OSMX: Spark-based Geospatial Data Extractor from
OpenStreetMap’

Samriddhi Singla Yaming Zhang Ahmed Eldawy
ssing068@ucr.edu yzhan737@ucr.edu eldawy@ucr.edu
Computer Science and Engineering Tencent Technology Co. Computer Science and Engineering

University of California, Riverside
Riverside, California

ABSTRACT

With the rising amount of publicly available data, data-driven mod-
eling is becoming increasingly popular. Geospatial data is one of
the most important facets that can be combined with virtually
all data science real-world applications. However, there is a lack
of customized geospatial data that can be used in various data
science applications from different domains, e.g., hydrology, polit-
ical science, climatology, and agriculture. This paper introduces
a Spark-based extractor that can extract rich geospatial datasets
from OpenStreetMap (OSM). OSM hosts crowd-sourced geospatial
data that represent a variety of natural and human-made features,
e.g., lakes, buildings, and roads. The size of this data is extremely
huge and requires complex processing before being ready to use
in data science. The proposed extractor runs on Apache SparkSQL
which allows it to scale to the Planet.osm file which spans the entire
world. In addition to the extractor, we make the data available in
various standard formats, e.g., GeoJSON, CSV, KML, and Shapefile.
Furthermore, we host these datasets on UCR-Star which allows
users to visually explore these datasets and download any subset
of the data for any geospatial region.

CCS CONCEPTS

« Information systems — Database query processing.

KEYWORDS
OSM Data, Data Extraction, OpenStreetMap, Big Data, Spatial Data

ACM Reference Format:

Samriddhi Singla, Yaming Zhang, and Ahmed Eldawy. 2022. OSMX: Spark-
based Geospatial Data Extractor from OpenStreetMap. In The 30th Interna-
tional Conference on Advances in Geographic Information Systems (SIGSPA-
TIAL °22), November 1-4, 2022, Seattle, WA, USA. ACM, New York, NY, USA,
4 pages. https://doi.org/10.1145/3557915.3560954

“This work is supported in part by the National Science Foundation (NSF) under grant
11S-2046236 and by Agriculture and Food Research Initiative Competitive grant No.
2020-69012-31914 from the USDA National Institute of Food and Agriculture

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

SIGSPATIAL °22, November 1-4, 2022, Seattle, WA, USA

© 2022 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9529-8/22/11.

https://doi.org/10.1145/3557915.3560954

University of California, Riverside
Riverside, California

1 INTRODUCTION

The recent evolution of technology has led to a significant increase
in the amount of collected data. This has shifted most scientific
domains to rely more on data science and data-driven models [9,
11-14]. The success of these applications heavily depends on the
availability of suitable data that contains the right set of features.
Geospatial features are among the most popular features that are
needed in virtually all data science applications. However, having
the right set of geospatial features in the region of interest is still a
challenge that limits many data science applications.

OpenStreetMap (OSM) is an open system that relies on citizens
worldwide to collect geospatial data including roads, administrative
boundaries, parks, and lakes. However, despite being publicly avail-
able, extracting useful data that can be used in data science is still an
active challenge due to the complexity of this data. First, OSM data
is available as one large file, called Planet.osm, in Protocol Buffers
Format (PBF) which is not readily accessible to big-data systems
such as Spark. Second, OSM data is stored in a canonical form that
consists of three major sections, nodes, ways, and relations. A single
geographical feature, e.g., a lake, is split among those sections and
complex processing is needed to produce features in a standard
geospatial format used by data scientists, e.g., GeoJSON. Third, the
scale of the data is huge. The standard format of the file is a single
XML file that is nearly one terabyte in size. Other formats, such as
the compressed PBF file are nearly 60GB and are not easy to parse
or process.

This paper presents OSMX, the first Spark-based end-to-end
solution for extracting ready-to-use data from the OSM PBF file.
The proposed extractor has three unique advantages. 1) It uses
Spark, the most advanced distributed query engine to process large
amounts of data. 2) It works directly on the compressed PBF file
which minimizes the download time and storage requirements.
3) We make the source code and extracted data available for free
and we host the datasets on UCR-Star [8] which allows users to
explore the data and download arbitrary subsets of it.

The proposed extractor is built using Beast [3], a Spark extension
for spatial data exploration. First, it adds a distributed reader for
the Planet.osm file and uses it to read the three major sections of
the file, namely, nodes, ways, and relations. Then, it uses SparkSQL
to join these sections efficiently and produce the desired features.
The SQL queries can be easily modified by the user to limit them to
a specific geographical region or a subset of features, e.g., buildings
or roads. The produced features can then be stored in several stan-
dard geospatial formats including GeoJSON and Shapefile. Unlike
existing work, the proposed extractor can generate data for any

https://doi.org/10.1145/3557915.3560954
https://doi.org/10.1145/3557915.3560954

SIGSPATIAL ’22, November 1-4, 2022, Seattle, WA, USA

geographical region, and scientists are no longer tied to the limited
publicly available data.

2 RELATED WORK

Although OpenStreetMap (OSM) is one of the biggest sources of
publicly available geospatial data, there are very few solutions
aimed at extracting data from it. One of the first solutions included
TAREEG [1], a MapReduce extractor that could extract datasets
from the XML file format of OSM data. It was based on Spatial-
Hadoop [6] and Pigeon [5] but it is no longer maintained and did
not scale well due to the limitations of Hadoop. The latest extract
from TAREEG dates back to 2015. Other efforts included [4] and [2],
which aimed at integrating OSM data with other sources of Linked
Geo Open Data (LGOD). While [4] converted the OSM data format
to an RDF (Resource Description Framework) data model to create a
large spatial knowledge base, [2] proposed a framework to convert
sources of Linked Geo Open Data (LGOD) into the OSM data format
and query the combined dataset. However, [4] has not updated its
database since 2015 and [2] is limited to only integrating points of
interest and cannot work with relations (roads, bus routes, etc.).

Photon [10] is another open-source system that can extract
datasets from OSM. It has built its own worldwide search index
(53 GB) that the users can query, however, it might take days for
this index ! to be ingested by Photon before the users can query it.
There are also some open-source tools that are available for parsing
XML or PBF files but they run on a single machine and do not scale
well, e.g., Osm2pgsql and Osmium. There are also services like
GeoFabrik [7] that provide data extracts from OSM for predefined
regions and datasets. A limited version of these data extracts is
available for free and the full version is priced according to its size.

In contrast to these systems, the proposed extractor is imple-
mented in Spark and can process the whole OSM planet file without
a separate indexing step and makes the datasets available for public
use in various formats. It is not limited to points of interest and can
extract datasets such as buildings, lakes, roads, etc. The datasets
extracted by the proposed system are free to download without any
limitations.

3 GEOMETRY DATA EXTRACTION

To implement the proposed extractor, we defined several user-
defined functions (UDFs) such as ST_Connect, ST_CreatePoint,
ST_CreateLinePolygon, and HasTag that can be run with SparkSQL.
We use these functions to generate the geometries that represent
physical objects in OSM and store it in a DataFrame. Below, we
describe the process of extracting the desired geometry features
from the OSM PBF file using these functions.

3.1 Spark PBF Reader

The first step is to parse and read the records from the PBF file. We
create a custom input format that works as follows. First, it splits
the PBF file into equi-sized blocks of size 128 MB. Notice that this
is just a logical splitting that defines the ranges in the file that will
be read in parallel but the file is not physically split. This step runs
on the driver machine and it takes only a fraction of a second since
the input is not actually read from the disk.

! As mentioned on their Github page

Samriddhi Singla, Yaming Zhang, and Ahmed Eldawy

After that, the Spark executors process these splits in parallel
to extract records inside each split. The challenge in this step is
to ensure that the entire file is processed correctly and that each
record is read exactly once while the executors run in parallel. This
is not a trivial task since PrimitiveGroups in the PBF file might
span two splits. To ensure that the file is processed correctly, we
define an anchor point as the first byte of each PrimitiveGroup. The
split that contains the anchor point of the PrimitiveGroup becomes
responsible for reading it. This ensures that exactly one executor
will read each PrimitiveGroup. To implement that, each executor
starts reading from the beginning of its assigned split and skips
until it finds the first special marker that marks the beginning of
the PrimitiveGroup. If it falls within the split boundary, it reads the
entire PrimitiveGroup even if it spans to the next split. This process
is highly scalable since it does not require any communication
between the executor nodes.

3.2 Read OSM Entities

In this step, we read the three main sections of the input file that
contain nodes, ways, and relations. To do that, we first utilize our
PBF reader with Spark’s newAPIHadoopFile function to read all
entities in the input file as a Resilient Distributed Dataset (RDD) in
Spark. Then, we run three filter operations to split that RDD into
three groups for nodes, ways, and relations. Finally, we convert each
group into a DataFrame with the correct schema to be able to use
SparkSQL for the extraction process. The conversion to DataFrame
is done by creating three classes, one for each data type.

3.3 Extract Nodes and POIs

The first two datasets we extract are nodes and points-of-interest
(POIs). To extract nodes, we apply the ST_CreatePoint function on
the DataFrame for nodes to combine the two coordinates, longitude
and latitude, into a Point geometry and write it to the output. The
following SQL function illustrates this logic?.

SELECT id, ST_CreatePoint(longitude, latitude) AS geom
FROM nodes

Similarly, POIs are created by adding a filter for a set of tags that
identify popular POIs. The following code snippet shows part of
the WHERE clause that is appended to the previous SQL query.

. WHERE HasTag(tagsMap, "name,amenity,cuisine,...", "")

3.4 Extract Roads

The next dataset to extract is the roads dataset. Roads are extracted
from the DataFrames for nodes and ways. Since the ways DataFrame
contains only node IDs without their location, we need to join the
nodes and ways DataFrames to get the node location. To accomplish
that, we normalize the ways DataFrame by repeating each way
for each nodeld it contains. The SparkSQL function explodepos
accomplishes this requirement while maintaining the position of
each nodeld to allow us to construct the geometry in the right order.
The following code snippet illustrates this step.

For brevity, we only include the ID for each extracted entity in SQL queries but the
actual extractor includes all other attributes such as tagsMap and timestamp

OSMX: Spark-based Geospatial Data Extractor from OpenStreetMap

WITH explodedWays AS (
SELECT id, posexplode(nodelds) AS (pos, nodeld)
FROM ways

)

Then, we join the resulting DataFrame with nodes to bring the
location back into the dataset using the following SQL query.

SELECT array(longitude, latitude) AS node_location,
longitude, latitude, way.id, way.nodeld, pos

FROM nodes AS node LEFT OUTER JOIN explodedWays AS way

WHERE node.id = way.nodeld

After that, we bring together all the nodes for each way and their
locations into one record while maintaining their correct position.
This step uses the windowing functionality in SQL to group by
wayld and sort by pos within each group. The following SQL query
illustrates this step.

SELECT longitude, latitude, id
collect_list(nodeId) OVER w AS nodelds,
flatten(collect_list(node_location)) OVER w AS node_locations,
first(nodeId) OVER w AS first_nodeld,
last(nodeId) OVER w AS last_nodeld

FROM joinWayDf

WINDOW w AS (PARTITION BY id ORDER BY pos)

SIGSPATIAL ’22, November 1-4, 2022, Seattle, WA, USA

All Objects
id: long (nullable = true)
version: integer (nullable = false)
timestamp: long (nullable = false)
changeSetId: long (nullable = false)
uid: integer (nullable = false)
uname: string (nullable = true)

tagsMap: map (nullable = true)

t::key: string
value: string (valueContainsNull = true)
geometry: geometry (nullable = false)

Figure 1: Schema for the produced data

GROUP BY id
)
SELECT id, ST_Connect(first_nodelds, last_nodelds,
geometry) as geometry
FROM groupedRelations

Finally, we use the function ST_CreatelLinePolygon to create a
geometry for each way and filter them by tags that represent roads
as illustrated by the following SQL query.

SELECT id, ST_CreatelLinePolygon(nodelds, node_locations)

FROM ways
WHERE HasTag(tagsMap, "highway,junction,...",
"yes,street,...")

3.5 Extract Relations

The last step is to extract relations by connecting multiple ways
that can represent bigger objects, e.g., a country boundary with
more than 2,000 nodes. Similar to what we did with ways, we first
normalize the relations DataFrame by repeating the way informa-
tion for each relation. We use the explode function as illustrated in
the following SQL query.

WITH explodedRelations AS (
SELECT explode(arrays_zip(memberIds,
entityTypes, memberRoles)) AS exp, *
FROM relations

SELECT id, wayId, exp.entityTypes,
first_nodeld, last_nodeld, geometry
FROM explodedRelations RIGHT OUTER JOIN wayDf
ON exp.memberIds = wayId AND exp.entityTypes = "Way"

Notice that we only keep relation members of type “Way” since
these are the ones we are interested in connecting in this step. We
also use the right outer join so that ways that do not belong to any
relations will be in the result. They represent top-level ways that
should be written to the output as-is.

After that, we use the ST_Connect function to connect all way
geometries that belong to the same relation as illustrated by the
following SQL query.

WITH groupedRelations AS (

SELECT id, collect_list(first_nodeId) AS first_nodelds,
collect_list(last_nodeId) AS last_nodelds,
collect_list(geometry) AS geometry

FROM joinRelationWay456

WHERE id IS NOT NULL

3.6 Extract All Objects

Since an object can be represented as a node, way, or relation,
we perform a final union step that combines objects of the three
types. To avoid repetition, we only include dangled nodes, that is,
nodes that were not included in any way. Similarly, we only include
dangled ways that are not included in any relations. This union
step produces one very large dataset with all objects in the OSM
PBF file. We can also retrieve subsets of coherent objects based
on the tags including buildings, lakes, parks, cemeteries, sports,
and postal_codes. The unified schema of all produced data is given
in Figure 1. Finally, the output DataFrame can be written in any
standard format, e.g., GeoJSON.

To summarizes the overall process: First, the input PBF file is
parsed into an RDD of entities. After that, we split it into three
DataFrames: nodes, ways, and relations. Nodes and POIs are directly
exported to the output. After that, we perform a left join between
nodes and ways to bring the location information to the ways dataset.
Nodes that do not belong to any way are called dangled nodes and
are kept on the side. After that, we join the ways with the relations
to bring the geometry information into the relation DataFrame.
Similarly, dangled ways are kept on the side. Finally, we perform
a union of the three datasets, dangled nodes, dangled ways, and
relations into one dataset that becomes our final master dataset.
This final dataset can be further filtered based on the tags to produce
buildings, lakes, etc., and written to the output.

4 EXPERIMENTS

We ran the proposed extractor on an Amazon AWS cluster of
51 m5.4xlarge nodes. Each node was equipped with 16 cores, 64
GB of RAM, and 256GB SSD storage. We processed the entire
Planet.osm.pbf file in 4,412 seconds and extracted all the datasets
indicated in Table 2. This has a total cost of nearly $70 which is a
decent price to extract all this data in slightly more than an hour.
Table 1 shows the timeline of the extraction process. All timestamps

SIGSPATIAL ’22, November 1-4, 2022, Seattle, WA, USA

o
A
B ma

Q Text search 5

(b) Points of Interest (POIs)

Samriddhi Singla, Yaming Zhang, and Ahmed Eldawy

. ur ST

@ stanford-brightite

B - cem21muidings

(c) Buildings

Figure 2: Visualization of parts of the extracted datasets from UCR-Star

Table 1: Extraction timeline

Timestamp (seconds) | Event
0 | Extraction process started
603 | Extracted all nodes
707 | Extracted points of interest
2142 | Extracted roads
4194 | Extracted all objects
4264 | Extracted buildings
4294 | Extracted lakes
4331 | Extracted parks
4359 | Extracted cemetery
4386 | Extracted sports
4412 | Extracted postal codes
4412 | Extraction process finished

Table 2: Summary of extracted datasets

Name # records # points Size
Nodes 6.8 Billion 6.8 Billion 2.2TB
POIs 141 Million 141 Million 64 GB
Roads 155 Million 1.8 Billion | 120 GB
Objects 1.5 Billion 13.7 Billion 1TB
Buildings 714 Million 4.6 Billion | 413 GB
Cemetery 764 Thousand 7.5 Million | 552 MB
Lakes 26.5 Million 846 Million 38 GB
Parks 64 Million 1.3 Billion 64 GB
Postal Codes | 28 Thousands | 777 Thousands 45 MB
Sports 8.8 Million 88.8 Million | 6.3 GB

are relevant to the start time of the extractor. Notice that after ex-
tracting all objects, all the remaining datasets take very little time
because we persist the objects dataset and use it for subsequent
datasets by applying a simple filter function on the tags.

Table 2 summarizes the datasets that we extracted using the
proposed extractor and are making available as part of this paper.
These datasets are available for public download in a compressed
format®. Notice that users can easily extract other datasets using the
proposed extractor by simply modifying the set of tags that identify
their data of interest. All these datasets are available in GeoJSON
format and their schema is similar to the one shown in Figure 1.

3https://drive.google.com/drive/folders/1QmKFD56bQ9XkpSKMoDa7XnxVuoof CYLQ

Figure 2 shows parts of the visualizations of the extracted data
after being hosted on UCR-Star. Users can zoom in/out to inspect
the extracted data. They can also download the entire dataset or a
subset of their choice.

5 CONCLUSION

The paper proposes a spark-based extractor that can be used to
extract rich geospatial datasets from OpenStreetMap (OSM). The
proposed system can work directly with the compressed OSM
PBF file to extract datasets based on the user’s requirements. The
experiments show that the extractor is scalable and can extract
datasets from the OSM PBF file for the whole planet. The planet-
wide datasets extracted from OSM are hosted on UCR-Star which
allows users to visually explore and download them.

REFERENCES

[1] Louai Alarabi et al. 2014. TAREEG: A MapReduce-based system for extracting
spatial data from OpenStreetMap. In SIGSPATIAL. 83-92.

[2] Almendros-Jiménez et al. 2019. Integrating and querying OpenStreetMap and
linked geo open data. Comput. J. 62, 3 (2019), 321-345.

[3] The Big Data Lab at UCR. 2020. Beast: Big Exploratory Analytics for Spatio-
temporal data. http://bitbucket.org/bdlabucr/beast/.

[4] Séren Auer, Jens Lehmann, and Sebastian Hellmann. 2009. Linkedgeodata: Adding
a spatial dimension to the web of data. In International Semantic Web Conference.
Springer, 731-746.

[5] Ahmed Eldawy and Mohamed F. Mokbel. 2014. Pigeon: A Spatial MapReduce
Language. In IEEE 30th International Conference on Data Engineering (ICDE 2014).
Chicago, IL, 1242-1245.

[6] Ahmed Eldawy and Mohamed F. Mokbel. 2015. SpatialHadoop: A MapReduce
Framework for Spatial Data. In ICDE. IEEE Computer Society, Seoul, South Korea.

[7] GeoFabrik. 2021. GeoFabrik OpenStreetMap Extracts. https://www.geofabrik.
de/data.

[8] Saheli Ghosh, Tin Vu, Mehrad Amin Eskandari, and Ahmed Eldawy. 2019. UCR-
STAR: The UCR Spatio-Temporal Active Repository. 11, 2 (2019).

[9] Boksoon Myoung et al. 2018. Estimating live fuel moisture from MODIS satellite
data for wildfire danger assessment in Southern California USA. Remote Sensing
10, 1 (2018), 87.

] Photon 2021. Photon by Komoot. https://github.com/komoot/photon.

] AJ Prata and IF Grant. 2001. Retrieval of microphysical and morphological
properties of volcanic ash plumes from satellite data: Application to Mt Ruapehu,
New Zealand. Quarterly Journal of the Royal Meteorological Society 127, 576
(2001), 2153-2179.

Mehmet Sahin, Yilmaz Kaya, Murat Uyar, and Sel¢uk Yildirim. 2014. Application

of extreme learning machine for estimating solar radiation from satellite data.

International Journal of Energy Research 38, 2 (2014), 205-212.

[13] P Shanmugapriya, S Rathika, T Ramesh, and P Janaki. 2019. Applications of

remote sensing in agriculture-A Review. International Journal of Current Micro-

biology and Applied Sciences 8, 1 (2019), 2270-2283.

Andrew A Tronin. 2010. Satellite remote sensing in seismology. A review. Remote

Sensing 2, 1 (2010), 124-150.

[12

(14

https://drive.google.com/drive/folders/1QmKFD56bQ9XkpSKMoDa7XnxVuoofCYLQ
http://bitbucket.org/bdlabucr/beast/
https://www.geofabrik.de/data
https://www.geofabrik.de/data
https://github.com/komoot/photon

	Abstract
	1 Introduction
	2 Related Work
	3 Geometry Data Extraction
	3.1 Spark PBF Reader
	3.2 Read OSM Entities
	3.3 Extract Nodes and POIs
	3.4 Extract Roads
	3.5 Extract Relations
	3.6 Extract All Objects

	4 Experiments
	5 Conclusion
	References

