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Abstract—Particle beam microscopy (PBM) performs
nanoscale imaging by pixelwise capture of scalar values
representing noisy measurements of the response from
secondary electrons (SEs) integrated over a dwell time.
Extended to metrology, goals include estimating SE yield at
each pixel and detecting differences in SE yield across pixels;
obstacles include shot noise in the particle source as well
as lack of knowledge of and variability in the instrument
response to single SEs. A recently introduced time-resolved
measurement paradigm promises mitigation of source shot
noise, but its analysis and development have been largely limited
to estimation problems under an idealization in which SE
bursts are directly and perfectly counted. Here, analyses are
extended to error exponents in feature detection problems and
to degraded measurements that are representative of actual
instrument behavior for estimation problems. For estimation
from idealized SE counts, insights on existing estimators and
a superior estimator are also provided. For estimation in a
realistic PBM imaging scenario, extensions to the idealized
model are introduced, methods for model parameter extraction
are discussed, and large improvements from time-resolved data
are presented.

Index Terms—binary hypothesis testing, electron microscopy,
Fisher information, helium ion microscopy, Kullback–Leibler
divergence, Neyman Type A distribution, Poisson processes,
truncated Poisson distribution, zero-inflated Poisson distribution.

I. INTRODUCTION

Particle beam microscopy (PBM) techniques such as scan-
ning electron microscopy (SEM) [1], [2] and helium ion
microscopy (HIM) [3], [4] are widely used to image and
characterize samples at the nanoscale. Images are formed one
pixel at a time by raster scanning a focused beam of high-
energy charged particles (electrons in SEM and helium ions
in HIM) and detecting secondary electrons (SEs) emitted from
the sample. The pixel value is a noisy measurement of the
intensity of an SE signal integrated over some dwell time.
The scale is often arbitrary; the micrograph is then an image
showing spatial variations without representing a quantified
physical property. Calibration of the beam current (expressed
as the mean number of incident particles per unit time) and the
mean instrument response per SE enables the more ambitious
goal of metrology, with pixel values representing estimates of
SE yield per incident particle.

Randomness of the incidence of primary particles—source
shot noise—is a key characteristic of PBM that contributes to
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its noise and hence to the amount of averaging that is needed
to produce high-quality images. The achievable image quality
in PBM is often limited by the imaging dose (i.e., number
of incident particles). This limitation is particularly impor-
tant for radiation-sensitive materials, such as proteins and
biomolecules, which are increasingly being imaged by various
PBM techniques [5], [6]. Although there has been previous
work on the trade-off between dose and image quality [7]–[9],
as well as attempts to improve PBM image quality through the
use of denoising and deconvolution techniques [10]–[14], there
is a lack of fundamental work around the relationship between
information about the sample SE yield and the imaging dose
used, as well as a lack of statistically-motivated SE yield
estimation techniques based on the signals collected on PBMs.

In this paper, we explore the fundamental limits to particle
beam metrology and describe a novel imaging scheme where
the integration over a dwell time is replaced with time-resolved
(TR) measurement using analog outcoupling of the SE signal.
For both detection and estimation of SE yield, we find that TR
measurement can lead to large improvements. Starting with
an idealized model in which SEs are counted perfectly, we
show that the improvements are characterized by differences in
Kullback–Leibler divergence and Fisher information between
Gaussian and zero-inflated Poisson distributions. We extend
our modeling and analysis to include three causes for inaccu-
racy in SE counts: saturation in SE counting, additive noise
from the detection signal chain, and overlap of responses from
temporally adjacent incident particles.

The concept of benefiting from time resolution in PBM
was introduced in [15]. Continuous-time modeling of PBM
was introduced in [16], along with theoretical analyses and
Monte Carlo simulations of several estimators for SE yield.
Robustness to unknown beam current was shown in [17],
[18], and joint estimation of beam current and SE yield was
studied in [19], [20]. A recent manuscript develops denoising
procedures to apply with time-resolved data based on plug-
and-play methods [21]. All these previous works concentrate
on a model in which SEs are counted perfectly. Thus, they
can give the impression that the benefits of TR measurement
are contingent on this idealization. Here, by including various
degradations to SE observation, we highlight that the benefits
from TR measurement persist with non-ideal SE detection.

A. Contributions

The main contributions of this paper include:
• Detection of SE yield. We provide the first results on

hypothesis testing between two SE yield values from
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SE-count measurements. The unbounded improvements
in error exponents due to TR measurement are analyzed
using Kullback–Leibler divergence.

• Improved estimation of SE yield. We introduce a new
estimator for SE yield from SE-count measurements that
improves upon the estimators analyzed and simulated
in [16]. We also provide new insights on some estimators
and bounds in [16].

• Estimation from binary SE measurements. We show that
SE yield can be estimated from measurements that satu-
rated at 1 SE, and we characterize the performance limits
under this limited form of measurement.

• Estimation from degraded SE measurements. We analyze
the increases of estimation error lower bounds that result
from additive noise in SE measurements. We also provide
a procedure to fit model parameters to experimental data.

• Impact of nonzero pulse width. We introduce a compen-
sation for the possible undercounting of detection events
due to overlapping of pulses.

B. Outline

Section II introduces an abstract model for PBM and gathers
several preliminary computations pertaining to the Neyman
Type A observations generated with perfect counting of SEs.
Section III is dedicated to feature detection abstracted as a
binary hypothesis test. We compute error exponents for con-
ventional and time-resolved measurements, and we find that
the increase of error exponents (decrease of error probabilities)
with TR measurements is by a large (potentially unbounded)
factor. Section IV turns to estimation problems, still assuming
perfect counting of SEs. We provide insights into existing
estimators and introduce a new estimator that is based on
the conditional expectation of an oracle estimator. Section V
introduces an estimator for SE yield that does not require
SE counts; instead, it uses only the number of detection
events, as one would obtain if the SE detector saturates at a
single electron. Section VI develops a richer model for noisy
SE detection and several estimators to apply in this setting.
We show how the Fisher information of the measurements
decays with increasing noise. We develop methods to fit model
parameters and show results with data collected from a real
instrument. Estimation simulations show large improvements
from TR measurement. Section VII concludes.

II. ABSTRACT MODEL WITH IDEAL SE COUNTING

After briefly describing the operation of a typical instrument
in Section II-A, we review an abstraction that assumes ideal
counting of SEs [16] in Section II-B. This idealization is
used for detection problems in Section III and for estimation
problems in Section IV.

The Neyman Type A distribution of an idealized conven-
tional measurement of SEs, developed in Section II-D, can be
used for various numerical evaluations but is not conducive
to closed-form analytical results. We thus introduce high-
and low-dose approximations and a proxy inspired by the
concept of a deterministic incident particle beam. The ap-
proximations and their asymptotes offer insightful intuitions in

understanding the behavior of the distribution of the idealized
conventional measurement. To later aid in contrasting with
TR measurement, we also provide computations of Fisher
information (Section II-E) and Kullback–Leibler divergence
(Section II-F) for the conventional measurement.

While the incident particles may be electrons or ions, for
simplicity we refer to them as ions.

A. Operation of a Typical Instrument

In a typical particle-beam imaging setup, shown schemat-
ically in Figure 1(a), the SEs emitted from each pixel of
the sample are detected by an Everhart-Thornley (ET) de-
tector [22], which consists of a scintillator followed by a
photomultiplier tube (PMT). The detection of SEs from a
single incident ion typically occurs within a few femtosec-
onds [23], whereas the mean interarrival time for ions is on
the order of 100 ns. After emission from the sample pixel, the
SEs are typically accelerated to 10 keV and made incident
on a scintillator. The scintillator generates a random number
of photons, with the mean proportional to the number of
incident SEs. These photons are then directed towards the
PMT though a light pipe, where they generate a voltage pulse
with a mean height proportional to their number. Therefore,
the final output signal from the ET detector consists of a series
of voltage pulses, as depicted by the experimental data shown
in Figure 1(e).

Although the ideal SE image would be a pixel-wise map of
the sample SE yield, conventional PBM does not attempt to
create such an image due to two factors. First, the gains and
loss factors involved in the SE detection chain are usually
not available to the microscopist or the imaging software.
Second, there can be a large variance in the voltage signal
generated by the one SE. Due to the lack of knowledge of the
mean instrument response per SE, the count of SEs per pixel
is conventionally not evaluated during imaging, preventing
estimation of the SE yield. Instead, the voltage signal is
sampled at a fixed period (typically 100 ns) and summed
for each pixel dwell time to generate a scalar 8-bit pixel
brightness.

B. Stochastic Process Abstraction

Our measurement model and estimation techniques are
separable across the pixels, so we omit any pixel indexing.
Denote the pixel dwell time by t. For each pixel, the incident
ion arrivals are modeled as a Poisson process with known rate
Λ per unit time, as illustrated in Figure 1(b) for t = 10 µs.
Incident ion i interacts with the sample, causing Xi number of
SEs to be detected, as illustrated in Figure 1(c). Each Xi can
be described as a Poisson random variable with mean η [24].
This η is called the SE yield and is the parameter we wish to
measure for the pixel. Note that detection efficiency [25], [26]
is incorporated within the definition of η.

The model can be described as a marked Poisson process
{(T1, X1), (T2, X2), . . .}, where (T1, T2, . . .) is the arrival
time sequence of the ions. The number of incident ions M is
the largest i such that Ti ≤ t (with M = 0 when T1 > t). This
M is a Poisson random variable with mean λ = Λt, which we
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Fig. 1: A possible realization of the random processes in-
volved in a generative model of SE imaging in PBM.
(a) Schematic for SE imaging in PBM. (b) Generation
of M incident ions. (c) The underlying marked Pois-
son process {(T1, X1), (T2, X2), . . .} with ions incident at
times T1, T2, . . . generating detected SE counts X1, X2, . . ..
(d) The marked Poisson process {(T̃1, X̃1), (T̃2, X̃2), . . .}
produced by discarding the ions for which no SEs are detected.
(e) SE detector voltage response. Panel is a real snapshot of
voltage output from an HIM.

call the dose.1 Ions are observed only indirectly through the
detection of SEs. There is no observed event when Xi = 0.
Hence what is observable is a marked thinned Poisson process
{(T̃1, X̃1), (T̃2, X̃2), . . .}, where T̃i is the arrival time of the
ith ion that produces a positive number of detected SEs and
X̃i is the corresponding number of detected SEs, as illustrated
in Figure 1(d). Define M̃ to be the largest i such that T̃i ≤ t
(with M̃ = 0 when T̃1 > t).

C. Time-Resolved Measurement Model

Observation of{
M̃, T̃ , X̃

}
=
{
M̃, (T̃1, T̃2, ..., T̃M̃

), (X̃1, X̃2, ..., X̃M̃
)
}
(1)

1More commonly, dose is the mean number of incident particles per unit
area; here, we are not considering absolute spatial scale.

was introduced in [16] as continuous-time time-resolved mea-
surement, contrasting with a discrete-time model introduced
earlier in [15]. Here we will consider only the continuous-time
setting, which facilitates simpler and more easily interpretable
results.

Since the thinning is independent of the ion incidence
process and P(Xi = 0) = e−η ,

M̃ ∼ Poisson(λ(1− e−η)). (2)

Each X̃i has the zero-truncated Poisson distribution with
parameter η:

PX̃i
(j; η) =

e−η

1− e−η
· η

j

j!
, j = 1, 2, . . . . (3)

The mean of this distribution is

E
[
X̃i

]
=

η

1− e−η
. (4)

Given M̃ , (X̃1, . . . , X̃M̃
) are independent and identically

distributed. Conditioned on M̃ = m̃ > 0, the normalized
time T̃i/t has the Beta(i, m̃+ 1− i) distribution (with no
dependence on η).

D. Conventional Measurement Distribution
As discussed in Section II-A, a typical instrument gener-

ates a single scalar value for each raster scan location, and
this value has many sources of noise. An idealized scalar
measurement is for the instrument to give the cumulative SE
counts within dwell time t (i.e., the measurement results in a
scalar value for every pixel, as opposed to vector-valued TR
measurement):

Y =

M∑
i=i

Xi. (5)

This Y is a Neyman Type A random variable with parameters
λ and η, which we will denote Neyman(λ, η). Its probability
mass function (PMF) is

PY (y ; η, λ) =
e−ληy

y!

∞∑
m=0

(λe−η)mmy

m!
, y = 0, 1, . . . ,

(6)
its mean is

E[Y ] = λη, (7)

and its variance is

var(Y ) = λη(η + 1). (8)

Like for a Poisson distribution, the variance increases with
the mean; unlike a Poisson distribution, the variance exceeds
the mean, and this is increasingly true as η increases. This
excess variance is consistent with experimental observations,
and compound Poisson distributions have been previously used
to model the distribution of SEs in PBM [27]–[30].

The series appearing within the PMF (6) makes the Neyman
Type A distribution difficult to work with both analytically and
computationally. While we will sometimes use (6) directly, it
simplifies some computations and makes certain comparisons
more intuitive to use approximations that hold for high or low
λ. A purely hypothetical situation of a deterministic incident
beam also provides valuable context.
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1) Deterministic beam (Poisson approximation): If λ is a
positive integer, we may imagine a situation in which exactly
λ ions are incident. Since the sum of independent Poisson
random variables is a Poisson random variable, we obtain a
simple model of

Ydet ∼ Poisson(λη). (9)

Notice by comparison to (8) that Y has higher variance than
Ydet by a factor of η+1. This η+1 factor is attributed to the
randomness of the incident ion counts, i.e., source shot noise.

2) High λ (Gaussian approximation): As λ → ∞, a
Gaussian approximation with matching moments in (7) and
(8) holds in the sense of pointwise convergence of moment
generating functions [31, §2a]:

Yhigh ∼ N (λη, λη(η + 1)). (10)

One may use (10) to form an approximate PMF by integrating
over intervals {[y− 1

2 , y+
1
2 ]}

∞
y=0. For λ > 10 and η > 1, the

squared ℓ2 error of this approximation is less than 0.002 [31,
Fig. 1]. Dose exceeding 10 ions per pixel is typical for useful
micrograph quality.

3) Low λ (zero-inflated Poisson approximation): As λ → 0,
the PMF (6) converges pointwise to a Poisson distribution with
extra mass at zero [31, §2b]:

PYlow
(y ; η, λ) =

{
e−λ + (1− e−λ)e−η, y = 0;
(1− e−λ)e−ηηy/y!, y = 1, 2, . . . .

(11)
We will denote this ZIPoisson(λ, η). For λ < 0.3 and
η < 10, the squared ℓ2 error of this approximation is less
than 0.001 [31, Fig. 1]. Our use of this approximation is to
understand continuous-time behavior, where λ is effectively
infinitesimal.

E. Fisher Information
Fisher information (FI) is a basic tool for lower bounding

the mean-squared errors of estimators. Here we gather com-
putations of FI that will be used to contextualize the FI of TR
measurements.

1) Deterministic beam (Poisson approximation): The
Fisher information about mean ν in a Poisson(ν) observation
is

I(ν) = 1

ν
.

Thus, we have IYdet
(λη) = 1/(λη). With λ known, this

translates by simple rescaling to
1

λ
IYdet

(η;λ) =
1

η
(12)

in a normalized form we will use below.
2) High λ (Gaussian approximation): The Fisher informa-

tion about mean µ in a Gaussian N (µ, σ2) observation is

I(µ) = 1

σ2
.

Using the Gaussian approximation (10) to the Neyman(λ, η)
distribution suggests heuristically that the Fisher information
about λη in Yhigh is

IYhigh
(λη) =

1

λη(η + 1)
. (13)

With λ known, this translates by simple rescaling to

1

λ
IYhigh

(η;λ) =
1

η(η + 1)
=

(
1

η
− 1

η + 1

)
. (14)

Indeed a detailed argument for

lim
λ→∞

1

λ
IY (η;λ) =

1

η
− 1

η + 1
(15)

is given in [16, App. B]. Comparing to (12), the Fisher
information is reduced by a factor of η + 1.

3) Low λ (zero-inflated Poisson approximation): From the
PMF (11),

log PYlow
(y ; η, λ)

=

{
log(e−λ + (1− e−λ)e−η), y = 0;

log(1− e−λ)− η + y log η − log(y!), y = 1, 2, . . . .

Differentiating gives

∂ log PYlow
(y ; η, λ)

∂η

=


(1− e−λ)e−η

e−λ + (1− e−λ)e−η
, y = 0;

−1 + y/η, y = 1, 2, . . . .
(16)

Now computing the expected value of the square of this
quantity under the PMF (11) gives

IYlow
(η;λ) =

(1− e−λ)2e−2η

e−λ + (1− e−λ)e−η
+(1−e−λ)

(
1

η
− e−η

)
.

(17)
In the limit of low λ, the first term approaches zero and the

first factor of the second term approaches λ, so

lim
λ→0

1

λ
IYlow

(η;λ) =
1

η
− e−η. (18)

This matches a more tedious derivation of

lim
λ→0

1

λ
IY (η;λ) =

1

η
− e−η (19)

in [16, App. B].
The low-λ limit of Fisher information in (18) exceeds the

high-λ limit in (15) by a factor of (η + 1)(1 − ηe−η). This
factor varies from 1 when η = 0 to ≈ η + 1 when η is
high. This gain in Fisher information can be attributed to
increasing certainty in the number of incident ions at low λ
and consequent reduction in source shot noise [15].

F. Kullback–Leibler Divergence

Kullback-Leibler divergence (KLD) is a basic tool for
quantifying distances between distributions and in particular
determining error exponents for hypothesis testing. Here we
gather computations of KLD applicable to distinguishing
Neyman(λ, η0) and Neyman(λ, η1) distributions. This will
be used to contextualize the KLD of TR measurements.

For distributions p and q on the same alphabet, the
Kullback–Leibler divergence is

DKL(p ∥ q) = EP [ log(p(Y )/q(Y )) ] , (20)

which is a shorthand for the expected value of the random
variable log(p(Y )/q(Y )) when Y has the p distribution.
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1) Deterministic beam (Poisson approximation): For
generic Poisson distributions, the KLD is given by

DKL(Poisson(ν0) ∥Poisson(ν1)) = ν1−ν0+ν0 log
ν0
ν1

. (21)

Thus, we have

1

λ
DKL(Poisson(λη0) ∥Poisson(λη1))

=
1

λ

[
λη1 − λη0 + λη0 log

λη0
λη1

]
= η1 − η0 + η0 log

η0
η1

. (22)

2) High λ (Gaussian approximation): For generic univari-
ate Gaussian distributions, the KLD is given by

DKL(N (µ0, σ
2
0) ∥N (µ1, σ

2
1))

=
1

2
log

σ2
1

σ2
0

+
σ2
0 + (µ0 − µ1)

2

2σ2
1

− 1

2
. (23)

Thus, we have

DKL(N (λη0, λη0(η0 + 1)) ∥N (λη1, λη1(η1 + 1)))

=
1

2
log

λη1(η1 + 1)

λη0(η0 + 1)
+

λη0(η0 + 1) + (λη0 − λη1)
2

2λη1(η1 + 1)
− 1

2

=
1

2
log

η1(η1 + 1)

η0(η0 + 1)
+

η0(η0 + 1) + λ(η0 − η1)
2

2η1(η1 + 1)
− 1

2
.

(24)

Furthermore,

lim
λ→∞

DKL(N (λη0, λη0(η0 + 1)) ∥N (λη1, λη1(η1 + 1)))

λ

=
(η0 − η1)

2

2η1(η1 + 1)
. (25)

3) Low λ (zero-inflated Poisson approximation): For zero-
inflated Poisson distributions following (11), we can compute
the KLD DKL(ZIPoisson(λ, η0) ∥ZIPoisson(λ, η1)) directly.
For y = 0 we have

log
p(0)

q(0)
= log

e−λ + (1− e−λ)e−η0

e−λ + (1− e−λ)e−η1
; (26)

for y = 1, 2, . . ., we have

p(y)

q(y)
=

(1− e−λ)e−η0ηy0/y!

(1− e−λ)e−η1ηy1/y!
= e−(η0−η1)(η0/η1)

y,

so

log
p(y)

q(y)
= η1 − η0 + y log

η0
η1

. (27)

For the KLD, we would like to average (26) and (27) under
the p distribution:

DKL(ZIPoisson(λ, η0) ∥ZIPoisson(λ, η1))

= g(η0) log
g(η0)

g(η1)

+ (1− g(η0))(η1 − η0) + (1− e−λ)η0 log
η0
η1

, (28a)

where
g(s) = e−λ + (1− e−λ)e−s. (28b)

Furthermore,

lim
λ→0

DKL(ZIPoisson(λ, η0) ∥ZIPoisson(λ, η1))
λ

= e−η0 − e−η1 + (1− e−η0)(η1 − η0) + η0 log
η0
η1

. (29)

Comparing (22), (25), and (29) is more subtle than the
analogous comparison of FI expressions. We defer this to the
following section in the context of specific numerical examples
of error exponents.

III. FEATURE DETECTION WITH SE COUNTING

A common goal in PBM is to decide on the presence or
absence of a feature that is revealed by deviation of SE yield
η from the value of surrounding pixels. For instance, detecting
feature positions is a crucial step in improving the accuracy of
line-edge roughness measurement [32], which can be helpful
in assessing semiconductor manufacturing accuracy. Here we
consider feature detection when SE count data is available as
described in Section II.

A. A Binary Hypothesis Test

To illustrate the fundamental advantage of TR measure-
ments for feature detection, we consider a binary hypothesis
testing problem between SE yield values of η0 (“no alarm”)
and η1 (“alarm”), with dose λ known. With the (idealized)
conventional measurement Y , the decision must be made
based on whether the observation more plausibly came from
the Neyman(λ, η0) or Neyman(λ, η1) distribution. Observa-
tion of {M̃, (T̃1, X̃1), (T̃2, X̃2), . . . , (T̃M̃

, X̃
M̃
)} is at least

as informative, and we wish to characterize how much the
decision making accuracy is improved.

In this section, we imagine that a PBM experiment with
dose λ is repeated many times. We study the performance
through the rate of exponential decay of the missed detection
rate for a sequence of Neyman–Pearson hypothesis tests that
minimize the missed detection rate while satisfying a fixed
false alarm rate criterion. For n repetitions, the probability of
missed detection PMD(n) satisfies

lim
n→∞

− 1

n
log PMD(n) = DKL(p0 ∥ p1), (30)

where p0 and p1 represent the relevant observation distribu-
tions [33, §8.3.2]. Thus, we concentrate on KLD computations
and comparisons.

B. KLD Between Time-Resolved Measurement Distributions

Let p and q denote the distributions under SE yields η0
and η1, with the random variables allowed to be implicit. In
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anticipation of using the law of iterated expectation, we make
the following simplification:

EP

[
log(p(M̃, T̃ , X̃)/q(M̃, T̃ , X̃))

∣∣ M̃ = m̃
]

(a)
= EP

[
log(p(M̃, X̃)/q(M̃, X̃))

∣∣ M̃ = m̃
]

(b)
= EP

[
log

p(M̃)

q(M̃)

∣∣∣ M̃ = m̃

]
+

m̃∑
i=1

EP

[
log

p(X̃i)

q(X̃i)

]
(c)
= log

p(m̃)

q(m̃)
+ m̃EP

[
log

p(X̃i)

q(X̃i)

]
, (31)

where (a) follows from the conditional distribution of each
T̃i given M̃ being identical under p and q; (b) from the
conditional independence of {X̃1, . . . , X̃M̃

} given M̃ = m̃;
and (c) from the X̃i distributions being identical. Now by
taking the expected value of (31) and using the law of iterated
expectation, we obtain

DKL(p(M̃, T̃ , X̃) ∥ q(M̃, T̃ , X̃))

= EP

[
log(p(M̃, T̃ , X̃)/q(M̃, T̃ , X̃))

]
= DKL(p(M̃) ∥ q(M̃)) + E[ M̃ ]DKL(p(X̃i) ∥ q(X̃i)).

(32)

Recall the M̃ distribution is given in (2). Thus, we can apply
(21) with νi = λ(1− e−ηi) to obtain

DKL(p(M̃) ∥ q(M̃))

= λ(e−η0 − e−η1) + λ(1− e−η0) log
1− e−η0

1− e−η1
. (33)

Recall also the X̃i distribution is given in (3). Thus, we have
the log PMF ratio

log
p(x)

q(x)
= log

e−η0ηx0/[(1− e−η0)x!]

e−η1ηx1/[(1− e−η1)x!]

= η1 − η0 + log
1− e−η1

1− e−η0
+ x log

(
η0
η1

)
. (34)

Taking the expectation under distribution p and using (4) gives

DKL(p(X̃i) ∥ q(X̃i))

= η1 − η0 + log
1− e−η1

1− e−η0
+

η0
1− e−η0

log

(
η0
η1

)
. (35)

Finally, substituting EP [ M̃ ] = λ(1 − e−η0), (33), and (35)
into (32) gives

DKL(p(M̃, T̃ , X̃) ∥ q(M̃, T̃ , X̃))

= λ(e−η0 − e−η1) + λ(1− e−η0)(η1 − η0)

+ λη0 log(η0/η1). (36)

Notice that the KLD (36) matches the asymptote (29) of
the low-λ approximation to Y . This is analogous to a previous
known result for FI about η normalized by λ [16, Sect. III-
V]: the normalized FI of a continuous-time TR measurement
matches the low-λ asymptote for a conventional measurement.
The KLD and FI results have an intuitive rationale. When
the dose λ is very small, the probability of more than one
incident ion is negligible, and with zero or one incident ion,

the conventional and TR measurements are identical. A single
low-λ conventional measurement is not informative enough
for useful detection or estimation. The analyses of KLD and
FI indicate that TR measurements achieve the best possible
informativeness per incident particle, but uniformly over λ.

C. Comparisons of Error Exponents

The Neyman Type A PMF (6) is not amenable to mean-
ingful expressions for KLD. If series truncation is handled
with care and overflow and underflow are avoided, one can
numerically evaluate DKL(Neyman(λ, η0) ∥Neyman(λ, η1)).

Figure 2 provides a few examples. In black is the nor-
malized KLD DKL(Neyman(λ, η0) ∥Neyman(λ, η1))/λ. The
normalized KLD is also shown for the deterministic beam
(Poisson approximation) (22); the high-λ (Gaussian approx-
imation) (24) and its asymptote (25); and the low-λ (zero-
inflated Poisson approximation) (28) and its asymptote (29).
The normalized KLD with TR measurement equals the low-λ
asymptote.

The most important observation is that the KLD with
TR measurement is always greater than with conventional
measurement. This translates to a larger error exponent and
hence a lower missed detection rate when false alarm rate is
held constant.

The performance gap can be arbitrarily large. Figure 3
compares error exponents over ranges of η1 values for η0 = 2
and η0 = 4. The gap is increasing with |η1 − η0|. This can
also be predicted by comparing (36) with (25).

Having established that the error exponent (36) (matching
(29)) is achievable, it is interesting to make additional compar-
isons. By comparing (22) and (36), we see that TR measure-
ment approaches the performance with a deterministic beam
when η0 and η1 both grow without bound. In Figures 2 and 3,
the gap is smaller when η0 and η1 are large. An interpretation
is that when the SE yield is large, CT measurement allows
almost perfect knowledge of the number of incident ions M ;
evidently, the fact that M is nevertheless random has no impact
on the decision between η0 and η1.

IV. SE YIELD ESTIMATION WITH SE COUNTING

In this section, we consider the estimation of SE yield η
under the idealized model of PBM in which SE counts are
available as described in Section II. This was also a central
problem of [16]. Here, we provide a new interpretation of a
decomposition of the Fisher information, which we will relate
to estimation with degraded observations in Section V. We also
introduce a new estimator and provide insight on the estimators
analyzed in [16].

A. Fisher Information in Time-Resolved Measurements

The Fisher information about η in the time resolved mea-
surement (1) with λ as a known parameter was derived in [16].
Normalized by λ, it is

1

λ
I
M̃,T̃ ,X̃

(η;λ) =
1

η
− e−η, (37)
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(a) η0 = 2, η1 = 4

(b) η0 = 4, η1 = 4.2

Fig. 2: Computations of normalized KL divergence
DKL(Neyman(λ, η0) ∥Neyman(λ, η1))/λ and
approximations and asymptotes derived herein. Magenta
(dashed): deterministic beam (22). Red: high-λ approximation
(24) and its asymptote (25). Blue: low-λ approximation (28)
and its asymptote (29). The normalized KL divergence with
TR measurement matches the low-λ asymptote for all values
of λ.

which is the same as the low-λ limit of the Fisher information
in (18), showing that the time-resolved measurement achieves
the gain in Fisher information at low λ.

We can gain further insight into the Fisher information by
considering the contributions to it. As was in intermediate step
in deriving (37) in [16],

I
M̃,T̃ ,X̃

(η;λ) = I
M̃
(η;λ) + I

X̃|M̃ (η;λ). (38)

The first term is the information in the number of detection
events M̃ , and the second term is the information in the
collection of SE counts X̃ . Normalized by λ, the component
Fisher informations are given by

1

λ
I
M̃
(η;λ) =

e−η

eη − 1
(39)

(a) η0 = 2, λ = 20

(b) η0 = 4, λ = 20

Fig. 3: Comparison of error exponents for hypothesis test
between η0 and η1 where η0 is fixed and η1 is var-
ied. With conventional measurement, the error exponent is
DKL(Neyman(λ, η0) ∥Neyman(λ, η1)). With time-resolved
measurement, the error exponent (36) is significantly larger
(superior) and close to the error exponent (22) one would
obtained with a deterministic source beam.

and
1

λ
I
X̃|M̃ (η;λ) =

η + 1

η
− 1

1− e−η
. (40)

Figure 4 compares these two contributions. We see that at low
values of η, I

M̃
dominates I

X̃|M̃ , and vice-versa at higher
values of η. At low η the probability of there being more
than 1 SE in a single detection event is low, which results in
most X̃i’s being 1. Therefore, most of the information about
η is carried by M̃ . Conversely, at higher η, M̃ ≈ M since
almost all incident particles lead to at least one detected SE.
Therefore, information about η is carried almost entirely by
X̃ .

The observation that information about η is available in
just the number of detection events means that we can hope
to estimate η even when the measurement is saturated, i.e.,
no distinction is made between different numbers of SEs per
detection. This ability to estimate η without reference to the
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Fig. 4: Fisher information in M̃ and in X̃|M̃ . The Fisher
information in M̃ dominates that in X̃|M̃ at low η, and vice-
versa at high η.

number of SEs in each event becomes important when the
number of SEs is uncertain. In Section V, we will introduce an
M̃ -based estimator for η, and in Section VI, we will use it to
estimate model parameters in a realistic PBM scenario, where
noise from the SE detection chain prevents a clear distinction
between the signal produced by different numbers of SEs.

B. SE Yield Estimation

Prior work [16] introduces the following estimators for η
that can be computed from idealized TR observations:

• Conventional estimator: The conventional measure-
ment (5), scaled by the dose λ:

η̂conv =
Y

λ
. (41)

• Oracle estimator: This estimator uses the count of inci-
dent ions M to improve upon η̂conv:

η̂oracle =
Y

M
. (42)

Although this estimator is clearly the best possible es-
timate of η, it cannot be implemented in practice since
M is unobservable. However, η̂oracle gives useful lower
bounds on the performance of TR estimators.

• Quotient mode (QM) estimator:

η̂QM(M̃, Y ) =

{
0, M̃ = 0;

Y/M̃, M̃ > 0.
(43)

• Lambert quotient mode (LQM) estimator: The unique root
of

η̂ =
Y

(1− e−η̂)−1M̃
, (44a)

which is

η̂LQM = W (−η̂QMe−η̂QM) + η̂QM, (44b)

where W (·) is the Lambert W function [34].

• Maximum likelihood (ML) estimator: The unique root of

η̂ML =
Y

M̃ + λe−η̂ML

. (45)

In [16], the superior performance of the TR estimators
compared to the conventional estimator was demonstrated.
Before introducing a new estimator, we reinterpret these
estimators, which provides some new insight into their relative
performances.

1) LQM estimator as a mismatched ML estimate: In [16],
the LQM estimator has a heuristic justification detailed below
in Section IV-B2. We show in this subsection that it also arises
as an ML-like estimate of η using a likelihood expression that
omits the distribution of M̃ .

Suppose that M̃ = m̃ and X̃ = (x̃1, x̃2, . . . , x̃m̃) are
observed. Using the distribution of X̃i from (3), the conditional
likelihood of the observation given M̃ = m̃ is

m̃∏
i=1

PX̃i
(x̃i ; η) =

(
e−η

1− e−η

)m̃
ηx̃1+x̃2+···+x̃m̃

x̃1! x̃2! · · · jm̃!
. (46)

By dropping factors that do not depend on η, the ML-like
estimate based on (46) is

argmax
η

(
e−η

1− e−η

)m̃

ηy, (47)

where y = x̃1 + x̃2 + · · · + x̃m̃. The unique maximizer
satisfies

η =
Y

M̃(1− e−η)−1
, (48)

which is the LQM estimator.
Note that (46) is not the likelihood of the observation (m̃, x̃)

because it omits the factor P
M̃
(m̃ ; η). Viewing the LQM

estimator as one that ignores the information about η present
in M̃ is consistent with its generally worse performance than
the ML estimator. It is also consistent with relatively poor
performance for low η, since Figure 4 shows that M̃ contains
much more information than X̃ for low η.

2) Estimation of M : Suppose that the number of inci-
dent ions is some known positive number m. Then Y ∼
Poisson(mη), and η̂ = Y/m is plainly the good estimator.
It is unbiased, efficient, and the ML estimate. The number of
incident ions M is not directly observed, and any information
about M is contained in M̃ ; conditioned on M̃ , the distribu-
tions of T̃ and X̃ are unrelated to M .

In [16], the QM estimator is introduced based on plugging
in M̃ for M , and the LQM estimator is introduced based on
(1 − e−η̂)−1M̃ being an ad hoc improved estimate of M .
Specifically, since M̃ ∼ binomial(M, 1− e−η), it follows that
E[ M̃ |M ] = (1− e−η)M . However, this does not imply that
E[M | M̃ ] = (1− e−η)−1M̃ .

In fact, there is a simple expression for E[M | M̃ ]. Using
that the conditional distribution of M̃ given M is binomial
and the distribution of M is Poisson(λ), the conditional
distribution of M given M̃ can be determined with Bayes’s
rule to be

P
M |M̃ (m | m̃ ; η, λ) =

exp(−λe−η)(λe−η)m−m̃

(m− m̃)!
, (49)
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m = m̃, m̃ + 1, . . .. This is a Poisson(λe−η) distribution
shifted by m̃, so

E[M | M̃ ] = M̃ + λe−η. (50)

Using this as a proxy for M gives the ML estimator (45),
which in [16] is derived from maximization of the likelihood.
Putting the estimators (43)–(45) in a single family with differ-
ent proxies for M explains the generally (but not uniformly)
best performance of η̂ML and worst performance of η̂QM.

3) Conditional expectation estimator for η: We can also
use the conditional distribution of M given M̃ to develop a
new estimator for η. We have asserted that the oracle estimator
Y/M is a good estimate of η. Upon observing Y and M̃ , we
can compute

η̂CE(y, m̃) = E
[
Y/M

∣∣Y = y, M̃ = m̃
]

= y E
[

1

M

∣∣∣ M̃ = m̃

]
. (51)

The conditional expectation is under the conditional PMF
(49), yielding

η̂CE(y, m̃) = y exp(−λe−η̂CE)
∞∑
ℓ=0

1

ℓ+ m̃

(λe−η̂CE)ℓ

ℓ!
, (52)

which can be solved through a suitable root-finding algorithm.
Figure 5(a) compares the bias of η̂CE with that of η̂ML for

λ = 20. We see that the magnitude of the bias of η̂CE is lower
than that of η̂ML over a wide range of η. The variances of the
two estimators are almost identical so they are not plotted. In
Figure 5(b), we plot the ratio of the root mean-squared error
(RMSE) of η̂ML to that of η̂CE.

V. SE YIELD ESTIMATION FROM SATURATED SE COUNTS

As discussed in Section IV-A, M̃ contains information about
η, and we can form an estimator for η from just M̃ . Such an
estimator would treat detections as binary or saturated, since
it would only consider their presence (X̃i ≥ 1) or absence
without reference to the exact number of SEs X̃i in a detection
event.

Recall from (2) that the number of incident particles
that result in at least one detected SE is given by M̃ ∼
Poisson(λ(1− e−η)). Since λ is known, an estimator for η
would be equivalent to estimating the mean of this Poisson
distribution, the ML estimate of which is the observation m̃.
When M̃ < λ, we get

η̂ = − log

(
1− M̃

λ

)

as the ML estimate of η from M̃ ; when M̃ ≥ λ, the likelihood
is an increasing function of η, suggesting η̂ = ∞. Therefore,
we define the estimator

η̂
M̃

=

{
− log

(
1− M̃/λ

)
, M̃ < λ;

ηmax, M̃ ≥ λ,
(53)

where ηmax is some fixed value such as the largest plausible
SE yield. In the absence of an a priori range for η, one could

(a) Bias

(b) Root-mean squared error ratio

Fig. 5: Numerical comparison of the η̂CE estimator (51) with
the ML estimator η̂ML (45). η̂CE has a lower magnitude of
bias than η̂ML. The RMSE ratio is close to 1 for the whole
range of η.

set ηmax to be the largest possible value returned when M̃ <
λ:

ηmax = − log

(
1− ⌈λ⌉ − 1

λ

)
. (54)

However, this expression has large jumps at integer values of
λ. The choice of

ηmax = − log

(
1− ⌈λ⌉ − 1

⌈λ⌉

)
(55)

is more conservative.
For any fixed η, the probability of M̃ ≥ λ decreases with

increasing λ; for any fixed λ, the probability of M̃ ≥ λ
decreases with decreasing η. These trends are illustrated in
Figure 6. Typical values of λ for imaging range from ∼ 10 to
∼ 100. However, as described in Section VI-C, much larger
values may arise in calibration.

The performance of the estimator is shown in Figure 7 for
λ = 100 and λ = 100 000, where ηmax is set using (55) and
η ∈ [ 1

10 , 10]. Bias and variance are separated, and we can see
that the RMSE is dominated by variance at low η and by bias
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(a) Dependence on λ with η fixed

(b) Dependence on η with λ fixed

Fig. 6: M̃ -based estimator for η fails when P(M̃ ≥ λ). This
occurs with vanishing probability as (a) λ increases or as (b)
η decreases.

at high η. The variance levels off around half of ηmax. Kinks
in the absolute bias curves are due to the bias changing sign
from positive for low η to negative for high η.

From our analysis of the Fisher information about η in
M̃ in Figure 4, we expect that this estimator gets worse as
η increases, which is indeed what we observe. In the next
section, we will use η̂

M̃
to estimate the parameters for a PBM

model that includes uncertainty in SE number introduced by
the SE detection chain.

VI. SE YIELD ESTIMATION FROM SE DETECTOR
VOLTAGES

As described in Section II-A, in a real particle beam
microscope, direct counts of secondary electrons are usually
not available. Instead, as depicted in Figure 1(e), the output
of the SE detector is a series of voltage pulses. Assuming that
the conversion of SE number to voltage pulse is linear, we
expect that the average height of each pulse is proportional to
the count of SEs incident on the detector. When η is low, the
probability that an incident particle generated multiple SEs is
low, and a count of pulses can be used to estimate the true

SE count. This scenario is true in SEM, and pulse counting
has been used to implement SE count imaging in SEM [27],
[35]–[40]. However, if η is higher, as in HIM, excitation of
multiple SEs by a single incident particle becomes more likely.
Therefore, more sophisticated modelling is needed to estimate
η.

In this section, we will describe a probabilistic model for
the observed SE voltage signal and analyze how the Fisher
information about η varies with model parameters. We will
also discuss how the model parameters may be estimated.
Finally, we will discuss the performance of η estimators based
on this model.

A. Pulse Height Model

As in [15], we model the conversion of SE number to
voltages with a Poisson–Poisson–Gaussian (PPG) model. Each
SE is assumed to produce a voltage described by a N (c1, c2)
random variable, where c1 is the mean voltage and c2 the
variance. These contributions are assumed to be independent
and additive, so j SEs produce a voltage with the N (jc1, jc2)
distribution. Thus, the probability density function for the
voltage Ũi produced in the ith detection event is given by

fŨi
(u ; η, c1, c2) =

∞∑
j=1

PX̃(j; η)fZ(u ; j, c1, c2)

=
∞∑
j=1

e−η

1− e−η

ηj

j!
fZ(u ; j, c1, c2), (56)

where fZ(u ; j, c1, c2) is the PDF of a N (jc1, jc2) random
variable.

The heights of the detected SE pulses, along with the total
number of pulses, form the time-resolved observation{

M̃, T̃ , Ũ
}
=
{
M̃, (T̃1, T̃2, ..., T̃M̃

), (Ũ1, Ũ2, ..., ŨM̃
)
}
.

(57)

Under this model, a conventional observation without time
resolution is

V =
M̃∑
i=1

Ũi. (58)

Analogously to the discussion in Section II-C, conditioned on
M̃ , there is no information about η in T̃ .

B. Fisher Information

We can evaluate the Fisher information numerically. Fig-
ure 8 is a plot of the Fisher information (normalized by
λ) for the PPG model, for both conventional and time-
resolved measurements, as a function of

√
c2/c1, at η = 3.

For the time-resolved case, when
√
c2/c1 ≤ 0.1, the FI is

nearly constant. At such low values of
√
c2/c1, there is little

overlap between the peaks in the probability density of Ũi

produced by different numbers of SEs, resulting in near-perfect
discrimination of SE counts. Thus, the FI reaches the marked
asymptote, which is the FI with SE counting (37). Similarly,
the FI for conventional measurement reaches the asymptote
(15). As

√
c2/c1 increases, the FI degrades, reflecting the
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(a) Bias (b) Standard deviation (c) Root mean-squared error

Fig. 7: Performance of η̂
M̃

, the estimator (53) that uses the number of SE detection events without SE count information.
Conditional curves give the indicated quantity conditioned on M̃ < λ, which is when the ML estimate is finite. Unconditional
curves give the indicated quantity including the effect of choosing ηmax according to (55).

Fig. 8: Normalized Fisher information 1
λIM̃,Ũ

(η;λ) for time-
resolved measurement and 1

λIV (η;λ) for conventional mea-
surement as a function of

√
c2/c1 for λ = 20 and η = 3.

ambiguity in resolving the number of SEs due to overlap in the
densities of different numbers of SEs. We note that although
the FI from time-resolved measurements remains higher than
that for conventional measurements for the whole range of√
c2/c1, the relative advantage of time-resolved measurements

diminishes at higher values of
√
c2/c1.

C. Estimating c1 and c2

The PPG model parameters, c1 and c2, are generally un-
known for a given particle-beam microscope. The values of
these parameters depend on the SE detector hardware settings,
such as the gain in the dynode stages of the photomultiplier
tube, the specifics of the pre-amplifier circuit, etc. The values
of these settings are unavailable to the user. Therefore the
model parameters cannot be directly computed.

Instead, we must estimate the parameters c1 and c2. We
could conveniently do so if we image a sample with a well-
characterized η. In this case, we could find an ML estimate
for c1 and c2 by maximizing the likelihood of the observed

Fig. 9: Estimation of PPG model parameters c1 and c2. The
probability distribution with the ML estimates of the model
parameters is plotted along with the observed pulse height
histogram.

pulse heights under the PPG model in (56). Although standard
values of η for different materials are widely available [26],
[41], the precise value of η for a given sample depends on
several factors such as the level of carbon contamination in the
microscope vacuum chamber and surface oxidation, making
estimation of c1 and c2 difficult. However, we can use η̂

M̃
given in (53) to estimate η, since this estimator does not rely
on the number of SEs (i.e., the heights of the detected voltage
pulses), but only on the number of detected pulses. Therefore,
it is not affected by the loss in Fisher information due to
variance in pulse heights depicted in Figure 8. With this η
estimate, we can construct ML estimates for c1 and c2.

To demonstrate this process, we imaged a uniform, feature-
less silicon chip on an HIM (Zeiss Orion) at a resolution of
105 pixels with a beam current of 0.1 pA and a pixel dwell
time of 10 µs, which corresponds to λ = 6.25. Figure 1(e)
shows a snapshot of the voltage pulses detected from one
pixel in the image. The average M̃ (per pixel) observed for
this sample was 4.95. Since the entire sample was treated as
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uniform, we used the sum of M̃ over all the pixels and the
total λ over all the pixels in (53) to obtain η̂

M̃
= 1.58. Next,

we used this estimate of η to construct ML estimates of c1
and c2. The resulting probability density function is shown in
Figure 9, along with the distribution of pulse heights in the
experimental data. The ML estimates of c1 and c2 obtained
from this technique were c1 = 0.19 V and c2 = 0.0040 V2.

We end this section with a couple of observations about
the estimation of c1 and c2 using η̂

M̃
. First, although we can

use η̂
M̃

in the estimation of c1 and c2, we will not use it
to estimate η during imaging. As discussed in Section V and
shown in Figure 7, for good accuracy this estimator requires
the dose to be very high. Second, even though the model PDF
shows a good fit with the experimental pulse height histogram,
it predicts a significant density of pulses with heights near and
below zero volts. This is clearly unphysical, and it points to a
mismatch between the model and the experiment.

D. Accounting for Nonzero Pulse Widths

An additional feature of the voltage pulses is a nonzero
width in the time domain. Empirically, from experimental
pulse sequences such as that in Figure 1(e), we found the
pulses to be approximately Gaussian in shape with mean width
of τ = 160 ns. The nonzero widths raise the possibility of
undercounting SE detection events due to overlap between de-
tections from successive incident particles. To compensate for
this undercounting, we introduce a correction factor γτ (λ, η)
such that

M̃corrected =
M̃

γτ (λ, η)
. (59)

This correction factor is obtained by integrating the exponen-
tial probability distribution of the SE interarrival times up to
the mean pulse width τ . This gives us

γτ (λ, η) = exp
(
−λ(1− e−η

)
τ). (60)

Some of the estimators described below use M̃corrected.

E. Estimators

We now introduce η estimators suitable for the PPG model.
We construct these estimators to be analogous to estimators
using SE counts from Section IV-B. For comparison, we
include a model for a typical instrument, a somewhat idealized
conventional estimator, and two oracles.

1) Conventional instrument: As described in Section II-A,
a typical instrument forms an image by sampling the voltage
output from the SE detector, adding up the samples for each
pixel, and quantizing these summed values to obtain an 8-bit
image. For the purpose of comparing with other η estimators,
we define η̂CI based on emulating this process. For each
incident particle, a pulse with height following (56) and width
τ is generated. The resulting waveform is sampled with period
100 ns and summed to obtain an estimate. An additional factor
is needed to be on the correct scale; we determine this scaling
factor by matching the mean to the mean of the improved
conventional estimate below.

2) Improved conventional: Within the PPG model, V in
(58) contains all the information acquirable without time
resolution. Dividing by c1 puts V on the scale of SE yield
η, so analogously to (41) we define

η̂IC =
V/c1
λ

. (61)

3) Ion count oracle: To contextualize the performance of
the implementable estimators, we use the oracle from (42)
along with an ion count oracle that assumes the true count of
ions M is known:

η̂ICO =
V/c1
M

. (62)

4) QM estimator: Analogous to the QM estimator in Sec-
tion IV-B, we can use M̃corrected as a proxy for M . Then our
estimate is the unique root of

η̂QM =
V/c1

M̃/γτ (λ, η̂QM)
. (63)

5) ML-inspired estimator: We can correct the bias in
M̃corrected analogously to the ML estimator in Section IV-B,
noting that this is not a true ML estimator under our current
model. The estimate is the unique root of

η̂MLI =
V/c1

M̃/γτ (λ, η̂MLI) + λe−η̂MLI

. (64)

Figure 10 plots the bias, standard deviation, and RMSE
of these estimators as functions of η, using the values of c1
and c2 from Section VI-C and λ = 20. These values were
calculated using a Monte Carlo simulation. The most important
observation from this figure is that the TR estimators continue
to outperform the conventional estimator over almost the entire
range of η considered here. Similar to the results in [16], η̂QM

has a high bias at low η due to significant underestimation
of M , but its RMSE is still lower than the conventional
estimators for η > 1.9. The two conventional estimators, η̂CI

and η̂IC, have almost identical performance; however, without
calculation of η̂IC, the factor k in η̂CI would be unknown
and the RMSE potentially larger. The ion count oracle η̂ICO

forms an effective lower bound on the RMSE of the non-oracle
estimators, and η̂QM and η̂MLI achieve performance close to
η̂ICO for high η. The RMSE of η̂oracle is lower than that of
η̂ICO by a factor of ∼ 1.4, reflecting the loss in information
about η from increased uncertainty in the SE counts.

VII. CONCLUSION

In this work, we have shown that TR measurements, where
we measure the full vector of SE detections for every pixel,
outperforms conventional scalar-valued PBM for detecting
changes in η or estimating η. We motivated TR measurements
by quantifying a gain in Fisher information for estimation of η
at low dose λ, as well as increased error exponents for discrim-
ination between two values of η using KLD. We also demon-
strated that TR estimators outperform the conventional estima-
tor for η both in the idealized scenario where direct counts of
detected SEs are available (yielding the measurement vector
{M̃, T̃ , X̃} = {M̃, (T̃1, T̃2, . . . , T̃M̃

), (X̃1, X̃2, . . . , X̃M̃
)}),

as well as the more realistic scenario where noise from
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(a) Bias (b) Standard deviation (c) Root mean-squared error

Fig. 10: Relative performance of PPG estimators, for c1 = 0.19 V, c2 = 0.011 V2, and λ = 20. η̂MLI matches the performance
of η̂CI and η̂IC at low η, and significantly outperforms them for η > 1.

the SE detection process makes direct SE counts inac-
cessible (making the measurement vector {M̃, T̃ , Ũ} =

{M̃, (T̃1, T̃2, . . . , T̃M̃
), (Ũ1, Ũ2, . . . , ŨM̃

)}).
Our re-analysis of previously derived estimators for η led

to new insights into their relative performances. We also
developed two new estimators: the conditional expectation
estimator using the conditional distribution of M given M̃ ; and
an M̃ -based estimator that only uses the count of SE pulses.
The latter estimator was particularly useful for deriving values
for the PPG model parameters c1 and c2.

The estimator η̂
M̃

could also be used to calculate the PBM
detector efficiency [25], [26]. For this application, a bulk
sample with η known under the imaging conditions being
used would need to be imaged (or, alternatively, η of the
bulk sample could be measured in the PBM using a standard
technique [41]). Then, the ratio of η̂

M̃
and the true sample

η would be the instrument’s detective efficiency. A similar
technique was used in [39] to calculate detector efficiency;
that work was further simplified by the low value of η, which
allows detection efficiency to be estimated as the ratio of M̃
and λ times the known η.

Successful implementation of the η estimators described
in Section VI-E depends on the accuracy of the PPG model
in representing the instrument response, as well as accurate
estimation of model parameters. As discussed previously, the
PPG model leaves open the unphysical possibility of negative
SE voltage pulse heights. This issue could be resolved with
a heuristic approach, such as zero-truncation or folding of
the probability density function. Alternatively, a pulse height
histogram such as the one in Figure 9 could be acquired
at a low η, such that the probability of more than one SE
being detected from a given pixel is sufficiently small. Such
a histogram could then be used as the empirical single-SE
instrument response.

The loss in Fisher information with increasing uncertainty
in the count of SEs, as demonstrated in Figure 8, points to the
potential benefits of hardware SE counting in PBM. Although
direct counting of SEs is available in transmission-based PBM
techniques such as transmission electron microscopy [42]–
[44], it has not been explored in SE-based techniques. Its
implementation in SEM and HIM could lead to large improve-

ments in achievable image quality.
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