(2023) 4:470)
Check for
updates

SN

SN Computer Science
https://doi.org/10.1007/s42979-023-01910-1

ORIGINAL RESEARCH

Detecting Semantic Clones in Microservices Using Components
Amr S. Abdelfattah' - Alejandro Rodriguez’' - Andrew Walker' - Tomas Cerny'

Received: 28 August 2022 / Accepted: 27 April 2023
© The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2023

Abstract

The growing popularity of enterprise technologies for decentralized systems leads to commonalities in using components.
This direction, however, opens new challenges to code clone detection. Approaches can no longer look at the low-level code
but must deal with the higher-level component semantics. Yet, not many works addressed this trend. One of the quality issues
that can be identified in large systems is duplicated behavior with different syntactic structures. It is crucial to detect these
issues for enterprises where software’s codebase(s) grows and evolves, and maintenance costs rise significantly. This issue
is referred to as a semantic clone. The detection of semantic clones requires semantic information about the given program.
Unfortunately, while many code clone detection techniques are proposed, there is a lack of solutions targeted explicitly toward
enterprise systems and even fewer solutions dedicated to semantic clones. To reason about semantic clones, we consider
different pairs of component call-graphs in the system. Since different component types are common in enterprise systems,
we can ensure that only relevant fragments are matched, using targeted enterprise metadata. When applied to an established
system benchmark, our method indicates high accuracy in detecting semantic clones. We also assessed different system ver-
sions to elaborate on the method’s applicability to decentralized system evolution.

Keywords Code Quality - Code Clone - Semantic Clone - Static Analysis - Enterprise Technology - Microservices - Cloud
Systems - System Evolution

Introduction

Source code duplication by copying and pasting into another
section of source code, even with minor modification, often
happens throughout software development and maintenance.
It can result from lacking development skills or rushed devel-
opment, prioritizing visible profit in the form of new feature
delivery over less visible code quality [1]. This copied code

This article is part of the topical collection “Advances on Cloud
Computing and Services Science” guest edited by Donald F.
Ferguson, Claus Pahl and Maarten van Steen.

< Tomas Cerny
tomas_cerny @baylor.edu

Amr S. Abdelfattah
amr_elsayed1 @baylor.edu

Alejandro Rodriguez
alejandro_rodriguez4 @baylor.edu

Andrew Walker
andrew_walker2 @baylor.edu

Department of Computer Science, Baylor University, One
Bear Place #97141, Waco, TX 76798, USA

Published online: 23 June 2023

is called code clone, and the process is called code clon-
ing [2—4]. A code clone is a code fragment with other code
fragments identical or similar to it in the source code [5].
Various studies suggested that almost 20-50% of large soft-
ware systems consist of cloned code [2—4]. These clones
have two main categories: a syntactic clone [5] considers the
code structure and syntactic variants, and a semantic clone
[6] is concerned with similar functionality regardless of the
different syntactic variants and implementation. Obviously,
semantic clones can emerge from other means than copying
and pasting and could result from distinct developer ambi-
tions or appear in system integration.

Code cloning impedes software maintenance, as extended
efforts are needed to apply fixes at multiple clone locations,
possibly leading to a ripple effect or leaving inconsistencies
in the codebase. Identified errors require code corrections;
however, if the relevant code segment is a clone, it is essen-
tial to identify all related segments throughout the source
code. However, it is difficult to manually detect the code
cloning to be refactored from a large number of lines of
code. As a result, this increases software maintenance costs
[6]. Clone detection tools could considerably simplify the

SN Computer Science
A SPRINGER NATURE journal

http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-023-01910-1&domain=pdf
http://orcid.org/0000-0002-5882-5502

470 Page 2 of 23

SN Computer Science (2023) 4:470

tedious work of clone identification. Scalability is an impor-
tant property of the tools that detect the code to be refactored
[5]. Ajad et al. [6] surveyed 23 research articles published
in top-tiered venues during 2008-2020 in the domain of
semantic code clone detection and identified various avail-
able tools that detect clones in software systems. The sur-
vey observed that cloning increases maintenance costs, the
number of lines of code, and bug propagation. Furthermore,
it sometimes limits further system development through the
existing source code.

Still, most existing clone approaches detect syntactic
clones. The semantic clones require essential analysis of
the actual behavior and a deeper understanding of the intent
of the code fragment. For example, two code blocks that
perform the same calculation, but use different variables
and functions, would be considered semantically similar.
However, semantic-based approaches can detect syntactic
clones as well [2, 7]; therefore, semantic clones are consid-
ered more meaningful than syntactic clones because they
indicate that the same functionality is duplicated in the code
either with similar or different syntax, which can lead to
maintenance issues and increased complexity. In general,
this is a challenging problem; therefore, very few approaches
attempt to detect semantic clones [8].

Analyzing decentralized enterprise systems (i.e., micros-
ervices or cloud-native systems) can be challenging due to
their distinct characteristics, such as the presence of multiple
codebases within a system and the use of different languages
and technologies across services. Thus, a high-level, com-
ponent-based approach is necessary to overcome these chal-
lenges rather than relying solely on low-level code analysis
and its fundamental properties.

This work targets semantic clone detection in decentral-
ized enterprise systems. It takes into account that current
development practice does not use low-level coding but
rather builds on well-established components like end-
points, controllers, services, repositories, entities, remote
calls, messaging, etc. Considering that components augment
code segments with additional semantics, these components
and their attributes can be used when determining whether
selected code fragments could be semantic clones.

In particular, the proposed method extracts call graphs
from across system endpoints. These call graphs are con-
structed in a way that nodes represent cross-cutting com-
ponents capturing their types and additional attributes. To
determine the semantic similarity in the system, we con-
sider the similarity of such graphs across system endpoints.
This work introduces a comprehensive methodology that
evolved from our previous work [9]. It illustrates how a sys-
tem abstraction can be constructed using high-level design
elements that are common across enterprise frameworks.

SN Computer Science
A SPRINGER NATURE journal

We use an established microservice benchmark to illus-
trate the use of our method and detail multiple perspec-
tives. We elaborate on the initial weight calibration for our
method across components and their properties in the call
graph and demonstrate how to apply it in system evolution.
We also illustrate supportive tools developed for integration
with Software Development Life Cycle (SDLC) and CI/CD
pipelines for real-life application usage.

This manuscript brings the following outcomes:

— A method to detect semantic clones in enterprise systems
using components.

— A prototype tool for semantic clone detection assessed
on an established microservice benchmark.

— A enterprise system semantic clone dataset containing
27,221 labeled items.

— A plugin for integrating our clone detection into the
development process.

— An interactive tool for visualizing the identified clones
and inconsistencies in system components was created.

The rest of the paper is organized as follows: Section "Back-
ground" discusses the background, and the section "Related
Work" details related work. Section "Semantic Code Clone
Methodology" outlines the semantic clone methodology and
its phases. Then, Section "Case Study" illustrates the method
implementation in a case study along with a discussion. Sec-
tion "Integration to the Development Process" elaborates
on tools developed for practical application in development
workflows. Section "Discussion” provides a discussion, and
the section "Threats to Validity" discusses the threats to the
validity of the proposed approach. Finally, the paper is con-
cluded in the section Conclusion.

Background

Code clones can be detected at different levels of code
matching. The below list iterates over the Basic types of
clones [2, 10]:

e Exact clones (Type 1): Identical code segments except
for changes in comments, layouts, and whitespaces.

e Renamed clones (Type 2): Code segments that are syn-
tactically or structurally similar other than changes in
comments, identifiers, types, literals, and layouts. These
clones are also called parameterized clones.

e Near Miss clones (Type 3): Copied pieces with further
modification such as addition or removal of statements
and changes in whitespaces, identifiers, layouts, com-

SN Computer Science (2023) 4:470

Page3of23 470

ments, and types but outcomes are similar. These clones
are also known as gapped clones.

e Semantic clones (Type 4): More than one code segment
that is functionally similar but implemented by similar
or different syntactic variants like iterative and recursion
approaches for the same algorithm implementation.

The researchers grouped these types into two main catego-
ries of clones: syntactic clones, which include Type-1, Type-
2, and Type-3 [5], and semantic clones [6]. The syntactic
similarity spectrum is extensive and includes subcategories
for Type-3 based on the syntactical similarity percentage
[11]. For instance, “Very Strongly Type-3” has a similar-
ity range of [90-100%), “Strongly Type-3" falls within
[70-90%) and “Moderately Type-3” ranges from [5S0-70%),
while “Weakly Type-3” has a range of [0-50%).

Classifications of Clone Detection

Code clones are often operationally defined by individual
clone detection methods. The established detection tech-
niques can be categorized as suggested by Kumar et al. and
others [5, 6]:

Text-based approaches are capable of detecting exact
clones. Each line of the source code is compared with other
lines. If consecutive lines of code are identical to other lines
of code, they are detected as code clones. This method can-
not detect code clones with different identifiers such as vari-
able names, function names, or type names [5].

Token-based approaches can detect code clones that have
different formats, such as different indention, white space,
tab, and different identifiers. After the source code is divided
into tokens, identical token sequences that are longer than a
certain length are detected as code clones. They are compe-
tent in detecting all syntactic types of clones. Nevertheless,
they can not detect semantic clones efficiently.

Abstract Memory States (AMS) provide a quick, lower-
level analysis [12]. AMS methods cannot handle scopes
beyond single methods. While using AMS helped lessen
the run time and lowered false-positive rates, its usefulness
is limited to decentralized systems. This limitation renders
them much less useful for enterprise applications, where
the flow of method calls is more important for determining
duplicate behavior due to the separation of concerns making
some methods extremely short.

Abstract Syntax Tree (AST)-based gives the abstract syn-
tactic structure of the code and is used as the base for other
methods. It is often associated with syntactic clones [6] but
has also been used for semantic clone detection. After build-
ing an AST from the source code, subtrees having the same
structure are detected as code clones. It identifies cohesive
parts of the program source code as code clones, such as
whole methods or consecutive statements in the same scope.

However, comparing subtrees is expensive, so it is difficult
to apply the AST-based technique to large-scale software
systems, given their volumes of low-level detail.

Metric-based techniques specify and measure several
metrics from a certain unit as the function, method, or class
of the software system. The units having identical or similar
metrics values are detected as code clones. It can detect syn-
tactic clones; however, they have low accuracy in semantic
clones in comparison to the graph-based approaches.

Program Dependency Graph (PDG)-based approaches
can detect semantic clones with good accuracy. After
building a PDG as a result of the semantic analysis of the
source code, isomorphic subgraphs are detected as code
clones. It is the most expensive technique available, so it
is difficult to apply the technique to middle-scale or large-
scale software systems. Sometimes, it is observed that
PDG-based tools are highly scalable and portable rather
to other approaches like text-based, token-based, etc.

To avoid the time complexity of the PDG, Control-
Flow Graph (CFG) [9, 13] can capture the same control
dependence as PDG. CFG uses graph representation that
depicts the relationships and order of operations, of which
all paths might be traversed through a program during its
execution. It captures the behavior of the program at a
component level, making it easier to analyze than low-
level code, and provides a clear understanding of the
system’s behavior. It can easily encapsulate the informa-
tion per each basic block. It locates inaccessible codes
of a program, and syntactic structures such as loops are
easy to detect in a CFG. It shows notable performance in
measuring semantic clones. Still, CFG provides fine detail
of program structure, and the reduction of the low-level
details leads to call graphs. Call graphs represent the call-
ing relationships between subroutines in a program.

There are some attributes that influence clone detec-
tion, such as the granularity level that could be a method,
function, code fragment, or procedure block, depending
on the particular programming paradigm followed by a
language [14]. A code fragment is a set of code lines, not
necessarily contiguous. It is the slice as computed at the
variable-level, function-level, or file-level [15].

The choice of system intermediate representation and
detection algorithm has a significant influence on clone
detection. Clone detection is related to the representation
that the detection approach relies on. Thus, Type-1 clones
are discovered by text-based approaches, Type-2 by lexi-
cal or token-based approaches, while Type-3 clones are
discoverable by syntactical approaches based on AST, pos-
sible with the involvement of information from software
metrics. Using AST as a system intermediate representa-
tion suits better for detecting Type-3 clones. Kumar et al.
[6] suggest that AST cannot detect Type-4 clones with bet-
ter accuracy. Finally, graph-based and hybrid approaches

SN Computer Science
A SPRINGER NATURE journal

470 Page 4 of 23

SN Computer Science (2023) 4:470

Table 1 Related Work
Approaches (SA: Static

Ref. GUI Clone

Technique IR System Enterprise

Analysis, MA: Manual [5] Yes Syntactic SA AST Token Monolithic ~ No
éenai*ll}l]f:g, li/llklflxzrcrlrlllendeiate [18] No Semantic SA/ML Comment Monolithic No
Representation) [19] No Syntactic Semantic SA/ ML PDG AST BDG Monolithic No
[13] No Syntactic Semantic SA/ ML AST CFG Monolithic No
[20] No Syntactic SA CFG Token Monolithic No
[15] No Syntactic Semantic SA CFG LSH Monolithic No
[21] No Semantic SA CFG Monolithic No
[14] Yes Semantic SA eCST Monolithic No
[22] Yes Syntactic MA Manual: -method, -file Microservice Yes
This work Yes Semantic SA/ML CCG Microservice Yes

are involved in the detection of Type-4 clones. Hybrid
approaches combine several different methods [14, 16, 17].

In this paper, the intermediate representation is Com-
ponent Call Graph (CCG). It is extracted from the CFG
and augmented with cross-cutting components. It provides
a comprehensive overview of the architectural structure
and its flow. The CCG indicates the control flow between
components and implies component dependencies. The
calls include both internal and external calls across
microservices.

Related Work

Clone detection is a wide-ranging field of research. How-
ever, several limitations arise when detecting semantic
clones, including scalability issues for enterprise application
clone detection. The various approaches are evaluated based
on multiple criteria, as summarized in Table 1. This table
considers the presence of a Graphical User Interface (GUI),
the type of clones analyzed (syntactic or semantic), the tech-
niques used, the artifacts utilized, the focus on monolithic
or microservices-based systems, and finally if the approach
considers multi-layer systems in enterprise settings.
Approaches that are fantastic for any of the four types
of code clones may not provide useful analysis for enter-
prise applications. For instance, the tool CCFinder [23] is an
example of code clone detection that has been implemented
and can discover Types 1 through 3 code clones efficiently
and effectively. They focused heavily on maintainability and
can show the impact of removing a code clone from the
system. Yoshiki et al. [5] utilized CCFinder as an analysis
component to be integrated with a GUI component to intro-
duce the tool called Aries. The proposed tool automatically
computes metrics that are indicators for specific refactor-
ing methods rather than suggesting the refactoring methods
themselves. In conclusion, they stated that CCFinder has
high scalability. It can finish code clone detection within an
hour, even if the source code has millions of lines of code.

SN Computer Science
A SPRINGER NATURE journal

However, the CCFinder acknowledges that inter-method
flows are challenging to capture, and they focus exclusively
on source code analysis. Thus this tool is not beneficial for
large and complex enterprise systems that are dependent on
inter-flow communication. Therefore, even tools that are
fantastic for Types 1 through 3 code clones may not provide
useful analysis for enterprise applications.

Generally, existing techniques do not scale very well to
large-scale software systems since most of them use PDGs
for computation, which is a costly process in the large and
distributed context [15]. That supports the usage of CFG as
an optimal alternative, such that it can achieve the required
task with much fewer computations [15]. Furthermore,
addressing the semantic showed tools are using machine
learning and deep learning-based approaches to detect
semantic clones, and those approaches can detect semantic
clones with good value of the result. Therefore, most of the
related work shows that detecting the semantic clones rec-
ommend one or both approaches of machine learning and
CFG to be employed in combination with supportive algo-
rithms to achieve good measurements.

Andrian et al. [18] employed the machine learning
approach to propose a PROCSSI tool that uses the profiles
generated by information retrieval methods, in this case, a
vector representation from Latent Semantic Indexing (LST)
[24], to compare components and classify them into clusters
of semantically similar concepts. The profile of each source
code document generated by LSI can then be used to cluster
the documents into related groups. Moreover, the authors
augment the real-valued vector representation of the source
code documents produced by LSI by adding more dimen-
sions that would represent structural attributes of the source
code derived from metrics. Preliminary research on this
approach seems promising and would enhance the descrip-
tiveness of the LSI output by including structural type infor-
mation. However, in the case of renaming the data structure
and operation names in a code clone, and when comments
are discarded, their measures were unable to detect similari-
ties between the two such implementations. Nevertheless,

SN Computer Science (2023) 4:470

Page50f23 470

this demonstrates the importance of internal documenta-
tion for source code understanding. From the perspective of
our approach, considering enterprise practices, component
types, and their attributes brings a certain level of insight
to the code fragment that would otherwise need to be docu-
mented. Thus, involving component recognition seems like
a well-justified argument for semantic clone detection.

In combination between machine learning and graph-
based approaches, Abdullah et al. [19] propose a detection
framework for detecting both code obfuscation and clones.
The detection of code obfuscation is one of the significant
use cases for semantic clones. While Bytecode Depend-
ency Graphs (BDG) and PDGs are two representations of
the semantics or meaning of a program, AST captures the
structural aspects. The authors build their prototype using
the combination of PDG, AST, and Java BDG. Moreover,
they integrated many machine-learning-based classifier
algorithms and combine them based on the majority deci-
sion to obtain the final class label. They concluded that their
approach could scale to process millions of files with billions
of lines of code in a reasonable amount of time. However,
all the Java files have to be compiled into a Java byte before
generating BDG and extracting its features. Therefore, all
Java files are required to have no errors before compiling to
Java ByteCode and generating BDG. The limitations remain
for non-bytecode languages such as C# and C/C++.

Wu et al. in [13] combined machine learning with the
CFG approach to propose a novel joint code representa-
tion that applies fusion embedding techniques to learn hid-
den syntactic and semantic features of source codes. Each
method can be generated into an AST and CFG. As the rep-
resentations of AST and CFG have different structures, they
cannot be fused directly. Therefore, they apply embedding
learning techniques [25] to generate fixed-length continu-
ous-valued vectors. These vectors are linearly structured,
and thus the syntactic and semantic information can be fused
effectively. Word embedding [13] is a collective term for
language models and representation learning techniques in
natural language processing (NLP).

Much research weighs the CFG approach more for
achieving semantic clone detection. Fang et al. [20] pro-
pose SCDetector to combine the scalability of token-based
methods with the accuracy of CFG for software functional
clone detection. To avoid the high-cost graph matching, they
first extract the control flow graph by static analysis. Then,
they transform the CFG into certain semantic tokens to avoid
the high-cost graph matching. They designed a Siamese
network [26] to measure the similarity of a code pair. Sia-
mese network has been widely applied in many areas, such
as paraphrase scoring, where the inputs are two sentences
and the output is a score of how similar they are. However,
SCDetector used the Soot framework [6] for achieving the

static analysis phase, which requires successfully compiling
the given codes to be able to extract the CFG. In addition to
SCDetector can only detect method-level code clones and
can not handle clones in other code granularity units when
the same functionality is implemented using different APIs
and different graph structures. Therefore, many semantic
considerations are required to be handled, such as the source
code normalization and analysis of more accurate orders of
all tokens.

SrcClone tool [15] is developed as a slice-based scal-
able approach that detects both syntactic and semantic code
clones. The slice [27] is an executable statement that should
preserve the behavior of the original software. SrcClone
uses control-flow information as retrieved by srcSlice [28].
However, these slices do not include complete control-flow
information; they use limited-flow information that includes
dependent variables, called functions, and aliases. As the
control flow information is not used and no control depend-
ence is computed, the slices computed and used by srcClone
are similar to flow-insensitive data-only slices. The Local-
ity Sensitive Hashing (LSH) algorithm [8] helps srcClone
to efficiently find near neighbors of a given slicing vector.
This algorithm reports any vector with a specific distance
from the query.

Saed et al. [21] propose a novel technique that extracts the
semantics of binary code in terms of both data and control
flow. They applied data-flow analysis to extract the semantic
flow of the registers as well as the semantic components of
the control flow graph, which are then synthesized into a
novel representation called the semantic flow graph (SFG).
Subsequently, they employ the graph edit distance for this
purpose. The edit distance between two graphs measures
their similarity in terms of the number of edits required to
transform one into the other. Given two data flow graphs,
to transform one graph into another. They concluded that
the system would be efficient enough for most real-world
applications. Since it shows an increased accuracy with the
languages constrained by the object-oriented paradigm, that
is not common to place functions with different semantics
in the same source file.

While microservices are a common software architecture
for enterprise and scalable distributed systems. The micros-
ervices-based systems commonly contain different service
components; these components could be written in differ-
ent programming languages. Tijana et al. [14] presented
Language Independent Code Clone Analyzer (LICCA), a
tool for the identification of duplicate code fragments across
multiple languages. LICCA is integrated with the Set of
Software Quality Static Analysers (SSQSA) [29] platform
and relies on its high-level representation of code in which
it is possible to extract syntactic and semantic characteris-
tics of code fragments positing full cross-language clone

SN Computer Science
A SPRINGER NATURE journal

470 Page 6 of 23 SN Computer Science (2023) 4:470
Table 2 Cgmparative Analy§is Ref. Clone Inter- service Granularity #clones #cloned us
Results using manual analysis
on TrainTicket (0-1;0)) [22] Syntactic No Methods 201 Pairs of Methods 26 us
benchmark. (us: Microservice) This Work ~ Semantic Yes CCG 27 Pairs of CCG 9 us

detection. SSQSA manages single implementations of each
analysis algorithm for all supported languages to guaran-
tee the reliability of software analysis and consistency of
results, regardless of the input language. The authors uti-
lize the intermediate representation of source code entities
in SSQSA to achieve cross-language analysis. It generates
an enriched Concrete Syntax Tree (eCST) [29], which is
universal to all languages. eCST is a syntax tree that inte-
grates concrete syntax with specific abstractions. This tech-
nique combines the higher recall and the fast detection of
the token-based algorithms using the Longest Common
Subsequent (LCS) [30] algorithm with the higher precision
of AST-based algorithms using eCST representation. It is
evaluated using 16 scenarios written in the five languages
currently supported by LICCA, i.e., Java, JavaScript, C,
Modula-2, and Scheme. However, LICCA has limitations.
For example, clone detection is limited to semantically simi-
lar fragments written using syntactic elements with similar
shapes, while functionally similar fragments implemented
by constructs with different shapes (e.g., loops vs. recursion)
are not yet covered. Besides, statement order insensitivity is
an additional limitation caused by the comparison algorithm
choice. Therefore, a refinement of the implementation and
involvement of a filtering mechanism is required to increase
the precision of results. In addition, code transformation
techniques could be used to increase sensitivity.

Continue in deeper contribution related to microser-
vices architecture. Zhao et al. [22] claim that their work is
the first that analyzes the reasons systematically for cross-
service clones’ occurrences. They first adopted the widely-
used Nicad tool [31] to detect code clones in microservice
projects. Then they created a tool to automatically iden-
tify cross-service clones from the detection results. Next,
they extracted the files and methods involved in the clones.
Finally, they manually analyzed the characteristics of files
and methods to understand the reasons for the emergence of
cross-service clones. Most microservice projects are imple-
mented in Java [22]; therefore, the authors only considered
projects implemented in Java, especially with Spring Boot
and Spring Cloud frameworks. Although this study con-
siders the syntactic clone more than the semantic one, it
states the methodology that has a deeper understanding of
the cloning analysis granularity. They categorized all ser-
vices into one of three groups: 1) DPFile (Data-processing
File), which means a file directly adds, deletes, or modifies

SN Computer Science
A SPRINGER NATURE journal

data; 2) DRFile (Data-related File), which means a file con-
tains data queries or data beans; 3) DIFile (Data-irrelevant
File), means a file that is not directly related to data. They
conducted a pilot study on three benchmarks: train-ticket!,
wanxin?, and swarm®. Through the quantitative analysis,
they have presented that DRFiles are more likely to induce
cross-service clones. They constructed a dataset with 2,722
cross-service code clones from 22 open-source projects.
The summary of the approaches discussed above and
listed in Table 1 highlights the lack of focus on enterprise
architecture and microservices in the field of code clone
detection, particularly in regard to semantic clones. This
lack of coverage represents a gap in the current literature
and highlights the need for further research and attention
in this area. This paper brings new insights into the field
of code clone detection by addressing the shortcomings in
previous studies of enterprise and microservices-based sys-
tems [9, 32]. It aims to improve semantic clone detection
by reducing the training time for machine learning methods
and simplifying PDG computations. The paper introduces a
Component-based approach specifically tailored for enter-
prise and microservices systems and leverages a machine
learning approach with a focus on the semantic analysis of
architecture layers and their flows for more efficient results.

Relevant Comparative Analysis to Our Approach

From prior research, Zhao et al. [22] addressed microser-
vice syntactic clones. They conducted their study on the
train-ticket benchmark, which is also used in this study. To
motivate the reader and justify the needs for our approach,
we examine their results and compare them with our method
findings as summarized in Table 2. Therefore, we identify
the gap that motivates our methodology for filling it. Details
of our method and the case study results presented here are
provided in later sections.

We analyzed the results from Zhao et al. [22] and inves-
tigated the 201 method pairs they published at this link®.

! Train-Ticket benchmark:
ticket, accessed on 2/5/2023.
2 Wanxin benchmark:
accessed on 2/5/2023.

3 Swarm benchmark: https://github.com/macrozheng/mall-swarm,
accessed on 2/5/2023.

4 Syntactic Clone results from [22]: https:/microservicedata.github.
io, accessed on 2/5/2023.

https://github.com/FudanSELab/train-

https://github.com/mikuhuyo/wanxin-p2p,

https://github.com/FudanSELab/train-ticket
https://github.com/FudanSELab/train-ticket
https://github.com/mikuhuyo/wanxin-p2p
https://github.com/macrozheng/mall-swarm
https://microservicedata.github.io
https://microservicedata.github.io

SN Computer Science (2023) 4:470

Page70f23 470

Out of the 201 clones in the compared study, none of them
matched the 27 we detected manually using our approach.
The compared study found many instances of syntactic
clones due to duplicated switch-case statements, utility
methods, unit tests, and initialization methods (i.e., construc-
tors) among multiple services. It is common to have similar
syntax and structure while they can hold different seman-
tics. For example, the initialization of AccountInfo and
SecurityConfig entities in services ts-inside-pay-
ment-serviceand ts-security-service, respec-
tively, are classified as clones, but they have different data
and purposes. However, with the microservice architecture
introducing bounded context, it is common to find dupli-
cated entities between services, regardless of exact fields or
different fields. This results in many clones produced from
encoding and decoding the same entity across services com-
munications, such as the Order entity constructor appear-
ing many times as a clone in multiple services.

Additionally, the compared study recognizes many other
pairs that have the same structure but different semantics.
Methods getAl1lContacts and queryAll in services
ts-contacts-service and ts-config-service,
respectively, appear similar but communicate with differ-
ent services and repositories to produce lists of Contacts
and Config entities, respectively. Methods 1istFood-
StoresByStationId and queryByAccountId in
services ts-food-map-service and ts-consign-
service have different entity types and return data types.
Methods updateFoodOrder and updatePriceCon-
fig in services ts-food-service and ts-price-
service work on different data entities but have similar
syntax. However, the same updateFoodOrder method
is also a clone with deletePriceConfig, but they serve
different purposes for update and delete functionality. As a
result, these outcomes will likely be discarded by developers
and produce unnecessary effort rather than direct benefits.
This could demotivate the developers to pay attention to
future subsequent reports that provide a large unprioritized
set of suspected smells with unobvious benefits to the system
quality.

Next, we compare the results from the manual perfor-
mance of our methodology to results by the Zhao et al. [22]
study’s results. Zhao et al. approach detected 53 cloned pairs
from the benchmark’s service layer, but none of them inter-
sected with our 27 clone pairs. These 27 pairs came from 9
microservices of the same system.

Out of these 27 clone pairs, our manual classification
identified /4 clone pairs between services ts-order-
other-service and ts-order-service as clones,
but none of them appeared in the syntactic approach. This
could be due to their service methods containing long
source code with additional logs and empty line differ-
ences, which are syntactic; however, they share similar

semantics. The same reasoning applies to one clone of the
preserve method in services ts-preserve-service
and ts-preserve-other-service. Additionally,
our classification identified eight pairs of clones between
ts-travel2-service and ts-travel-service.
Moreover, three pairs between ts-contacts-service
and ts-admin-basic-info-service services were
not syntactically recognized due to the usage of a REST
call on one side instead of a repository method call on the
other side. However, they serve the same functionality of
the same entity type and match the rest of the control graph
attributes. The Zhao et al. study results also could not detect
the one clone of the deleteConfig method in services
ts-config-service and ts-admin-basic-info-
service due to different code structures that hold similar
logic and persistence data on both sides.

In conclusion, the results of the syntactic analysis have
confirmed that there is a significant degree of duplication
between the structures of enterprise systems and the struc-
tures of the services they offer. This overlap is particularly
noticeable in terms of the communication layers and the
call graphs in these systems. This highlights the need for
abstracting components based on their function rather
than their structure, as well as the importance of a seman-
tic approach to detecting clones in enterprise systems. By
combining both the syntactic and semantic approaches, a
comprehensive analysis of clones in enterprise systems can
be achieved. This will provide valuable insights and help to
optimize the use of developer efforts and improve the overall
quality of enterprise systems.

Semantic Code Clone Methodology

Enterprise applications build on well-established devel-
opment standards and components which are recognized
across various platforms [33]. These types of applications
usually follow a three-layer architectural design that man-
ages data processing and storage. In addition, current trends
emphasize decentralized design solutions, such as micros-
ervices, which can result in the use of multiple program-
ming languages within a single application (a.k.a. polyglots).
All these factors should be considered when attempting to
impact the enterprise industry.

Our proposed Component-based Semantic Clone (CSC)
detection method concentrates on the detection of semantic
clones in the call graphs of enterprise applications”, which
span different layers of the application’s architecture, from

> Note that while the examples and implementation demonstrations
of our method are specific to the Java platform, it is not limited to just
this platform

SN Computer Science
A SPRINGER NATURE journal

470 Page 8 of 23

SN Computer Science (2023) 4:470

Fig. 1 Component-based

l Call-graphs |

| Property CCGs | I CCGs Similarity |

Semantic Clone Detection
Process Phases

Fig.2 The CCG of the example
in Listing 1

s Construction ,3
\
&

igs . » Classified
J—P{ Classification Clones

s) N

Similarity J

Quantification ~—\, Comparison
/ 13

Name: create [Controller]
Http: POST RecordController
Argument: Record o —> Implements
Return: Record
~N . —= cll
\(Endpoint Method])
\l/ . Start
@ End
service.save()
T
|
|
|
Service Name: save
Name: save L] ! Op: Save
Argument: Record RecordService | Argument: Record
Return: POS | Return: Record
|
\£ Service Method J<:— - [Repository]
\L RecordRepository
Http: POST /
URL: /props "~ restTemplate. —-— ;>{Repository Method)
Return: Props postObject() | \J/
|
|
: (service.save() J

[repository .save() bl -

system endpoints to data persistence. Moreover, it examines
the semantics and properties of the components utilized in
the source code. These components are employed as a best
practice to design the application’s functionality according
to its relevant semantic context.

Therefore, we start the process by deriving the call graphs
of the enterprise application endpoints into which we embed
additional metadata about the cross-cutting components and
their properties. Similar to related works, to avoid the high-
cost graph matching [20, 28], we reduce the component-
augmented call graph to Component Call Graph (CCG).
Such intermediate representation provides a higher-level
view of the system, reflecting its architectural elements and
their dependencies. It shows the flow of control from one
component to another, and the way components interact and
depend on each other within and across the boundaries of a
single microservice.

The following steps outline the method for identifying
semantic clones in enterprise application call graphs. First,
we construct the call graphs, then quantify their properties.

SN Computer Science
A SPRINGER NATURE journal

b
®

Afterward, we perform a similarity comparison to deter-
mine the overlap of two compared CCGs. Finally, we use a
machine learning classification model to identify the clones.
The entire process is illustrated in Fig. 1 and will be dis-
cussed in further detail in the next subsections.

Graph Construction

The first phase of the CSC process is the call graph con-
struction phase. Using static analysis, we can recognize
arbitrary low-level language constructs used in the enter-
prise application source code. This can utilize language-
specific parsers (i.e., JavaParser or Javassist [34] for the
Java platform) for scanning the code and identifying all
declared methods and classes within the application or
specific modules of a multi-module application. These
parsers also enable the identification of method calls
within each method’s body to build a method call graph
depicting the relationship between methods.

SN Computer Science (2023) 4:470

Page90of23 470

Table 3 Component types and their properties

Component Type Properties

Controller Method name, HTTP method, arguments, return
type

Service Method name, arguments, return type

Repository Database operation, arguments, return type

REST Call URL, HTTP method, return type

The entry points of an enterprise application, usually
represented as REST endpoints, are crucial to its under-
standing. To locate these entry points, a depth-first search
finds all methods with no calling methods.

For illustration, Listing 1 shows a code example, such
that there is an endpoint method create in the Record-
Controller which calls the save method in the ser-
vice component RecordService. Next, RecordSer-
vice makes two procedure calls, first to some third-party
APl using restTemplate, and the second to save rou-
tine in RecordRepository. The resulting call graph
is depicted in Fig. 2; it starts from the endpoint interface
in the controller component, RecordController, fol-
lowing the arrows that move through the graph regarding
each method call until it ends up with the constructing a
complete graph.

Listing 1 Source code example. Note Record is a domain object.

@Controller

public class RecordController {
@Autowired
private RecordService service;

@PostMapping

return service.save (record);

© XN U AW N

}

[
o

}

=
[

@Service
public class RecordService {
@Autowired

HoE R e e
N oo W

public Pos save (Record record) {

=
© o

record.setProps (p);
return repository.save (record);

NN N
0 = O

}

NN
s oW

@Repository

25 || public interface RecordRepository {
26 Record save (Record record);

27 }

public Record create (@RequestBody Record record) {

private RecordRepository repository ;

Props p = restTemplate.postObject ("/props");

Fig.3 Components’ Properties Controller Service Repository REST Call
and their Similarity Vector | | | |
[| | I [|
Method Aras Return| HTTP (|Method Ards Return|| DB Args Return URL Return| HTTP
Name 9 Type |Method|| Name 9 Type |l OP 9 Type Type |Method
\ P es
ropertie V Similami‘tz/ Vector

—

[1.0 [e.5] 0.0 [1.0 || 1.0 [0.5 1.0 |[1.0] 6.0 [0.235[0.0]0.121] 6.0 |

SN Computer Science
A SPRINGER NATURE journal

470 Page 10 of 23

SN Computer Science (2023) 4:470

Graph Quantification

After constructing call graphs, we augment the graph with
cross-cutting components. The Component Call Graphs
(CCG) include broader semantic details from the enter-
prise perspective. This involves linking each component of
the CCG to its component type and its set of properties.
As illustrated in Fig. 2, the component type is indicated
within brackets ([]), and the properties for each component
are presented in square rectangles that are connected to its
component.

To annotate the CCG, we first identify the component
type of each method. We search for four types of compo-
nents, as outlined in Table 3. This is done by analyzing the
wrapping components using common enterprise architecture
practices such as annotations in Java Spring framework.

The properties that are linked to each component type
are different and can be seen in Table 3. In the context of an
enterprise system, these properties reflect the semantic role
that the component plays in the system, such as a database
connector, entry point, or service.

Language-specific parsers can be used to extract those
properties that have different extraction approaches based on
the source code language. For example, a controller method
in Java may have a piece of metadata (i.e., annotation) for
the HTTP method, which the parser can extract and link with
the component type. However, a generalized approach using
detection patterns can be used [33]. In summary, the added
properties transform the call graph into a CCG and provide
a deeper understanding of each component and its role in the
system for the next phase.

Individual CCGs derived for each endpoint combine into
a representation of one microservice. Furthermore, similar
to the detection of components, we can detect external calls
since these are realized through well-defined interfaces or
constructs [33]. These REST calls can then connect to other
endpoints of external microservices by method signature
match, which forms a more comprehensive perspective of
system dependencies.

Similarity Comparison

The similarity phase in our method involves comparing each
component type in a pair of CCG to its counterpart in the
other CCG. We compare the extracted properties listed in
Table 3 for each component type to generate a similarity
ratio as shown in Fig. 3. For example, for the controller com-
ponent, we compare the method names, HTTP method, argu-
ment lists, and return types of each controller component
from the CCG pair. We calculate a similarity value between
0 and 1 for each property pair. However, the comparison

SN Computer Science
A SPRINGER NATURE journal

of properties has different considerations in calculating the
similarity value.

We begin with name comparisons, which apply to method
names, argument names, and custom type names properties.
We utilize a project based on WordNet [35] to detect names
similarity percentage based on the meaning of the name.

For the data type comparisons, which apply to arguments
and return type properties. There are two cases to consider,
native data types (e.g., String, int) and custom types (e.g.,
class, struct, DTO, entity). Our approach uses a literal com-
parison of native types to determine if they are the same type
or not. For custom types, the microservice architecture pro-
motes the use of bounded context, where the same domain
entity can be duplicated in multiple services with slightly
different names and the number of variables. Therefore, we
calculate the similarity ratio between the entity name and
its variables as well. Our approach extracts the type name
and its contained variables from the source code, and then
it compares the two types based on their names’ similarity
and the best matches between their contained variables. For
example, if one type contains three variables and the other
contains four, the method checks for the best similarities
combinations between the three variables and the four vari-
ables. Moreover, the method considers the comparison of
names and types of those variables, such that the same tech-
nique is used for native and custom types similarity checks.
The calculated similarity value is the average of the name
and all variable’s similarities ratios.

For the database operation property, a different compari-
son logic is used. Our approach considers logical matching,
meaning that the operation type should match exactly, except
for insert and update operations which are considered equal
since they serve a similar purpose of retaining information in
databases. Some frameworks have the same method for both
purposes, so it only depends on whether the item already
exists in the database to decide if it’s an insert or update
operation. For example, the same method name “save” in
the Spring framework is used for both insert and update.

Finally, the similarity of the HTTP method and URL
properties are calculated as a literal comparison. The simi-
larity of the HTTP method (e.g. GET, POST) depends on
an exact match with its counterpart on the other side. The
same applies to the URL, especially for microservices-based
systems that commonly use a service discovery identifier
instead of a literal IP address and Port. Comparing the URL
base considers the invoked service rather than the deployed
instance since every service could have multiple deployed
instances with different IP addresses. In addition, compo-
nents that make REST calls may have parameters that are
included in the URL (such as Path parameters) or in the
request body. To reflect this, we combined the similarity

SN Computer Science (2023) 4:470

Page 110f23 470

Fig.4 Benchmark microservice
overview. Sourced from the
TrainTicket ! documentation

Service

Moinitoring
(promethue

Discovery
And
Register
(NACOS)

Flow
Control

(sentinel)

value into the URL property as a single value that represents
the complete request path.

Classification

In the previous phase, the comparison properties described
generate numerical features that indicate the semantic simi-
larity between two CCGs. These numerical features are
aggregated into a similarity vector as shown in Figure 3.

Given the potential availability of labeled data for CCG
pairs, we propose using supervised machine learning to pre-
dict whether two CCGs are clones based on their similarity
vector. We believe these features have descriptive semantic
meaning for their CCG and its components, so a simple lin-
ear model, such as a logistic regression classifier [36, 37],
should be sufficient to capture the relationship.

The logistic regression model is a simple yet effective and
robust approach that works well with scarce tabular data (as
in this usecase). It is a parametric model that attempts to
learn the following function:

Jx) =Ply=+1x) ey

where x is the similarity vector, and y is a binary target®,
with y = 1 indicating that the CCGs are clones and y =0
indicating they are not.

The hypothesis function % used by the model to approxi-
mate fis given by:

6 The domain of this binary output is usually modeled in one of two
ways: {1,0} or {1, —1} for positive and negative classes respectively.
We assume the { 1,0} model for the purposes of the explanation.

s+grafana)

Dstributed
Tracing

(skywalking
+es)
travel
plan plan
admin-
basic—
info
—_ _—
=
T
h(x) = O(W'x + b))

where w is a vector of scalar weights, b € R is the bias term,
and @ is the logistic function defined as:

0(z) = R 3

1+exp(—2) <
The model’s weights and the bias term are adjusted using
gradient descent [36] to maximize the likelihood of the train-
ing data. This means maximizing the probability that the
training data came from the model.

Furthermore, a logistic regression model does not directly
output a number that is O or 1. Instead, it outputs a continu-
ous value in the range [0, 1], which is an estimate of the
probability P[y = +1|x). This value can be interpreted as the
degree of certainty the model has about a similarity vector
being classified as a clone. To convert it to a binary classifi-
cation, a user of the model must set a threshold that defines
the range of values that indicate a positive result. This is,
on input x, the positive class is predicted if 4(x) > thr, for a
chosen threshold value thr.

Case Study

In this section, we demonstrate the effectiveness of our
proposed methodology through a case study on an existing
microservice benchmark. We have developed a prototype
that incorporates our methodology, consisting of both static
code analysis and machine learning projects. Our study dem-
onstrates that we can accurately detect code clones by utiliz-
ing the properties we have extracted.

SN Computer Science
A SPRINGER NATURE journal

470 Page 12 of 23

SN Computer Science (2023) 4:470

Benchmark Application

As our benchmark, we chose a public, mid-sized microser-
vices application that follows enterprise conventions. Train-
Ticket' was designed as a train ticketing service that logs the
application’s output for fault detection. This benchmark is
structured into distinct controllers, services, and reposito-
ries, and communication between the modules of the appli-
cation is facilitated through REST API calls. It utilizes the
Java Spring Boot framework for its implementation. An
overview of the TrainTicket structure is depicted in Fig. 4.
The benchmark has multiple versions with varying numbers
of microservices. In this study, we examine three of these
versions, labeled 0.0.1, 0.1.0, and 1.0.0, which contain 41,
37, and 29 microservices, respectively. We use them to iden-
tify semantic code clones in the application.

Prototype Implementation

The implementation of the prototype is split into two parts.
The first project primarily focuses on analyzing the source
code of enterprise Java applications, while the second
project implements a machine learning model to identify
semantic clones from the data generated by the first project.
The source code for the prototype is publicly available at
this link”.

For the static analysis project, we use Java-specific tools
to extract and construct quantified CCGs from the source
code using the Java Reflection library and Javassist [34].
The focus is on the Java Spring framework, which uses
annotations for component implementations, such as @
Controller and @RestController for controllers,
and @Repository and @Service for repositories and
services. We use the WS4J project® - and WordNet [35] to
determine the similarity percentage based on the meaning of
the names. The properties of each component are extracted
and associated, and the similarity between each pair is cal-
culated as described in section 4.3.

For the machine learning project, we use logistic regres-
sion from the scikit-learn [38] library in Python to build our
classification model. It operates on the data generated from
the static analysis project, classifying the CCG pairs into
clones or non-clones, and calculates the accuracy metrics
for detecting clones from the testing project.

7 Our Prototype:https:/github.com/cloudhubs/Distributed-Systems-
Semantic-Clone-Detector, accessed on 2/5/2023.

8 'WS41J: https://github.com/Sciss/ws4j, accessed on 2/5/2023.

SN Computer Science
A SPRINGER NATURE journal

Manual Analysis

To construct the ground truth for semantic clones, we exe-
cuted our prototype on the TrainTicket benchmark (release
0.1.0) and obtained 238 CCGs. These CCGs resulted in
27,221 pairs of combinations. We investigated and assessed
the source code of these components, not just the extracted
properties that are discussed and shown in Table 3. Two
authors evaluated the semantic similarity of these pairs
whether they are clones or not based on the components’
semantics of each CCG (i.e., Controller, Service, Repository,
REST Call), and one more author validated the classifica-
tion result.

Our focus was on semantic meaning rather than syntactic
similarities. This means that the two call-graphs have the
same logic and similar impact on the system, regardless of
whether they employ the same syntax or not. For example, a
syntactic analysis may identify clones where the CCG com-
ponents have the same syntax structure, but handle different
entity types. However, in our approach, this does not mean
that they are clones, but it could be a sign of non-clones
classification. On the other hand, Two semantically matching
service components that retrieve similar entity data, one by
calling a repository and the other by calling a Rest service,
can be considered a semantic clone since they retain logic
with a difference in the source of data. Similarly, when the
logic of all components matches in the CCG pair, we label
them as a clone. As a result, we categorized 27 pairs as
clones, while the rest were labeled as non-clones. This led
to an imbalanced dataset that we will consider in our pro-
cessing. The classified dataset can be accessed at this link’.

Measurement Metrics

To evaluate the effectiveness of our implementation, we
selected certain metrics as a means of assessment. Utilizing
the labeled data created through the manual analysis, our
regression model produces a compilation of the following
values:

— True Negative (TN): Non-clone examples correctly pre-
dicted as non-clones.

— False Positive (FP): Non-clone examples incorrectly pre-
dicted as clones.

— False Negative (FN): Clone examples incorrectly pre-
dicted as non-clones.

— True Positive (TP): Clone examples correctly predicted
as clones.

° Our Semantic Clone Dataset (V1): https://zenodo.org/record/76328
39, accessed on 2/11/2023.

https://github.com/cloudhubs/Distributed-Systems-Semantic-Clone-Detector
https://github.com/cloudhubs/Distributed-Systems-Semantic-Clone-Detector
https://github.com/Sciss/ws4j
https://zenodo.org/record/7632839
https://zenodo.org/record/7632839

SN Computer Science (2023) 4:470

Page 130f23 470

Table 4 Classification metrics on the training dataset

Table 6 CSC vs. Manual Analysis: Comparison of Clone Detection

Accuracy Balanced Accuracy Precision Recall ~ F, Score Technique #clones #cloned s
0.999 0.944 0.75 0.888 0.813 Manual Analysis 27 9 us
CSC 32 14 us
Table5 The similarity properties and their assigned weights of the
model Non-clone Clone
Property Weight
Controller: method name 9.06608
Controller: HTTP method 1.38333 G 5
Controller: arguments 1.86721 Non-clone
Controller: return type 4.39439
Service: method name 1.87319 "
Service: arguments 0.28254 §
Service: return type 4.02174 E’
Repository: database operation —1.56188
Repository: arguments —-2.21971
Repository: return type 2.91226 Clone 3 24
REST Call: URL —0.58029
REST Call: HTTP method 1.24877
REST Call: return type 0.00397
Predictions

Bolder are the weights with the highest absolute values, i.e., the
weights contributing more to the output, which could be interpreted
as the features that are more important

We utilize these values to compute valuable metrics to assess
the quality of a binary classification model. Each of the fol-
lowing metrics reflect a valuable assessment of the model
effectiveness: accuracy, balanced accuracy, precision, recall,
and F| score [39, 40].

The model’s accuracy reflects the share of correct clas-
sifications the model makes. It is defined as:

3 TP + TN
" TP+ FN+ TN + FP

“

The balanced accuracy is somewhat similar to the accuracy.
However, it is particularly useful in our case when working
with an imbalanced dataset because it operates in such a
way that correctly predicting an instance of an undersam-
pled class contributes more to the final score than correctly
predicting an instance of an oversampled one. It is defined
as follows:

1 (TP TN))

BA = —
2\TP+FN TN +FP

The precision, a.k.a. positive predictive value (PPV), indi-
cates in this domain the share of the model’s predictions of
clones that are true clones. It is defined as:

Fig.5 Confusion matrix of the model’s predictions on the training
dataset.A confusion matrix is a compilation of 4 different values,
each in a cell of the matrix. From left to right, top to bottom, these
are: TN, FP, FN, and TP

TP

P=—"_
TP + FP

(6)
The recall, a.k.a. true positive rate (TPR), indicates in this
domain the share of the actual clones that are classified as
clones by the model. It is defined as:

R=_ 1P 7
" TP +FN D

Finally, the F| score measures how well the model is doing
considering both precision and recall simultaneously. For-
mally, it is defined as the harmonic mean of precision and
recall:

P-R
2k

Study Execution

The evaluation of our methodology starts with running the
prototype on the TrainTicket benchmark (release 0.1.0)
and generating 238 CCGs, which resulted in 27,221 com-
binations. These data points were then manually labeled,

SN Computer Science
A SPRINGER NATURE journal

470 Page 14 of 23

SN Computer Science (2023) 4:470

Table 7 TrainTicket

microservices’ clones analysis ot #CCGs
(us: M'}croservice, MA: Manual 1 ts-contacts-service 8
Analysis) 2 ts-config-service 6

3 ts-order-other-service 16

4 ts-preserve-service 2

5 ts-travel2-service 12

6 ts-route-service 6

7 ts-rebook-service 3

8 ts-basic-service 3

us2 #CCGs #clones (MA) #clones (CSC)
ts-admin-basic-info-service 21 3 ** 1
ts-admin-basic-info-service 21 1 ** -
ts-order-service 16 14 15 *
ts-preserve-other-service 2 1 1
ts-travel-service 12 8 11 *
ts-admin-route-service 4 - 1*
ts-inside-payment-service 9 - 1%
ts-ticketinfo-service 3 - 2%

The 3 false negatives were actual clones, they are found in the two pairs marked with (¥*) in the table at
lines 1 and 2. When examining the 8 false positives, it was found that 6 of them were actual clones which
we missed in the manual analysis. These are found in the pairs marked by (*) in rows 3, 5, 6, 7, and 8 of the

table

as outlined in the section "Prototype Implementation". A
logistic regression model was fitted using these 27,221 data
points.

Due to the imbalance in the dataset, a weighted version
of the logistic regression model was employed to give more
weight to classifying the undersampled class correctly and
less weight to the oversampled class. The threshold for pre-
diction was set at 0.99, as it maximized the F, score in the
training data. This threshold value, referred to as a hyper-
parameter in machine learning, is typically found using
cross-validation techniques [41], however, due to limited
data, especially limited clones samples in the dataset, cross-
validation was not performed in this case study.

Metrics Results Analysis

A summary of the model’s performance in the training data
in terms of accuracy, balanced accuracy, precision, recall,
and F| score is given in Table 4.

As an analysis of the measurements, we found that the model
has a very high accuracy rate, with the majority of examples
being correctly classified. However, this value is misleading due
to the imbalance of the dataset. The balanced accuracy, which
compensates for the imbalance, provides a more accurate rep-
resentation of the model’s performance and it stands at 94.4%.
A precision percentage of 75% suggests that out of every 4
examples that the model predicts as clones, 1 will actually be a
non-clone. On the other hand, the high recall indicates that the
model is highly effective at identifying the existing clones in
the data. As the recall value is less than 1, it is anticipated that
the model may classify some real clones as non-clones. Finally,
the F', score, which combines precision and recall into a single
metric, supports the aforementioned results.

Moreover, the logistic regression model produces weight
values that reflect the most important features considered
in making predictions. The results of these weights are
displayed in Table 5. Upon analysis of the weights, it was

SN Computer Science
A SPRINGER NATURE journal

Table 8 Semnatic Clones Dataset for TrainTicket (0.1.0)

Version #clones (CCGs Pairs) #non-cloned
(CCGs Pairs)

v1° 27 27,194

V20 33 27,188

Table 9 TrainTicket releases’ clones analysis

Train- #iclones # services #cloned #CCGs #cloned

Ticket services CCGs

Release

0.0.1 36 41pus 18us 250 71

0.1.0 32 37us 14us 238 64

1.0.0 30 29us 12us 257 60

observed that the controller method name and return type,
and the service return type were the most significant factors
in the model’s predictions.

Clones Results Analysis

The results of the semantic clone classification by the model
are presented in Table 6. This table demonstrates that the
model detects a larger number of clones and a greater num-
ber of microservices containing clones than were classified
in the labeled training data.

A confusion matrix in Figure 5 provides a detailed evalu-
ation of the model’s predictions on the training dataset. The
matrix shows that the model has a high level of precision
in recognizing clones, with 24 of the 27 total clones in the
dataset being correctly classified. Additionally, the model
has a high level of accuracy in classifying the vast majority
of non-clones, only misclassifying 8 pairs of them.

The cloned services are extracted and listed in Table 7.
This table shows the pairs of microservices along with

Page 150f23 470

SN Computer Science (2023) 4:470
0.0.1 28.40%
8 0.1.0 26.89%
°
&
0% 10% 20%

Fig.6 TrainTicket CCGs clones percentage

their total number of CCGs and how many were classified
as clones by both manual analysis and the model. Further
analysis was conducted on the 11 misclassified pairs, which
included 8 false positives and 3 false negatives.

When examining the 8 false positives, it was found that
6 of them were actual clones which we missed in the
manual analysis. This is marked by (*) in rows 3, 5, 6,
7, and 8 of the table. However, two of them were found to
be correct non-clones after a manual investigation. These
were the pair between ts-rebook-service and ts-—
inside-payment-service at row 7, and one of the
two CCGs at row 8 between ts-basic-service and
ts-ticketinfo-service. This shows that the model
has a promising ability to learn the properties of compo-
nents and identify faults in the training dataset created
through manual analysis.

On the other hand, the 3 false negatives marked with
(**) in the table were actual clones. This may have occurred
because these 3 CCGs pairs have similar properties, where
one calls a repository routine, and the other invokes a Rest
service to achieve the same functionality. As analyzed, ts—
admin-basic-info-service calls a Rest service to
delete the contact, while ts—contacts-service calls
a repository method to delete the contact. Similarly, the call-
graph for modifying contact functionality. The same case

Fig.7 Configuration Page

Path to IDE

exists between ts—-config-service and ts-admin-
basic-info-service for deleting configuration. This
highlights the need for the model to be trained with cross-
similarity values between repository components and REST
call components, as they both serve as data sources for the
other components in the call-graph.

Semantic Clone Dataset

In this study, a new Semantic Clone Dataset was created
and verified through manual analysis and the results of our
method. This dataset provides a valuable resource for the
community in improving semantic clone detection and it
contains 27,222 pairs of CCGs.

The dataset includes 16 columns, with 13 of them corre-
sponding to the 13 properties extracted and listed in Table 3.
Two columns contain the pair of CCGs, and the final column
provides a label indicating whether the pair is a clone or a
non-clone.

To make the dataset accessible and useful, we have pub-
lished two versions of the dataset, as described in Table 8.
The first version (V1°) was classified manually and used
to train our model. The second version (V2!%) includes an
additional 6 clones that were detected using our CSC method
and manually verified; these are not present in the first data-
set version. These extra clones are marked in the dataset
for easy tracking and were explained in previous sections
of the study.

Tracing Clones through System Evolution

The analysis of semantic code clones while the system
evolves over time is an interesting use case. This can be
achieved by fitting a model to a specific version of a sys-
tem and then evaluating the clone prevalence in a different

/home/jan/Development/VSCode/bin

J/code

Path to System Under Test

/home/jan/Development/Project/benchmarks/train-ticket

ANALYZE

19 Our Semantic Clone Dataset (V2): https://zenodo.org/record/
7632842, accessed on 2/11/2023.

SN Computer Science
A SPRINGER NATURE journal

https://zenodo.org/record/7632842
https://zenodo.org/record/7632842

470 Page 16 of 23

SN Computer Science (2023) 4:470

Fig.8 The first two sections of

CODE CLONES

Clone Page
A preserveOther.controller.PreserveOtherController -> preserve.controller.PreserveController ~
Similarity Percentage
Controller 100 %
Service 50 %
Global Similarity 92.5 %

ts-preserve-other-service -
PreserveOtherController.java

Controller
(31)

ts-preserve-other-service -
PreserveOtherServicelmpl.java

Service
(30)

version. This approach assumes that the weights obtained
from fitting the model are dependent on the system but not
time-dependent, meaning the model generalizes well to dif-
ferent versions of the same system.

The TrainTicket system was analyzed using our frame-
work to compare two versions of the system, an older ver-
sion (0.0.1) and a newer version (1.0.0), with the version
used for training (0.1.0). According to Table 9, the number
of microservices decreases as the system evolves, likely due
to merging services to reduce communication overhead. The
analysis reveals that the overall number of clones, the num-
ber of services with clones, and the number of cloned CCGs
all decrease over time, with the newest version having the
fewest clones in terms of services and CCGs, even though
it has the highest number of CCGs among the different ver-
sions. The percentage of CCGs clones per each release is
illustrated in Fig. 6. This demonstrates that the system is
being refactored and kept clean by reducing the number of
clones in previous versions.

In addition, the older version (0.0.1) introduced 11,558
new CCG pairs not seen in the training version. Our model
classified 8 of these pairs as clones, and after investigation,
it was found that 5 of the 8 were correct. This highlights
the stability of the model in detecting clones even for out-
of-sample pairs. The newer version (1.0.0) generated 7,132
new CCG pairs, all of which were found to be non-clones.

SN Computer Science
A SPRINGER NATURE journal

ts-preserve-service -
PreserveController.java
(31)

Controller

ts-preserve-service -
PreserveServicelmpl.java
(30)

Service

Integration to the Development Process

Code clones can lead to several problems in the codebase
(or distributed codebases) if left unaddressed by develop-
ers. Moreover, developers will likely not run reports with
each change to the application. While there are tools such
as SonarQube'! which can catch Type 1 of syntactic clones
during the CI/CD process and force developers to address
them before merging their code, nothing like that exists for
semantic code clone detection.

We address the developer interaction through two com-
munication channels tapping into the SDLC. One perspec-
tive we address is integration with Integrated Development
Environment (IDE). The other perspective is integration
with the CI/CD.

IDE Interactive Tool

To allow developers to quickly assess semantic code clones
in their application using graphical user interfaces we inte-
grated our prototype tool with a selected Integrated Develop-
ment Environment (IDE). This integration allows developers
to localize and remove code clones from their codebase(s).
We published this tool'? - as open source. It consists of a
Configuration Page and Code Clone Page.

' SonarQube: https://www.sonarqube.org, accessed on 2/5/2023.

12 Our Interactive Tool: https:/github.com/svacina/prophet, accessed
on 2/5/2023.

https://www.sonarqube.org
https://github.com/svacina/prophet

SN Computer Science (2023) 4:470

Page170f23 470

Fig.9 The third section of
Clone Page

Fig. 10 Entity Inconsistencies
Page

Controller
Return
HttpEntit
Type d
o PreserveOtherController
Name
Method —
Name P
Argument OrderTicketsInfo

Argument HttpHeaders

Annotation @CrossOrigin(origins="""

Annotation @PostMapping(value="/preserveOther")

@CrossOrigin(origins = "*")
@PostMapping(value = "/preserveOther”)

¢ HttpEntity | (@RequestBody Order
@RequestHeader HttpHeaders h
PreserveOtherController. LOGGER.

return (preserveSerwce

ts-payment-service - Money.java
Missing Fields

Annotations Type
@Valid

@NotNull String
@id

@Valid
MoneyType
@NotNull

Missing Field Annotations

Field Annotation

@Valid private String userld.
@NotNull private String userld;
@Valid private String money:
@NotNull private String money:
Entity Code

fo("[Preser

(ofi, header

Name

type

Controller

Return
Type

Class
Name

Method
Name

Argument

Argument

Annotation

Annotation

HttpEntity

PreserveController

preserve

OrderTicketsInfo

HttpHeaders

@CrossOrigin(origins=""")

@PostMapping(value="/preserve")

@CrossOrigin(origins = "*")
@PostMapping(value = "/preserve”)
public HttpEntity ! (@RequestBody Order

@RequestHeader HttpHeaders h)

PreserveController. LOGGER.info("[Preserve Se

return

(preserveService. rve(oti, header

ts-inside-payment-service - Money.java

Entity Code

‘addMoney")

SN Computer Science
A SPRINGER NATURE journal

470 Page 18 of 23

SN Computer Science (2023) 4:470

Fig. 11
tion

VSCode IDE Integra- oo * |

RN

Money
ts-payment-service - Money java
Missing Fields
Annotations Type Name
@vaid

@NotNuil sting]

@1

@vaid
i MoneyType type
Nothull

Missing Field Annotations
Fiold Annota
@Valid
@Notui

@vaid

@Notu

Fig. 12 Gradle plugin output

Ny

ts-inside-payment-service - Money.java

Mo =

Entity Code

ts-preserve-other-service/src/main/java/preserveOther/controller/Preserve0therController.java -> preserve

ts-preserve-service/src/main/java/preserve/controller/PreserveController.java -> preserve

0.925

ts-admin-basic-info-service/src/main/java/adminbasic/controller/AdminBasicInfoController.java -> deleteConfig

ts-config-service/src/main/java/config/controller/ConfigController.java -> deleteConfig

0.8250000000000001

ts-admin-basic-info-service/src/main/java/adminbasic/controller/AdminBasicInfoController.java -> getAllContacts

ts-contacts-service/src/main/java/contacts/controller/ContactsController.java -> getAllContacts

0.8250000000000001

The developer configures essential properties, as shown
in Fig. 7. The path to the system on the local file system. We
assume that the developer downloads the system and has
at least read access to the files. Next, a path to a script that
can open the IDE. We assume that the developer configures
IDE and has to execute access to the IDE. We configured our
example with TrainTicket' - and VSCode IDE'.

The code clone page is displayed with a list of code
clones. Each code clone component has three sections. The
first section is a table with an overview of how similar are
the parts of one CCG with the other. The table, as shown in
Fig. 8 has two columns. The first column lists all parts of
the CCGs, controller, services, repositories, and the REST
call. The second column shows the percentages of similarity,
which are calculated based on each CCGs components simi-
larity, and also each component similarity is considered as
an average of the similarity between each component-related
properties. For example, the controller similarity is the aver-
age of the following properties: method name, arguments,
return type, and HTTP method as listed prior in Table 3.
This section enables users to quickly assess which parts of
the CCGs are most likely to include the same behavior. The
second section displays an identification of a code clone pair,

13 ySCode IDE: https://code.visualstudio.com, accessed on 2/5/2023.

SN Computer Science
A SPRINGER NATURE journal

showing the percentage of similarity to stipulate code clone
severity between the CCGs components. The third section
is a two-column view of both CCGs side by side as shown
in Fig. 8. This layout enables users to see the same parts
of each CCG next to each other and enhances the overall
ability to compare related parts. It displays a comparison
of CCGs properties together with a code of methods that
participate in the CCGs (Fig. 9). Each part of CCGs has
its section (controller, service, repository, REST call). Each
part contains a table that displays relevant extracted proper-
ties as the following properties: class name of the parent
class, method name, return type, arguments, and annota-
tions. We also included a code snippet with the actual code
of the method per each CCG part.

In addition to code clones, our tools also provide a quick
assessment for data entity layer inconsistencies across
decentralized microservices. It layouts visual verification
of the missing fields between data entities. As shown in
Fig. 10, there is an entity object Money that has inconsist-
ent usage in two microservices, ts-payment-service, and ts-
inside-payment-service. Entity Money is missing two fields
with their annotations and four validation annotations on two
other fields. The boxes are displayed with missing fields and
annotations for entity Money on the left next to the code of
the complete entity on the right.

https://code.visualstudio.com

SN Computer Science (2023) 4:470

Page 190f23 470

Furthermore, the names of individual microservices are
represented as active links that open the file with code in
IDE (i.e., VSCode!3) as depicted in Fig. 11. Users can click
on links to files of the analyzed system to use an external
IDE to make changes in the code to remove inconsistencies
and code clones.

Cl/CD Process Integration

To support the enforcement of our prototype tool usage
across large teams we also developed a Gradle-plugin'* - to
scan the code against the clones and inconsistencies. Apply-
ing our plugin to an application project allows the plugin to
extend the project’s capabilities. Following the installation
guide in the repository, it can be integrated with existing
CI/CD pipelines and automatically warn developers of any
semantic code clones in their application. Upon execution,
it prints out in the IDE console semantic analysis results.
It shows the cloning CCGs analyzed class paths, then the
percentage of the matching according to their components
similarities, as depicted in Fig. 12.

This Gradle plugin leverages the semantic code-clone
detection on the root of the project that holds each of the
microservices or only on the module one likes to analyze.
The benefit of using an established standard like Gradle for
the plugin is the wide configuration options available. The
plugin also outputs the results to a series of files in a user-
defined output directory.

Discussion

There are multiple perspectives related to the presented CSC
method that deserve further discussion. First, this method
has been evaluated on enterprise system middleware, not
taking into account the user interface part. However, even a
complete system with a user interface would typically pro-
ceed with interaction through application endpoints. The
user interface portion would remain not considered by this
method.

The CSC method provides promising results on the
considered system benchmark. However, it needs broader
assessments across other system benchmarks to see the
implication in a broader context. In addition, it did not detect
all semantic clones and this may present a limitation to iden-
tifying only a certain class of semantic clones in enterprise
systems that are not yet categorized and our research may
contribute to their taxonomy. Moreover, the practical value

" Qur Plugin: https:/github.com/cloudhubs/prophet-gradle-plugin,
accessed on 2/5/2023.

of such detection needs to be further evaluated. On the other
hand, it must be emphasized that the detection is very quick
compared to other approaches mentioned in the literature.

This manuscript illustrates weight calibration on a single
established microservice benchmark version. In this direc-
tion, developers would manually assess their current applica-
tion for semantic code clones to strengthen the ground truth
to establish appropriate weights for their application. This
might be influenced by the used framework and program-
ming conventions for utilizing the components’ properties.
However, this should be seen as the most pessimistic per-
spective. Once established weights on a large system bench-
mark will likely be transferable across projects building on
the top of the same development framework. However, to
make such a claim we are missing data and experiments
to prove it, as well as a proper system, and benchmarks to
evaluate it which remains for future work.

On the other hand, the CSC method showed impres-
sive results, as indicated in Table 4 and Fig. 5. The analy-
sis demonstrated the ability of the method to detect 6 extra
clones that were not present in the training dataset. This
also illustrates that if the initial calibration was necessary to
be used for a particular system, the method is robust to an
imperfectly labeled dataset resulting in promising outcomes.
Additionally, the system evolution analysis showed that the
method can be generalized to different versions of the same
system, performing well on unseen data.

In order to evaluate the method’s applicability to applica-
tion polyglots there are multiple steps to be accomplished.
First, we must implement parsers and component detectors
for other platform development frameworks to build CCG
for applications coded in these frameworks (i.e., Django, C#,
etc.). While preliminary work was performed by Schiewe
et al. [33], it still does not build CCG. Second, experimen-
tation must be performed to identify proper component
attributes and calibrate weights for the method. Thirds, the
same component types across platforms must be assessed to
identify equivalent component properties and then analyze
conversions in equivalence across platforms. These steps
present a plethora of future work. However, there are no
known limits to the method rather than efforts to perform
this.

Furthermore, it could be considered to include CFG
instead of CG in the method and recognize fine details like
conditionals or loops. These are currently reduced to a single
path, possibly influencing to false-positive clone detection.
The method could thus extend and associate multiple CFGs
with each current CCG. The similarity evaluation would
match each of these CFGs across the assessed CCG pairs.

SN Computer Science
A SPRINGER NATURE journal

https://github.com/cloudhubs/prophet-gradle-plugin

470 Page 20 of 23

SN Computer Science (2023) 4:470

Threats to Validity

Using Wohlin’s taxonomy [42], we examined four types of
validity threats: external validity, concept validity, internal
validity, and conclusion validity. We also elaborate on our
custom thresholds used in the proposed method.

Construct Validity

Construct validity is the degree to which the measures
correctly reflect real-world constructs. In our assessment,
we used a third-party enterprise system benchmark that
is based on microservices and utilizes a well-established
development framework utilizing up-to-date development
standards and components. This benchmark is used by the
microservice community to demonstrate their research out-
comes. This represents realistic conditions under which our
approach operates. At the same time, there are numerous
other frameworks that could be used and yield alternative
results, which illustrate that our results must be considered
in such a context. Furthermore, the selected benchmark may
introduce a biased representation of coding practice; how-
ever, we negated this by manual analysis.

Our method considers components like controllers, ser-
vices, repositories, and entities that are recognized across
enterprise platforms. In addition, we considered endpoints
and REST calls to these endpoints from other microser-
vices, but we omitted messaging systems in our assessment.
This implies that our method is unsuitable for general pro-
grams that do not consider components (i.e., Java Standard
Edition).

Furthermore, it must be recognized that there is no clone
benchmark using enterprise constructs for semantic clone
detection with an established ground truth; however, we used
the same system applied by related work when searching
syntactic code clones, and the outcomes of our work bring
such a benchmark for community use.

Internal Validity

Internal validity challenges the study methods and data anal-
ysis; this involves experiment errors and bias. Our method
uses several weights for semantic clone detection. These are
implied from manually labeled data which could be biased.
To reduce the bias, multiple authors were involved in labe-
ling the data. Next, we used logistic regression over the com-
ponent attribute values in the labeled dataset to produce an
optimal solution for our labeled dataset. Yet, upon evalua-
tion, our model produced false positives for the manually
labeled dataset; however, upon careful evaluation, multi-
ple of these proved to be true positives, and our manually
labeled dataset did not prove to be ground truth. Also, from

SN Computer Science
A SPRINGER NATURE journal

the perspective of Machine Learning, we cannot ensure the
weights obtained generalize to out-of-sample data because
we did not have data to validate the generalization capabili-
ties of the model.

A non-standard development practice for enterprise
application development can influence the accuracy of our
method. We have optimized the method to sustain the wrong
system cuts in a way if a component in the component call
graph is missing in compared pair, the component is not con-
sidered. This perspective is relevant to the evaluated system
of version 0.0.1.

Our experiment only included a single system, and to
strengthen our conclusions, many other systems across plat-
forms need to be tested. It remains to be determined whether
weights transfer across systems or across systems using the
same platforms.

Furthermore, it is possible to perform a database delete
through a GET endpoint call, where standard practice is to
use a DELETE endpoint call. If two methods with differ-
ent HTTP types perform the same operation, their similar-
ity might be impacted, and our method could produce false
negatives. Similarly, two different methods with the same
name, parameters, and HTTP type can perform entirely dif-
ferent operations. Our method may produce false positives.
However, this indicates poor coding practice; these situa-
tions require more evaluation.

External Validity

These threats concern the generalization of our results.
Given that enterprise systems use component-based devel-
opment, using components that realize enterprise standards
across platforms, the approach generalizes well to these
systems.

However, the main threat is the weight setting for compo-
nent properties used for similarity comparison. To calibrate
the weights, we conducted the tests on the TrainTicket',
a community-established system benchmark that follows
enterprise standards. We used machine learning to make a
statistically informed decision on how to set the weights.

We focused on the Java platform in this prototyping
because of its strong presence in the enterprise domain. Our
case study demonstrates that we can successfully analyze
such a Java-based system following enterprise standards.
We, however, cannot conclude that in the same setting, we
can transfer the method across platforms or even across the
different systems using the same platforms as it was not
tested.

To mitigate the limitation of assessing the method at a
single system was addressed by considering different ver-
sions of this system, which are significantly different (41
microservices down to 29). Testing other systems is planned

SN Computer Science (2023) 4:470

Page210f23 470

in future work, and assessment for different or across
domains requires the development of component call graph
parsers across these domains. However, the system interme-
diate representation format is already defined for this aim by
this work. Despite the method target to microservices, this
approach can be used in monolithic systems as well.

On the other hand, in case an enterprise application would
not use standard components, then it would likely not follow
best practices. As a result, for the method to work, it would
require modifications to consider application-specific nam-
ing conventions of used modules across architectural layers.

Conclusion Validity

The threats concern whether the conclusions are based on
the available data. Our work aimed at proof-of-concept of
a method capable of addressing problems not yet solved in
enterprise systems. It did not aim at statistically significant
conclusions but rather to produce preliminary data and draw
possible implications for the community. As a secondary
result, it also produced a semantic clone dataset necessary
for future research advancements and experimentation.

Our finding’s reliability might have been compromised by
the limited variation in the considered system benchmark.
At the same time, our conclusions are limited to what we
observed in the case study. There is no reason to believe that
it is not more generally applicable to other enterprise sys-
tems and platforms; however, this has not been empirically
assessed. We share our method as open-source, and so are
the different versions of the used TrainTicket benchmark!,
which facilitates replication of the study.

Conclusion

Semantic code clones pose a significant challenge in enter-
prise systems, as it has not yet been widely addressed. The
CSC method, proposed in this manuscript, targets microser-
vices as the mainstream architecture for enterprise applica-
tions, attracting both industrial and academic interests. By
considering an established enterprise system standards and
components, the use of CCG extracted from these systems
is proposed as a means to analyze semantic code clones. It’s
noteworthy that this approach is relatively inexpensive com-
pared to existing methods, such as those involving PDGs, as
CCQG carries high-level semantic information that might not
be easily extracted from low-level code analysis without rec-
ognizing standard enterprise constructs through established
component types. The abstraction of CCG also reduces the
number of pairs to be compared and focuses on a specific
number of features, resulting in a machine-learning model
that fits the data more efficiently.

The proposed CSC method has shown promising results
with high accuracy when assessed on a third-party system
benchmark and exhibits robustness to an imperfectly labeled
dataset. It was also demonstrated to be usable across system
evolution, with calibration being a one-time task. Although
it is believed that such calibration can be transferred across
different systems (i.e., the same platform), future work will
need to demonstrate such a perspective.

In addition to its practical applications, this work provides
several outcomes that could benefit the community. Two ver-
sions of datasets containing classified semantic clones are
published publicly, along with a visualization tool that pre-
sents the code clones in a user-friendly format. Furthermore,
the method is implemented as a plugin that can be integrated
with development tools to detect semantic clones during the
development lifecycle.

Future work will consider polyglot systems. It will also
consider using CFG within identified clone candidates to
better cope with false positives while still offering a quick
turnaround. From a short-term perspective, we plan to repli-
cate the experiment on a well-established C# system bench-
mark, which we currently statically analyze. Thus, we can
experiment one more step towards the model generalization
over the different platforms.

Acknowledgements This material is based upon work supported by
the National Science Foundation under Grant No. 1854049 and a grant
from Red Hat Research.

Data availability The dataset generated in this work is available at
https://doi.org/10.5281/zenodo.7632839 and https://doi.org/10.5281/
zenodo.7632842. Our prototype tools are available at GitHub as open
source: Semantic Clone Detector: https://github.com/cloudhubs/Distr
ibuted-Systems-Semantic-Clone-Detector Gradle Plugin: https://
github.com/cloudhubs/prophet-gradle-plugin, Interactive Tool: https://
github.com/svacina/prophet.

Declarations

Conflict of interest On behalf of all authors, the corresponding author
states that there is no conflict of interest.

References

1. Besker T, Martini A, Bosch J. Technical debt cripples software
developer productivity: A longitudinal study on developers’ daily
software development work. In: Proceedings of the 2018 Interna-
tional Conference on Technical Debt. TechDebt *2018:18,105—
114; Association for Computing Machinery, New York, NY, USA
. https://doi.org/10.1145/3194164.3194178

2. Ain QU, Butt WH, Anwar MW, Azam F, Magbool B. A systematic
review on code clone detection. IEEE Access. 2019;7:86121-44.

3. Baker BS. On finding duplication and near-duplication in large
software systems. In: Proceedings of 2nd working conference on
reverse engineering, 1995;86-95 https://doi.org/10.1109/WCRE.
1995.514697. IEEE

4. Ducasse S, Rieger M, Demeyer S. A language independ-
ent approach for detecting duplicated code. In: Proceedings

SN Computer Science
A SPRINGER NATURE journal

https://doi.org/10.5281/zenodo.7632839
https://doi.org/10.5281/zenodo.7632842
https://doi.org/10.5281/zenodo.7632842
https://github.com/cloudhubs/Distributed-Systems-Semantic-Clone-Detector
https://github.com/cloudhubs/Distributed-Systems-Semantic-Clone-Detector
https://github.com/cloudhubs/prophet-gradle-plugin
https://github.com/cloudhubs/prophet-gradle-plugin
https://github.com/svacina/prophet
https://github.com/svacina/prophet
https://doi.org/10.1145/3194164.3194178
https://doi.org/10.1109/WCRE.1995.514697
https://doi.org/10.1109/WCRE.1995.514697

470

Page 22 of 23

SN Computer Science (2023) 4:470

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

IEEE international conference on software maintenance-1999
(ICSM’99).’Software maintenance for business change’(Cat. No.
99CB36360), 1999;109-118 . https://doi.org/10.1109/ICSM.1999.
792593. IEEE

Higo Y, Kusumoto S, Inoue K. A metric-based approach to iden-
tifying refactoring opportunities for merging code clones in a java
software system. J Softw Maint Evol: Res Pract. 2008;20(6):435—
61. https://doi.org/10.1002/smr.394.

Kumar A, Yadav R, Kumar K. A systematic review of semantic
clone detection techniques in software systems. In: IOP confer-
ence series: materials science and engineering, 2021;1022:012074
https://doi.org/10.1088/1757-899X/1022/1/012074. 10P
Publishing

Vislavski, T., Rakié, G., Cardozo, N., Budimac, Z.: Licca: A tool
for cross-language clone detection. In: 2018 IEEE 25th inter-
national conference on software analysis, evolution and reengi-
neering (SANER), pp. 512-516 (2018). https://doi.org/10.1109/
SANER.2018.8330250. IEEE

Saini V, Farmahinifarahani F, Lu Y, Baldi P, Lopes CV.: Oreo:
Detection of clones in the twilight zone. In: Proceedings of the
2018 26th ACM joint meeting on European software engineer-
ing conference and symposium on the foundations of software
engineering, pp. 2018;354-365 https://doi.org/10.5281/zenodo.
1317760

Svacina J, Bushong V, Das D, Cerny, T. Semantic code clone
detection method for distributed enterprise systems. In: CLOSER,
pp- 27-37 (2022). https://doi.org/10.5220/0011032200003200
Roy CK, Cordy JR. A survey on software clone detection research.
Queen’Sch Comput TR. 2007;541(115):64-8.

Svajlenko J, Roy CK Evaluating clone detection tools with big-
clonebench. In: 2015 IEEE international conference on software
maintenance and evolution (ICSME), pp. 131-140 (2015). https:/
doi.org/10.1109/ICSM.2015.7332459. IEEE

Nasirloo H, Azimzadeh F Semantic code clone detection using
abstract memory states and program dependency graphs. In: 2018
4th international conference on web research (ICWR) 2018:19-27
https://doi.org/10.1109/ICWR.2018.8387232. IEEE

Wu, Y., Zou, D., Dou, S., Yang, S., Yang, W., Cheng, F., Liang,
H., Jin, H.: Scdetector: software functional clone detection based
on semantic tokens analysis. In: Proceedings of the 35th IEEE/
ACM international conference on automated software engineer-
ing, pp. 821-833 (2020). https://doi.org/10.1145/3324884.34165
62

Vislavski T, Raki¢ G, Cardozo N, Budimac Z. Licca: A tool for
cross-language clone detection. In: 2018 IEEE 25th international
conference on software analysis, evolution and reengineering
(SANER), 2018;512-516 https://doi.org/10.1109/SANER.2018.
8330250. IEEE

Alomari HW, Stephan M. Clone detection through srcclone: a
program slicing based approach. J Syst Softw. 2022;184: 111115.
https://doi.org/10.1016/j.jss.2021.111115.

Juergens E, Deissenboeck F, Hummel B Code similarities beyond
copy & paste. In: 2010 14th European conference on software
maintenance and reengineering,2010;78-87 : https://doi.org/10.
1109/CSMR.2010.33. IEEE

Sheneamer A, Kalita J. A survey of software clone detection tech-
niques. Int J] Comput Appl. 2016;137(10):1-21.

Marcus, A., Maletic, J.I.: Identification of high-level concept
clones in source code. In: Proceedings 16th annual international
conference on automated software engineering (ASE 2001), pp.
107-114 (2001). https://doi.org/10.1109/ASE.2001.989796. IEEE
Sheneamer A, Roy S, Kalita J. A detection framework for semantic
code clones and obfuscated code. Expert Syst Appl. 2018;97:405—
20. https://doi.org/10.1016/j.eswa.2017.12.040.

Fang C, Liu Z, Shi Y, Huang J, Shi Q. Functional code clone
detection with syntax and semantics fusion learning. In:

SN Computer Science

A SPRINGER NATURE journal

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

Proceedings of the 29th ACM SIGSOFT international symposium
on software testing and analysis, pp. 2020;516-527 https://doi.org/
10.1145/3395363.3397362

Alrabaee S, Wang L, Debbabi M. Bingold: towards robust binary
analysis by extracting the semantics of binary code as semantic
flow graphs (sfgs). Digit Investig. 2016;18:11-22. https://doi.org/
10.1016/j.diin.2016.04.002.

Zhao Y, Mo R, Zhang Y, Zhang S, Xiong P. Exploring and under-
standing cross-service code clones in microservice projects. In:
2022 IEEE/ACM 30th international conference on program com-
prehension (ICPC), 2022:449-459 ; https://doi.org/10.1145/35246
10.3527925. IEEE

Kamiya T, Kusumoto S, Inoue K. A token-based code clone detec-
tion tool-ccfinder and its empirical evaluation. Techinal report,
Osaka University, Department of Information and Computer Sci-
neces, Inoue Laboratory (2000)

Papadimitriou CH, Raghavan P, Tamaki H, Vempala S. Latent
semantic indexing: a probabilistic analysis. J] Comput Syst Sci.
2000;61(2):217-35. https://doi.org/10.1006/jcss.2000.1711.
Hou C, Nie F, Li X, Yi D, Wu Y. Joint embedding learning and
sparse regression: a framework for unsupervised feature selection.
IEEE Trans Cybern. 2013;44(6):793-804. https://doi.org/10.1109/
TCYB.2013.2272642.

Baldi P, Chauvin Y. Neural networks for fingerprint recognition.
Neural Comput. 1993;5(3):402-18. https://doi.org/10.1162/neco.
1993.5.3.402.

Weiser M. Program slicing. IEEE Trans Softw Eng SE.
1984;10(4):352-7. https://doi.org/10.1109/TSE.1984.5010248.
Alomari HW, Collard ML, Maletic JI, Alhindawi N, Meqdadi O.
srcslice: very efficient and scalable forward static slicing. J Softw:
Evol Proc. 2014;26(11):931-61. https://doi.org/10.1002/smr.1651.
Rakié G. Extendable and adaptable framework for input language
independent static analysis. PhD thesis, University of Novi Sad
(Serbia) 2015

Koschke R, Falke R, Frenzel P. Clone detection using abstract
syntax suffix trees. In: 2006 13th Working conference on reverse
engineering, pp. 2006;253-262 https://doi.org/10.1109/WCRE.
2006.18. IEEE

Cordy JR, Roy CK. The nicad clone detector. In: 2011 IEEE 19th
international conference on program comprehension, pp. 219-220
(2011). https://doi.org/10.1109/ICPC.2011.26. IEEE

Koschke R, Baxter ID, Conradt M, Cordy JR. Software clone man-
agement towards industrial application (dagstuhl seminar 12071).
In: Dagstuhl Reports, vol. 2 (2012). https://doi.org/10.4230/Dag-
Rep.2.2.21. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik
Schiewe M, Curtis J, Bushong V, Cerny T. Advancing static code
analysis with language-agnostic component identification. IEEE
Access. 2022;10:30743-61. https://doi.org/10.1109/ACCESS.
2022.3160485.

JBoss: Javassist : Java bytecode engineering toolkit (2020). https://
www.javassist.org Accessed 2021-06-18

Christiane F, Brown K. Wordnet and wordnets. In: Encyclope-
dia of Language and Linguistics. UK, Oxford: Elsevier; 2005. p.
665-70.

Bishop CM, Nasrabadi NM. Pattern recognition and machine
learning 4(4) (2006)

James G, Witten D, Hastie T, Tibshirani R. An introduction to
statistical learning 2013;112

Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Gri-
sel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, Vanderp-
las J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay
E. Scikit-learn: machine learning in Python. J Mach Learn Res.
2011;12:2825-30.

Manning CD, Introduction to information retrieval 2008.

https://doi.org/10.1109/ICSM.1999.792593
https://doi.org/10.1109/ICSM.1999.792593
https://doi.org/10.1002/smr.394
https://doi.org/10.1088/1757-899X/1022/1/012074
https://doi.org/10.1109/SANER.2018.8330250
https://doi.org/10.1109/SANER.2018.8330250
https://doi.org/10.5281/zenodo.1317760
https://doi.org/10.5281/zenodo.1317760
https://doi.org/10.5220/0011032200003200
https://doi.org/10.1109/ICSM.2015.7332459
https://doi.org/10.1109/ICSM.2015.7332459
https://doi.org/10.1109/ICWR.2018.8387232
https://doi.org/10.1145/3324884.3416562
https://doi.org/10.1145/3324884.3416562
https://doi.org/10.1109/SANER.2018.8330250
https://doi.org/10.1109/SANER.2018.8330250
https://doi.org/10.1016/j.jss.2021.111115
https://doi.org/10.1109/CSMR.2010.33
https://doi.org/10.1109/CSMR.2010.33
https://doi.org/10.1109/ASE.2001.989796
https://doi.org/10.1016/j.eswa.2017.12.040
https://doi.org/10.1145/3395363.3397362
https://doi.org/10.1145/3395363.3397362
https://doi.org/10.1016/j.diin.2016.04.002
https://doi.org/10.1016/j.diin.2016.04.002
https://doi.org/10.1145/3524610.3527925
https://doi.org/10.1145/3524610.3527925
https://doi.org/10.1006/jcss.2000.1711
https://doi.org/10.1109/TCYB.2013.2272642
https://doi.org/10.1109/TCYB.2013.2272642
https://doi.org/10.1162/neco.1993.5.3.402
https://doi.org/10.1162/neco.1993.5.3.402
https://doi.org/10.1109/TSE.1984.5010248
https://doi.org/10.1002/smr.1651
https://doi.org/10.1109/WCRE.2006.18
https://doi.org/10.1109/WCRE.2006.18
https://doi.org/10.1109/ICPC.2011.26
https://doi.org/10.4230/DagRep.2.2.21
https://doi.org/10.4230/DagRep.2.2.21
https://doi.org/10.1109/ACCESS.2022.3160485
https://doi.org/10.1109/ACCESS.2022.3160485
https://www.javassist.org
https://www.javassist.org

SN Computer Science (2023) 4:470

Page230f23 470

40.

41.

42.

Lemnaru C, Potolea R Imbalanced classification problems: sys-
tematic study, issues and best practices. In: Enterprise informa-
tion systems: 13th international conference, ICEIS 2011, Beijing,
China, June 8-11, 2011, Revised Selected Papers 13, pp. 35-50
(2012). https://doi.org/10.1007/978-3-642-29958-2_3. Springer
Abu-Mostafa YS, Magdon-Ismail M, Lin H-T. Learn Data, vol. 4.
NY, USA: AMLBook New York; 2012.

Wohlin C, Runeson P, Host M, Ohlsson M, Regnell B, Wesslén
A. Experimentation in Software Engineering: An Introduction.
Germany: The Kluwer International Series In Software Engineer-
ing. Springer; 2000.

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of
such publishing agreement and applicable law.

SN Computer Science
A SPRINGER NATURE journal

https://doi.org/10.1007/978-3-642-29958-2_3

	Detecting Semantic Clones in Microservices Using Components
	Abstract
	Introduction
	Background
	Classifications of Clone Detection

	Related Work
	Relevant Comparative Analysis to Our Approach

	Semantic Code Clone Methodology
	Graph Construction
	Graph Quantification
	Similarity Comparison
	Classification

	Case Study
	Benchmark Application
	Prototype Implementation
	Manual Analysis
	Measurement Metrics
	Study Execution
	Metrics Results Analysis
	Clones Results Analysis

	Semantic Clone Dataset
	Tracing Clones through System Evolution

	Integration to the Development Process
	IDE Interactive Tool
	CICD Process Integration

	Discussion
	Threats to Validity
	Construct Validity
	Internal Validity
	External Validity
	Conclusion Validity

	Conclusion
	Acknowledgements
	References

