Less is More: How Fewer Results Improve Progressive Join Query

Processing
Xin Zhang Ahmed Eldawy
University of California, Riverside University of California, Riverside
xzhan261@ucr.edu eldawy@ucr.edu

ABSTRACT

With the requirements to enable data analytics and exploration
interactively and efficiently, progressive data processing, especially
progressive join, became essential to data science. Join queries
are particularly challenging due to the correlation between input
datasets which causes the results to be biased towards some join
keys. Existing methods carefully control which parts of the input to
process in order to improve the quality of progressive results. If the
quality is not satisfactory, they will process more data to improve
the result. In this paper, we propose an alternative approach that
initially seems counter-intuitive but surprisingly works very well.
After query processing, we intentionally report fewer results to the
user with the goal of improving the quality. The key idea is that if
the output is deviated from the correct distribution, we temporarily
hide some results to correct the bias. As we process more data, the
hidden results are inserted back until the full dataset is processed.
The main challenge is that we do not know the correct output
distribution while the progressive query is running. In this work,
we formally define the progressive join problem with quality and
progressive result rate constraints. We propose an input&output
quality-aware progressive join framework (QPJ) that (1) provides
i_nput control that decides which parts of the input to process; (2)
estimates the final result distribution progressively; (3) automat-
ically controls the quality of the progressive output rate; and (4)
combines input&output control to enable quality control of the
progressive results. We compare QPF with existing methods and
show QP7 can provide the progressive output that can represent
the final answer better than existing methods.

CCS CONCEPTS

« Information systems — Query representation.

KEYWORDS
Progressive processing, progressive result quality control, progres-
sive equi-join, progressive spatial join

ACM Reference Format:
Xin Zhang and Ahmed Eldawy. 2023. Less is More: How Fewer Results
Improve Progressive Join Query Processing. In 35th International Conference

*This work was supported in part by the National Science Foundation (NSF) under
grants I1S-1838222, CNS-1924694, 1IS-1954644, I11S-2046236.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

SSDBM 2023, July 10-12, 2023, Los Angeles, CA, USA

© 2023 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0746-9/23/07.

https://doi.org/10.1145/3603719.3603728

on Scientific and Statistical Database Management (SSDBM 2023), July 10-12,
2023, Los Angeles, CA, USA. ACM, New York, NY, USA, 12 pages. https:
//doi.org/10.1145/3603719.3603728

1 INTRODUCTION

Data analysis on large datasets takes minutes or even hours to
complete due to big data volume and computation complexity [34].
The challenge becomes even greater when analysis involves mul-
tiple big datasets and expensive queries, such as join queries. To
address this issue, progressive query processing has emerged as a
popular tool [3, 4, 13-15, 35]. Progressive processing splits large
datasets into small batches and processes each data batch progres-
sively. Each progressive computation cycle takes a few seconds
to keep the users engaged and active [38]. Users can keep exam-
ining intermediate results without having to wait for the entire
computation to complete on the whole dataset [34]. Progressive
answers also enable users to start further processing early on. Data
visualization [7, 14, 35, 44] and aggregate queries [11, 15] are fre-
quently employed methods for analyzing progressive answers. Fig.1
shows an example of progressive equi-join over two datasets and
visualizes bar charts from the progressive answers in the result set.
In addition to data visualization and aggregate queries, synopses
maintenance [15, 24] is another form of further processing over
progressive results.

Existing progressive processing systems rely on main two tech-
niques to ensure the quality of progressive results: (1) Optimiz-
ing the progressive input before the query processing: these sys-
tems [11, 12, 14, 15, 18, 38] control the input that goes into query
processing. They manipulate the progressive input based on pre-
defined input computation goals. The goals can be the number of
items in progressive input, data distribution of progressive input,
and preference score function. (2) Optimizing results during query
processing: a process ingests and processes more input until the
output reaches a desired quality bound [7, 24, 35]. They manipulate
the query processing based on result quality goals, for example,
error bound or sample strategies. Both solutions can be viewed as
input control strategies.

The first solution directly returns results and ignores further
optimization, which can lead to misleading results. We use the ex-
ample in Fig.1 to discuss this limitation. In Fig.1, we join Tweets
dataset with CityState dataset by existing input control solution
Prism and our proposed solution QPF. And we further aggregate
progressive results in pie charts to compare the progressive results
produced by the two solutions. Progressive solutions progressively
process the query and data in multiple rounds. QPF and Prism [11]
produce different pie charts at ry, r, and r3. The main caveat is
that progressive results may not accurately reflect the complete re-
sult. Poor quality progressive results can negatively impact further

https://doi.org/10.1145/3603719.3603728
https://doi.org/10.1145/3603719.3603728
https://doi.org/10.1145/3603719.3603728

SSDBM 2023, July 10-12, 2023, Los Angeles, CA, USA

Xin Zhang and Ahmed Eldawy

Progressive result for r; 7% 35% 58% 100% progressive
CES Portland 58 Oregon Ty T2 T3 complete result rate p
58 Portland
59 Portland Progressive result for r, 20%
= Connecticut.
apperid r, Portland 1093 Oregon 23% u Kentucky
X Phoenix 1094 Arizona] =Oregon
ppendr; . Arizona
insted 1095 Connecticut
Solution QPJ
Portland Oregon Progressive result for r;
Phoenix Arizona Louisville 29305 Kentucky 17% 0% 16%
Louisville 29306 Kentucky 9% 17% 15% Complete Result
Tucson 29307 Arizona
append r. I v

Solution Prism

\

Figure 1: Right side: Progressively join the Tweets with the CityState datasets. The progressive results are continually
appended to the result set. Left side: Visualize the first three round results. The upper results compute from input&output
quality control framework QPJ. The downside results compute from purely input quality control framework Prism.

analyses and mislead data scientists to have cognitive biases [34].
For instance, at round r1, users without prior knowledge will draw
a wrong conclusion by Prism’s progressive results that Arizona
state has more results than sum of other states. On the other side,
users with prior knowledge will pay more time waiting for accu-
rate results. In contrast, QPJ does not mislead users like Prism.
Pie charts produced by QPF more closely resemble the complete
result than pie charts produced by Prism. In the example above,
we use similarity to the complete results as a metric to evaluate
the quality of progressive results. It is a widely used metric in the
literature [13, 14, 18, 34, 35, 38, 39]. We summarize other quality
metrics in existing systems in Section.2.

The second solution takes longer to process more data to reach
the computation goal, which can compromise the advantage of
quick response provided by progressive processing. Besides, they
might provide approximate answers [7, 24] instead of exact answers.
Therefore, a better strategy to control the quality of progressive re-
sults is needed, which provides verified progressive results without
sacrificing the advantages of progressive processing.

Another limitation in existing progressive systems are their lim-
ited applicability to different data processing tasks. In Section 2,
we review several querying processing systems. Many systems are
designed for either specific data types or specific query types, as
different data types and query types require different algorithms to
process. The data analytic tasks across a variety of real-world ap-
plications. Therefore, there is a need for a general and lightweight
system that can handle both spatial and relational data.

To address the limitations in existing systems, we proposed QP7,
a quality-aware framework for equi-join and spatial join queries.
QP7 employs a flexible input&output control mechanism to adjust
input and output individually in each progressive computation cycle.
The input control follows existing single-choice control frameworks
to batch and partition the progressive input. The output control
maximizes progressive output rate while preserving result quality
through distribution similarity to the estimated complete result.
QP7 temporarily hides some results in memory from the current
round and inserts them in the following rounds. Simply speaking,
outputting less with better quality. QPJ uses a flexible two-direction
weighted sampling strategy. It adopts the weighted sampling to add
results one by one when the size of the temporary hold result is large.
And it uses reverse weighted sampling to filter out results when the

size of the temporary hold result is small. Additionally, QP7 adopts
a dynamic strategy to estimate complete result distribution.
In summary, we make the following contributions:

e We introduce an input&output control quality-aware pro-
gressive join framework called QP7 in Section 3.

e We propose a solution to guarantee both progressive results’
quality and progressive results’ rate in Section 4 and 5.

e We provide a dynamic result estimation method. It combines
two selectivity estimation strategies and dynamically adjusts
weights for two estimation strategies in Section 5.

e We design weighted sampling and reverse weighted sam-
pling to construct progressive output results in Section 5.

e We compared QP7 with existing progressive join solutions
and showed QPJ can return progressive results better than
the existing solutions in Section 6.

2 RELATED WORK
2.1 Data Analytics and Data Processing System

Tablel summarizes several recent systems which are designed for
data analytics and progress processing systems. We classify existing
systems according to four essential aspects of data analytics which
are represented by the columns. Each row in the table represents
one of the existing systems and our proposed system is highlighted
at the end. There are still lots of good data analytics systems, e.g.,
GeoSparkViz [44] Cloudberry [30], Voyager [19], Visclean [31],
NeuralCubes [20], LIBKDV [5], Tabula [22], etc, and join processing
frameworks, e.g., PSJ [39], BiStream [16], Poet [33], etc. The main
focuses of those systems cannot cover most of the columns in the
table, therefore, we did not list them in Tablel.

Results return. To let users examine the results quickly, SJoin [24]
computes a small sample of the large data, and Marviq [7] returns
approximate results. Progressive processing systems enable users to
check the intermediate results of complex computations early with-
out waiting for the computation to finish [34]. In Table 1, most of
the systems SelectiveWanderJoin [15], IncVisage [35], Pangloss [14],
Prism [11], ContourJoin [12], and RRPJ [18, 38] are return progres-
sive results. Those systems compute the results progressively and
continuously return the partial results until the computation is
finished or users stop the query. QP7 is designed for large data
processing to enable user interactions in the computation.

Less is More: How Fewer Results Improve Progressive Join Query Processing

SSDBM 2023, July 10-12, 2023, Los Angeles, CA, USA

System Results Return Quality Processing Control Join Support
SelectiveWanderJoin [15] Progressive None Input - Not quality control equi-join
IncVisage [35] Progressive | Quality aware Input - During processing X
Pangloss [14] Progressive | Quality aware Input - Before processing X
Prism [11] Progressive Quality aware Input - Before processing equi-join
ContourJoin [12] Progressive | Quality aware Input - Before processing equi-join
SJoin [24] Approximate | Quality aware Input - During processing equi-join
Marviq [7] Approximate | Quality aware Input - During processing X
RRPJ [18, 38] Progressive | Quality aware Input - Before processing equi-join and spatial join

‘ QP¥ ‘ Progressive ‘ Quality aware ‘ Input&Output - Before and after processing ‘ equi-join and spatial join ‘

Table 1: Summary of data analytics and data exploration systems.

Result quality and quality control. We summarize the three
quality control strategies into two categories: input control and
output control, by whether the frameworks optimize results after
query processing. SJoin [24] maintains the sample of join results
for dynamically updated data and does not provide the quality
metric for the sample. They continually refine the join sample
when the input data dynamic changes. SelectiveWanderJoin [15]
lets users examine the intermediate results or let users evaluate the
results. SelectiveWanderJoin adjusts the progressive input based
on users’ feedback and does not provide the default quality metric.
We categorize SelectiveWanderJoin into the input control system
but not the input quality control system.

IncVisage [35] computes the distance between the progressive
results and the estimated results. They incremental split and pro-
duce the visualized results. The visualized results are segments.
They continuously split segments if the distance to the estimated
results is below the quality bound. Marviq [7] computes the quality
by the similarity between the approximate results to the precise
results. They propose the Jaccard Similarity for scatterplot visual-
ization and a more general mean squared error quality function for
scatterplot visualization and heatmap visualization. Both IncVisage
and Marviq control the result quality during the query processing,
their algorithms are designed specifically for figure results.

Pangloss [14] follows the Sample+Seek [6] method to compute
the sample from the whole dataset as the progressive inputs. The
Sample+Seek method optimizes the expected distance between the
normalized distributions of the approximate answer and the precise
one [14]. Pangloss also computes the confidence interval through
the worst-case estimates. Prism [11] batch the input data based on
pre-computed partition and batch size. In each round, the progres-
sive input of each partition strictly follows the same batch id. Prism
returns progressive results in the same form and semantics as the
final results and also adjusts the granularity of the progressive input
regarding user feedback. ContourJoin [12] requires a pre-processing
step to rank the input data by user preference score in descending
order. The ContourJoin algorithm to divides the whole data into
small batches by contour lines. The contour line represents the
preference score bound of each data batch. ContourJoin evaluates
and ranks the quality of progressive results by the preference score
of the result tuple and returns results progressively in descending
order. RRPJ [18, 38] evaluates the quality of the results in terms of
result distribution. They use the result distribution to evaluate the
quality of the system. Pangloss, Prism, ContourJoin, and RRPJ are
input quality control systems by manipulating progressive inputs.

QP7 applies input&output control strategy for the results’ qual-
ity. It batches and partitions the input data by pre-defined goals.
Besides, QPJ also adjusts progressive output size to control the
distribution of progressive outputs. This makes QPJ more suitable
for data exploration, where users are generally not aware of the
data semantics and are not able to tune the system manually.

Processed queries. IncVisage [35] and Marviq [7] are designed
for processing queries on a single table. However, data analytics
tasks are complex and involve multiple datasets. IncVisage and Pan-
gloss [14, 20] can handle aggregate queries on multiple tables. Selec-
tiveWanderJoin [15], Prism [11], ContourJoin [12], and SJoin [24]
can process equi-join queries. RRPJ [18, 38] have two separate
frameworks to deal with both equi-join and spatial join queries.

To enable flexible future analytics of the query results, QPJ pro-
vides both aggregate results, e.g. results count, and the actual query
results to the user. Moreover, QPJ is designed for handling complex
queries, equi-join, and spatial join.

2.2 Sampling Methods

Tao [37] summarizes the algorithmic techniques for independent
sampling. Tao lists several sampling techniques, such as weighted
sampling and weighted range sampling, and also introduces meth-
ods to construct samples. SJoin [24] constructs uniform random
samples over join results. BlinkDB [17] constructs stratified sam-
ples to compute approximate results for online aggregation queries.
QPJ adopts a weighted without replacement sampling strategy.

3 QPJ] FRAMEWORK OVERVIEW

In this section, we describe QPF framework and introduce how it
progressive processes join queries.

3.1 QPJ architecture

QPj is a quality-aware progressive query processing framework.
Fig.2 shows its architecture. It takes input parameters from users
and returns progressive results back to users. QPJ produces the
quality preserved progressive results in many rounds. The number
of rounds is given by the user, we call the data of each round as batch.
The QPJ consists of three components: partitioners, processors, and
a progressive results builder. They are drawn into different colors.

In the following, we introduce the usage of QPJ by the join
queries because it involves multiple datasets. Single dataset pro-
cessing follows a similar process as join queries processing. Assume
there are two input data sets S and R. The user gives a join query,

SSDBM 2023, July 10-12, 2023, Los Angeles, CA, USA

‘. a [® : input control and output control gates]
C)
/ T~

Inpuf/parameters, datasets Input queries -
le.g., # of batches Views
K Partitioners K Processors

Partitioner 1 Processor 1
I—I
Input R

Batches

S
Partitioner K
e
Ve
= SEjoin + == Esetectivity | balance quality
Input Progressive result size [“and output ratio

control estimator

Disk files

Quality preserved
progressive results

{ry, 13, 13...}: the
results size of
each partition

Output
. . . control
QPJ: Quality-aware Progressive Query Processing

Figure 2: QPJ architecture.

the number of partitions k, and the number of progressive computa-
tion rounds s. QPJ divides datasets S and R into disjoint k partitions
and collects the statistical information used for batching and result
size estimation. The detailed introduction of batching and partition
will be discussed later. The system assigns k processors (in green)
to process the data from k partitions (in blue) and produces the
progressive results in s rounds. QP7 starts with loading the first
batch and sending it to the k partitioners. Each partitioner reads
the data, stores the data belonging to its own partition for its own
processor, and sends the rest of data to other processors. Then, k
processors answer the input query. Circle black symbols represent
the input control and output control gates. Progressive inputs pass
input control gates, send to processors, and return the statistical
information of each input batch to the progressive results builder.

In each round, the partitioners and processors let the progres-
sive results builder (in orange) know the statistical information of
the input data and query results. The progressive results builder
estimates the result size and computes the output result size for
each partition. Based on the given output size, the k processors
output part of results and store the rest results in memory. Pro-
gressive results and their statistical information pass the output
control gates and send to the progressive results builder. After the
progressive results builder returns the number of output results
back to the output control gates, the gates let processors release
the progressive results based on the output results size.

3.2 Progressive query processing QPJ

The progressive results builder and query processing process enable
QPJ to provide progressive results with good quality. In this subsec-
tion, we begin by discussing the high-level design. Subsequently,
we introduce how QP7 batches and partitions the datasets.

3.2.1 Progressive results builder. The progressive results builder
enables QPF automatically control the input and output of each
round’s progressive computation. The goal of the progressive re-
sults builder is to return enough amount of progressive results with
good quality. To finish this task, two problems need to be solved:
ground truth estimation and finding the optimal progressive output
size. Note that the exact ground truth is unknown during the pro-
gressive computation. We can only compute the estimated ground

Xin Zhang and Ahmed Eldawy

truth G. During the progressive processing, the progressive results
builder collects statistics of output results from each partition to
compute the estimated ground truth and returns the best partial
answer. To better estimate the ground truth, progressive results
builder adopts multiple estimation methods and combines them dy-
namically by different importance. The progressive results builder
makes sure each partition has the roughly same estimated output
rate p;. The output rate p; is the ratio of the current result size to the
estimated ground truth. The progressive results builder computes
the best result rate of each partition and computes the output result
size of each partition by timing estimated ground truth with result
rate. The progressive results builder tries to produce progressive re-
sults with a similar distribution ratio to the final results. Therefore,
the progressive results can represent the final results well, and we
think these types of results with “good quality” [38].

To guarantee users receive enough amount of results, the pro-
gressive results builder allows every partition not strictly follows
the exact same p;. We provide a greedy solution to increase the
output rate, the algorithm will be discussed in Section5. Besides,
the input control also helps increase the output rate. As we intro-
duced before, QP computes the number of processed data in each
round in the beginning. When the output rate is not increased sig-
nificantly, the progressive results builder will increase the number
of processed data in the following rounds. Therefore, QP is an
auto-control framework without manual adjustments. To the best
of our knowledge, QP7 is the first quality-aware auto input and
output control progressive processing framework.

3.22 Query processing. QP7 is a flexible framework and can plug
in any query processing algorithm. To process the equi-join query,
QP7 applies hash join algorithm [25]. To hand the spatial join query,
QP7 applies the Plane Sweep algorithm [2]. Given the input batches,
QP7 runs three join steps for each partition: (1) The new batch from
dataset1 joins the new batch from dataset2; (2) The new batch from
dataset1 joins the existing batches from dataset2; (3) The new batch
from dataset2 joins the existing batches from datasetl. In each
round, QPF computes the query results up to current batches. It
progressively produces the whole query results. Section5 describes
the progressive processing with more details.

3.2.3 Batching and data partition. Batching. Following the above
example, QPJ processes S and R in s rounds. Based on the input
integer s and the size of data sets, QP can efficiently compute the
size of s input batches by any split function. In round i, QPJ will
provide the progressive answer up to batch i. The simplest way
to create batches is to split each partition into equal-sized batches.
However, as more and more batches are buffered, the later rounds
will process more data than the early round if apply equal-size split
method. The unbalanced workload triggers irregular processing
intervals. If the processed data workload in each processing unit is
balanced, users can check the progressive results in regular fixed
intervals. The workload balance problem is also an interesting
research direction that can be worked on [10, 21]. However, the
main contribution of this work is not workload balance. Besides
the equal split solution, we also provide a balanced solution. We
use a balance function to make sure each round processes the equal
size of candidate pairs, which is (m; * my)/s, where my and my are
the sizes of the two datasets and s is the total computation round.

Less is More: How Fewer Results Improve Progressive Join Query Processing

Data partition. QPJ provides hashing partition and grid parti-
tion. The hashing partition [11, 16, 18] is widely used to separate
the non-spatial data based on the joined attribute. QP¥ groups the
relational data based on the joined attribute and puts them to a
different partition. To process spatial data, QPJ takes grid parti-
tion [33, 36, 38]. It divides the input data space by equal-size grid
cells and hashes each grid cell to a different partition. For relational
data, each row belongs to only one partition (single-assign). While
spatial vector objects are points, lines, and polygons. A polygon
might belong to multiple partitions if this polygon overlaps with
multiple partitions [32] (multi-assign). Because partitions are dis-
joint with each other, the processor i only needs to join the partition
i of dataset1 with the partition j of dataset2. For equi-join, following
the full partition-wise joins', if the two records do not have the
same joined attribute, they won’t be a query answer. For spatial
join, the fully contained objects in one partition do not overlap with
the fully contained objects in another partition. The partitioning
stage helps QP7 save the computation overhead on join operations.

4 THE QUALITY OF PROGRESSIVE RESULTS

In this section, we introduce the mathematical definition of pro-
gressive results’ quality. Unlike existing methods [11, 14, 18, 35, 38]
only focus on result distribution, QPJ also considers the output rate
of the progressive results. This makes sure users get enough results
to help with further analytics on the query results.

4.1 Symbols and notations

Symbols | Description
S,R Input dataset S and R.

Q,Ansg | Join query Q and its answer Ansg
ans; ans; is progressive results up to input batch i
n; n; is the number of result tuples in ans;, n; = |ans;|

nGT; The ground truth result size of partition j

ans;,j ans; j is progressive results of partition j

nj update to batch i, n; j = |ans; ;|
ansO;j | ansOj; ; is output progressive results of partition j
nO; j for round i, nO; ; = |ansO; j|
pi The result rate of round i, p; = |ansi|/|Ansg|.

The ratio of partition j over all the partition

Ti,j = (SR
up to batch i. r; j = n,’]/(zjz1 n; ;)
e j The output error of partition j in round i.
E; The average error of the progressive answer ans;.

Table 2: Summary of the symbols used in this paper.

Table2 lists the symbols used throughout this paper. Assume
the inputs are two datasets S and R, a join query Q, an integer s
(s = 1) which is the number of rounds, and the error bound (& > 0).
Both S and R contain many records, like rows or spatial polygons.
For example, row records with row id and string attributes, and
spatial polygons with latitude and longitude. The join query Q can
be an equi-join query or a spatial join query. The outputs from the
problem are s output progressive answers {ansO1, ansOs, ..., ansOs }

Full Partition-Wise Joins: https://docs.oracle.com/database/121/VLDBG/GUID-
5279BF41-41BF-4F87-A64E-2AA58C22BD61.htm

SSDBM 2023, July 10-12, 2023, Los Angeles, CA, USA

which satisfy the error bound ¢. The ¢ is the average error bound
of progressive results in each round. Ansg is the query answer to
the input join query Q, where Ansg=J3_; ans;.

The framework divides the input datasets into s batches, one
batch per round. In each round, the framework processed one batch
of data from S and one batch from R. In round i, the progressive
answer ans; is computed from data up to batch i. To evaluate the
similarity between the progressive results to the final answer, we
partition input datasets into k disjoint partitions and compute the
result distribution from each partition. When the progressive results
are actual result tuples instead of aggregation, most of the existing
works [14, 18, 38] evaluate result quality through distribution.

DEFINITION 1. Progressive results ans; are the results that are
computed from input batches sy, ..., s;.

DEFINITION 2. Based on partition function, the ans; can be repre-
sented by partitioned progressive results: ans; = {ans; 1, ..., ans; i },
where ans; j is the results in partition j up to batch i.

Let n represent the number of results. In round i, we found
ni=(ni1,.., n;) results. Based on definition 2, n; ; = |ans; ;| de-
notes the number of results found in partition j up to batch i.

DEFINITION 3. Output progressive results ansO; = {ansO; 1, ...,
ansO; i} are results outputted in round i. For each partition j, pick
a random sample ansO; j from ans; ;. The picked ansO; satisfies the
error bound «.

Let nO; denote the size of the output progressive answer size.
n0;=(n0; 1, ..., nO; k), where nO; j=|ansO; ;| and 0 < nO;; < n; ;.
Let nGT represent the ground truth result size, which is the total
number of results if s batches. nGT = (nGTy, ..., nGTy), where nGT;
denotes the result size in partition j. We use estimated ground truth
during the progressive computation. The detailed discussions of
estimate ground truth are in Section 5.1.

DEFINITION 4. Progressive result rate p; denotes the result rate
of output progressive answer ans; up to batch i. p; j denotes the result
rate of partition j up to batch i. It is computed by diving the ground
truth result size nGT; by the output result size nO; j.

n0O;,j ZI;:l nOi, j
> Pi =
nGTj 21;:1 nGT;

pij = (1

Next, let’s define the result distribution and result quality.

DEFINITION 5. The accurate result distribution is computed
based on the ground truth result size. rG = (rGi, ..., rGy), where
rG; = nGT; /zﬁ?:l nGT;

DEFINITION 6. The output result ratiorO; = (rOjy, ..., rO;),
whererO; j = noi,j/2§:1 n0; ;.

rGj and rO; j are result ratio of partition j. Based on the defini-
tion, we have Z§=1 rGj=1and0 <rG; < 1.

DEFINITION 7. E; denotes the average error of output progressive

answer of round i. e; j denotes the error between output result ratio

rO;, j and ground truth result ratio rGT; of partition j.
rGT; —r0i;| . Zhjei

JEi = 2
rGT; k

eij =

SSDBM 2023, July 10-12, 2023, Los Angeles, CA, USA

The output progressive result with smaller E; means its result
distribution is close to the ground truth (final) result distribution.
Therefore, it can better represent the final results.

ExaMmpLE 1. In Fig.1, we join Tweets with CityState: SELECT *
FROM S,R WHERE S.city = R.city.

The complete result contains 546 tweets from Arizona (A) state, 360
tweets from Connecticut (C) state, 288 tweets from Kentucky (K) state,
and 246 tweets from Oregon (O) state. The total number of results is
1440. The ground truth result distribution isrGTayizong = 546/1440 =
0.38, FGTConnecticut = 360/1440 = 0.25, rGTientucky = 238/1440 =
0.20, and rGToregon = 246/1440 = 0.17.

DEFINITION 8. Quality-aware progressive answer computa-
tion problem: given input dataset S and R, join query Q, the number
of rounds s (s > 1), and the error bound ¢(¢ > 0), the goal is to return
the progressive answers which the maximum result rate p; and also
satisfy the error bound. The formal problem statement is:

k
max Z n0;j j, subject to
Jj=1

3K e
%’J <e 3)

Please notice that we evaluate result quality by results distribu-
tion. More partitions enable finer control over the result quality.
However, with more partitions, the result estimation and error com-
putation are more expensive. There is an implicit trade-off between
the finer quality control of progressive results and the efficiency to
compute the progressive results.

4.2 Existing solutions

Existing solutions RRPJ [18, 38], Prism [11], and ContourJoin [12]
maximum the result rate by returning all the found results, which
is nO; j=n; j. In this case, they cannot guarantee the progressive
answer always satisfied the quality bound e.

Unlike the existing works, we proposed QP which returns the
progressive answer that satisfies the quality bound ¢ and maximizes
the progressive rate p; as much as possible. To guarantee the error
bound, QP7 hides part of the results from n; in memory temporarily
and returns the most representative progressive answer.

THEOREM 1. When all the partitions have the same result rate, we
have the progressive answer with the best quality.
When pi1 = pi2 = ... = pi . Ei = 0.

Proor. By the definition, we have:

_ _nGT; o
(1) rGT; = 5F - nGT, (2)r0;j =

(3) n0j,j = nGT;j * p; j.

O;,j nGTjxp;
Then, rO; j = —poid— = Jpi
M el inoy T 2 (nGTxp)

=rGT;

nO,—y_,—
k)
2= 0

pij*nGT;
pij* Lk nGT;

ke 2k, (rGTj-r0;;)/rGT;
=>E="5—"= - =0

]

Different partition has different result rate p. As Theorem1
shows, the more partitions have the same result rate, the better
progressive answer we can output to the users.

Xin Zhang and Ahmed Eldawy

EXAMPLE 2. In the first round of Fig.1, there are 63 tweets from
Arizona, 17 tweets from Connecticut, 9 tweets from Kentucky, and
11 tweets from Oregon. Existing solution Prism returns all of them.
In Prism’s solution, py = 0.069.rOg 4 = 0.67,rOyc = 0.17, rOp g =
0.09, and rOp 0 = 0.11.

The error of Prism solution: Ey = (|38 — 63|/38 + (25 — 17|/25 +
|20 — 9]/20 + |17 — 11]/17) /4 = 0.52.

QPJ returns 6 tweets from Arizona, 7 tweets from Connecticut, 9
tweets from Kentucky, and 6 tweets from Oregon. pg = 0.019.70p 4 =
0.22, rOg,c = 0.24,rOg,0 = 0.32, and rO o = 0.22.

QPJ error: Eg = (|38 — 22|/38 + |25 — 24| /25 + |20 — 32| /20 + |17 —
22|/17)/4 = 0.42 < 0.52 (Prims’s solution).

5 PROGRESSIVE PROCESSING

Note that during the progressive computation, there is no way to
get the actual ground truth, we can only compute the estimated
ground truth G. In QPJ, the progressive results builder estimates the
total number of results G based on the current processing progress
and current results size. With the estimated ground truth G, QP
can provide the progressive answer nO; which satisfies the error
bound and maximizes the progressive rate p; as much as possible.

5.1 Estimated ground truth

Let nGY} = (nGATi’l, . nGATi,k), where nGATi,j denotes the estimated
total number of join results in partition j in round i. The Selectivity
Estimation problem is well-studied [25]. There are two popular
used ways to estimate the join size:

o Method Egejectivity (Equi-join): Consider ajoin query R(X, Y) b«
S(Y,Z) and Y is akey in S and the corresponding foreign key
in R, we can estimate the join size T(R = S) = T(R)T(S)/
max{V(R,Y),V(S,Y)}, where T(R) is the number of tuples
in R, V(R, Y) is the number of distinct Y values in R. 2

o Method Egejectiviry (Spatial join): We construct Geometric
Histograms [1] to estimate the join size of spatial join.

e Method Ejoin: Existing works [26-28] estimate the result
size based on sample result size. We can get x; * y; fraction
of the final results by joining x; fraction of the dataset1 with
y; fraction of the dataset2.

In Section6, we test the precision and efficiency of the estimation
by applying Eelectivicy only and applying Ejoin only. The accuracy
of Egelectivity Performed better than Ejoin in the beginning and
Ejoin became more accurate than Eg,jectipiry With more and more
data processed. Because Eselectivity requires extra computation
overhead and statistical information maintenance, only applying
Ejoin ran faster than applying Egelectiviry only. To make use of
the advantages of the two estimation methods, progressive results
builder combines the Egejectiviry With Ejoin in each round by linear
weight function. The weights of two estimations are changed.

The progressive results builder collects the necessary statisti-
cal information and computes the value of selectivity estimation
Eselectivity only once in the partition phase. Any selectivity estima-
tion method can be plugged into QPJ to compute the Egejecrivity-

2The book [25] mentioned two assumptions: Containment of Value Sets and Preser-
vation of Value Sets. If the query satisfies the above two assumptions, then we can
estimate the join size based on the equation. If Y is a key in S and the corresponding
foreign key in R, the query satisfies the two assumptions.

Less is More: How Fewer Results Improve Progressive Join Query Processing

Based on the batch function introduced in Section3-Batching and
data partition, we know the ratio of the current batch size to the
total result size. Ejoin; = (ml * m2)/(ml; * m2; * n;), where
m1, m2,ml;, m2; are input data size and batch size, n; is the re-
sult size of round i. Assume the split function divides the data into s
batches. The progressive results builder dynamic estimates ground
truth result size Egynamic by the following:
—i

A i S
nGT;; = Edynamic = ;Ejoini + _Eselectivity’ 4)

where the first estimated ground truth is G = Eselectivity and the
last estimated ground truth Gs=E joing-

5.2 Progressive result builder

5.2.1 Optimal progressive rate. With the estimated ground truth
nGT; = (Gfi,l, Gfi,k), we can compute the progressive output
rate p; ; of each partition j in round i, p;; = nO;;/nGT; ;. As
Theorem1 claimed, when all the partition has the same progressive
rate, we can have a progressive answer with the best quality. To
achieve this, we let p; = min{p; 1, ..., p; }. Then, the output size
nO; ; of partition j is computed by nGAT,-!j * pj.

Different progressive rates p; output different numbers of result
tuples. If p; is not the minimum process over the k partitions, some
partitions cannot return nGATi, j * pi result tuples, so rO; j # rGATi, j-
Although taking the minimum p for every partition guarantees the
progressive answer has the best quality, it also blocks the progres-
sive rate, which let users cannot see enough new results.

Assuming the estimation nGAT,-, ;j increased sharply in the round
i, its new progressive rate is smaller than the previous round’s
progressive rate. Then p; j would block all of the partitions in round
i+1 and QPJ cannot output anything. To avoid some partitions that
block the output progress rate, QPf enables each partition to have
a different progressive rate. It lets most of the partitions return
nGATi, j * pi number of results, and the rest of partitions can return
less than nGT;, j * pi number of results.

There is a trade-off between the progressive rate and overall out-
put error. Taking the minimum progressive rate p; over {p; 1, ..., p; k},
every partition can return nGATi, j * pi results, then rOi:rGTi and
Z];.:l e;,j/k=0. Boosting the progressive rate p; triggers some parti-
tions that cannot return enough results, which produces a larger
overall error. To boost the progressive rate, we can let the overall
error reach the maximum error bound .

Let’s denote the optimal progressive rate up to batch i is p}. QP¥
finds the p} based on the greedy Algorithm1. The algorithm first
ranks all the progressive rates in ascending order in the list L (lines
1-2). If the p; is the smallest progressive rate which is the first one
in the list L, the error is 0 based on Theorem1. We maintain the
error in the previous round as epre. In the while-loop (line 5-11),
the algorithm greedy increases the progressive rate by trying larger
progressive rate. The while-loop ends when the error e is larger
than the given error bound ¢. Then, the algorithm computes the
boost optimal progressive rate based on Theorem2 (line 12-13).

Pijt--+pij

THEOREM 2. The boost progressive rate p* is ke

ProoF. Assume when idx=j+1, the error becomes larger than the
error bound . The optimal progressive rate computes as following:

SSDBM 2023, July 10-12, 2023, Los Angeles, CA, USA

Algorithm 1: Boost the progressive rate

Input: The error bound ¢, and the output rate of each
partition: {p; 1, ..., pj k}

Output: The boosted output rate p*

Rank the {p; 1, ..., p; k} in ascending order

-

2 List L = output rate list ranked in ascending order

// Smallest output rate is ranked first

Boost id idx = 0, p* = L[idx]

4 e=0,epre =0// The error of this round and
previous round

while e < ¢ do

6 p* =L[++idx] // greedy increase the output

©

«

ratio
7 epre =€,€=0
8 for i from 0 to idx do
9 ‘ e+ = €idx
10 end

11 end

12 If e == ¢, return p*

_ Pirt-+Piidx

13 return p* = /! epre <e<e

idx—ke
" koo«
o hyiThg 1ol g Tij Xj=1 M5 —1_ M
bij= Tl TE Sl TASE o St T,
L] L] ri Zj:l ni,_j L]
1™ _q_ 1 M 1- L, .
pinGT,; Pi nGT,; piPH 4o
= = 1 1 _ . PijtApij
=Ske=Y% eij=1—sp1+..+1——spjj=j— 2=
2121 ij piP1 pr P o
x _ PLjteAPij
= pj = L u]

The complexity analysis. The time cost of Algorithm1 comes
from two parts: sort phase and while loop. We use the MergeSort
for ranking the progressive rates, its time complexity is O(nlogn).
In the while loop, the number of computations in for loop is equal
to idx, it starts from 1 to k, where k is the number of partitions. In
the worst case, idx equals k, and the worst time complexity of the
while loop is O(k?). In the previous section, we pointed out the
implicit trade-off between the finer quality control of progressive
results (more number of partitions) and the efficiency to compute
the progressive results. Therefore, we won’t consider too large k in
the real-world case. In the experiment section, we test with k < 30.
Compare with the scale of the join algorithms, O(k?) is not costly.

Optimal size of the progressive answer. With the optimal p;,
QPJ computes the progressive answer n,; = {G;,lp;‘, . G;,kp:‘}.
The output progressive answer nO; satisfies the error bound ¢ and
also has the largest boosted progressive rate p*.

Below is the process to compute the optimal progressive rate for
Example 1 and Example 2.

ExAMPLE 3. Inrs of Fig.1, we have p4 = 0.70, pc =0.30, pg = 0.40,
and po = 0.65. And the error bound ¢ = 0.2.

0.3 0.4
1-g3+1-03

If pi=px =0.40, average error is —%4; =0.1875 < ¢.

1- 23 41— 24108
If pi=p0=0.65, average error is —%5——36— 06 ~ (.23 > ¢,
Algorithm 1 returns optimal p; = ;ﬁ;;%é ~ 0.58 > pk.

5.2.2 Select progressive output results. With the optimal output
progressive rate p* and estimated ground truth, QPJ computes the

SSDBM 2023, July 10-12, 2023, Los Angeles, CA, USA

size of output results {nOj 1, ..., nO; ;. } and outputs the progressive
results based on computed size. This brings a new problem that
how to choose results to output.

QP7 adopts sampling method to solve this problem. A simple
solution is adopted uniform sampling, which randomly picks nO; ;
results from partition j. Uniform sampling takes each join result
with the same importance. We can also achieve a finer control to
pick results to output. QP7 uses a two-level partitioning strategy.
It first partitions data into big partitions which are called coarser-
level partitions. Then it further splits each big partition into small
partitions which are called finer-level partitions. The split process
is lightweight. In hashing partition, assume the number of coarser-
level partitions is ¢ and the number of finer-level partitions is f.
Given an item with hash code h, it belongs to finer partition (h/c
mod f) in coarser partition (h mod c). The progressive rate and
output result size are computed based on the coarser-level partition.

QP7 adopts the weighted sampling method to pick output results
of equi-join. In each coarser-level partition, we compute the result
ratio of each finer-level partition. QPJ takes the result ratio as the
weight for each finer-level partition. In the partition phase, QP
computes the Eejecrivity based on statistical information of the
whole dataset. The result ratio is computed by Eg,jectivizy of each
finer-level partition.

Currently, spatial join output results are picked by uniform sam-
pling. Because the current spatial join algorithm in QP7 is designed
for spatial polygons and each spatial polygon might overlap with
multiple finer-level partitions. A polygon might be picked from one
overlapping finer-level partition and not be picked by the other
overlapping finer-level partitions. QP¥ uses the uniform sampling
method to avoid this situation happens.

5.2.3 reverse weighted sampling. QPJ samples progressive output
results by weighted without replacement sampling strategy. Ex-
isting sampling over joins works [15, 23, 24, 24, 43] are “direct”
methods, which insert sample items to the samples. The direct
methods generate samples with a small size from join results with
a big size. However, applying the direct method to QPJ to generate
progressive output results is expensive, because the output results
size nO; j is close to the join results size n; j. Therefore, we design
reverse weighted sampling strategy for QP7 to pick the join
results that are temporary hold.

For direct weighted sampling methods, items with higher weights
have larger chance to be added to samples. Given a set of weights
{wj_1, ... wj_g} of partitions {1, ..., k} and the size of all the results
n, the direct weighted sampling model M is built by the following:

M={{1,..,1}, .., {k, ...k} }, where|{i, ...i}| =wj_; *n (5)

For each sampling round, the system uniform picks a partition id i
from M and adds the item of partition i to the samples.

The reverse weighted sampling is the opposite in those items
with smaller weights having large chance to be filtered out from
samples. Given a set of weights {w;_1, ..., wj_j } of partitions {1, ..., k}
and the size of all the results n, the reverse weighed sampling model
RM is built by the following:

RM = {{1,..,1}, ..., {k, ... k}}, where|{i, ...i}| =n—wj_; xn (6)

The frequency of partition i in RM is reserved by using total size n
minus its direct frequency wj_; * n. For each sampling round, QP¥

Xin Zhang and Ahmed Eldawy

picks a partition id i from RM and filters out the item of partition i
from the found results. The filtered item will be held in memory
and merged with join results in the next progressive round.

5.3 Progressive Processing

Algorithm 2: Progressive Join

Input: Dataset S and R, the query Q, the progressive
computation rounds s

Output: progressive answer

Collect the statistical information from S and R

-

)

Compute the batch size based on rounds s
3 for each batch do

4 read and partitions the data

5 ships the partitioned data to Processors

6 sends partition size to Progressive Results Builder
7 end

8 for each Processor do

9 filter out N1 and N2 // N, is the new batch from
dataset 1

10 | R=RU Join(N1,N2)

1 | R=RU Join(N1, E2)

12 R=R|JJoin(N2,E1) // E,, is the old batches
from dataset i

13 sends the number of results to Progressive Results
Builder

14 end

15 Progressive Results Builder estimates result size G; by
Equation (2) and output ratio p; and send to Processors

16 Processors output the progressive answer nO;

As a general framework to handle both equi-join and spatial join
queries, QPJ integrates different join algorithms. Since algorithms
used to process equi-join and spatial join are different, we designed
algorithm Progressive Join to integrate equi-join and spatial join
processing. It transfers the universal input text format to a set of
tuples that can be used by the underlying join algorithms. Algorithm
2 shows the pseudocode.

In each round, QP7 finishes three tasks (lines 3-7): (1) Reading one
input split and partitioning the data. (2) Shipping the partitioned
data to the processors. (3) Communicating with the Progressive
Results Builder. The partition strategy is similar to the pre-step:
applying grid partition strategy for spatial data and applying hash-
ing partition strategy for non-spatial data. After the reading, the
processors send the statistical information of the input split back
to the Progressive Results Builder.

Each processor joins data from at least one partition. It’s de-
pended on the partition size. The processor can process multiple
partitions if all of them are small. Line 8-14 shows the three join
steps that happened in each processor. Ny, is the new batch from
dataset m and E,;, are the new batches from dataset m. To process the
equi-join query, Progressive Join applies hash join algorithm [25].
Any existing equi-join algorithm can replace the current equi-join
solution. To hand the spatial join query, Progressive Join applies
the Plane Sweep algorithm [2]. Like the equi-join solution, any
spatial join algorithm can replace the current solution. After the
three join steps, Progressive Join merges the new batches with exist-
ing batches and stores them in memory. Then, Progressive Results

Less is More: How Fewer Results Improve Progressive Join Query Processing

Builder starts to estimate the result size and output ratio (line 13),
the estimation happens in the Progressive Results Builder. Finally,
the Progressive Results Builder sends the number of outputted
results from each partition to each processor, and the processors
output the progressive answer nO;.

The complexity analysis. Algorithm 2 does not add extra over-
head to the original join algorithms. It just processes the input
data in multiple rounds. Therefore, the time complexity of the al-
gorithm is the same as the join algorithms. QP¥ applies hash join
algorithm [25] for equi-join queries and Plane Sweep algorithm [2]
for spatial join queries. The time complexity of the hash join algo-
rithm is O(M + N), and the time complexity of the Plane Sweep
algorithm is O((M + N) log(M + N)), where M and N are the sizes
of the two input datasets.

6 EXPERIMENT

6.1 Experimental Setup

We conduct the experiments on Intel(R) Xeon(R) CPU E5-2609 v4
@ 1.70GHz and runs CentOS Linux release 7.5.1804 (Core). It has
128 GB RAM and 2x8-core processors.

Datasets. We test QP7 by two real-world datasets. We extract
the 50 M Geo Twitter data [40] to test the equi-join. Each Twitter
contains a geo tag that includes the city information. We extract
the location formation from Twitter data for performing join op-
erations between Twitter and location. And use the two spatial
datasets OSM2015/lakes [8] and OSM2015/parks [9] to test the
spatial join. The OSM2015/lakes dataset contains 7.5 M polygons,
and the OSM2015/parks dataset contains around 10 M polygons.
We shuffle the datasets based on chi-square distribution [41] and
discrete uniform distribution [42].

Test Queries. We join the Twitter data with the city and state.
The synthetic of the equi-join query is SELECT Twitter.id FROM
Twitter, CityStateInfo WHERE Twitter.city = CityStatelnfo.city.
There are multiple types of spatial join [29], e.g., intersecting, range
query, similar join, etc. We evaluate the spatial join by intersecting
spatial join. Given two sets of polygons, find all pairs of intersect-
ing polygons between the two sets [29]. All the join queries are
full-history join.

Compared methods. We compare our framework QP¥ with two
progressive input control frameworks in Table 1: Prism [11] and
ContourJoin (Con]) [12]. We pick Prism because it is a classical input
control framework. Prism process batches from every partition in
a synchronized non-decreasing order. Each round guarantees to
process the batches with the same batch id and show whatever they
found to the users. We pick Con] because it is a recently proposed
progressive processing framework and its quality control strategy is
different with Prism. To perform Con]J, we generate user preference
score for the test data. We consider twitter id as the preference
score of Twitter data and consider polygon id as the spatial data.
For progressive frameworks Prism and ConJ, we evaluate the quality
of the progressive results by computing the difference between the
final result distribution and the progressive result distribution.

Besides progressive frameworks, we also consider using Spark to
perform equi-join and spatial join as the non-progressive baseline.
We write the Spark join results on disk and split the result files into
a set of partial results. The size of the partial result is the same as

SSDBM 2023, July 10-12, 2023, Los Angeles, CA, USA

the size progressive result of QPJ. We compute and compare the
quality of partial results of Spark with progressive results of QPJ.

6.2 Evaluation Metrics

Quality. We evaluate the quality of progressive results by result
distribution similarity to the ground truth. The ground truth is the
total number of results in each partition. The quality evaluation
metrics come from [38]. We take Kullback Leibler (KL) divergence
(KL) and mean absolute percentage error (MAPE) to compute the
quality of the progressive partial answers. The Kullback Leibler (KL)
divergence measures the differences between the actual and par-
tial results produced. The mean absolute percentage error (MAPE)
measures the differences between the ground truth and the partial
answers. They are computed as followings:

k k

3 rG.i _100%
KL = Z, IG,i lOg (E),MAPE— X

i= >

rG,i —To,i

rG,i

)

i=1
where rg ; is ground truth ratio and r,; is the ratio of the partial
answer n, ;, and k is the number of partitions.

Efficiency. The efficiency is evaluated by the progressive output
rate changed over time.

Existing distributed platforms, e.g., Spark and Flink, do not al-
low communication operations in the middle of transformation
operations. Therefore, we did not provide the distributed results in
current experiments. In the future, we hope the existing distributed
platforms can support enhanced operations, like enabling communi-
cation during transformation operations, to meet the requirements
of QPJ. We built the first version of QPJ on top of Spark Streaming.
We divided input files into small batches and broke the join opera-
tion into two Spark Streaming operations. We computed the join
results in the first operation and outputted the progressive results
in the second operation. By this design, we let Spark Streaming
support QPJ, but it slowed down the efficiency a lot. Therefore, we
developed QPJ in Java and did not deploy it on existing distributed
platforms in the current version.3

Experiment Plan. We evaluate QP7 from six perspectives: (1)
The precision of the estimation methods: we compare the accuracy
and efficiency of only applying Esejectivity> only using Ejoin, and
the linear combination described by 4. (2) The quality of progressive
results computed by QP and three baseline methods. The quality is
evaluated by the quality metrics KL and MAPE. (3) The error bound:
given different error bounds, we compare the quality and progres-
sive output rate of QP with the best baseline method Prism, which
produces the smallest error among the three baseline methods. (4)
Data distribution: for the datasets with different distributions, we
compare the progressive results of QP7 with baseline methods. (5)
The number of progressive rounds: for the different number of
rounds, we compare QPF with OneBatch on the response time to
see the earlier results. (6) The number of partitions: we compare the
quality and progressive output rate with the different numbers of
partitions. (7) We compare the quality of progressive output results
picked by weighted sampling and uniform sampling.

6.3 Quality Experiment results

6.3.1 Estimation Function. We proposed a dynamic estimation
function in Sec.5, Eq. 4 (Egynamic) » it linear combines selectivity

3The code link: https://github.com/xin-aurora/QualityProgressiveJoin.git

SSDBM 2023, July 10-12, 2023, Los Angeles, CA, USA

05| —— Eselectivity | 051 % —— Eselectivity ||
DE% —o= Eaynamic it —e— Eaynamic
= 04 & \ - Epin | = 0.4 ¢ - Epin |
5 031 1 N 031 B
4 M
& o02f e 202} |
= =
0.1 B 0.1} B
b ol . .
0 5 10 15 20 25 30 0 500 1,000 1,500 2,000

Input Splits The processing time (s)

(a) KL Error (b) KL Error With Time

The MAPE-Error

Xin Zhang and Ahmed Eldawy

5 = Lselectivity % T Lselectivity

30+ E —= Eaynamic || L 30[& —— Edgynamic ||
- Ejoin g o & Ejoin
201\ & g 20 % 1
&

10f £ 10} 1
b ol . \

0 5 10 15 20 25 30 0 500 1,000 1,500 2,000

Input Splits The processing time (s)

(c) MAPE Error (d) MAPE Error With Time

Figure 3: The comparison of the accuracy and efficiency of different estimation methods.

estimation method (Egejectivity) and sample method (Ejoin). Fig.3
compares the three result estimation methods: Egejectiviry in black,
Eqynamic in blue, and Ejoin in red. The accuracy of our proposed
Eqynamic and Esejectiviry are better than Ejoin in the beginning.
As more data be processed, Egejectivity’s precision decreases, Ejoin
becomes better. Ejy;qmic combines two methods’” advantages and
its overall precision is the best. In Fig.3 (a) and (c), the KL error and
MAPE error of Egynamic and Ejoin are smaller than Eejecsivity
after processing 10 batches of data. Due to the computation com-
plexity and statistical information maintaining, in Fig. 3 (b) and (d),
applying Ejoin finishes earlier than applying Egejectiviry- Similar
to the precision results, the Egynamic has good efficiency results
because it linear combines Ejy;,’s estimation results.

Summary. Fig. 3 proofs that the Ejy,qmic is better than existing
result estimation strategies, it finishes earlier than Egejecyipiry and
has better accuracy than Ejoin. Please notice, Egypamic only com-
putes Eelectivity from the scratch at the first batch, so Egynamic’s
processing time is similar to E jom’s processing time.

6.3.2 Varying Method. We evaluate the quality of progressive re-
sults by the KL error and MAPE error of the progressive result
distribution and the ground truth result distribution. We compare
QPj (in blue) with three baseline methods, Prism (in black), Con]J (in
green), and Spark (in orange), in spatial join queries (Fig.4 (a) and
(b)) and equi-join queries (Fig.4 (c) and (d)). The Prism baseline takes
the same input progressive input as QPJ takes in each progressive
computation round. To evaluate the ConJ, we divide the output
results computed by Con]J that are ranked based on user preference
score into progressive output results, each progressive output result
has the same output rate as QP has. To evaluate Spark, we output
the Spark join results into a single file and write in the disk. The
progressive output results are extracted by the same strategy as
ConJ used. We use Spark? to run the equi-join queries and Spark
beast library® to run the spatial join queries.

Fig.4 (a) and (b) show Spatial join results of the four methods
and Fig.4 (c) and (d) show the equi-join results. We report the KL
error and MAPE error of the progressive result in every round. The
y-axis represents the errors and the x-axis represents the result
rates. In Fig.4 (a) and (b), the spatial join experiments produce
10 progressive results and the last progressive result is the whole
join results. The spatial join experiments partition the data into 6
partitions and batch it into 10 rounds. In spatial join experiments,
the progressive results computed by QP7 always have the smallest
KL and MAPE error than other methods computed. In Fig.4 (c) and

*https://spark.apache.org/docs/latest/rdd-programming-guide.html#overview
Shttps://bitbucket.org/bdlabucr/beast/src/master/

(d), the equi-join experiments produce 30 progressive results. The
equi-join experiments partition the data into 10 partitions and batch
it into 30 rounds. When the results rates are smaller than 50%, the
progressive results computed by QPJ always have the smallest KL
and MAPE error than other methods computed.

Summary. We prove the result distribution of progressive results
computed QPJ are closest to the ground truth results than other
methods, which means QPF can produce progressive results to
represent the ground truth results best. Therefore, in progressive
query processing, QP can help users monitor the query output
best and make the right decision earlier than other methods.

6.3.3 Varying Error Bound e. We study the effects of the error
bound ¢ from result quality and output rate perspectives. The result
precision results are in Fig.5 (a) and (d). The output rate results
are in Fig.5 (b) and (c). The spatial join experiments partition the
data into 6 partitions and batch it into 10 rounds. The equi-join
experiments partition the data into 10 partitions and batch it into
30 rounds. Since Prism produces progressive results that have better
quality than ConJ and Spark, we only include Prism in the varying
error bound experiments. Because there is no error bound control
in baseline method Prism, the spatial join results of Prism in Fig.5
(a), (b), and (c) are the same.

The effects of the error bound ¢: In both spatial join exper-
iments and equi-join experiments (Fig.5 (a) and (d)), QP¥ in blue
always has smaller error than Prism in black and its output rate
is also always smaller than Prism. In spatial join experiments, the
accuracy gaps between the blue line and the black line are signifi-
cant, which represents QPJ can return better results than Prism. In
equi-join experiments, the precision gaps between QPf and Prism
are obviously in the beginning 40% of the output (the output rate
p <0.4). With larger error bound, the precision of QP7 will decrease.
Even increasing the error bound ¢ from 0.1 to 0.3, the precision
gaps between QP and Prism are still significant in the beginning
40% (output rate p < 0.4). In summary, the result quality of QPY is
better than the quality of Prism.

The effects of the error bound ¢ to output rate. QP can
produce better results because it holds fewer results in memory.
Therefore, compared with the baseline method, the result output
rate of QPF will be smaller than Prism. In Fig.5 (b) and (c), we report
the sacrifices of output rate in QPJ. As shown in the results, QP¥
does not lost too much output rate compared with the baseline
method Prism. We propose the boost algorithm in Sec.5 Alg.1 to
boost the result rate of QP7. In Fig.5 (a) and (d), we can see that with
larger error bound ¢, the output rate difference is not significant
between QPJ and Prism. We also compare with different error bound

Less is More: How Fewer Results Improve Progressive Join Query Processing

SSDBM 2023, July 10-12, 2023, Los Angeles, CA, USA

X —e— Prism X —e— Prism 2 —s— Prism || 120 —e— Prism | |
06l \ —— Con]J || L 150 \ —— ConJ H] —— ConJ g ! —— ConJ
W Spark IS Spark 5 15| Spark | | S 100 Spark ||
£ s \ — QPF g7 — QPf 5 ol — QP ||
b} @ 100 | \ | 3 | = i
2 04} B ay \ | f o 1
2 < \ 2 1) 1 2 el 1
& =] 1A =
E . |- I 2 4| |
02 1 F 05 ¢ 1 F
oL ; ol 7 L= ? i 0 s S
0 02 04 06 08 1 0 02 04 06 038 1 0 02 04 06 08 1 0 02 04 06 08 1
The result rate (p) The process (p) The result rate (p) The process (p)
(a) Spatial join, KL Error (b) Spatial join, MAPE Error (c) Equi-join, KL Error (d) Equi-join, MAPE Error
Figure 4: Compare the quality of progressive results of QPJ and existing frameworks.
—— Prism 1t B 1 B —e— Prism
= 30| —— QPj-e=0 || — — 20 —5- QPJ-¢ = 0.01-skew |
B —+ QPJ-¢ = 0.01 S 08 1 S 08 1 3 —— QPj-£=0.01
5 = QPJ-¢ = 0.05 £ £ 5 o15f e QPJ-£=003 ||
S C 06 1 Z 0.6 1 S
20 | 1 = =
2 z z 2 ol |
= 2 o4f 1 2 04 1 =
£ 10| g 2 £ 2
= o2 1 = 02 1 st 1
oL . . . ; 0 ol . , . oL
0 02 04 06 08 1 10 20 30 40 50 10 20 30 40 0 02 04 06 08 1

The result rate (p) The processing time (s)

(a) Spatial Join, MAPE Error (b) Spatial Join, & = 0, result rate

The processing time (s) The result rate (p)

(c) Spatial Join, € = 0.01, result rate (d) Equi-join, MAPE Error

Figure 5: The effects of the varying error bound.

150 M7 10 o |
0o s20 :
fe s30
~ 100 [|BBOneBatch |
g
2
w
50 -
ol | [L
SJ-s=1 ST-Total EJ-s=1 EJ-Total

Figure 6: The comparisons of query responding time with
different progressive computation rounds

¢, the changing of query result precision with more and more output
results. With a larger error bound, the result quality becomes worse.

Summary. Combine the results shown in Fig.5, the input&output
quality control of QP7 is better than single-choice output control
of Prism. QPJ does not sacrifice too much output rate but can bring
much better results than existing methods.

6.3.4 Analysis the effects of Data Distribution. We find an inter-
esting fact that data distributions affect the precision of the frame-
works. We test with spatial join with skew data distribution and
equi-join with less data distribution. In the experiments of Fig.5,
we shuffled both spatial datasets by chi-Square distribution. In
experiments Fig.5 (d), we shuffled one of the Twitter datasets by
chi-Square distribution and the other one by the discrete uniform
distribution. The error gaps are more significant in the experiments
tested with more skew distribution datasets. The figure shows that
QPF worked better when the datasets were more skew.

6.3.5 VaryingS. In Fig.6, we study the effects of total computation
round by comparing the OneBatch in black with QP¥ on different
progressive rounds: 10 rounds in green, 20 rounds in blue, and 30
rounds in orange. QP7 returns the results earlier than OneBatch. QP}
returns the earliest result in less than 5 seconds, while OneBatch

fp10
lop15 | |
fip20
B8P30

MAPE Error

o BLE NS e o

5% 15% 25% 50%
Figure 7: The output rate and accuracy comparisons with
different numbers of partitions

needs more than 50 seconds for spatial join and more than 80
seconds for equi-join. When the total progressive computation is
ten rounds s = 10, QP7 finishes the join queries sooner than s=20
and s=30. However, with more computation rounds, each round
would produce fewer records and return the earlier results faster.
30 rounds experiment takes the shortest responding time to return
the first results.

Summary. Progressive solutions are more suitable than non-
progressive solutions in data exploration systems. The experiment
with more computation rounds can refresh output results faster than
with fewer computation rounds. However, due to the trade-off be-
tween total responding time and earlier results, extra computation
and communication overhead increased with more computation
rounds, which slowed down the overall query responding time.

6.3.6 Varying the number of partitions. We compare the quality
of progressive results with the different numbers of partitions in
Fig.7. The equi-join experiments adopt the hash partitioning on the
joint key. We vary the number of hash buckets by changing the
number of partitions and test with 10 partitions, 15 partitions, 20
partitions, and 30 partitions. In Fig.7, the y-axis is MAPE errors,
the x-axis represents the output rate of each progressive result. We

SSDBM 2023, July 10-12, 2023, Los Angeles, CA, USA

-5 Weighted-©-Uniform | |

MAPE

Figure 8: The comparisons of different sampling strategies.

report the MAPE error of the output rate reaches 5%, 15%, 25%,
and 50%. 10 partitions experiment has the smallest error the output
rate reaches 25%, and smaller number partition experiments can
produce progressive results with smaller quality error.

Summary. When the number of partitions is reduced, the accu-
racy of progressive results is improved. The quality control com-
ponent of QPF works well with fewer partitions. However, when
considering the distributed setting, the number of partitions affects
the parallel execution. With more partitions, each worker node pro-
cesses fewer data and would return results faster, which improves
the performance. Besides, with more partitions, QP¥ can have finer
control over the quality of the progressive results.

6.3.7 Compare different sampling methods to select progressive out-
put results. In Fig. 8, we compare the result distribution of progres-
sive output results with ground truth result distribution. We test
with equi-join with 10 coarser-level partitions, and each coarser-
level partition contains 10 finer-level partitions. The weighted sam-
pling method selects results that have smaller MAPE errors than
results selected by the uniform sampling method. We show the
weighted sampling method enables QP7 to have finer control over
the quality of progressive output results.

7 CONCLUSION AND FUTURE WORK

We formally defined the progressive join problem to include the
quality constraints in this work and propose an input&output con-
trol framework named QPJ. There are four improvements that can
be considered. First, we will deploy QP on a distributed platform.
Second, if the estimated result size is smaller than the previous
round, current QPY does not support hiding the existing outputted
results. Third, we will extend QP7 to support the weighted sam-
pling to pick spatial join output results. Fourth, we will extend the
validation of QP7 to test with more complex queries, e.g. multi-way
join, more types of partition functions, and the scalability.

REFERENCES

[1] Ning An et al. 2001. Selectivity estimation for spatial joins. In Proceedings 17th
International Conference on Data Engineering. IEEE, 368-375.

[2] Lars Arge et al. 1998. Scalable sweeping-based spatial join. In VLDB, Vol. 98.

Citeseer, 570-581.

et al. C. Zhu. 2014. Optimization of monotonic linear progressive queries based

on dynamic materialized views. Comput. J. 57, 5 (2014), 708-730.

[4] etal. C. Zhu. 2016. Optimization of generic progressive queries based on depen-
dency analysis and materialized views. Information Systems Frontiers 18 (2016),
205-231.

[5] TszNam Chan et al. 2022. LIBKDV: a versatile kernel density visualization library
for geospatial analytics. PVLDB 15, 12 (2022), 3606-3609.

[6] Bolin Ding et al. 2016. Sample+ seek: Approximating aggregates with distribution
precision guarantee. In SIGMOD. 679-694.

[7] Liming Dong et al. 2020. Marviq: Quality-Aware Geospatial Visualization of
Range-Selection Queries Using Materialization. In SIGMOD. 67-82.

[8] Ahmed Eldawy and Mohamed F. Mokbel. 2019. All water areas in the world
from OpenStreetMap. This includes coastal lines, lakes, rivers, pools, and others.

[3

oy
=

=
)

o
=

~
5,

I
&

~
=

'S
=

w e W
AL B

'®
i

(37]

(38]
(39]

[40

N
fury

[42

[43

[44

Xin Zhang and Ahmed Eldawy

https://doi.org/10.6086/N1668B70 Retrieved from UCR-STAR $https://star.cs.ucr.
edu/?0SM2015/lakes&d$.

Ahmed Eldawy and Mohamed F. Mokbel. 2019. Boundaries of parks and green
areas from all over the world as extracted from OpenStreetMap. https://doi.org/
10.6086/N1RX994T Retrieved from UCR-STAR $https://star.cs.ucr.edu/?0SM2015/
parks&d$.

Afrati Foto N et al. 2012. Fuzzy joins using mapreduce. In ICDE. IEEE, 498-509.
Chandramouli Badrish et al. 2013. Scalable progressive analytics on big data in
the cloud. PVLDB 6, 14 (2013), 1726-1737.

Ding Mengsu et al. 2021. Progressive Join Algorithms Considering User Prefer-
ence.. In CIDR.

Jo Jaemin et al. 2019. Proreveal: Progressive visual analytics with safeguards.
TVCG 27,7 (2019), 3109-3122.

Moritz Dominik et al. 2017. Trust, but verify: Optimistic visualizations of approx-
imate queries for exploring big data. In CHI 2904-2915.

Procopio Marianne et al. 2019. Selective wander join: Fast progressive visualiza-
tions for data joins. In Informatics, Vol. 6. MDPI, 14.

Qian Lin et al. 2015. Scalable distributed stream join processing. In SIGMOD.
811-825.

Sameer Agarwal et al. 2013. BlinkDB: queries with bounded errors and bounded
response times on very large data. In Proceedings of the 8th ACM European
Conference on Computer Systems. 29-42.

Wee Hyong Tok et al. 2008. A stratified approach to progressive approximate
joins. In EDBT. 582-593.

Wongsuphasawat Kanit et al. 2017. Voyager 2: Augmenting visual analysis with
partial view specifications. In CHI 2648-2659.

Wang Zhe et al. 2021. Neuralcubes: Deep representations for visual data explo-
ration. In BigData. IEEE, 550-561.

Yang Jianye et al. 2018. Efficient set containment join. VLDBJ 27, 4 (2018),
471-495.

Yu Jia et al. 2020. Tabula in action: a sampling middleware for interactive geospa-
tial visualization dashboards. PVLDB 13, 12 (2020), 2925-2928.

Zhao Zhuoyue et al. 2018. Random sampling over joins revisited. In Proceedings
of the 2018 International Conference on Management of Data. 1525-1539.

Zhao Zhuoyue et al. 2020. Efficient join synopsis maintenance for data warehouse.
In SIGMOD. 2027-2042.

Hector Garcia-Molina. 2008. Database systems: the complete book. Pearson
Education India.

Peter] Haas, Jeffrey F Naughton, S Seshadri, and Arun N Swami. 1996. Selectivity
and cost estimation for joins based on random sampling. J. Comput. System Sci.
52, 3 (1996), 550-569.

Peter] Haas and Arun N Swami. 1995. Sampling-based selectivity estimation for
joins using augmented frequent value statistics. In ICDE. IEEE, 522-531.

Dawei Huang et al. 2019. Joins on samples: A theoretical guide for practitioners.
arXiv preprint arXiv:1912.03443 (2019).

Edwin H Jacox and Hanan Samet. 2007. Spatial join techniques. ACM Transactions
on Database Systems (TODS) 32, 1 (2007), 7—es.

Jianfeng Jia et al. 2016. Towards interactive analytics and visualization on one
billion tweets. In SIGSPATIAL. 1-4.

Yuyu Luo et al. 2020. Visclean: Interactive cleaning for progressive visualization.
PVLDB 13, 12 (2020), 2821-2824.

Jignesh M Patel and David J DeWitt. 1996. Partition based spatial-merge join.
ACM Sigmod Record 25, 2 (1996), 259-270.

Johns Paul et al. 2020. Poet: an Interactive Spatial Query Processing System in
Grab. In SIGSPATIAL. 477-486.

Marianne Procopio et al. 2021. Impact of cognitive biases on progressive visual-
ization. TVCG 28, 9 (2021), 3093-3112.

Rahman Sajjadur et al. 2017. I've seen" enough" incrementally improving visual-
izations to support rapid decision making. PVLDB 10, 11 (2017), 1262-1273.
Salman Ahmed Shaikh et al. 2020. GeoFlink: A Distributed and Scalable Frame-
work for the Real-time Processing of Spatial Streams. In CIKM.

Yufei Tao. 2022. Algorithmic Techniques for Independent Query Sampling. In
Proceedings of the 41st ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of
Database Systems. 129-138.

Wee Hyong Tok and Stéphane Bressan. 2013. Progressive and approximate join
algorithms on data streams. In Advanced query processing. Springer.

Wee Hyong Tok, Stéphane Bressan, and Mong Li Lee. 2006. Progressive spatial
join. In SSDBM. IEEE, 353-358.

Twitter. 2019. Twitter Data. https://twitter.com/?lang=en

Wikipedia. 2022. Chi-square Distribution. $https://en.wikipedia.org/wiki/Chi-
squared_distribution$

Wikipedia. 2022. Discrete Uniform Distribution. $https://en.wikipedia.org/wiki/
Discrete_uniform_distribution$

Dong Xie, Jeff M Phillips, Michael Matheny, and Feifei Li. 2021. Spatial inde-
pendent range sampling. In Proceedings of the 2021 International Conference on
Management of Data. 2023-2035.

Jia Yu and Mohamed Sarwat. 2021. GeoSparkViz: a cluster computing system for
visualizing massive-scale geospatial data. PVLDB 30, 2 (2021), 237-258.

https://doi.org/10.6086/N1668B70
$https://star.cs.ucr.edu/?OSM2015/lakes&d$
$https://star.cs.ucr.edu/?OSM2015/lakes&d$
https://doi.org/10.6086/N1RX994T
https://doi.org/10.6086/N1RX994T
$https://star.cs.ucr.edu/?OSM2015/parks&d$
$https://star.cs.ucr.edu/?OSM2015/parks&d$
https://twitter.com/?lang=en
$https://en.wikipedia.org/wiki/Chi- squared_distribution$
$https://en.wikipedia.org/wiki/Chi- squared_distribution$
$https://en.wikipedia.org/wiki/Discrete_uniform_distribution$
$https://en.wikipedia.org/wiki/Discrete_uniform_distribution$

	Abstract
	1 Introduction
	2 Related Work
	2.1 Data Analytics and Data Processing System
	2.2 Sampling Methods

	3 QPJ Framework Overview
	3.1 QPJ architecture
	3.2 Progressive query processing QPJ

	4 The Quality of Progressive Results
	4.1 Symbols and notations
	4.2 Existing solutions

	5 Progressive Processing
	5.1 Estimated ground truth
	5.2 Progressive result builder
	5.3 Progressive Processing

	6 Experiment
	6.1 Experimental Setup
	6.2 Evaluation Metrics
	6.3 Quality Experiment results

	7 Conclusion and Future Work
	References

