bioRxiv preprint doi: https://doi.org/10.1101/2022.12.09.519772; this version posted December 11, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Volume xx (200y), Number z, pp. 1-13

ViM®O: Visual Analysis of Neuronal Connectivity Motifs

Jakob Troidl!, Simon Warchol!, Jinhan Choi®, Jordan Matelsky3’4, Nagaraju Dhanyasiz, Xueying Wangz,
Brock Wester3, Donglai Wei® , Jeff W. Lichtmanz, Hanspeter Pﬁsterl, and Johanna Beyer1

1School of Engineering & Applied Sciences, Harvard University, 2Department of Cellular & Molecular Biology, Harvard University
3 Applied Physics Laboratory, Johns Hopkins University, * Department of Bioengineering, University of Pennsylvania, 3 Boston College

%
\/
O

0 Exploded Motif Instance

© Wotif Instance ¥,

© Wotif Sketch @ Pruned Motif Instance

Figure 1: Visual Motif Analysis. In Vimo, neuroscientists (a) sketch neuronal connectivity motifs and query large connectomics networks
for instances of that motif. (b) Neurons forming a motif instance are visualized in 3D. Vimo emphasizes the relationship between the sketched
motif and the neurons’ connectivity using a continuous focus&context approach (c,d). First, Vimo prunes unrelated neuron branches to the
motif (c). Next, users can further explore the connectivity between neurons in an exploded view that untangles complex neuron morphologies
and use hierarchical synapse clustering and bundling to highlight connections (d). Data: FlyEM Hemibrain [SXJ*20]

Abstract

Recent advances in high-resolution connectomics provide researchers access to accurate reconstructions of vast neuronal cir-
cuits and brain networks for the first time. Neuroscientists anticipate analyzing these networks to gain a better understanding of
information processing in the brain. In particular, scientists are interested in identifying specific network motifs, i.e., repeating
subgraphs of the larger brain network that are believed to be neuronal building blocks. To analyze these motifs, it is crucial
to review instances of a motif in the brain network and then map the graph structure to the detailed 3D reconstructions of the
involved neurons and synapses. We present Vimo, an interactive visual approach to analyze neuronal motifs and motif chains in
large brain networks. Experts can sketch network motifs intuitively in a visual interface and specify structural properties of the
involved neurons and synapses to query large connectomics datasets. Motif instances (Mls) can be explored in high-resolution
3D renderings of the involved neurons and synapses. To reduce visual clutter and simplify the analysis of Mls, we designed
a continuous focus&context metaphor inspired by continuous visual abstractions [MAAB* 18] that allows the user to transi-
tion from the highly-detailed rendering of the anatomical structure to views that emphasize the underlying motif structure and
synaptic connectivity. Furthermore, Vimo supports the identification of motif chains where a motif is used repeatedly to form a
longer synaptic chain. We evaluate Vimo in a user study with seven domain experts and an in-depth case study on motifs in the
central complex (CX) of the fruit fly brain.

CCS Concepts
* Human-Centered Computing — Visual motif analysis, Focus&Context, Scientific visualization, Neuroscience;

1. Introduction dataset [SCJB*21] captures a cubic millimeter of human brain tis-

sue containing about 57,000 segmented neurons. Once the data is

Recent developments in high-throughput electron microscopy have
allowed large-scale brain mapping at the level of individual
synapses, i.e., Connectomics. These new datasets of brain tis-
sue, along with advances in automated segmentation methods,
enable scientists to accurately reconstruct 3D wiring diagrams
of the biological neural networks. For example, the new HOI
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fully proofread, analyzing its neuronal connectivity is the key to
understanding how the brain computes.

However, synapse-level connectivity analysis of large brain net-
works is still underexplored. The reason for that is three-fold: First,
only a few datasets exist that are large enough to contain thou-
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sands of complete neurons at an image resolution that resolves in-
dividual synapses. Previous approaches mainly focused on small
volumes and truncated networks [AABS™*14] or used heuristics to
estimate synaptic connections in lower-resolution data [SBS*13].
Second, large graphs are difficult to analyze, especially for non-
experts. Finding motifs in a large graph is computationally expen-
sive, and most previous motif analysis tools require programming
experience. Third, neurons and synapses have a dual representation
in a network graph compared to the original imaging data. In a net-
work graph, neurons are nodes, and synapses are edges. In brain tis-
sue, however, neurons are long, tree-like structures, while synapses
are small surface structures. Few tools can display or analyze large
connectivity graphs combined with their underlying imaging data.

One approach for extracting information from large connec-
tivity graphs is searching for common motifs. A graph motif
is a recurring subgraph of a larger graph, such as a feedback
loop between neurons. Using motif analysis, neuroscientists hope
to gain insights into the underlying biological principles of the
brain [SK04,GJC22]. For example, researchers have recently iden-
tified network motifs in the brain of a fruit fly that are responsible
for context-dependent action selection [HHF*21]. However, neuro-
scientists typically need to combine motif search with an in-depth
analysis of motif instances (MIs), which are specific neurons that
form a motif. They want to analyze not just abstract connectivity
graphs but also explore the anatomy of neurons and understand how
neurons in an MI interact spatially. Ideally, a spatial view would al-
low them to identify the parts of a neuron actively involved in a
motif or spatial synapse clusters. However, the structure of neurons
is so intricate and complex that even for small motifs, a 3D view
of several neurons quickly suffers from occlusion and visual clut-
ter. Therefore, new methods are needed to explore the 3D nature of
neuronal motifs without overwhelming the user.

In this design study, we present Vimo, a novel visualization and
analysis tool to explore neuronal motifs and motif chains in large
brain networks. Our work makes three main contributions. First,
the design of an interactive and intuitive motif sketching and query-
ing interface. Scientists can draw nodes and edges in a sketch-
ing panel to query for their desired motif without using standard
graph queries or programming. Our query approach leverages bi-
ological constraints to reduce computational complexity, scales to
large brain networks, and gives interactive feedback on the rele-
vance of the current motif. Second, we propose a focus&context
scheme for analyzing motif instances in high-resolution imaging
data to facilitate the user’s understanding of the detailed neuron
connectivity. We do so by de-emphasizing non-motif-relevant parts
of the neurons (context) in order to focus on the motif-relevant as-
pects. Importantly, we do not simplify or change neuron morphol-
ogy. Instead, we gradually shift the focus by using neuron pruning,
exploded views, and hierarchical synapse clustering (see Fig. 1).
Third, the integration of our motif query interface with our fo-
cus&context scheme for MI analysis and its extension to analyze
motif-based synaptic chains into an open-source application. We
developed Vimo following the design study methodology [SMM12]
in close collaboration with domain scientists in connectomics. We
detail our goal and task analysis, report on design decisions, and
evaluate Vimo in a user study with expert users and a case study of
external ring neurons in the fly brain.

MATCH (A:Neuron)-[A_C:ConnectsTo]->(C:Neuron)
MATCH (A:Neuron)-[A_B:ConnectsTo]->(B:Neuron)
MATCH (B:Neuron)-[B_C:ConnectsTo]->(C:Neuron)
WHERE A[“CRE(L)“] =True

AND A_C[“weight”] > 20

AND A<>B AND A<>C AND B<>C

A->B
B->C
A->C [weight >20]
s20 N A[‘CRE(L)’] = True
o————>o0 RETURN DISTINCT A, C, B

cRew
Sketching (ours) DotMotif [Matelsky et al., 2021] ~ Cypher in Neuprint [Plaza et al., 2022]

Figure 2: Different motif queries. Our visual sketching approach
(left), high-level domain-specific language DotMotif [MRJ*21]
(middle), and graph query language Cypher [FGG* 18] (right).

2. Related Work

Connectomics and Motif Analysis. Motif analysis plays a cen-
tral role in connectomic analysis [HHF*21, SBS*21b, UHM*22,
GJC22]. Hence, many computational approaches for studying con-
nectivity motifs in connectomes have been presented over the past
years. Matejek et al. [MWC*22] present an optimized and paral-
lelized subgraph enumeration algorithm to count the occurrences
of motifs in large brain networks. DotMotif [MRJ*21] is a domain-
specific language to write motif queries and compiles to common
python tools and the Cypher graph query language [FGG*18].
Vimo builds on DotMotif, but offers a visual non-programming in-
terface to create motif queries (see Fig. 2).

Visualization for Connectomics. Visual analysis approaches
have been used in many subareas of connectomics, including
interactive proofreading [GWB*21, DMM*22], volume explo-
ration [BAAK*13], and neighborhood- [TCG*22] and morphol-
ogy analysis [MAAB™18, CLL*21]. Beyer et al. [BTB*22] pro-
vide a comprehensive survey of visualization methods in con-
nectomics. Most neural connectivity visualizations use node-
link diagrams [SCHT09, BAAK*13]. Recently, Ganglberger et
al. [GWW?™22] proposed a 2D node-link layout that preserves the
spatial context of 3D brain networks. However, their work fo-
cuses on macroscale brain parcellations and thus does not ex-
tend to nanoscale connectivity between neurons. Alternative ap-
proaches have used matrix views [HVU*22] or visual abstractions
in 2D that retain some morphological features, such as neuron
branches [AABS* 14] or arborizations [SBS*13]. All the above ap-
proaches are compact data representations that allow scientists to
get a quick overview of the data. However, the three-dimensional
morphology of neurons and their spatial relations in the data is lost.
Furthermore, most prior works focus on either very small volumes
and, thereby, truncated brain networks [BAAK* 13, AABS™14] or
use lower resolution datasets and heuristics to generate synapse
positions [SBS*13]. Most recently, Plaza et al. [PCD*22] devel-
oped neuPrint, a tool to query neuronal connectivity quickly in the
browser. neuPrint uses the Cypher language [FGG™ 18] to query for
MIs but does not focus on visually highlighting the connectivity in
the MIs. Our tool builds on the neuPrint data infrastructure but pro-
vides an intuitive sketching interface for specifying motifs visually.

Visual Graph Queries. Visual query interfaces have been used in
many application areas and allow users to specify queries in an in-
tuitive way [Ege97, CWW*10,MA 18]. Cuenca et al. [CSIP22] pro-
pose Vertigo, an approach to construct and suggest graph queries
and explore their results in multi-layer networks. Vertigo visual-
izes all detected subgraphs as an overlayed heatmap to a graph
drawing. This approach, however, is not feasible for large connec-
tomic graphs, and all information on the 3D morphology of neurons
would be lost. Vigor [PHE* 18] focuses on effectively summarizing
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Figure 3: Motifs in brain networks. (a) Brain networks consist of
neurons that connect through synapses. (b) Graph representation
of the same brain network. (c) Network motifs are recurrent sub-
graphs in the larger brain network. For example, this connectivity
graph contains two instances of a feedforward motif (d).

subgraph queries by grouping results by node features and struc-
tural result similarity. In Vimo, users can use structural similarity
constraints directly in the query interface.

Visualization of Network Motifs. Visualization of motifs has been
proposed in different domains. For instance, MAVisto [SS05] sup-
ports visual motif analysis in biological networks. However, MIs
are only visualized as node-link diagrams, and 3D shapes of bio-
logical objects are hidden. Dunne et al. [DS13] simplify node-link
diagrams of motifs using glyphs. Those simplification techniques
do not extend to complex spatial data like neuronal structures. For
dynamic networks, Cakmak et al. [CFJ*22] compare motif signifi-
cance profiles over time by plotting them as a time series.

Visual Abstraction of Tree-Like Structures. Different visual ab-
stractions have been proposed to analyze neurons and tree-like
structures. Hu et al. [HBMK22] project a complex 3D tree-like
structure onto a 2D plane while avoiding overlaps. However, their
method does not scale to groups of treelike structures, as needed
for neuronal motif analysis. Mohammed et al. [MAAB* 18] use a
continuous 2D abstraction space to analyze astrocytes and neurons.
Neurolines [AABS* 14] uses a 2D subway map metaphor to display
neurons. However, both approaches focus on relatively small sub-
volumes and would not visually scale to large connectivity graphs.

3. Biological Background

Brain anatomy. Brain tissue primarily consists of long tubular
tree-like nerve cells or neurons, which transmit signals to each
other via synapses. A single neuron can connect to hundreds or
thousands of other neurons. The high interconnectivity of neurons
combined with their complex morphology results in tangled three-
dimensional brain networks that are difficult to analyze. Different
neuron types have unique morphological properties and connectiv-
ity preferences. Most brains of model organisms, such as the fruit
fly (Drosophila Melanogaster), are further divided into spatial re-
gions with distinct anatomical and functional properties.

Brain networks and motifs. Connectomic datasets with tens or
hundreds of thousands of neurons can be interpreted as large di-
rected graphs, with neurons as nodes and synapses forming edges
between the nodes. Recent advances in microscopy and com-
putational neuroscience have revealed characteristic non-random
patterns in neural networks of invertebrates and mammalian
brains, especially in the cerebral cortex. The recurring wiring pat-
terns [MSOI*02], termed network motifs, suggest the hypothe-
sis that neuronal connections are arranged in some basic building
blocks with hierarchical order [SK04]. Fig. 3 shows how an exam-
ple brain network and its graph representation.
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Connectomics Data. Analyzing neuronal tissue at the level of
synapses requires ultra-high-resolution imaging techniques such as
serial-section scanning electron microscopy (SEM), which can pro-
duce more than 1 petabyte of data for each imaged cubic millime-
ter [SCIB*21] of tissue. In this paper, we demonstrate our visual
motif query and analysis approach on the FlyEM hemibrain, one
of the largest open-source connectomic datasets. It contains the en-
tire central region of the fruit fly brain, including 25,000 proof-
read neurons classified into more than 5,000 types, over 20 mil-
lion synapses, 13 main brain regions, and over 200 sub-brain re-
gions [SXJ*20]. It is a major resource in the Drosophila neuro-
science community, which has led to exciting scientific discoveries
already [LLM*20,HHF*21,SBS™*21b]. Vimo processes the connec-
tivity graph, 3D neuronal skeletons, and spatial synapse locations
of the hemibrain dataset (see Sec. 9).

4. Goal & Task Analysis

The idea of Vimo originated from meetings with our neuroscience
collaborators, who were excited about newly available EM datasets,
but needed the means to analyze the synapse-level connectivity
within this data on a larger scale. The scientists want to identify
and explore motifs and synaptic chains without being overwhelmed
by the complex 3D structure of intertwined neurons. At the same
time, they need to see motifs in the original 3D volume space to
understand the spatial relation of neurons and their synapses.

Following the problem-driven design study approach [SMM12],
we identified a set of domain goals and tasks in semi-structured
interviews with five experienced neuroscientists from the Harvard
Center for Brain Science, HHMI Janelia, and the Zuckerman Insti-
tute at Columbia University. All five scientists have multiple years
of experience with analyzing neuronal circuits reconstructed from
EM image data. Three scientists are experts in analyzing connectiv-
ity patterns in the brain of Drosophila. Additionally, we presented
an early prototype of the tool to dozens of researchers at an inter-
national connectomics conference to refine our goals and tasks.

4.1. Domain Goals

The neuroscientists’ main objective is finding biologically relevant
motifs in large neuronal networks. Further, they want to analyze in-
teresting motif instances visually in more detail to fully understand
how the motif’s connectivity relates to each neuron’s morphology.

G1 - Motif identification in large brain connectivity data. Our
collaborators want to search large brain networks for instances of
a wide range of connectivity motifs based on neuronal connectiv-
ity and additional biological constraints on the involved neurons
and synapses. Neuroscientists want to specify details such as the
brain region a neuron trajects, the neuron type, or set the number
of synapses a neuron makes in a specific brain region. For example,
a specific type of ring neuron in the fly brain is involved in action
selection tasks [BKHH21], and scientists want to analyze motifs
involving this specific neuron type. Biological constraints ensure
the expressiveness of motif queries when studying such behaviors.

G2 - Analysis of motif instances. Since a motif search in a large
brain network might result in dozens to thousands of hits, our col-
laborators need to be able to easily identify interesting motif in-
stances (i.e., MIs) and then explore them in high detail. Neurons
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Figure 4: Understanding connectivity. Understanding motif con-
nectivity in the complex 3D morphology of neurons in an Ml is not
trivial. Domain experts need better tools to understand how a con-
nectivity motif is expressed in a set of neurons.

form complex three-dimensional shapes, span long distances, and
connect with up to thousands of other neurons. Therefore, our col-
laborators previously struggled to identify how a set of neurons
forms a motif and how the abstract connectivity motif maps to the
actual anatomical structure of the involved neurons and synapses
(see Fig. 4). However, this understanding is crucial for following
information flow along the neurons. In particular, our collaborators
have questions such as “Which branches and subbranches of the
neuron make up the motif?” or “Are several spatially distinct parts
of a neuron involved in the same motif?”.

G3 - Identification and analysis of motif chains. In addition to
exploring single MIs, our collaborators are interested in exploring
motif chains. Starting from a motif of interest and a seed neuron,
they want to explore if the neuron is involved in different in-
stances of the same motif. This allows scientists to speculate about
the importance of certain neurons in a motif. Furthermore, our col-
laborators are interested in motif-based synaptic chains. Starting
from a seed MI, they want to follow chains of computation to see
if the same motif is used consecutively over a larger number of
neurons. This analysis can give more holistic insights into infor-
mation flow (e.g., from visual input neurons to the central brain of
Drosophila).

Scalability Considerations. To reach the above goals, the main
requirement of our application is scalability. The datasets our col-
laborators want to analyze contain tens of thousands of neurons
and millions of synapses. Therefore, the entire analysis pipeline,
including data access, algorithms, and interaction metaphors, need
to support large data and scale to future datasets.

4.2. Tasks

Based on the above domain goals, we have derived a set of analysis
tasks Vimo needs to support:

T1 - Query for connectivity motifs. Scientists need an intuitive
way to specify motifs and biological constraints for queries (G1).

T2 - Identify interesting motif instances. Scientists need to be
able to explore query results to identify interesting MIs (G2).

T3 - Explore the spatial and anatomical context of MIs. For an
interesting M1, scientists want to explore the anatomy of its neurons
and synapses in the context of the surrounding brain region (G2).

T4 - Identify mapping between neuron morphology and mo-
tif connectivity. After their initial exploration of an MI, scientists
need to identify the parts of the neurons that make up the motif and
analyze the detailed connectivity of the motif instance (G2).

TS5 - Query and identify connected multi-motif instances. Start-
ing from the neurons of a selected motif instance, scientists want to
explore whether the same neurons are involved in other instances
of the same underlying motif (G3).

T6 - Trace synaptic chains starting from seed MI. Starting from
a seed MI, scientists want to identify and follow synaptic chains
made up of repeating specific motifs (G3).

5. Vimo Design and Workflow

Our main goal for Vimo is to provide neuroscientists with the means
to easily explore the connectivity of their large datasets and allow
them to understand the underlying network structure of neurons
with their complex anatomical structure. To achieve this, we de-
signed a workflow that offers intuitive user interactions and visu-
alizations that highlight the connectivity of the data while keeping
the underlying anatomical data undistorted (see Fig. 5).

Specifically, we designed an interactive visual query interface
based on sketching to search for network motifs in the data. The
interface is aimed at domain experts with no programming back-
ground and allows users to specify motif connectivity and biolog-
ical constraints (G1). The main difficulty of connectivity analy-
sis in high-resolution connectomic data is the high complexity of
both neuron morphology and connectivity. Neurons are densely ar-
ranged in brain tissue and often highly intertwined. Synapses be-
tween two neurons might be clustered in one region or spread out
along the length of the neurons. Therefore, Vimo offers a 3D view to
display neurons and synapses of a selected MI in detail. This allows
scientists to understand overall neuron shape and how neurons of a
motif are intertwined. To support neuroscientists in the understand-
ing of both morphology and connectivity, we designed a method
for gradually highlighting neuronal connectivity, similar to contin-
uous visual abstractions. Users can focus more and more on the
underlying connectivity of the data while still retaining access to
the morphology of neurons (G2). Vimo allows users to identify and
follow interesting synaptic chains created by the repeated appear-
ance of a motif in the data. To reduce the search space for synaptic
chains, we let users start with a seed motif or neuron and support
a user-driven exploration of the data (G3). Finally, throughout the
design of Vimo we focused on scalability by using datasets hosted
in the cloud and only downloading small subsets to the user’s ma-
chine during runtime (see Sec. 9).

6. Interactive Motif Queries

In contrast to previous efforts in motif analysis that rely on pro-
gramming languages [MRJ*21, PCD*22], Vimo provides a visual
sketching interface to create queries. This gives scientists an in-
tuitive approach to search for motifs. Additionally, Vimo provides
real-time feedback on the significance of a sketched motif in the
brain network to guide the user during the analysis process.

6.1. Motif Sketching

In Vimo, users search for motif instances by sketching an exemplar.
They draw a set of nodes and edges to define the motif (i.e., neurons
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Figure 5: Vimo workflow. Users query for motifs based on a sketch and select motif instances for further investigation. While exploring an
MI, users can adjust the visualization to gradually highlight the connectivity of neurons, or continue to explore multiple Mls.
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Figure 6: Motif sketching interface. Users draw nodes and edges
of a motif (left) and define biological constraints on the nodes and
edges (right). Additionally, Vimo gives real-time feedback on the
absolute count of a sketched motif in the dataset and by indicating
whether a motif is over- or under-represented (red and blue labels).

and the connections between them) (see Fig. 6), specify additional
biological constraints, and inspect the results of their motif query.

Defining Constraints. To create biologically meaningful queries,
users can interactively set constraints on the nodes and edges of
the motif sketch. Our query interface supports constraints on the
neuron’s type, the spatial location and brain region of neurons and
synapses, the strength of a connection, and the neuron’s ID (T1).
For instance, users can define one of over 5,000 neuron types or tra-
jectories through over 200 brain regions in the hemibrain dataset.
We use an intuitive and expressive query builder interface to define
one or multiple constraints per node and edge (see Fig. 6). Auto-
completion of types and brain regions further helps users quickly
select from thousands of available options.

Guided Sketching. Deciding which motifs to study in greater de-
tail is not always obvious to neuroscientists. During formative inter-
views, experts expressed interest in analyzing particularly common
or rare motifs in the network. Therefore, as the user is sketching a
new motif, we provide real-time feedback about the significance of
the sketched motif. In particular, Vimo shows the number of occur-
rences of the motif in the brain network and whether the motif is
estimated to be over- or under-expressed in the network (T2).

Counting the number of occurrences of a motif in a large graph
in real-time is computationally infeasible. Therefore, we precom-
pute motif counts with a subgraph enumeration technique by Mate-
jek et al. [MWC*22] on a high-performance compute cluster. At
run-time, we perform a simple look-up to display the number of
occurrences of a sketched motif in the brain network (see Fig. 6).
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We also indicate the over- or under-expression of a motif in
the brain network using a heuristic approach. We estimate a mo-
tif as over-expressed if its occurrence in the brain network is higher
than in a random network. It is under-expressed if it occurs less
frequently in the brain than in the random network. To approxi-
mate the motif count in a random network, we use Erdos mod-
els [IMK*03]. We indicate over- or under-expression with a red or
blue badge in the sketching panel, respectively (see Fig. 6).

Running Motif Queries. Vimo automatically translates the visual
sketch into a DotMotif [MRJ*21] string in real-time. Once users
are satisfied with their sketch, we send the query string to the ne-
uPrint [PCD*22] graph database to get a list of motif instances.
Note that any graph database supporting DotMotif queries can be
used. See Sec. 6.2 for the scalability of motif queries.

Inspecting Motif Query Results. Vimo displays the results as a set
of MIs in a list view (see Fig. 10b). To guide users in selecting a
motif instance for further analysis, we show summarizing features
for each neuron in a motif instance. In particular, we display the
neuron’s type, Id, and proofreading status (T2). Clicking on an MI
shows the 3D models of the neurons and their synapses in the main
view of the Vimo interface.

Reproducing and Sharing Sketches. Users can import and export
motif sketches as JSON files. This helps researchers to reproduce
their motif queries at later times and facilitates sharing interest-
ing discoveries with colleagues. A set of interesting motif sketches
from the case study is available in the supplementary material.

6.2. Computational Challenges

Subgraph isomorphism searches are computationally expen-
sive [MWC*22,RPS*22]. For example, verifying the existence of a
motif in a larger network is an NP-complete problem [Coo71]. We
use two strategies to limit the computational complexity of queries.
First, users can set specific biological constraints on the nodes and
edges, reducing the search space significantly. For example, neu-
roscientists are interested in motifs involving external ring neuron
(ExR1) types. The hemibrain dataset [SXJ*20] contains four neu-
rons of type ExRI, drastically reducing the search space by only
querying the neighbors of those four ExRI neurons. Second, users
can limit the number of Mls returned by a query. Keeping this num-
ber low allows the search algorithm to terminate early without find-
ing all MIs in the network. Visually inspecting a small number of
MIs is often satisfactory for exploratory or initial analysis. We use
heuristics, like the number of nodes in the motif and the number of
edges without specific constraints, to estimate if a motif query will
run longer than 20 seconds, in which case we warn the user.
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Figure 7: Motif pruning. Vimo gradually emphasizes neuron con-
nectivity in MIs. We first show the full 3D morphology (a) and sub-
sequently prune all branches unrelated to the motif (b) until only
essential branches remain (c). In the process, key features of the
motif become visually more prominent (colored circles).

7. Motif Analysis

Most connectome analyses require a detailed understanding of neu-
ron wiring. However, due to the complex morphology of neurons,
it is hard to map the motif connectivity to a 3D visualization of
the neurons (see Fig. 4). Previous visualization tools either use
plain node-link diagrams [SCHT09, BAAK*13] or create planar
embeddings of neurons [AABS*14]. However, neither node-link
diagrams nor planar visual encodings can accurately show spatial
relationships between neurons. 2D projections of neurons abstract
their spatial entanglement, which is relevant to understand connec-
tivity. Based on those observations, we designed a spatial explo-
ration and focus&context method that gradually emphasizes motif
connectivity in the 3D representation of a motif instance to facil-
itate a better understanding of the data. Additionally, we have de-
signed a set of targeted interactions that further highlight connec-
tivity without distorting neuron morphology.

7.1. Spatial Exploration

As the first step in the exploration process, Vimo supports the inter-
active inspection of the 3D spatial morphology of all neurons of a
motif instance (T3). To ensure scalability, we render neurons based
on their skeleton. Skeleton representations of neurons are faster to
download during runtime than meshes, as they require less data
while retaining the essential morphological details of neurons. For
each skeleton node, Vimo uses the neuron’s diameter to adjust the
skeleton thickness, leading to more accurate visual representations.
To allow users to quickly identify the role of a neuron in the motif,
we further color each neuron corresponding to its color in the motif
sketch. For context and to enhance a user’s spatial orientation, the
3D view in Vimo can further show the outlines of brain regions.

7.2. Gradual Motif Highlighting and Abstraction

Our visual abstraction approach contains three main steps, all
aimed at gradually highlighting motif connectivity, to help users
understand how neurons form a certain motif (T4). Users can grad-
ually move between the steps by dragging a slider in the user inter-
face (see Fig. 10e), which results in a continuous animation from
one highlighting- and abstraction level to the next.

Neuron pruning. In the first step, we aim to highlight motif con-
nectivity by visually removing those parts of a neuron that are not
involved in the connectivity motif. Users can gradually peel away

all parts of the neuron that are not in the motif, which reduces vi-
sual clutter and focuses the user on the important parts of a neuron
in relation to the motif. We start with a 3D skeleton representation
of all neurons in the motif instance (see Fig. 7a). First, we iden-
tify all non-motif branches (i.e., neuron branches with no synapses
involved in the motif). Next, we compute the geodesic distance
of every skeleton vertex in a non-motif branch to its closest mo-
tif synapse. This allows us to gradually prune non-motif branches
based on their distance to the motif by moving a slider until only
branches with motif synapses remain (see Fig. 7b,c). After pruning
all non-motif branches, the user can see the essence of all neurons
that make up the motif (see Fig. 7c).

Exploded view. In the second step, we further reduce the visual
complexity resulting from entangled neurons. We spatially pull all
neurons apart into an exploded view after all non-motif branches
are pruned (see Fig. 8b). This allows scientists to study the mor-
phology and branching patterns of individual neurons and better
see where synapses involved in a motif are located. To evenly dis-
tribute the neurons in space, we use the Saff and Kuijlaars algo-
rithm [SK97] to compute the directions of the explosions. The al-
gorithm evenly distributes n points on a unit sphere. We then com-
pute the explosion directions by taking vectors from the sphere’s
center to each sampled point. In the exploded view, all pre- and
post-synaptic sites between motif neurons are marked with spheres
colored similar to their synaptic partner neuron (see Fig. 8b). This
helps the user quickly grasp the neurons’ connectivity, even as the
neurons are spatially apart.

Connectivity Visualization. In the third step, we highlight connec-
tivity in the exploded view. We initially draw lines between the pre-
and post-synaptic sites of the neurons (see Fig. 8 c,d). We use two
strategies to highlight important connectivity features and avoid vi-
sual clutter. First, we use hierarchical clustering of synapses and 3D
bundling to aggregate lines. We choose a hierarchically bundling
strategy as it can visualize different levels of synapse clusters and
how they are distributed along the neurons. Based on feedback from
our collaborators, we cluster synapses based on their spatial prox-
imity on the neuron and based on which neuron they connect to.
The user can set the bundling strength via the focus&context slider.
Alternatively to the clustering approach, the user can also decide to
only see the connecting lines for user-selected synapses.

Design Alternatives. In an initial version of Vimo, we gradually
moved from the pruned neuron view all the way to a node-link view
by abstracting neurons slowly into nodes and collapsing synapses
to form the lines between the nodes. We hoped this would help sci-
entists better see the relation between the motif and the involved
neurons. However, we ultimately abandoned this idea since scien-
tists could already see the abstract motif in the sketching interface
and had no use of such a simplified view of the motif in their analy-
sis. They are interested in seeing more nuanced anatomical details.

7.3. Interaction
We offer several further interactions for visual motif analysis.

Synapse highlighting. In Vimo, synapses are drawn as small
spheres between the pre- and post-synaptic sites of the connected
neurons. Visually highlighting all synapses between two neurons
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Figure 8: Exploded view and connectivity visualization. After neurons are fully pruned (a), we explode the view (b) to reduce visual
complexity due to neuron entanglement. Vimo gradually clusters synapses and bundles directed edges between pre- and post-synaptic sites
to further reduce visual clutter (c, d). Two bundles indicate two distinct clusters of synapses between the purple and the yellow neuron (d).
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Figure 9: Visualizing multi-motifs. Vimo supports exploring con-
nections between multiple motif instances. For instance, this set of
six neurons forms the sketched motif three times.

provides a simple yet effective visual clue to study where neurons
connect. A set of synapses is either highlighted by clicking on a
synapse sphere in the 3D view or by selecting an edge in the sketch-
ing panel or the summary view (see Fig. 10d).

Showing brain regions. Interactively rendering the surface of
small brain regions provides orientation within the brain and allows
users to verify if a selected motif instance adheres to the constraints
specified in the sketch. We show semi-transparent surfaces of the
brain regions overlayed to the 3D renderings of the neurons. Users
can interactivley select which brain regions to show and quickly
enable and disable the renderings.

Graying out non-motif branches. While neuron pruning (see
Sec. 7.2) helps remove unrelated branches to a motif instance, it
removes context about the motif neurons that might be necessary
during analysis. Therefore, Vimo allows graying out all non-motif
branches of a motif instance to highlight important parts of the neu-
rons and show the context of all other neuron branches.

Further Analysis. Once scientists observe interesting motif char-
acteristics in an exploratory analysis session in Vimo, they need
to perform an in-depth analysis on a set of MIs. This involves in-
depth statistical analyses and studying synapse distributions. Vimo
supports this step by integrating tightly with neuPrint [PCD*22],
which provides a set of analysis tools for neurons. Users can access
neuPrint data for all neurons of an MI by using the context menu.

8. Motif-based Synaptic Chains

Analyzing a single MI at a time provides only a partial view of the
connectivity of involved neurons. To study how a motif instance is
embedded in the larger network, scientists need to visualize multi-
ple connected MIs simultaneously (see Fig. 9).
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8.1. Multi-Motif Analysis
Vimo supports the analysis of synaptic chains in two ways:

Neuron-centric analysis. First, domain experts are interested if a
neuron forms the same motif with multiple partners (TS). For in-
stance, in Fig. 9, neuron B forms the same motif with two neurons
of type A (MI-1, MI-2). Users can specify a seed neuron in the mo-
tif sketching interface to ensure that only motif instances involving
that particular neuron are returned.

Synaptic pathway analysis. Second, neuroscientists are interested
in following synaptic pathways that repeatedly include a sketched
motif. For example, MI-2 and MI-3 form such a synaptic pathway
in Fig. 9. To query for those, users start from a seed motif and set
the ID of a sink neuron in the motif instance to a source neuron in
the motif sketch through a context menu (T6). This strategy aids
in continuously building up motif-based synaptic pathways down-
stream or upstream from a seed motif instance.

8.2. Multi-Motif Visualization

To support analyzing multiple motif instances, Vimo uses three
strategies to visually guide the analysis.

Connectivity Summary. Vimo provides an abstract overview of the
connectivity of all selected MIs in a small node-link diagram (see
Fig. 10d). The nodes and edges of the focused motif instance are
colored, while all other elements are grayed out. This overview can
help the user to stay oriented in the 3D view. Selecting an edge in
the summary view also highlights all corresponding synapses in the
3D view and the corresponding edge in the sketch panel.

Highlighting motif instances. Inspecting one motif instance in 3D
can already be overwhelming due to the complex morphology of
neurons. Vimo always focuses on a particular MI, while all other
unrelated neurons are grayed out to highlight the neurons of the MI
in focus. Users can quickly switch focus by clicking on a different
MI in the list view.

Multi motif abstraction. We designed the continuous fo-
cus&context approach (see Sec. 7.2) to scale to multiple motif in-
stances. Pruning and exploding multiple motif instances simulta-
neously helps domain experts to better understand how those in-
stances wire to form a synaptic chain.
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Figure 10: Overview of the Vimo user interface. Motif sketch of a participant in the user study (a) and list view of resulting Mls (b). The
central view shows 3D renderings of all selected MIs (c). The multi-motif summary view visualizes the relationship between the selected motif
instances when following motif chains (d). Users control the focus&context abstraction level using the interactive slider (e).

9. Data and Implementation

Data. Vimo requires a connectivity network and proofread recon-
structions of neurons in the form of 3D skeletons and synapses, in-
cluding their spatial locations and pre- and post-synaptic partners.
Meta-data, like neuron types and brain region trajectory informa-
tion, are used to increase the expressivity of motif queries but are
not required. Precomputed motif counts can guide motif sketching
(see Sec. 6.1). Vimo expects data in the neuPrint format [PCD*22].
neuPrint currently hosts four datasets (3 hemibrain versions and
the fib19:v1.0 dataset), and new datasets are expected on the same
platform in the future. For the development and evaluation of this
project, we used the hemibrain vi.2.1 dataset.

Scalability. Interactivley exploring tera- and petascale connectome
datasets requires scalable tool architectures. We leverage different
data representations with strong compression rates to achieve scal-
ability. For instance, the electron microscopy imaging data of the
hemibrain dataset is 26 TB in size [SXJ*20]. In contrast, the skele-
ton representations of the reconstructed neurons require only ~10
GB, while the pure connectivity graph compresses the data to ~25
MB [SXJ*20]. As a result, the data size required for certain anal-
yses is reduced by a factor of a million by transforming the imag-
ing data into a connectivity network. We exploit these compres-
sion rates by purposefully choosing the data representation for each
step of the analysis workflow. For instance, Vimo queries the com-
pact connectivity network for motifs. Based on the detected and
selected motif instances, Vimo downloads a small set of the neu-
ronal skeletons and synapses from the neuPrint server [PCD*22] or
from a pre-computed cache during runtime. Those strategies enable
domain experts to use Vimo on consumer-level hardware without
specific requirements for RAM and graphics hardware.

Implementation. Vimo is implemented as a web application, using
a React-based frontend and a Python-based backend. Vimo builds
on existing software frameworks like NaVis [SBS*21a] for data
processing, and a modified version of SharkViewer [WBH14] for

interactive 3D rendering. The hemibrain dataset [SXJ*20] is hosted
remotely in the neuPrint ecosytem [PCD*22]. Motif sketching is
implemented using the Paper.js library. Vimo translates the visual
sketch to an optimized Cypher query [FGG* 18] using the Dotmo-
tif [MRJ*21] language as an intermediate step. This Cypher query
is then sent to a remote graph database to determine a list of motif
instances. Vimo is open-source, and we offer detailed instructions
for users in our tutorials.

10. Evaluation

We report on an in-depth case study and qualitative user study to
evaluate the usability and usefulness of Vimo.

Participants. We evaluated Vimo with 7 domain experts (P1 - P7,
3 male, 4 female) from the Harvard Center for Brain Sciences
and HHMI Janelia research campus. Two participants are also co-
authors. To limit participants’ time commitment, three participants
performed the case study, and the remaining four participants com-
pleted the user study. All participants are experts in analyzing neu-
ronal circuits reconstructed from EM image data, four are experts in
Drosophila connectomics (6 postdoctoral researchers and 1 Ph.D.
student in neuroscience). None of the participants use interactive
tools for motif analysis, even though 6 out of 7 participants rate
motif analysis as important for their research.

Setup. We met with each participant for 90 minutes in person or
on Zoom. After a short introduction to the tool, all users, who had
no hands-on experience with Vimo, steered the tool themselves. We
asked all participants to think out loud to capture their thoughts.

10.1. Case Study: Exploratory Analysis

We report on an exploratory case study with domain experts spe-
cializing in analyzing neuronal circuits in the Drosophila brain. We
provided no specific tasks, as we wanted to test what types of anal-
yses an experienced neuroscientist would conduct. We describe two
motifs in detail that were analyzed by one expert during the session.
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Feedforward outputs of ExR neurons. First, the expert
searched for a familiar connectivity motif to verify the tool’s re-
liability. They started by sketching a feed-forward motif involving
an external ring (ExR) neuron, an ellipsoidal body (£B) neuron, and
aneuron without any constraints (T1). The motif can be reproduced
by loading this sketch. The expert iteratively refined their sketch by
adding more constraints to the nodes and edges until they found an
MI that matched the desired characteristics. Next, they selected an
MI that included one ExR neuron and two EPG neurons (Ellipsoid
body - Protocerebral bridge - Gall) (T2). After inspecting the 3D
renderings, they used the summary view to highlight the synapses
between the ExR neuron and both EPG neurons (see Fig. 10d).
The expert indicated that this helped confirm that the ExR neuron
forms synapses with each EPG neuron on different arbors (T3).
They decided to study this observation in more detail using the fo-
cus&context slider and first pruned all unrelated motif branches of
the neurons. Next, they iteratively moved back and forth from the
non-exploded view to the exploded view to understand better how
the neurons entangle at areas of strong synaptic connectivity. Next,
they studied the bundled lines between the pre-synaptic sites of the
ExR neuron and one of the EPG neurons. They stated that the ex-
ploded view helped them to find a previously unknown connection
and was especially helpful for quickly identifying which synapses
might be considered biological noise as they are distant to strong
synapse clusters (T4). Finally, the expert was interested in other
instances of the sketched feed-forward network that also involve
the previously studied ExR neuron and one of the EPG neurons.
Hence, they searched the query results for a motif instance that in-
cluded these particular neurons and added this MI to the 3D view
to analyze how these multiple motif instances connect (T5). They
first focused on each MI individually to better understand the spa-
tial relationships between the two MIs. Finally, they used neuron
pruning to compare the connectivity of both motif instances.

Circular connections in visual input neurons. Next, the neu-
roscientist sketched a motif forming a circular connection between
three visual input neurons, specifically tuberculo-bulbar (7uBu)
neurons and ellipsoid body ring (ER) neurons (T1). The motif
sketch and the studied motif instance are available for reproducible
results. Based on the motif counts in the sketch panel, the expert
found that circular connections are underrepresented in the dataset,
making it interesting for detailed analysis (T2). After analyzing
an MI in 3D, the expert identified that all synapses are clustered
tightly at a specific spatial location (T3, T4). Based on this obser-
vation, the scientist was interested if other neurons of the same type
formed the same motif but expressed stronger connection strengths.
Hence, they increased the synapse strength constraints in the sketch
and found another MI with an even stronger synapse cluster close to
the previously observed cluster (T1, T2). As a final step, the expert
used the exploded view to study the internal structure of the cluster
and inspected the bundled lines to learn how the circular motif is
expressed within the cluster (T4).

10.2. Qualitative User Study

To evaluate the usability and usefulness of Vimo in a qualitative user
study, we asked participants to perform two tasks: motif sketching
and analyzing motif connectivity with our focus&context approach.
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Figure 11: Motif sketching task. Study participants had to sketch
this known biological motif between EXR neurons and other neu-
rons in the ellipsoidal body (EB) of Drosophila [HHF*21].

10.3. Task 1: Motif Sketching and Querying

In the first task, we asked participants to sketch and query for a
connectivity motif recently discovered by Hulse et al. [HHF*21]
(T1). The motif describes ExR neurons and other EB neu-
rons that form connections inside and outside the EB and con-
tributes to the context-dependent action selection behavior of
Drosophila [HHF*21]. A correct motif sketch and a related mo-
tif instance are available to reproduce results. We provided a
schematic illustration of the motif and its constraints (see Fig. 11)
to all participants. Sketching the connectivity between the motif
neurons was straightforward for all participants, while defining
node and edge constraints required a learning process. Two par-
ticipants needed help from the study conductor to specify appro-
priate constraints. We observed that the performance of defining
constraints depends on the participant’s familiarity with fly brain
anatomy and knowledge about Drosophila brain regions. Partici-
pants familiar with the dataset could easily identify how to trans-
late the instruction ’outside EB pathway’ into an edge constraint.
Our survey results show that all four study participants find the
motif sketching interface useful (see Fig. 12, Q2). However, for
querying large motifs involving more neurons (e.g., n > 6), only
3 out of 4 participants find motif sketching useful because of vi-
sual clutter in the sketching interface. During the pilot study, we
found that neuron-type wildcards can improve the utility for defin-
ing node constraints. Therefore, we added this functionality which
was then widely used for the remainder of the user study. Addition-
ally, participants suggested changing the default setting for synapse
strength constraints to avoid repetitive interactions.

10.4. Task 2: Analyzing Motif Connectivity in 3D Data

In the second task, we provided users with a motif and the 3D
view of a motif instance and asked them to identify the main motif
connectivity in the three-dimensional data (T3, T4). We tested two
conditions: In the first condition, participants had access to the full
functionality of Vimo, including our focus&context technique. In
the second condition, participants could not use our focus&context
method. We used two motif instances which we counterbalanced
between conditions. Every participant had to perform the task with
both conditions. To test their understanding of the motif connec-
tivity in 3D, we asked participants to draw an illustration of the
neuron branches involved in the motif and their connections for
both conditions. We observed that the use of our focus&context
technique led to less cluttered illustrations by the participants, in-
dicating a clearer and better understanding of motif connectivity
due to interactive simplification. We show example user illustra-
tions in the supplemental material. Additionally, we collected sur-
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Figure 12: Vimo user ratings. We show neutral responses in gray,
positive responses on the right in green and the percentage of par-
ticipants who responded positively.

vey responses from all participants about our interactive motif ab-
straction approach (see Fig. 12), demonstrating the usefulness of
the different abstraction components.

10.5. Findings

Vimo leads to fast, iterative analysis. We observed that users often
query a specific motif but forget to specify certain constraints in the
motif sketch. Vimo supports users to quickly iterate on their motif
sketches and queries, leading to more relevant motif analyses.

Biological constraints are essential for motif analysis. We found
biological constraints to be essential for expressive motif queries.
Specifically, wildcards for neuron types were perceived well, con-
straining a neuron to a group of types. For instance, the ExR* type
requires a neuron to be in any of the ExRI - ExRS types.

Exploded views improve spatial motif understanding. The grad-
ual transition of neurons into the exploded view helped users under-
stand how neurons entangle. Understanding the complex entangle-
ment is crucial for analysis but also an obstacle for mentally map-
ping the motif graph structure to the 3D visualizations of neurons.

Vimo improves the state of the art. All study participants agreed
that Vimo improves their motif analysis workflow. Users partic-
ularly liked the interactive motif sketching together with neuron
pruning and synapse highlighting for their visual analysis in 3D.

11. Discussion

User expertise for high-resolution connectivity analysis. It was
challenging to find qualified experts for the user study. Many neuro-
science labs are interested in connectivity analysis at the nanometer
scale, however, few have done it yet. Datasets have only recently
become available, and with a lack of scalable computational tools
for high-resolution connectivity analysis, many scientists have not
yet started on this endeavor. We hope that Vimo can reduce the bar-
rier of entry for this type of research and attract more labs and re-
searchers to analyze high-resolution connectivity.

Limitations. Vimo focuses on the interactive analysis of motifs and
quick, iterative refinement of motif queries. Therefore, the strength

of our tool is in analyzing relatively small motifs, with a lim-
ited number of nodes. While our visualization approach scales to
larger motifs, running large motif queries becomes computation-
ally expensive, and would hinder the interactivity of our tool. Pre-
computing motif queries and caching the results would circumvent
this issue. Further, while Vimo supports the visual analysis of mul-
tiple connected motif instances, large-scale comparisons of motif
instances distributed across the entire dataset are not yet supported.
Finally, in Vimo’s current design, researchers need a prior hypoth-
esis about relevant network motifs before sketching a pattern. In
other types of analyses, researchers start from a fixed set of neu-
rons and are interested in the set of expressed connectivity motifs.
However, even a small number of neurons are involved in an im-
mensely large set of different motifs. This exploratory approach is
inverse to Vimo and not yet supported in our tool.

Tradeoff between accuracy and visual abstractions. A main de-
sign decision of our approach is that we do not distort neuron
anatomy in any way, but rather want to enhance the user’s per-
ception of the motif connectivity in the data. Many previous ap-
proaches have focused on visual abstractions that simplify neurons
and neuron anatomy or use 2D projections of the 3D connectiv-
ity graph [AABS*14, MAAB™18]. We take a complementary ap-
proach and focus on highlighting connectivity in the original data.
This comes at the cost of a higher cognitive load than using sim-
plified 2D representations, however, it allows scientists to better
understand the detailed spatial make-up of a motif and its neurons.

12. Conclusion and Future Work

In the future, as more large-scale and proofread datasets become
available [SXJ*20,MABB*21,SCJB*21,TMB*22, DMM*22], we
want to extend Vimo to support data from other organisms, such
as mice and humans. Generally, all our approaches generalize, but
small differences apply. For instance, in the human data, fewer
neurons form multisynaptic connections compared to the brain of
Drosophila, making motif connectivity strength a less powerful
query constraint. However, in contrast to the fly brain, neurites in
the human brain can be labeled more clearly as axonic nor den-
dritic, which would allow us to emphasize the direction of in-
formation flow in our focus&context method. Furthermore, with
these new datasets, comparative visual motif analysis will soon be
within reach. Researchers can already identify a one-to-one cor-
respondence between neurons across the different specimens in the
brain of Drosophila. Thus, future tools should support analyses into
whether the same neurons across specimens form similar motifs.

With Vimo, we have taken a first step towards scalable visual mo-
tif analysis for nanoscale brain data. The core idea of our approach
is to enable scientists to quickly and intuitively sketch motifs they
are interested in and to allow them to add biological constraints to
their queries. We support a detailed motif analysis in the original
3D space, using a focus&context approach. We give users a better
understanding of their data by allowing them to gradually highlight
motif connectivity in relation to the three-dimensional structure and
arrangement of neurons and synapses in the brain. We believe that
Vimo is a first step towards neuronal pathway analysis at a larger
scale, where structural and functional data are combined for a bet-
ter understanding of the brain.
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