data sets 𝑆 and 𝑅. The user gives a join query,



SSDBM 2023, July 10–12, 2023, Los Angeles, CA, USA Xin Zhang and Ahmed Eldawy

Partitioner 1

… …

K Processors

c

c

K Partitioners

Processor K

Input 
Batches

QPJ: Quality-aware Progressive Query Processing

Statistical Info:
e.g., read 10 records
from partition 1

Statistical Info:
e.g., found/output 5 
results from partition 3

Progressive results builder

Progressive result size 
estimator

𝑛 = !
"
𝐸#$!% +

" &!
"
𝐸"'(')*!+!*, {r1, r2, r3…}: the 

results size of 
each partition 

balance quality 
and output ratio

Input parameters, datasets
e.g., # of batches

Input queries

Quality preserved
progressive results

Output
control

Input
control

Partitioner K

Processor 1

: input control and output control gates

Views

Disk files

Figure 2: QPJ architecture.
the number of partitions 𝑘 , and the number of progressive computa-

tion rounds 𝑠 . QPJ divides datasets 𝑆 and 𝑅 into disjoint 𝑘 partitions

and collects the statistical information used for batching and result

size estimation. The detailed introduction of batching and partition

will be discussed later. The system assigns 𝑘 processors (in green)

to process the data from 𝑘 partitions (in blue) and produces the

progressive results in 𝑠 rounds. QPJ starts with loading the first

batch and sending it to the 𝑘 partitioners. Each partitioner reads

the data, stores the data belonging to its own partition for its own

processor, and sends the rest of data to other processors. Then, 𝑘

processors answer the input query. Circle black symbols represent

the input control and output control gates. Progressive inputs pass

input control gates, send to processors, and return the statistical

information of each input batch to the progressive results builder.

In each round, the partitioners and processors let the progres-

sive results builder (in orange) know the statistical information of

the input data and query results. The progressive results builder

estimates the result size and computes the output result size for

each partition. Based on the given output size, the 𝑘 processors

output part of results and store the rest results in memory. Pro-

gressive results and their statistical information pass the output

control gates and send to the progressive results builder. After the

progressive results builder returns the number of output results

back to the output control gates, the gates let processors release

the progressive results based on the output results size.

3.2 Progressive query processing QPJ
The progressive results builder and query processing process enable

QPJ to provide progressive results with good quality. In this subsec-

tion, we begin by discussing the high-level design. Subsequently,

we introduce how QPJ batches and partitions the datasets.

3.2.1 Progressive results builder. The progressive results builder
enables QPJ automatically control the input and output of each

round’s progressive computation. The goal of the progressive re-

sults builder is to return enough amount of progressive results with

good quality. To finish this task, two problems need to be solved:

ground truth estimation and finding the optimal progressive output

size. Note that the exact ground truth is unknown during the pro-

gressive computation. We can only compute the estimated ground

truth 𝐺 . During the progressive processing, the progressive results

builder collects statistics of output results from each partition to

compute the estimated ground truth and returns the best partial

answer. To better estimate the ground truth, progressive results

builder adopts multiple estimation methods and combines them dy-

namically by different importance. The progressive results builder

makes sure each partition has the roughly same estimated output

rate 𝜌𝑖 . The output rate 𝜌𝑖 is the ratio of the current result size to the

estimated ground truth. The progressive results builder computes

the best result rate of each partition and computes the output result

size of each partition by timing estimated ground truth with result

rate. The progressive results builder tries to produce progressive re-

sults with a similar distribution ratio to the final results. Therefore,

the progressive results can represent the final results well, and we

think these types of results with “good quality” [38].

To guarantee users receive enough amount of results, the pro-

gressive results builder allows every partition not strictly follows

the exact same 𝜌𝑖 . We provide a greedy solution to increase the

output rate, the algorithm will be discussed in Section5. Besides,

the input control also helps increase the output rate. As we intro-

duced before, QPJ computes the number of processed data in each

round in the beginning. When the output rate is not increased sig-

nificantly, the progressive results builder will increase the number

of processed data in the following rounds. Therefore, QPJ is an

auto-control framework without manual adjustments. To the best

of our knowledge, QPJ is the first quality-aware auto input and

output control progressive processing framework.

3.2.2 Query processing. QPJ is a flexible framework and can plug

in any query processing algorithm. To process the equi-join query,

QPJ applies hash join algorithm [25]. To hand the spatial join query,

QPJ applies the Plane Sweep algorithm [2]. Given the input batches,

QPJ runs three join steps for each partition: (1) The new batch from

dataset1 joins the new batch from dataset2; (2) The new batch from

dataset1 joins the existing batches from dataset2; (3) The new batch

from dataset2 joins the existing batches from dataset1. In each

round, QPJ computes the query results up to current batches. It

progressively produces the whole query results. Section5 describes

the progressive processing with more details.

3.2.3 Batching and data partition. Batching. Following the above

example, QPJ processes 𝑆 and 𝑅 in 𝑠 rounds. Based on the input

integer 𝑠 and the size of data sets, QPJ can efficiently compute the

size of 𝑠 input batches by any split function. In round 𝑖 , QPJ will

provide the progressive answer up to batch 𝑖 . The simplest way

to create batches is to split each partition into equal-sized batches.

However, as more and more batches are buffered, the later rounds

will process more data than the early round if apply equal-size split

method. The unbalanced workload triggers irregular processing

intervals. If the processed data workload in each processing unit is

balanced, users can check the progressive results in regular fixed

intervals. The workload balance problem is also an interesting

research direction that can be worked on [10, 21]. However, the

main contribution of this work is not workload balance. Besides

the equal split solution, we also provide a balanced solution. We

use a balance function to make sure each round processes the equal

size of candidate pairs, which is (𝑚1 ∗𝑚2)/𝑠 , where𝑚1 and𝑚2 are

the sizes of the two datasets and 𝑠 is the total computation round.



Less is More: How Fewer Results Improve Progressive Join Query Processing SSDBM 2023, July 10–12, 2023, Los Angeles, CA, USA

Data partition. QPJ provides hashing partition and grid parti-

tion. The hashing partition [11, 16, 18] is widely used to separate

the non-spatial data based on the joined attribute. QPJ groups the
relational data based on the joined attribute and puts them to a

different partition. To process spatial data, QPJ takes grid parti-

tion [33, 36, 38]. It divides the input data space by equal-size grid

cells and hashes each grid cell to a different partition. For relational

data, each row belongs to only one partition (single-assign). While

spatial vector objects are points, lines, and polygons. A polygon

might belong to multiple partitions if this polygon overlaps with

multiple partitions [32] (multi-assign). Because partitions are dis-

joint with each other, the processor 𝑖 only needs to join the partition

𝑖 of dataset1 with the partition 𝑗 of dataset2. For equi-join, following

the full partition-wise joins
1
, if the two records do not have the

same joined attribute, they won’t be a query answer. For spatial

join, the fully contained objects in one partition do not overlap with

the fully contained objects in another partition. The partitioning

stage helps QPJ save the computation overhead on join operations.

4 THE QUALITY OF PROGRESSIVE RESULTS
In this section, we introduce the mathematical definition of pro-

gressive results’ quality. Unlike existing methods [11, 14, 18, 35, 38]

only focus on result distribution, QPJ also considers the output rate
of the progressive results. This makes sure users get enough results

to help with further analytics on the query results.

4.1 Symbols and notations

Symbols Description

𝑆, 𝑅 Input dataset 𝑆 and 𝑅.

𝑄,𝐴𝑛𝑠𝑄 Join query 𝑄 and its answer 𝐴𝑛𝑠𝑄
𝑎𝑛𝑠𝑖
𝑛𝑖

𝑎𝑛𝑠𝑖 is progressive results up to input batch 𝑖

𝑛𝑖 is the number of result tuples in 𝑎𝑛𝑠𝑖 , 𝑛𝑖 = |𝑎𝑛𝑠𝑖 |
𝑛𝐺𝑇𝑗 The ground truth result size of partition 𝑗

𝑎𝑛𝑠𝑖, 𝑗
𝑛𝑖, 𝑗

𝑎𝑛𝑠𝑖, 𝑗 is progressive results of partition 𝑗

update to batch 𝑖 , 𝑛𝑖, 𝑗 = |𝑎𝑛𝑠𝑖, 𝑗 |
𝑎𝑛𝑠𝑂𝑖, 𝑗
𝑛𝑂𝑖, 𝑗

𝑎𝑛𝑠𝑂𝑖, 𝑗 is output progressive results of partition 𝑗

for round 𝑖 , 𝑛𝑂𝑖, 𝑗 = |𝑎𝑛𝑠𝑂𝑖, 𝑗 |
𝜌𝑖 The result rate of round 𝑖 , 𝜌𝑖 = |𝑎𝑛𝑠𝑖 |/|𝐴𝑛𝑠𝑄 |.

𝑟𝑖, 𝑗
The ratio of partition 𝑗 over all the partition

up to batch 𝑖 . 𝑟𝑖, 𝑗 = 𝑛𝑖, 𝑗/(
∑𝑘
𝑗=1 𝑛𝑖, 𝑗 )

𝑒𝑖, 𝑗 The output error of partition 𝑗 in round 𝑖 .

𝐸𝑖 The average error of the progressive answer 𝑎𝑛𝑠𝑖 .

Table 2: Summary of the symbols used in this paper.

Table2 lists the symbols used throughout this paper. Assume

the inputs are two datasets 𝑆 and 𝑅, a join query 𝑄 , an integer 𝑠

(𝑠 ≥ 1) which is the number of rounds, and the error bound 𝜀 (𝜀 ≥ 0).
Both 𝑆 and 𝑅 contain many records, like rows or spatial polygons.

For example, row records with row id and string attributes, and

spatial polygons with latitude and longitude. The join query 𝑄 can

be an equi-join query or a spatial join query. The outputs from the

problem are 𝑠 output progressive answers {𝑎𝑛𝑠𝑂1, 𝑎𝑛𝑠𝑂2, ..., 𝑎𝑛𝑠𝑂𝑠 }
1
Full Partition-Wise Joins: https://docs.oracle.com/database/121/VLDBG/GUID-

5279BF41-41BF-4F87-A64E-2AA58C22BD61.htm

which satisfy the error bound 𝜀. The 𝜀 is the average error bound

of progressive results in each round. 𝐴𝑛𝑠𝑄 is the query answer to

the input join query 𝑄 , where 𝐴𝑛𝑠𝑄=
⋃𝑠
𝑖=1 𝑎𝑛𝑠𝑖 .

The framework divides the input datasets into 𝑠 batches, one

batch per round. In each round, the framework processed one batch

of data from 𝑆 and one batch from 𝑅. In round 𝑖 , the progressive

answer 𝑎𝑛𝑠𝑖 is computed from data up to batch 𝑖 . To evaluate the

similarity between the progressive results to the final answer, we

partition input datasets into 𝑘 disjoint partitions and compute the

result distribution from each partition.When the progressive results

are actual result tuples instead of aggregation, most of the existing

works [14, 18, 38] evaluate result quality through distribution.

Definition 1. Progressive results 𝑎𝑛𝑠𝑖 are the results that are
computed from input batches 𝑠1, ..., 𝑠𝑖 .

Definition 2. Based on partition function, the 𝑎𝑛𝑠𝑖 can be repre-
sented by partitioned progressive results: 𝑎𝑛𝑠𝑖 = {𝑎𝑛𝑠𝑖,1, ..., 𝑎𝑛𝑠𝑖,𝑘 },
where 𝑎𝑛𝑠𝑖, 𝑗 is the results in partition 𝑗 up to batch 𝑖 .

Let 𝑛 represent the number of results. In round 𝑖 , we found

𝑛𝑖=⟨𝑛𝑖,1, ..., 𝑛𝑖,𝑘 ⟩ results. Based on definition 2, 𝑛𝑖, 𝑗 = |𝑎𝑛𝑠𝑖, 𝑗 | de-
notes the number of results found in partition 𝑗 up to batch 𝑖 .

Definition 3. Output progressive results 𝑎𝑛𝑠𝑂𝑖 = {𝑎𝑛𝑠𝑂𝑖,1, ...,
𝑎𝑛𝑠𝑂𝑖,𝑘 } are results outputted in round 𝑖 . For each partition 𝑗 , pick
a random sample 𝑎𝑛𝑠𝑂𝑖, 𝑗 from 𝑎𝑛𝑠𝑖, 𝑗 . The picked 𝑎𝑛𝑠𝑂𝑖 satisfies the
error bound 𝜀.

Let 𝑛𝑂𝑖 denote the size of the output progressive answer size.

𝑛𝑂𝑖=⟨𝑛𝑂𝑖,1, ..., 𝑛𝑂𝑖,𝑘 ⟩, where 𝑛𝑂𝑖, 𝑗=|𝑎𝑛𝑠𝑂𝑖, 𝑗 | and 0 ≤ 𝑛𝑂𝑖, 𝑗 ≤ 𝑛𝑖, 𝑗 .

Let 𝑛𝐺𝑇 represent the ground truth result size, which is the total

number of results if 𝑠 batches. 𝑛𝐺𝑇 = ⟨𝑛𝐺𝑇1, ..., 𝑛𝐺𝑇𝑘 ⟩, where 𝑛𝐺𝑇𝑗
denotes the result size in partition 𝑗 . We use estimated ground truth

during the progressive computation. The detailed discussions of

estimate ground truth are in Section 5.1.

Definition 4. Progressive result rate 𝜌𝑖 denotes the result rate
of output progressive answer 𝑎𝑛𝑠𝑖 up to batch 𝑖 . 𝜌𝑖, 𝑗 denotes the result
rate of partition 𝑗 up to batch 𝑖 . It is computed by diving the ground
truth result size 𝑛𝐺𝑇𝑗 by the output result size 𝑛𝑂𝑖, 𝑗 .

𝜌𝑖, 𝑗 =
𝑛𝑂𝑖, 𝑗

𝑛𝐺𝑇𝑗
, 𝜌𝑖 =

∑𝑘
𝑗=1 𝑛𝑂𝑖, 𝑗∑𝑘
𝑗=1 𝑛𝐺𝑇𝑗

(1)

Next, let’s define the result distribution and result quality.

Definition 5. The accurate result distribution is computed
based on the ground truth result size. 𝑟𝐺 = ⟨𝑟𝐺1, ..., 𝑟𝐺𝑘 ⟩, where
𝑟𝐺 𝑗 = 𝑛𝐺𝑇𝑗/

∑𝑘
𝑗=1 𝑛𝐺𝑇𝑗

Definition 6. The output result ratio 𝑟𝑂𝑖 = ⟨𝑟𝑂𝑖,1, ..., 𝑟𝑂𝑖,𝑘 ⟩,
where 𝑟𝑂𝑖, 𝑗 = 𝑛𝑂𝑖, 𝑗/

∑𝑘
𝑗=1 𝑛𝑂𝑖, 𝑗 .

𝑟𝐺 𝑗 and 𝑟𝑂𝑖, 𝑗 are result ratio of partition 𝑗 . Based on the defini-

tion, we have

∑𝑘
𝑗=1 𝑟𝐺 𝑗 = 1 and 0 ≤ 𝑟𝐺 𝑗 ≤ 1.

Definition 7. 𝐸𝑖 denotes the average error of output progressive
answer of round 𝑖 . 𝑒𝑖, 𝑗 denotes the error between output result ratio
𝑟𝑂𝑖, 𝑗 and ground truth result ratio 𝑟𝐺𝑇𝑗 of partition 𝑗 .

𝑒𝑖, 𝑗 =
|𝑟𝐺𝑇𝑗 − 𝑟𝑂𝑖, 𝑗 |

𝑟𝐺𝑇𝑗
, 𝐸𝑖 =

∑𝑘
𝑗=1 𝑒𝑖, 𝑗

𝑘
(2)



SSDBM 2023, July 10–12, 2023, Los Angeles, CA, USA Xin Zhang and Ahmed Eldawy

The output progressive result with smaller 𝐸𝑖 means its result

distribution is close to the ground truth (final) result distribution.

Therefore, it can better represent the final results.

Example 1. In Fig.1, we join Tweets with CityState: SELECT *
FROM S,R WHERE S.city = R.city.

The complete result contains 546 tweets from Arizona (A) state, 360
tweets from Connecticut (C) state, 288 tweets from Kentucky (K) state,
and 246 tweets from Oregon (O) state. The total number of results is
1440. The ground truth result distribution is 𝑟𝐺𝑇𝐴𝑟𝑖𝑧𝑜𝑛𝑎 = 546/1440 =
0.38, 𝑟𝐺𝑇𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑐𝑢𝑡 = 360/1440 = 0.25, 𝑟𝐺𝑇𝐾𝑒𝑛𝑡𝑢𝑐𝑘𝑦 = 288/1440 =
0.20, and 𝑟𝐺𝑇𝑂𝑟𝑒𝑔𝑜𝑛 = 246/1440 = 0.17.

Definition 8. Quality-aware progressive answer computa-
tion problem: given input dataset 𝑆 and 𝑅, join query𝑄 , the number
of rounds 𝑠 (𝑠 ≥ 1), and the error bound 𝜀 (𝜀 ≥ 0), the goal is to return
the progressive answers which the maximum result rate 𝜌𝑖 and also
satisfy the error bound. The formal problem statement is:

max

𝑘∑︁
𝑗=1

𝑛𝑂𝑖, 𝑗 , subject to

∑𝑘
𝑗=1 𝑒𝑖, 𝑗

𝑘
≤ 𝜀. (3)

Please notice that we evaluate result quality by results distribu-

tion. More partitions enable finer control over the result quality.

However, with more partitions, the result estimation and error com-

putation are more expensive. There is an implicit trade-off between

the finer quality control of progressive results and the efficiency to

compute the progressive results.

4.2 Existing solutions
Existing solutions RRPJ [18, 38], Prism [11], and ContourJoin [12]

maximum the result rate by returning all the found results, which

is 𝑛𝑂𝑖, 𝑗=𝑛𝑖, 𝑗 . In this case, they cannot guarantee the progressive

answer always satisfied the quality bound 𝜀.

Unlike the existing works, we proposed QPJ which returns the

progressive answer that satisfies the quality bound 𝜀 and maximizes

the progressive rate 𝜌𝑖 as much as possible. To guarantee the error

bound, QPJ hides part of the results from 𝑛𝑖 in memory temporarily

and returns the most representative progressive answer.

Theorem 1. When all the partitions have the same result rate, we
have the progressive answer with the best quality.

When 𝜌𝑖,1 = 𝜌𝑖,2 = ... = 𝜌𝑖,𝑘 , 𝐸𝑖 = 0.

Proof. By the definition, we have:

(1) 𝑟𝐺𝑇𝑗 =
𝑛𝐺𝑇𝑗∑𝑘
𝑗=1 𝑛𝐺𝑇𝑗

, (2) 𝑟𝑂𝑖, 𝑗 =
𝑛𝑂𝑖,𝑗∑𝑘
𝑗=1 𝑛𝑂𝑖,𝑗

,

(3) 𝑛𝑂𝑖, 𝑗 = 𝑛𝐺𝑇𝑗 ∗ 𝜌𝑖, 𝑗 .
Then, 𝑟𝑂𝑖, 𝑗 =

𝑛𝑂𝑖,𝑗∑𝑘
𝑗=1 𝑛𝑂𝑖,𝑗

=
𝑛𝐺𝑇𝑗 ∗𝜌𝑖,𝑗∑𝑘

𝑗=1 (𝑛𝐺𝑇𝑗 ∗𝜌𝑖,𝑗 )

=
𝜌𝑖,𝑗 ∗𝑛𝐺𝑇𝑗

𝜌𝑖,𝑗 ∗
∑𝑘

𝑗=1 𝑛𝐺𝑇𝑗
= 𝑟𝐺𝑇𝑗

⇒ 𝐸𝑖 =

∑𝑘
𝑗=1 𝑒𝑖,𝑗

𝑘
=

∑𝑘
𝑗=1 (𝑟𝐺𝑇𝑗−𝑟𝑂𝑖,𝑗 )/𝑟𝐺𝑇𝑗

𝑘
= 0

□

Different partition has different result rate 𝜌 . As Theorem1

shows, the more partitions have the same result rate, the better

progressive answer we can output to the users.

Example 2. In the first round of Fig.1, there are 63 tweets from
Arizona, 17 tweets from Connecticut, 9 tweets from Kentucky, and
11 tweets from Oregon. Existing solution Prism returns all of them.
In Prism’s solution, 𝜌0 = 0.069.𝑟𝑂0,𝐴 = 0.67, 𝑟𝑂0,𝐶 = 0.17, 𝑟𝑂0,𝐾 =

0.09, and 𝑟𝑂0,𝑂 = 0.11.
The error of Prism solution: 𝐸0 = ( |38 − 63|/38 + |25 − 17|/25 +

|20 − 9|/20 + |17 − 11|/17)/4 = 0.52.
QPJ returns 6 tweets from Arizona, 7 tweets from Connecticut, 9

tweets from Kentucky, and 6 tweets from Oregon. 𝜌0 = 0.019. 𝑟𝑂0,𝐴 =

0.22, 𝑟𝑂0,𝐶 = 0.24, 𝑟𝑂0,𝑂 = 0.32, and 𝑟𝑂0,𝑂 = 0.22.
QPJ error: 𝐸0 = ( |38− 22|/38 + |25− 24|/25 + |20− 32|/20 + |17−

22|/17)/4 = 0.42 < 0.52 (Prims’s solution).

5 PROGRESSIVE PROCESSING
Note that during the progressive computation, there is no way to

get the actual ground truth, we can only compute the estimated

ground truth𝐺 . InQPJ , the progressive results builder estimates the

total number of results 𝐺 based on the current processing progress

and current results size. With the estimated ground truth 𝐺 , QPJ
can provide the progressive answer 𝑛𝑂𝑖 which satisfies the error

bound and maximizes the progressive rate 𝑝𝑖 as much as possible.

5.1 Estimated ground truth
Let ˆ𝑛𝐺𝑇𝑖 = ⟨ ˆ𝑛𝐺𝑇𝑖,1, ..., ˆ𝑛𝐺𝑇𝑖,𝑘 ⟩, where ˆ𝑛𝐺𝑇𝑖, 𝑗 denotes the estimated

total number of join results in partition 𝑗 in round 𝑖 . The Selectivity

Estimation problem is well-studied [25]. There are two popular

used ways to estimate the join size:

• Method𝐸𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 (Equi-join): Consider a join query𝑅(𝑋,𝑌 ) Z
𝑆 (𝑌, 𝑍 ) and𝑌 is a key in 𝑆 and the corresponding foreign key

in 𝑅, we can estimate the join size 𝑇 (𝑅 Z 𝑆) = 𝑇 (𝑅)𝑇 (𝑆)/
max{𝑉 (𝑅,𝑌 ),𝑉 (𝑆,𝑌 )}, where 𝑇 (𝑅) is the number of tuples

in 𝑅, 𝑉 (𝑅,𝑌 ) is the number of distinct 𝑌 values in 𝑅. 2

• Method 𝐸𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 (Spatial join): We construct Geometric

Histograms [1] to estimate the join size of spatial join.

• Method 𝐸 𝑗𝑜𝑖𝑛 : Existing works [26–28] estimate the result

size based on sample result size. We can get 𝑥𝑖 ∗ 𝑦 𝑗 fraction
of the final results by joining 𝑥𝑖 fraction of the dataset1 with

𝑦 𝑗 fraction of the dataset2.

In Section6, we test the precision and efficiency of the estimation

by applying 𝐸𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 only and applying 𝐸 𝑗𝑜𝑖𝑛 only. The accuracy

of 𝐸𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 performed better than 𝐸 𝑗𝑜𝑖𝑛 in the beginning and

𝐸 𝑗𝑜𝑖𝑛 became more accurate than 𝐸𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 with more and more

data processed. Because 𝐸𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 requires extra computation

overhead and statistical information maintenance, only applying

𝐸 𝑗𝑜𝑖𝑛 ran faster than applying 𝐸𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 only. To make use of

the advantages of the two estimation methods, progressive results

builder combines the 𝐸𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 with 𝐸 𝑗𝑜𝑖𝑛 in each round by linear

weight function. The weights of two estimations are changed.

The progressive results builder collects the necessary statisti-

cal information and computes the value of selectivity estimation

𝐸𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 only once in the partition phase. Any selectivity estima-

tion method can be plugged into QPJ to compute the 𝐸𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 .

2
The book [25] mentioned two assumptions: Containment of Value Sets and Preser-

vation of Value Sets. If the query satisfies the above two assumptions, then we can

estimate the join size based on the equation. If 𝑌 is a key in 𝑆 and the corresponding

foreign key in 𝑅, the query satisfies the two assumptions.



Less is More: How Fewer Results Improve Progressive Join Query Processing SSDBM 2023, July 10–12, 2023, Los Angeles, CA, USA

Based on the batch function introduced in Section3-Batching and

data partition, we know the ratio of the current batch size to the

total result size. 𝐸 𝑗𝑜𝑖𝑛𝑖 = (𝑚1 ∗ 𝑚2)/(𝑚1𝑖 ∗ 𝑚2𝑖 ∗ 𝑛𝑖 ), where
𝑚1,𝑚2,𝑚1𝑖 ,𝑚2𝑖 are input data size and batch size, 𝑛𝑖 is the re-

sult size of round 𝑖 . Assume the split function divides the data into 𝑠

batches. The progressive results builder dynamic estimates ground

truth result size 𝐸𝑑𝑦𝑛𝑎𝑚𝑖𝑐 by the following:

ˆ𝑛𝐺𝑇𝑖, 𝑗 = 𝐸𝑑𝑦𝑛𝑎𝑚𝑖𝑐 =
𝑖

𝑠
𝐸 𝑗𝑜𝑖𝑛𝑖 +

𝑠 − 𝑖

𝑠
𝐸𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦, (4)

where the first estimated ground truth is 𝐺1 = 𝐸𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 and the

last estimated ground truth 𝐺𝑠 = 𝐸 𝑗𝑜𝑖𝑛𝑠 .

5.2 Progressive result builder
5.2.1 Optimal progressive rate. With the estimated ground truth

ˆ𝑛𝐺𝑇𝑖 = ⟨ ˆ𝐺𝑇𝑖,1, ..., ˆ𝐺𝑇𝑖,𝑘 ⟩, we can compute the progressive output

rate 𝜌𝑖, 𝑗 of each partition 𝑗 in round 𝑖 , 𝜌𝑖, 𝑗 = 𝑛𝑂𝑖, 𝑗/ ˆ𝑛𝐺𝑇𝑖, 𝑗 . As

Theorem1 claimed, when all the partition has the same progressive

rate, we can have a progressive answer with the best quality. To

achieve this, we let 𝜌𝑖 = min{𝜌𝑖,1, ..., 𝜌𝑖,𝑘 }. Then, the output size
𝑛𝑂𝑖, 𝑗 of partition 𝑗 is computed by ˆ𝑛𝐺𝑇𝑖, 𝑗 ∗ 𝜌𝑖 .

Different progressive rates 𝜌𝑖 output different numbers of result

tuples. If 𝜌𝑖 is not the minimum process over the 𝑘 partitions, some

partitions cannot return ˆ𝑛𝐺𝑇𝑖, 𝑗 ∗ 𝜌𝑖 result tuples, so 𝑟𝑂𝑖, 𝑗 ≠ ˆ𝑟𝐺𝑇𝑖, 𝑗 .

Although taking the minimum 𝜌 for every partition guarantees the

progressive answer has the best quality, it also blocks the progres-

sive rate, which let users cannot see enough new results.

Assuming the estimation ˆ𝑛𝐺𝑇𝑖, 𝑗 increased sharply in the round

𝑖 , its new progressive rate is smaller than the previous round’s

progressive rate. Then 𝜌𝑖, 𝑗 would block all of the partitions in round

𝑖+1 and QPJ cannot output anything. To avoid some partitions that

block the output progress rate, QPJ enables each partition to have

a different progressive rate. It lets most of the partitions return

ˆ𝑛𝐺𝑇𝑖, 𝑗 ∗ 𝜌𝑖 number of results, and the rest of partitions can return

less than ˆ𝑛𝐺𝑇𝑖, 𝑗 ∗ 𝜌𝑖 number of results.

There is a trade-off between the progressive rate and overall out-

put error. Taking theminimumprogressive rate 𝜌𝑖 over {𝜌𝑖,1, ..., 𝜌𝑖,𝑘 },

every partition can return ˆ𝑛𝐺𝑇𝑖, 𝑗 ∗ 𝜌𝑖 results, then 𝑟𝑂𝑖= ˆ𝑟𝐺𝑇𝑖 and∑𝑘
𝑗=1 𝑒𝑖, 𝑗/𝑘=0. Boosting the progressive rate 𝜌𝑖 triggers some parti-

tions that cannot return enough results, which produces a larger

overall error. To boost the progressive rate, we can let the overall

error reach the maximum error bound 𝜀.

Let’s denote the optimal progressive rate up to batch 𝑖 is 𝜌∗
𝑖
. QPJ

finds the 𝜌∗
𝑖
based on the greedy Algorithm1. The algorithm first

ranks all the progressive rates in ascending order in the list 𝐿 (lines

1-2). If the 𝜌∗
𝑖
is the smallest progressive rate which is the first one

in the list 𝐿, the error is 0 based on Theorem1. We maintain the

error in the previous round as 𝑒𝑝𝑟𝑒 . In the while-loop (line 5-11),

the algorithm greedy increases the progressive rate by trying larger

progressive rate. The while-loop ends when the error 𝑒 is larger

than the given error bound 𝜀. Then, the algorithm computes the

boost optimal progressive rate based on Theorem2 (line 12-13).

Theorem 2. The boost progressive rate 𝜌∗ is 𝜌𝑖,𝑗+...+𝜌𝑖,𝑗
𝑗−𝑘𝜀 .

Proof. Assumewhen idx= 𝑗+1, the error becomes larger than the

error bound 𝜀. The optimal progressive rate computes as following:

Algorithm 1: Boost the progressive rate
Input: The error bound 𝜀, and the output rate of each

partition: {𝜌𝑖,1, ..., 𝜌𝑖,𝑘 }

Output: The boosted output rate 𝜌∗

1 Rank the {𝜌𝑖,1, ..., 𝜌𝑖,𝑘 } in ascending order

2 List 𝐿 = output rate list ranked in ascending order

// Smallest output rate is ranked first

3 Boost id 𝑖𝑑𝑥 = 0, 𝜌∗ = 𝐿[𝑖𝑑𝑥]
4 𝑒 = 0, 𝑒𝑝𝑟𝑒 = 0 // The error of this round and

previous round

5 while 𝑒 < 𝜀 do
6 𝜌∗ = L[++idx] // greedy increase the output

ratio

7 𝑒𝑝𝑟𝑒 = 𝑒, 𝑒 = 0

8 for 𝑖 from 0 to 𝑖𝑑𝑥 do
9 𝑒+ = 𝑒𝑖𝑑𝑥

10 end
11 end
12 If e == 𝜀, return 𝜌∗

13 return 𝜌∗ = 𝜌𝑖,1+...+𝜌𝑖,𝑖𝑑𝑥
𝑖𝑑𝑥−𝑘𝜀 // 𝑒𝑝𝑟𝑒 < 𝜀 < 𝑒

𝑒𝑖, 𝑗 =
𝑟 ∗𝑖,𝑗−𝑟𝑖,𝑗
𝑟 ∗
𝑖,𝑗

= 1 − 𝑟𝑖,𝑗
𝑟 ∗
𝑖,𝑗

= 1 −
𝑟𝑖,𝑗

∑𝑘
𝑗=1 𝑛

∗
𝑖,𝑗

𝑟 ∗
𝑖

∑𝑘
𝑗=1 𝑛

∗
𝑖,𝑗

= 1 − 𝑛𝑖,𝑗
𝑛∗
𝑖,𝑗

= 1 − 𝑛1, 𝑗

𝜌∗
𝑖

ˆ𝑛𝐺𝑇𝑖,𝑗
= 1 − 1

𝜌∗
𝑖

𝑛𝑖,𝑗
ˆ𝑛𝐺𝑇𝑖,𝑗

= 1 − 1

𝜌∗
𝑖
𝜌𝑖, 𝑗 .

⇒ 𝑘𝜀 =
∑𝑎
𝑗=1 𝑒𝑖, 𝑗 = 1 − 1

𝜌∗
𝑖
𝜌1 + ... + 1 − 1

𝜌∗
𝑖
𝜌𝑖, 𝑗 = 𝑗 − 𝜌𝑖,𝑗+...+𝜌𝑖,𝑗

𝜌∗
𝑖

⇒ 𝜌∗
𝑖
=
𝜌1, 𝑗+...+𝜌𝑖,𝑗

𝑗−𝑘𝜀 . □

The complexity analysis. The time cost of Algorithm1 comes

from two parts: sort phase and while loop. We use the MergeSort

for ranking the progressive rates, its time complexity is 𝑂 (𝑛 log𝑛).
In the while loop, the number of computations in for loop is equal

to idx, it starts from 1 to 𝑘 , where 𝑘 is the number of partitions. In

the worst case, idx equals 𝑘 , and the worst time complexity of the

while loop is 𝑂 (𝑘2). In the previous section, we pointed out the

implicit trade-off between the finer quality control of progressive

results (more number of partitions) and the efficiency to compute

the progressive results. Therefore, we won’t consider too large 𝑘 in

the real-world case. In the experiment section, we test with 𝑘 ≤ 30.

Compare with the scale of the join algorithms, 𝑂 (𝑘2) is not costly.
Optimal size of the progressive answer.With the optimal 𝜌∗

𝑖
,

QPJ computes the progressive answer 𝑛𝑜,𝑖 = { ˆ𝐺𝑖,1𝜌
∗
𝑖
, ..., ˆ𝐺𝑖,𝑘𝜌

∗
𝑖
}.

The output progressive answer 𝑛𝑂𝑖 satisfies the error bound 𝜀 and

also has the largest boosted progressive rate 𝜌∗.
Below is the process to compute the optimal progressive rate for

Example 1 and Example 2.

Example 3. In 𝑟3 of Fig.1, we have 𝜌𝐴 = 0.70, 𝜌𝐶 = 0.30, 𝜌𝐾 = 0.40,
and 𝜌𝑂 = 0.65. And the error bound 𝜀 = 0.2.

If 𝜌𝑖=𝜌𝐾=0.40, average error is
1− 0.3

0.4
+1− 0.4

0.4

4
= 0.1875 < 𝜀.

If 𝜌𝑖=𝜌𝑂=0.65, average error is
1− 0.3

0.65
+1− 0.4

0.65
+1− 0.65

0.65

4
≈ 0.23 > 𝜀.

Algorithm 1 returns optimal 𝜌∗
2
= 0.3+0.4

2−4∗0.2 ≈ 0.58 > 𝜌𝐾 .

5.2.2 Select progressive output results. With the optimal output

progressive rate 𝜌∗ and estimated ground truth, QPJ computes the



SSDBM 2023, July 10–12, 2023, Los Angeles, CA, USA Xin Zhang and Ahmed Eldawy

size of output results {𝑛𝑂𝑖,1, ..., 𝑛𝑂𝑖,𝑘 } and outputs the progressive

results based on computed size. This brings a new problem that

how to choose results to output.

QPJ adopts sampling method to solve this problem. A simple

solution is adopted uniform sampling, which randomly picks 𝑛𝑂𝑖, 𝑗
results from partition 𝑗 . Uniform sampling takes each join result

with the same importance. We can also achieve a finer control to

pick results to output. QPJ uses a two-level partitioning strategy.
It first partitions data into big partitions which are called coarser-

level partitions. Then it further splits each big partition into small

partitions which are called finer-level partitions. The split process

is lightweight. In hashing partition, assume the number of coarser-

level partitions is 𝑐 and the number of finer-level partitions is 𝑓 .

Given an item with hash code ℎ, it belongs to finer partition (ℎ/𝑐
mod 𝑓 ) in coarser partition (ℎ mod 𝑐). The progressive rate and
output result size are computed based on the coarser-level partition.

QPJ adopts the weighted sampling method to pick output results

of equi-join. In each coarser-level partition, we compute the result

ratio of each finer-level partition. QPJ takes the result ratio as the

weight for each finer-level partition. In the partition phase, QPJ
computes the 𝐸𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 based on statistical information of the

whole dataset. The result ratio is computed by 𝐸𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 of each

finer-level partition.

Currently, spatial join output results are picked by uniform sam-

pling. Because the current spatial join algorithm in QPJ is designed
for spatial polygons and each spatial polygon might overlap with

multiple finer-level partitions. A polygon might be picked from one

overlapping finer-level partition and not be picked by the other

overlapping finer-level partitions. QPJ uses the uniform sampling

method to avoid this situation happens.

5.2.3 reverse weighted sampling. QPJ samples progressive output

results by weighted without replacement sampling strategy. Ex-

isting sampling over joins works [15, 23, 24, 24, 43] are “direct”

methods, which insert sample items to the samples. The direct

methods generate samples with a small size from join results with

a big size. However, applying the direct method to QPJ to generate

progressive output results is expensive, because the output results

size 𝑛𝑂𝑖, 𝑗 is close to the join results size 𝑛𝑖, 𝑗 . Therefore, we design

reverse weighted sampling strategy for QPJ to pick the join

results that are temporary hold.

For direct weighted samplingmethods, itemswith higherweights

have larger chance to be added to samples. Given a set of weights

{𝑤𝑙−1, ...,𝑤𝑙−𝑘 } of partitions {1, ..., 𝑘} and the size of all the results
𝑛, the direct weighted sampling model𝑀 is built by the following:

𝑀 = {{1, ..., 1}, ..., {𝑘, ..., 𝑘}},𝑤ℎ𝑒𝑟𝑒 |{𝑖, ..., 𝑖}| = 𝑤𝑙−𝑖 ∗ 𝑛 (5)

For each sampling round, the system uniform picks a partition id 𝑖

from𝑀 and adds the item of partition 𝑖 to the samples.

The reverse weighted sampling is the opposite in those items

with smaller weights having large chance to be filtered out from

samples. Given a set of weights {𝑤𝑙−1, ...,𝑤𝑙−𝑘 } of partitions {1, ..., 𝑘}
and the size of all the results 𝑛, the reverse weighed sampling model

𝑅𝑀 is built by the following:

𝑅𝑀 = {{1, ..., 1}, ..., {𝑘, ..., 𝑘}},𝑤ℎ𝑒𝑟𝑒 |{𝑖, ..., 𝑖}| = 𝑛 −𝑤𝑙−𝑖 ∗ 𝑛 (6)

The frequency of partition 𝑖 in 𝑅𝑀 is reserved by using total size 𝑛

minus its direct frequency𝑤𝑙−𝑖 ∗ 𝑛. For each sampling round, QPJ

picks a partition id 𝑖 from 𝑅𝑀 and filters out the item of partition 𝑖

from the found results. The filtered item will be held in memory

and merged with join results in the next progressive round.

5.3 Progressive Processing
Algorithm 2: Progressive Join
Input: Dataset 𝑆 and 𝑅, the query 𝑄 , the progressive

computation rounds 𝑠

Output: progressive answer
1 Collect the statistical information from 𝑆 and 𝑅

2 Compute the batch size based on rounds 𝑠

3 for each batch do
4 read and partitions the data

5 ships the partitioned data to Processors

6 sends partition size to Progressive Results Builder

7 end
8 for each Processor do
9 filter out 𝑁 1 and 𝑁 2 // 𝑁𝑚 is the new batch from

dataset i

10 𝑅 = 𝑅
⋃

Join(N1, N2)

11 𝑅 = 𝑅
⋃

Join(N1, E2)

12 𝑅 = 𝑅
⋃

Join(N2, E1) // 𝐸𝑚 is the old batches

from dataset i

13 sends the number of results to Progressive Results

Builder

14 end
15 Progressive Results Builder estimates result size 𝐺𝑖 by

Equation (2) and output ratio 𝜌𝑖 and send to Processors

16 Processors output the progressive answer 𝑛𝑂𝑖

As a general framework to handle both equi-join and spatial join

queries, QPJ integrates different join algorithms. Since algorithms

used to process equi-join and spatial join are different, we designed

algorithm Progressive Join to integrate equi-join and spatial join

processing. It transfers the universal input text format to a set of

tuples that can be used by the underlying join algorithms. Algorithm

2 shows the pseudocode.

In each round,QPJ finishes three tasks (lines 3-7): (1) Reading one
input split and partitioning the data. (2) Shipping the partitioned

data to the processors. (3) Communicating with the Progressive

Results Builder. The partition strategy is similar to the pre-step:

applying grid partition strategy for spatial data and applying hash-

ing partition strategy for non-spatial data. After the reading, the

processors send the statistical information of the input split back

to the Progressive Results Builder.

Each processor joins data from at least one partition. It’s de-

pended on the partition size. The processor can process multiple

partitions if all of them are small. Line 8-14 shows the three join

steps that happened in each processor. 𝑁𝑚 is the new batch from

dataset𝑚 and 𝐸𝑚 are the new batches from dataset𝑚. To process the

equi-join query, Progressive Join applies hash join algorithm [25].

Any existing equi-join algorithm can replace the current equi-join

solution. To hand the spatial join query, Progressive Join applies

the Plane Sweep algorithm [2]. Like the equi-join solution, any

spatial join algorithm can replace the current solution. After the

three join steps, Progressive Joinmerges the new batches with exist-

ing batches and stores them in memory. Then, Progressive Results



Less is More: How Fewer Results Improve Progressive Join Query Processing SSDBM 2023, July 10–12, 2023, Los Angeles, CA, USA

Builder starts to estimate the result size and output ratio (line 13),

the estimation happens in the Progressive Results Builder. Finally,

the Progressive Results Builder sends the number of outputted

results from each partition to each processor, and the processors

output the progressive answer 𝑛𝑂𝑖 .

The complexity analysis. Algorithm 2 does not add extra over-

head to the original join algorithms. It just processes the input

data in multiple rounds. Therefore, the time complexity of the al-

gorithm is the same as the join algorithms. QPJ applies hash join

algorithm [25] for equi-join queries and Plane Sweep algorithm [2]

for spatial join queries. The time complexity of the hash join algo-

rithm is 𝑂 (𝑀 + 𝑁 ), and the time complexity of the Plane Sweep

algorithm is𝑂 ((𝑀 +𝑁 ) log(𝑀 +𝑁 )), where𝑀 and 𝑁 are the sizes

of the two input datasets.

6 EXPERIMENT
6.1 Experimental Setup
We conduct the experiments on Intel(R) Xeon(R) CPU E5-2609 v4

@ 1.70GHz and runs CentOS Linux release 7.5.1804 (Core). It has

128 GB RAM and 2×8-core processors.

Datasets.We test QPJ by two real-world datasets. We extract

the 50 M Geo Twitter data [40] to test the equi-join. Each Twitter

contains a geo tag that includes the city information. We extract

the location formation from Twitter data for performing join op-

erations between Twitter and location. And use the two spatial

datasets OSM2015/lakes [8] and OSM2015/parks [9] to test the

spatial join. The OSM2015/lakes dataset contains 7.5 M polygons,

and the OSM2015/parks dataset contains around 10 M polygons.

We shuffle the datasets based on chi-square distribution [41] and

discrete uniform distribution [42].

Test Queries.We join the Twitter data with the city and state.

The synthetic of the equi-join query is SELECT Twitter.id FROM

Twitter, CityStateInfo WHERE Twitter.city = CityStateInfo.city.

There are multiple types of spatial join [29], e.g., intersecting, range

query, similar join, etc. We evaluate the spatial join by intersecting

spatial join. Given two sets of polygons, find all pairs of intersect-

ing polygons between the two sets [29]. All the join queries are

full-history join.

Comparedmethods.We compare our frameworkQPJ with two
progressive input control frameworks in Table 1: Prism [11] and

ContourJoin (ConJ) [12].We pick Prism because it is a classical input

control framework. Prism process batches from every partition in

a synchronized non-decreasing order. Each round guarantees to

process the batches with the same batch id and show whatever they

found to the users. We pick ConJ because it is a recently proposed

progressive processing framework and its quality control strategy is

different with Prism. To perform ConJ, we generate user preference

score for the test data. We consider twitter id as the preference

score of Twitter data and consider polygon id as the spatial data.

For progressive frameworks Prism and ConJ, we evaluate the quality

of the progressive results by computing the difference between the

final result distribution and the progressive result distribution.

Besides progressive frameworks, we also consider using Spark to

perform equi-join and spatial join as the non-progressive baseline.

We write the Spark join results on disk and split the result files into

a set of partial results. The size of the partial result is the same as

the size progressive result of QPJ . We compute and compare the

quality of partial results of Spark with progressive results of QPJ .
6.2 Evaluation Metrics
Quality. We evaluate the quality of progressive results by result

distribution similarity to the ground truth. The ground truth is the

total number of results in each partition. The quality evaluation

metrics come from [38]. We take Kullback Leibler (KL) divergence

(KL) and mean absolute percentage error (MAPE) to compute the

quality of the progressive partial answers. The Kullback Leibler (KL)

divergence measures the differences between the actual and par-

tial results produced. The mean absolute percentage error (MAPE)

measures the differences between the ground truth and the partial

answers. They are computed as followings:

KL =

𝑘∑︁
𝑖=1

𝑟𝐺,𝑖 log

(
𝑟𝐺,𝑖

𝑟𝑜,𝑖

)
,MAPE =

100%

𝑘

𝑘∑︁
𝑖=1

����𝑟𝐺,𝑖 − 𝑟𝑜,𝑖

𝑟𝐺,𝑖

���� , (7)

where 𝑟𝐺,𝑖 is ground truth ratio and 𝑟𝑜,𝑖 is the ratio of the partial

answer 𝑛𝑜,𝑖 , and 𝑘 is the number of partitions.

Efficiency. The efficiency is evaluated by the progressive output

rate changed over time.

Existing distributed platforms, e.g., Spark and Flink, do not al-

low communication operations in the middle of transformation

operations. Therefore, we did not provide the distributed results in

current experiments. In the future, we hope the existing distributed

platforms can support enhanced operations, like enabling communi-

cation during transformation operations, to meet the requirements

of QPJ . We built the first version of QPJ on top of Spark Streaming.

We divided input files into small batches and broke the join opera-

tion into two Spark Streaming operations. We computed the join

results in the first operation and outputted the progressive results

in the second operation. By this design, we let Spark Streaming

support QPJ , but it slowed down the efficiency a lot. Therefore, we

developed QPJ in Java and did not deploy it on existing distributed

platforms in the current version.
3

Experiment Plan.We evaluate QPJ from six perspectives: (1)

The precision of the estimation methods: we compare the accuracy

and efficiency of only applying 𝐸𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 , only using 𝐸 𝑗𝑜𝑖𝑛 , and

the linear combination described by 4. (2) The quality of progressive

results computed by QPJ and three baseline methods. The quality is

evaluated by the quality metrics KL and MAPE. (3) The error bound:

given different error bounds, we compare the quality and progres-

sive output rate of QPJ with the best baseline method Prism, which

produces the smallest error among the three baseline methods. (4)

Data distribution: for the datasets with different distributions, we

compare the progressive results of QPJ with baseline methods. (5)

The number of progressive rounds: for the different number of

rounds, we compare QPJ with OneBatch on the response time to

see the earlier results. (6) The number of partitions: we compare the

quality and progressive output rate with the different numbers of

partitions. (7) We compare the quality of progressive output results

picked by weighted sampling and uniform sampling.

6.3 Quality Experiment results
6.3.1 Estimation Function. We proposed a dynamic estimation

function in Sec.5, Eq. 4 (𝐸𝑑𝑦𝑛𝑎𝑚𝑖𝑐 ) , it linear combines selectivity

3
The code link: https://github.com/xin-aurora/QualityProgressiveJoin.git



SSDBM 2023, July 10–12, 2023, Los Angeles, CA, USA Xin Zhang and Ahmed Eldawy

0 5 10 15 20 25 30

0

0.1

0.2

0.3

0.4

0.5

Input Splits

T
h
e
K
L
-
E
r
r
o
r

𝐸𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦
𝐸𝑑𝑦𝑛𝑎𝑚𝑖𝑐

𝐸 𝐽𝑜𝑖𝑛

(a) KL Error

0 500 1,000 1,500 2,000
0

0.1

0.2

0.3

0.4

0.5

The processing time (s)

T
h
e
K
L
-
E
r
r
o
r

𝐸𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦
𝐸𝑑𝑦𝑛𝑎𝑚𝑖𝑐

𝐸 𝐽𝑜𝑖𝑛

(b) KL Error With Time

0 5 10 15 20 25 30

0

10

20

30

Input Splits

T
h
e
M
A
P
E
-
E
r
r
o
r

𝐸𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦
𝐸𝑑𝑦𝑛𝑎𝑚𝑖𝑐

𝐸 𝐽𝑜𝑖𝑛

(c) MAPE Error

0 500 1,000 1,500 2,000
0

10

20

30

The processing time (s)

T
h
e
M
A
P
E
-
E
r
r
o
r

𝐸𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦
𝐸𝑑𝑦𝑛𝑎𝑚𝑖𝑐

𝐸 𝐽𝑜𝑖𝑛

(d) MAPE Error With Time

Figure 3: The comparison of the accuracy and efficiency of different estimation methods.
estimation method (𝐸𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 ) and sample method (𝐸 𝑗𝑜𝑖𝑛). Fig.3

compares the three result estimation methods: 𝐸𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 in black,

𝐸𝑑𝑦𝑛𝑎𝑚𝑖𝑐 in blue, and 𝐸 𝑗𝑜𝑖𝑛 in red. The accuracy of our proposed

𝐸𝑑𝑦𝑛𝑎𝑚𝑖𝑐 and 𝐸𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 are better than 𝐸 𝑗𝑜𝑖𝑛 in the beginning.

As more data be processed, 𝐸𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 ’s precision decreases, 𝐸 𝑗𝑜𝑖𝑛
becomes better. 𝐸𝑑𝑦𝑛𝑎𝑚𝑖𝑐 combines two methods’ advantages and

its overall precision is the best. In Fig.3 (a) and (c), the KL error and

MAPE error of 𝐸𝑑𝑦𝑛𝑎𝑚𝑖𝑐 and 𝐸 𝑗𝑜𝑖𝑛 are smaller than 𝐸𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦
after processing 10 batches of data. Due to the computation com-

plexity and statistical information maintaining, in Fig. 3 (b) and (d),

applying 𝐸 𝑗𝑜𝑖𝑛 finishes earlier than applying 𝐸𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 . Similar

to the precision results, the 𝐸𝑑𝑦𝑛𝑎𝑚𝑖𝑐 has good efficiency results

because it linear combines 𝐸 𝑗𝑜𝑖𝑛 ’s estimation results.

Summary. Fig. 3 proofs that the 𝐸𝑑𝑦𝑛𝑎𝑚𝑖𝑐 is better than existing

result estimation strategies, it finishes earlier than 𝐸𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 and

has better accuracy than 𝐸 𝑗𝑜𝑖𝑛 . Please notice, 𝐸𝑑𝑦𝑛𝑎𝑚𝑖𝑐 only com-

putes 𝐸𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 from the scratch at the first batch, so 𝐸𝑑𝑦𝑛𝑎𝑚𝑖𝑐 ’s

processing time is similar to 𝐸 𝑗𝑜𝑖𝑛 ’s processing time.

6.3.2 Varying Method. We evaluate the quality of progressive re-

sults by the KL error and MAPE error of the progressive result

distribution and the ground truth result distribution. We compare

QPJ (in blue) with three baseline methods, Prism (in black), ConJ (in

green), and Spark (in orange), in spatial join queries (Fig.4 (a) and

(b)) and equi-join queries (Fig.4 (c) and (d)). The Prism baseline takes

the same input progressive input as QPJ takes in each progressive

computation round. To evaluate the ConJ, we divide the output

results computed by ConJ that are ranked based on user preference

score into progressive output results, each progressive output result

has the same output rate as QPJ has. To evaluate Spark, we output

the Spark join results into a single file and write in the disk. The

progressive output results are extracted by the same strategy as

ConJ used. We use Spark
4
to run the equi-join queries and Spark

beast library
5
to run the spatial join queries.

Fig.4 (a) and (b) show Spatial join results of the four methods

and Fig.4 (c) and (d) show the equi-join results. We report the KL

error and MAPE error of the progressive result in every round. The

y-axis represents the errors and the x-axis represents the result

rates. In Fig.4 (a) and (b), the spatial join experiments produce

10 progressive results and the last progressive result is the whole

join results. The spatial join experiments partition the data into 6

partitions and batch it into 10 rounds. In spatial join experiments,

the progressive results computed by QPJ always have the smallest

KL and MAPE error than other methods computed. In Fig.4 (c) and

4
https://spark.apache.org/docs/latest/rdd-programming-guide.html#overview

5
https://bitbucket.org/bdlabucr/beast/src/master/

(d), the equi-join experiments produce 30 progressive results. The

equi-join experiments partition the data into 10 partitions and batch

it into 30 rounds. When the results rates are smaller than 50%, the

progressive results computed by QPJ always have the smallest KL

and MAPE error than other methods computed.

Summary.Weprove the result distribution of progressive results

computed QPJ are closest to the ground truth results than other

methods, which means QPJ can produce progressive results to

represent the ground truth results best. Therefore, in progressive

query processing, QPJ can help users monitor the query output

best and make the right decision earlier than other methods.

6.3.3 Varying Error Bound 𝜀. We study the effects of the error

bound 𝜀 from result quality and output rate perspectives. The result

precision results are in Fig.5 (a) and (d). The output rate results

are in Fig.5 (b) and (c). The spatial join experiments partition the

data into 6 partitions and batch it into 10 rounds. The equi-join

experiments partition the data into 10 partitions and batch it into

30 rounds. Since Prism produces progressive results that have better

quality than ConJ and Spark, we only include Prism in the varying

error bound experiments. Because there is no error bound control

in baseline method Prism, the spatial join results of Prism in Fig.5

(a), (b), and (c) are the same.

The effects of the error bound 𝜀: In both spatial join exper-

iments and equi-join experiments (Fig.5 (a) and (d)), QPJ in blue

always has smaller error than Prism in black and its output rate

is also always smaller than Prism. In spatial join experiments, the

accuracy gaps between the blue line and the black line are signifi-

cant, which represents QPJ can return better results than Prism. In

equi-join experiments, the precision gaps between QPJ and Prism
are obviously in the beginning 40% of the output (the output rate

𝜌 <0.4). With larger error bound, the precision of QPJ will decrease.
Even increasing the error bound 𝜀 from 0.1 to 0.3, the precision

gaps between QPJ and Prism are still significant in the beginning

40% (output rate 𝜌 < 0.4). In summary, the result quality of QPJ is
better than the quality of Prism.

The effects of the error bound 𝜀 to output rate. QPJ can

produce better results because it holds fewer results in memory.

Therefore, compared with the baseline method, the result output

rate of QPJ will be smaller than Prism. In Fig.5 (b) and (c), we report

the sacrifices of output rate in QPJ . As shown in the results, QPJ
does not lost too much output rate compared with the baseline

method Prism. We propose the boost algorithm in Sec.5 Alg.1 to

boost the result rate of QPJ . In Fig.5 (a) and (d), we can see that with

larger error bound 𝜀, the output rate difference is not significant

betweenQPJ and Prism. We also compare with different error bound



Less is More: How Fewer Results Improve Progressive Join Query Processing SSDBM 2023, July 10–12, 2023, Los Angeles, CA, USA

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

The result rate (𝜌)

T
h
e
K
L
e
r
r
o
r

Prism
ConJ

Spark

QPJ

(a) Spatial join, KL Error

0 0.2 0.4 0.6 0.8 1

0

50

100

150

The process (𝜌)

T
h
e
M
A
P
E
e
r
r
o
r

Prism
ConJ

Spark

QPJ

(b) Spatial join, MAPE Error

0 0.2 0.4 0.6 0.8 1

0

0.5

1

1.5

2

The result rate (𝜌)

T
h
e
K
L
e
r
r
o
r

Prism
ConJ

Spark

QPJ

(c) Equi-join, KL Error

0 0.2 0.4 0.6 0.8 1

0

20

40

60

80

100

120

The process (𝜌)

T
h
e
M
A
P
E
e
r
r
o
r

Prism
ConJ

Spark

QPJ

(d) Equi-join, MAPE Error

Figure 4: Compare the quality of progressive results of QPJ and existing frameworks.

0 0.2 0.4 0.6 0.8 1

0

10

20

30

The result rate (𝜌)

T
h
e
M
A
P
E
e
r
r
o
r
)

Prism
QPJ-𝜀 = 0

QPJ-𝜀 = 0.01

QPJ-𝜀 = 0.05

(a) Spatial Join, MAPE Error

10 20 30 40 50

0

0.2

0.4

0.6

0.8

1

The processing time (s)

T
h
e
r
e
s
u
l
t
r
a
t
e
(
𝜌
)

Prism
QPJ

(b) Spatial Join, 𝜀 = 0, result rate

10 20 30 40

0

0.2

0.4

0.6

0.8

1

The processing time (s)

T
h
e
r
e
s
u
l
t
r
a
t
e
(
𝜌
)

Prism
QPJ

(c) Spatial Join, 𝜀 = 0.01, result rate

0 0.2 0.4 0.6 0.8 1

0

5

10

15

20

The result rate (𝜌)

T
h
e
M
A
P
E
e
r
r
o
r
)

Prism
QPJ-𝜀 = 0.01-skew

QPJ-𝜀 = 0.01

QPJ-𝜀 = 0.03

(d) Equi-join, MAPE Error

Figure 5: The effects of the varying error bound.

SJ-s=1 ST-Total EJ-s=1 EJ-Total

0

50

100

150

S
e
c
o
n
d

s10

s20

s30

OneBatch

Figure 6: The comparisons of query responding time with
different progressive computation rounds

𝜀, the changing of query result precision with more andmore output

results. With a larger error bound, the result quality becomes worse.

Summary.Combine the results shown in Fig.5, the input&output

quality control of QPJ is better than single-choice output control

of Prism. QPJ does not sacrifice too much output rate but can bring

much better results than existing methods.

6.3.4 Analysis the effects of Data Distribution. We find an inter-

esting fact that data distributions affect the precision of the frame-

works. We test with spatial join with skew data distribution and

equi-join with less data distribution. In the experiments of Fig.5,

we shuffled both spatial datasets by chi-Square distribution. In

experiments Fig.5 (d), we shuffled one of the Twitter datasets by

chi-Square distribution and the other one by the discrete uniform

distribution. The error gaps are more significant in the experiments

tested with more skew distribution datasets. The figure shows that

QPJ worked better when the datasets were more skew.

6.3.5 Varying 𝑆 . In Fig.6, we study the effects of total computation

round by comparing the OneBatch in black with QPJ on different

progressive rounds: 10 rounds in green, 20 rounds in blue, and 30

rounds in orange.QPJ returns the results earlier thanOneBatch.QPJ
returns the earliest result in less than 5 seconds, while OneBatch

5% 15% 25% 50%

0

5

10

15

M
A
P
E
E
r
r
o
r

P10

P15

P20

P30

Figure 7: The output rate and accuracy comparisons with
different numbers of partitions

needs more than 50 seconds for spatial join and more than 80

seconds for equi-join. When the total progressive computation is

ten rounds 𝑠 = 10, QPJ finishes the join queries sooner than 𝑠=20

and 𝑠=30. However, with more computation rounds, each round

would produce fewer records and return the earlier results faster.

30 rounds experiment takes the shortest responding time to return

the first results.

Summary. Progressive solutions are more suitable than non-

progressive solutions in data exploration systems. The experiment

withmore computation rounds can refresh output results faster than

with fewer computation rounds. However, due to the trade-off be-

tween total responding time and earlier results, extra computation

and communication overhead increased with more computation

rounds, which slowed down the overall query responding time.

6.3.6 Varying the number of partitions. We compare the quality

of progressive results with the different numbers of partitions in

Fig.7. The equi-join experiments adopt the hash partitioning on the

joint key. We vary the number of hash buckets by changing the

number of partitions and test with 10 partitions, 15 partitions, 20

partitions, and 30 partitions. In Fig.7, the y-axis is MAPE errors,

the x-axis represents the output rate of each progressive result. We



SSDBM 2023, July 10–12, 2023, Los Angeles, CA, USA Xin Zhang and Ahmed Eldawy

1 2 3 4 5 6 7 8 9 10

0

5

10

15

20

Batch

M
A
P
E

Weighted Uniform

Figure 8: The comparisons of different sampling strategies.

report the MAPE error of the output rate reaches 5%, 15%, 25%,

and 50%. 10 partitions experiment has the smallest error the output

rate reaches 25%, and smaller number partition experiments can

produce progressive results with smaller quality error.

Summary. When the number of partitions is reduced, the accu-

racy of progressive results is improved. The quality control com-

ponent of QPJ works well with fewer partitions. However, when

considering the distributed setting, the number of partitions affects

the parallel execution. With more partitions, each worker node pro-

cesses fewer data and would return results faster, which improves

the performance. Besides, with more partitions, QPJ can have finer

control over the quality of the progressive results.

6.3.7 Compare different sampling methods to select progressive out-
put results. In Fig. 8, we compare the result distribution of progres-

sive output results with ground truth result distribution. We test

with equi-join with 10 coarser-level partitions, and each coarser-

level partition contains 10 finer-level partitions. The weighted sam-

pling method selects results that have smaller MAPE errors than

results selected by the uniform sampling method. We show the

weighted sampling method enables QPJ to have finer control over

the quality of progressive output results.

7 CONCLUSION AND FUTUREWORK
We formally defined the progressive join problem to include the

quality constraints in this work and propose an input&output con-

trol framework named QPJ . There are four improvements that can

be considered. First, we will deploy QPJ on a distributed platform.

Second, if the estimated result size is smaller than the previous

round, current QPJ does not support hiding the existing outputted

results. Third, we will extend QPJ to support the weighted sam-

pling to pick spatial join output results. Fourth, we will extend the

validation of QPJ to test with more complex queries, e.g. multi-way

join, more types of partition functions, and the scalability.

REFERENCES
[1] Ning An et al. 2001. Selectivity estimation for spatial joins. In Proceedings 17th

International Conference on Data Engineering. IEEE, 368–375.
[2] Lars Arge et al. 1998. Scalable sweeping-based spatial join. In VLDB, Vol. 98.

Citeseer, 570–581.

[3] et al. C. Zhu. 2014. Optimization of monotonic linear progressive queries based

on dynamic materialized views. Comput. J. 57, 5 (2014), 708–730.
[4] et al. C. Zhu. 2016. Optimization of generic progressive queries based on depen-

dency analysis and materialized views. Information Systems Frontiers 18 (2016),
205–231.

[5] Tsz Nam Chan et al. 2022. LIBKDV: a versatile kernel density visualization library

for geospatial analytics. PVLDB 15, 12 (2022), 3606–3609.

[6] Bolin Ding et al. 2016. Sample+ seek: Approximating aggregates with distribution

precision guarantee. In SIGMOD. 679–694.
[7] Liming Dong et al. 2020. Marviq: Quality-Aware Geospatial Visualization of

Range-Selection Queries Using Materialization. In SIGMOD. 67–82.
[8] Ahmed Eldawy and Mohamed F. Mokbel. 2019. All water areas in the world

from OpenStreetMap. This includes coastal lines, lakes, rivers, pools, and others.

https://doi.org/10.6086/N1668B70 Retrieved from UCR-STAR $https://star.cs.ucr.

edu/?OSM2015/lakes&d$.

[9] Ahmed Eldawy and Mohamed F. Mokbel. 2019. Boundaries of parks and green

areas from all over the world as extracted from OpenStreetMap. https://doi.org/

10.6086/N1RX994T Retrieved fromUCR-STAR $https://star.cs.ucr.edu/?OSM2015/

parks&d$.

[10] Afrati Foto N et al. 2012. Fuzzy joins using mapreduce. In ICDE. IEEE, 498–509.
[11] Chandramouli Badrish et al. 2013. Scalable progressive analytics on big data in

the cloud. PVLDB 6, 14 (2013), 1726–1737.

[12] Ding Mengsu et al. 2021. Progressive Join Algorithms Considering User Prefer-

ence.. In CIDR.
[13] Jo Jaemin et al. 2019. Proreveal: Progressive visual analytics with safeguards.

TVCG 27, 7 (2019), 3109–3122.

[14] Moritz Dominik et al. 2017. Trust, but verify: Optimistic visualizations of approx-

imate queries for exploring big data. In CHI. 2904–2915.
[15] Procopio Marianne et al. 2019. Selective wander join: Fast progressive visualiza-

tions for data joins. In Informatics, Vol. 6. MDPI, 14.

[16] Qian Lin et al. 2015. Scalable distributed stream join processing. In SIGMOD.
811–825.

[17] Sameer Agarwal et al. 2013. BlinkDB: queries with bounded errors and bounded

response times on very large data. In Proceedings of the 8th ACM European
Conference on Computer Systems. 29–42.

[18] Wee Hyong Tok et al. 2008. A stratified approach to progressive approximate

joins. In EDBT. 582–593.
[19] Wongsuphasawat Kanit et al. 2017. Voyager 2: Augmenting visual analysis with

partial view specifications. In CHI. 2648–2659.
[20] Wang Zhe et al. 2021. Neuralcubes: Deep representations for visual data explo-

ration. In BigData. IEEE, 550–561.
[21] Yang Jianye et al. 2018. Efficient set containment join. VLDBJ 27, 4 (2018),

471–495.

[22] Yu Jia et al. 2020. Tabula in action: a sampling middleware for interactive geospa-

tial visualization dashboards. PVLDB 13, 12 (2020), 2925–2928.

[23] Zhao Zhuoyue et al. 2018. Random sampling over joins revisited. In Proceedings
of the 2018 International Conference on Management of Data. 1525–1539.

[24] Zhao Zhuoyue et al. 2020. Efficient join synopsis maintenance for data warehouse.

In SIGMOD. 2027–2042.
[25] Hector Garcia-Molina. 2008. Database systems: the complete book. Pearson

Education India.

[26] Peter J Haas, Jeffrey F Naughton, S Seshadri, and Arun N Swami. 1996. Selectivity

and cost estimation for joins based on random sampling. J. Comput. System Sci.
52, 3 (1996), 550–569.

[27] Peter J Haas and Arun N Swami. 1995. Sampling-based selectivity estimation for

joins using augmented frequent value statistics. In ICDE. IEEE, 522–531.
[28] Dawei Huang et al. 2019. Joins on samples: A theoretical guide for practitioners.

arXiv preprint arXiv:1912.03443 (2019).
[29] Edwin H Jacox and Hanan Samet. 2007. Spatial join techniques. ACM Transactions

on Database Systems (TODS) 32, 1 (2007), 7–es.
[30] Jianfeng Jia et al. 2016. Towards interactive analytics and visualization on one

billion tweets. In SIGSPATIAL. 1–4.
[31] Yuyu Luo et al. 2020. Visclean: Interactive cleaning for progressive visualization.

PVLDB 13, 12 (2020), 2821–2824.

[32] Jignesh M Patel and David J DeWitt. 1996. Partition based spatial-merge join.

ACM Sigmod Record 25, 2 (1996), 259–270.

[33] Johns Paul et al. 2020. Poet: an Interactive Spatial Query Processing System in

Grab. In SIGSPATIAL. 477–486.
[34] Marianne Procopio et al. 2021. Impact of cognitive biases on progressive visual-

ization. TVCG 28, 9 (2021), 3093–3112.

[35] Rahman Sajjadur et al. 2017. I’ve seen" enough" incrementally improving visual-

izations to support rapid decision making. PVLDB 10, 11 (2017), 1262–1273.

[36] Salman Ahmed Shaikh et al. 2020. GeoFlink: A Distributed and Scalable Frame-

work for the Real-time Processing of Spatial Streams. In CIKM.

[37] Yufei Tao. 2022. Algorithmic Techniques for Independent Query Sampling. In

Proceedings of the 41st ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of
Database Systems. 129–138.

[38] Wee Hyong Tok and Stéphane Bressan. 2013. Progressive and approximate join

algorithms on data streams. In Advanced query processing. Springer.
[39] Wee Hyong Tok, Stéphane Bressan, and Mong Li Lee. 2006. Progressive spatial

join. In SSDBM. IEEE, 353–358.

[40] Twitter. 2019. Twitter Data. https://twitter.com/?lang=en

[41] Wikipedia. 2022. Chi-square Distribution. $https://en.wikipedia.org/wiki/Chi-

squared_distribution$

[42] Wikipedia. 2022. Discrete Uniform Distribution. $https://en.wikipedia.org/wiki/

Discrete_uniform_distribution$

[43] Dong Xie, Jeff M Phillips, Michael Matheny, and Feifei Li. 2021. Spatial inde-

pendent range sampling. In Proceedings of the 2021 International Conference on
Management of Data. 2023–2035.

[44] Jia Yu and Mohamed Sarwat. 2021. GeoSparkViz: a cluster computing system for

visualizing massive-scale geospatial data. PVLDB 30, 2 (2021), 237–258.

https://doi.org/10.6086/N1668B70
$https://star.cs.ucr.edu/?OSM2015/lakes&d$
$https://star.cs.ucr.edu/?OSM2015/lakes&d$
https://doi.org/10.6086/N1RX994T
https://doi.org/10.6086/N1RX994T
$https://star.cs.ucr.edu/?OSM2015/parks&d$
$https://star.cs.ucr.edu/?OSM2015/parks&d$
https://twitter.com/?lang=en
$https://en.wikipedia.org/wiki/Chi- squared_distribution$
$https://en.wikipedia.org/wiki/Chi- squared_distribution$
$https://en.wikipedia.org/wiki/Discrete_uniform_distribution$
$https://en.wikipedia.org/wiki/Discrete_uniform_distribution$

	Abstract
	1 Introduction
	2 Related Work
	2.1 Data Analytics and Data Processing System
	2.2 Sampling Methods

	3 QPJ Framework Overview
	3.1 QPJ architecture
	3.2 Progressive query processing QPJ

	4 The Quality of Progressive Results
	4.1 Symbols and notations
	4.2 Existing solutions

	5 Progressive Processing
	5.1 Estimated ground truth
	5.2 Progressive result builder
	5.3 Progressive Processing

	6 Experiment
	6.1 Experimental Setup
	6.2 Evaluation Metrics
	6.3 Quality Experiment results

	7 Conclusion and Future Work
	References

