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Abstract
The growing popularity of enterprise technologies for decentralized systems leads to commonalities in using components. 
This direction, however, opens new challenges to code clone detection. Approaches can no longer look at the low-level code 
but must deal with the higher-level component semantics. Yet, not many works addressed this trend. One of the quality issues 
that can be identified in large systems is duplicated behavior with different syntactic structures. It is crucial to detect these 
issues for enterprises where software’s codebase(s) grows and evolves, and maintenance costs rise significantly. This issue 
is referred to as a semantic clone. The detection of semantic clones requires semantic information about the given program. 
Unfortunately, while many code clone detection techniques are proposed, there is a lack of solutions targeted explicitly toward 
enterprise systems and even fewer solutions dedicated to semantic clones. To reason about semantic clones, we consider 
different pairs of component call-graphs in the system. Since different component types are common in enterprise systems, 
we can ensure that only relevant fragments are matched, using targeted enterprise metadata. When applied to an established 
system benchmark, our method indicates high accuracy in detecting semantic clones. We also assessed different system ver-
sions to elaborate on the method’s applicability to decentralized system evolution.

Keywords  Code Quality · Code Clone · Semantic Clone · Static Analysis · Enterprise Technology · Microservices · Cloud 
Systems · System Evolution

Introduction

Source code duplication by copying and pasting into another 
section of source code, even with minor modification, often 
happens throughout software development and maintenance. 
It can result from lacking development skills or rushed devel-
opment, prioritizing visible profit in the form of new feature 
delivery over less visible code quality [1]. This copied code 

is called code clone, and the process is called code clon-
ing [2–4]. A code clone is a code fragment with other code 
fragments identical or similar to it in the source code [5]. 
Various studies suggested that almost 20–50% of large soft-
ware systems consist of cloned code [2–4]. These clones 
have two main categories: a syntactic clone [5] considers the 
code structure and syntactic variants, and a semantic clone 
[6] is concerned with similar functionality regardless of the 
different syntactic variants and implementation. Obviously, 
semantic clones can emerge from other means than copying 
and pasting and could result from distinct developer ambi-
tions or appear in system integration.

Code cloning impedes software maintenance, as extended 
efforts are needed to apply fixes at multiple clone locations, 
possibly leading to a ripple effect or leaving inconsistencies 
in the codebase. Identified errors require code corrections; 
however, if the relevant code segment is a clone, it is essen-
tial to identify all related segments throughout the source 
code. However, it is difficult to manually detect the code 
cloning to be refactored from a large number of lines of 
code. As a result, this increases software maintenance costs 
[6]. Clone detection tools could considerably simplify the 
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tedious work of clone identification. Scalability is an impor-
tant property of the tools that detect the code to be refactored 
[5]. Ajad et al. [6] surveyed 23 research articles published 
in top-tiered venues during 2008–2020 in the domain of 
semantic code clone detection and identified various avail-
able tools that detect clones in software systems. The sur-
vey observed that cloning increases maintenance costs, the 
number of lines of code, and bug propagation. Furthermore, 
it sometimes limits further system development through the 
existing source code.

Still, most existing clone approaches detect syntactic 
clones. The semantic clones require essential analysis of 
the actual behavior and a deeper understanding of the intent 
of the code fragment. For example, two code blocks that 
perform the same calculation, but use different variables 
and functions, would be considered semantically similar. 
However, semantic-based approaches can detect syntactic 
clones as well [2, 7]; therefore, semantic clones are consid-
ered more meaningful than syntactic clones because they 
indicate that the same functionality is duplicated in the code 
either with similar or different syntax, which can lead to 
maintenance issues and increased complexity. In general, 
this is a challenging problem; therefore, very few approaches 
attempt to detect semantic clones [8].

Analyzing decentralized enterprise systems (i.e., micros-
ervices or cloud-native systems) can be challenging due to 
their distinct characteristics, such as the presence of multiple 
codebases within a system and the use of different languages 
and technologies across services. Thus, a high-level, com-
ponent-based approach is necessary to overcome these chal-
lenges rather than relying solely on low-level code analysis 
and its fundamental properties.

This work targets semantic clone detection in decentral-
ized enterprise systems. It takes into account that current 
development practice does not use low-level coding but 
rather builds on well-established components like end-
points, controllers, services, repositories, entities, remote 
calls, messaging, etc. Considering that components augment 
code segments with additional semantics, these components 
and their attributes can be used when determining whether 
selected code fragments could be semantic clones.

In particular, the proposed method extracts call graphs 
from across system endpoints. These call graphs are con-
structed in a way that nodes represent cross-cutting com-
ponents capturing their types and additional attributes. To 
determine the semantic similarity in the system, we con-
sider the similarity of such graphs across system endpoints. 
This work introduces a comprehensive methodology that 
evolved from our previous work [9]. It illustrates how a sys-
tem abstraction can be constructed using high-level design 
elements that are common across enterprise frameworks.

We use an established microservice benchmark to illus-
trate the use of our method and detail multiple perspec-
tives. We elaborate on the initial weight calibration for our 
method across components and their properties in the call 
graph and demonstrate how to apply it in system evolution. 
We also illustrate supportive tools developed for integration 
with Software Development Life Cycle (SDLC) and CI/CD 
pipelines for real-life application usage.

This manuscript brings the following outcomes:

–	 A method to detect semantic clones in enterprise systems 
using components.

–	 A prototype tool for semantic clone detection assessed 
on an established microservice benchmark.

–	 A enterprise system semantic clone dataset containing 
27,221 labeled items.

–	 A plugin for integrating our clone detection into the 
development process.

–	 An interactive tool for visualizing the identified clones 
and inconsistencies in system components was created.

The rest of the paper is organized as follows: Section ''Back-
ground'' discusses the background, and the section ''Related 
Work'' details related work. Section ''Semantic Code Clone 
Methodology'' outlines the semantic clone methodology and 
its phases. Then, Section ''Case Study'' illustrates the method 
implementation in a case study along with a discussion. Sec-
tion ''Integration to the Development Process'' elaborates 
on tools developed for practical application in development 
workflows. Section ''Discussion'' provides a discussion, and 
the section ''Threats to Validity'' discusses the threats to the 
validity of the proposed approach. Finally, the paper is con-
cluded in the section Conclusion.

Background

Code clones can be detected at different levels of code 
matching. The below list iterates over the Basic types of 
clones [2, 10]:

•	 Exact clones (Type 1): Identical code segments except 
for changes in comments, layouts, and whitespaces.

•	 Renamed clones (Type 2): Code segments that are syn-
tactically or structurally similar other than changes in 
comments, identifiers, types, literals, and layouts. These 
clones are also called parameterized clones.

•	 Near Miss clones (Type 3): Copied pieces with further 
modification such as addition or removal of statements 
and changes in whitespaces, identifiers, layouts, com-
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ments, and types but outcomes are similar. These clones 
are also known as gapped clones.

•	 Semantic clones (Type 4): More than one code segment 
that is functionally similar but implemented by similar 
or different syntactic variants like iterative and recursion 
approaches for the same algorithm implementation.

The researchers grouped these types into two main catego-
ries of clones: syntactic clones, which include Type-1, Type-
2, and Type-3 [5], and semantic clones [6]. The syntactic 
similarity spectrum is extensive and includes subcategories 
for Type-3 based on the syntactical similarity percentage 
[11]. For instance, “Very Strongly Type-3” has a similar-
ity range of [90–100%), “Strongly Type-3” falls within 
[70–90%) and “Moderately Type-3” ranges from [50–70%), 
while “Weakly Type-3” has a range of [0–50%).

Classifications of Clone Detection

Code clones are often operationally defined by individual 
clone detection methods. The established detection tech-
niques can be categorized as suggested by Kumar et al. and 
others [5, 6]:

Text-based approaches are capable of detecting exact 
clones. Each line of the source code is compared with other 
lines. If consecutive lines of code are identical to other lines 
of code, they are detected as code clones. This method can-
not detect code clones with different identifiers such as vari-
able names, function names, or type names [5].

Token-based approaches can detect code clones that have 
different formats, such as different indention, white space, 
tab, and different identifiers. After the source code is divided 
into tokens, identical token sequences that are longer than a 
certain length are detected as code clones. They are compe-
tent in detecting all syntactic types of clones. Nevertheless, 
they can not detect semantic clones efficiently.

Abstract Memory States (AMS) provide a quick, lower-
level analysis [12]. AMS methods cannot handle scopes 
beyond single methods. While using AMS helped lessen 
the run time and lowered false-positive rates, its usefulness 
is limited to decentralized systems. This limitation renders 
them much less useful for enterprise applications, where 
the flow of method calls is more important for determining 
duplicate behavior due to the separation of concerns making 
some methods extremely short.

Abstract Syntax Tree (AST)-based gives the abstract syn-
tactic structure of the code and is used as the base for other 
methods. It is often associated with syntactic clones [6] but 
has also been used for semantic clone detection. After build-
ing an AST from the source code, subtrees having the same 
structure are detected as code clones. It identifies cohesive 
parts of the program source code as code clones, such as 
whole methods or consecutive statements in the same scope. 

However, comparing subtrees is expensive, so it is difficult 
to apply the AST-based technique to large-scale software 
systems, given their volumes of low-level detail.

Metric-based techniques specify and measure several 
metrics from a certain unit as the function, method, or class 
of the software system. The units having identical or similar 
metrics values are detected as code clones. It can detect syn-
tactic clones; however, they have low accuracy in semantic 
clones in comparison to the graph-based approaches.

Program Dependency Graph (PDG)-based approaches 
can detect semantic clones with good accuracy. After 
building a PDG as a result of the semantic analysis of the 
source code, isomorphic subgraphs are detected as code 
clones. It is the most expensive technique available, so it 
is difficult to apply the technique to middle-scale or large-
scale software systems. Sometimes, it is observed that 
PDG-based tools are highly scalable and portable rather 
to other approaches like text-based, token-based, etc.

To avoid the time complexity of the PDG, Control-
Flow Graph (CFG) [9, 13] can capture the same control 
dependence as PDG. CFG uses graph representation that 
depicts the relationships and order of operations, of which 
all paths might be traversed through a program during its 
execution. It captures the behavior of the program at a 
component level, making it easier to analyze than low-
level code, and provides a clear understanding of the 
system’s behavior. It can easily encapsulate the informa-
tion per each basic block. It locates inaccessible codes 
of a program, and syntactic structures such as loops are 
easy to detect in a CFG. It shows notable performance in 
measuring semantic clones. Still, CFG provides fine detail 
of program structure, and the reduction of the low-level 
details leads to call graphs. Call graphs represent the call-
ing relationships between subroutines in a program.

There are some attributes that influence clone detec-
tion, such as the granularity level that could be a method, 
function, code fragment, or procedure block, depending 
on the particular programming paradigm followed by a 
language [14]. A code fragment is a set of code lines, not 
necessarily contiguous. It is the slice as computed at the 
variable-level, function-level, or file-level [15].

The choice of system intermediate representation and 
detection algorithm has a significant influence on clone 
detection. Clone detection is related to the representation 
that the detection approach relies on. Thus, Type-1 clones 
are discovered by text-based approaches, Type-2 by lexi-
cal or token-based approaches, while Type-3 clones are 
discoverable by syntactical approaches based on AST, pos-
sible with the involvement of information from software 
metrics. Using AST as a system intermediate representa-
tion suits better for detecting Type-3 clones. Kumar et al. 
[6] suggest that AST cannot detect Type-4 clones with bet-
ter accuracy. Finally, graph-based and hybrid approaches 
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are involved in the detection of Type-4 clones. Hybrid 
approaches combine several different methods [14, 16, 17].

In this paper, the intermediate representation is Com-
ponent Call Graph (CCG). It is extracted from the CFG 
and augmented with cross-cutting components. It provides 
a comprehensive overview of the architectural structure 
and its flow. The CCG indicates the control flow between 
components and implies component dependencies. The 
calls include both internal and external calls across 
microservices.

Related Work

Clone detection is a wide-ranging field of research. How-
ever, several limitations arise when detecting semantic 
clones, including scalability issues for enterprise application 
clone detection. The various approaches are evaluated based 
on multiple criteria, as summarized in Table 1. This table 
considers the presence of a Graphical User Interface (GUI), 
the type of clones analyzed (syntactic or semantic), the tech-
niques used, the artifacts utilized, the focus on monolithic 
or microservices-based systems, and finally if the approach 
considers multi-layer systems in enterprise settings.

Approaches that are fantastic for any of the four types 
of code clones may not provide useful analysis for enter-
prise applications. For instance, the tool CCFinder [23] is an 
example of code clone detection that has been implemented 
and can discover Types 1 through 3 code clones efficiently 
and effectively. They focused heavily on maintainability and 
can show the impact of removing a code clone from the 
system. Yoshiki et al. [5] utilized CCFinder as an analysis 
component to be integrated with a GUI component to intro-
duce the tool called Aries. The proposed tool automatically 
computes metrics that are indicators for specific refactor-
ing methods rather than suggesting the refactoring methods 
themselves. In conclusion, they stated that CCFinder has 
high scalability. It can finish code clone detection within an 
hour, even if the source code has millions of lines of code. 

However, the CCFinder acknowledges that inter-method 
flows are challenging to capture, and they focus exclusively 
on source code analysis. Thus this tool is not beneficial for 
large and complex enterprise systems that are dependent on 
inter-flow communication. Therefore, even tools that are 
fantastic for Types 1 through 3 code clones may not provide 
useful analysis for enterprise applications.

Generally, existing techniques do not scale very well to 
large-scale software systems since most of them use PDGs 
for computation, which is a costly process in the large and 
distributed context [15]. That supports the usage of CFG as 
an optimal alternative, such that it can achieve the required 
task with much fewer computations [15]. Furthermore, 
addressing the semantic showed tools are using machine 
learning and deep learning-based approaches to detect 
semantic clones, and those approaches can detect semantic 
clones with good value of the result. Therefore, most of the 
related work shows that detecting the semantic clones rec-
ommend one or both approaches of machine learning and 
CFG to be employed in combination with supportive algo-
rithms to achieve good measurements.

Andrian et  al. [18] employed the machine learning 
approach to propose a PROCSSI tool that uses the profiles 
generated by information retrieval methods, in this case, a 
vector representation from Latent Semantic Indexing (LSI) 
[24], to compare components and classify them into clusters 
of semantically similar concepts. The profile of each source 
code document generated by LSI can then be used to cluster 
the documents into related groups. Moreover, the authors 
augment the real-valued vector representation of the source 
code documents produced by LSI by adding more dimen-
sions that would represent structural attributes of the source 
code derived from metrics. Preliminary research on this 
approach seems promising and would enhance the descrip-
tiveness of the LSI output by including structural type infor-
mation. However, in the case of renaming the data structure 
and operation names in a code clone, and when comments 
are discarded, their measures were unable to detect similari-
ties between the two such implementations. Nevertheless, 

Table 1   Related Work 
Approaches (SA: Static 
Analysis, MA: Manual 
Analysis, ML: Machine 
Learning, IR: Intermediate 
Representation)

Ref. GUI Clone Technique IR System Enterprise

[5] Yes Syntactic SA AST Token Monolithic No
[18] No Semantic SA/ ML Comment Monolithic No
[19] No Syntactic Semantic SA/ ML PDG AST BDG Monolithic No
[13] No Syntactic Semantic SA/ ML AST CFG Monolithic No
[20] No Syntactic SA CFG Token Monolithic No
[15] No Syntactic Semantic SA CFG LSH Monolithic No
[21] No Semantic SA CFG Monolithic No
[14] Yes Semantic SA eCST Monolithic No
[22] Yes Syntactic MA Manual: -method, -file Microservice Yes
This work Yes Semantic SA/ ML CCG​ Microservice Yes
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this demonstrates the importance of internal documenta-
tion for source code understanding. From the perspective of 
our approach, considering enterprise practices, component 
types, and their attributes brings a certain level of insight 
to the code fragment that would otherwise need to be docu-
mented. Thus, involving component recognition seems like 
a well-justified argument for semantic clone detection.

In combination between machine learning and graph-
based approaches, Abdullah et al. [19] propose a detection 
framework for detecting both code obfuscation and clones. 
The detection of code obfuscation is one of the significant 
use cases for semantic clones. While Bytecode Depend-
ency Graphs (BDG) and PDGs are two representations of 
the semantics or meaning of a program, AST captures the 
structural aspects. The authors build their prototype using 
the combination of PDG, AST, and Java BDG. Moreover, 
they integrated many machine-learning-based classifier 
algorithms and combine them based on the majority deci-
sion to obtain the final class label. They concluded that their 
approach could scale to process millions of files with billions 
of lines of code in a reasonable amount of time. However, 
all the Java files have to be compiled into a Java byte before 
generating BDG and extracting its features. Therefore, all 
Java files are required to have no errors before compiling to 
Java ByteCode and generating BDG. The limitations remain 
for non-bytecode languages such as C# and C/C++.

Wu et al. in [13] combined machine learning with the 
CFG approach to propose a novel joint code representa-
tion that applies fusion embedding techniques to learn hid-
den syntactic and semantic features of source codes. Each 
method can be generated into an AST and CFG. As the rep-
resentations of AST and CFG have different structures, they 
cannot be fused directly. Therefore, they apply embedding 
learning techniques [25] to generate fixed-length continu-
ous-valued vectors. These vectors are linearly structured, 
and thus the syntactic and semantic information can be fused 
effectively. Word embedding [13] is a collective term for 
language models and representation learning techniques in 
natural language processing (NLP).

Much research weighs the CFG approach more for 
achieving semantic clone detection. Fang et al. [20] pro-
pose SCDetector to combine the scalability of token-based 
methods with the accuracy of CFG for software functional 
clone detection. To avoid the high-cost graph matching, they 
first extract the control flow graph by static analysis. Then, 
they transform the CFG into certain semantic tokens to avoid 
the high-cost graph matching. They designed a Siamese 
network [26] to measure the similarity of a code pair. Sia-
mese network has been widely applied in many areas, such 
as paraphrase scoring, where the inputs are two sentences 
and the output is a score of how similar they are. However, 
SCDetector used the Soot framework [6] for achieving the 

static analysis phase, which requires successfully compiling 
the given codes to be able to extract the CFG. In addition to 
SCDetector can only detect method-level code clones and 
can not handle clones in other code granularity units when 
the same functionality is implemented using different APIs 
and different graph structures. Therefore, many semantic 
considerations are required to be handled, such as the source 
code normalization and analysis of more accurate orders of 
all tokens.

SrcClone tool [15] is developed as a slice-based scal-
able approach that detects both syntactic and semantic code 
clones. The slice [27] is an executable statement that should 
preserve the behavior of the original software. SrcClone 
uses control-flow information as retrieved by srcSlice [28]. 
However, these slices do not include complete control-flow 
information; they use limited-flow information that includes 
dependent variables, called functions, and aliases. As the 
control flow information is not used and no control depend-
ence is computed, the slices computed and used by srcClone 
are similar to flow-insensitive data-only slices. The Local-
ity Sensitive Hashing (LSH) algorithm [8] helps srcClone 
to efficiently find near neighbors of a given slicing vector. 
This algorithm reports any vector with a specific distance 
from the query.

Saed et al. [21] propose a novel technique that extracts the 
semantics of binary code in terms of both data and control 
flow. They applied data-flow analysis to extract the semantic 
flow of the registers as well as the semantic components of 
the control flow graph, which are then synthesized into a 
novel representation called the semantic flow graph (SFG). 
Subsequently, they employ the graph edit distance for this 
purpose. The edit distance between two graphs measures 
their similarity in terms of the number of edits required to 
transform one into the other. Given two data flow graphs, 
to transform one graph into another. They concluded that 
the system would be efficient enough for most real-world 
applications. Since it shows an increased accuracy with the 
languages constrained by the object-oriented paradigm, that 
is not common to place functions with different semantics 
in the same source file.

While microservices are a common software architecture 
for enterprise and scalable distributed systems. The micros-
ervices-based systems commonly contain different service 
components; these components could be written in differ-
ent programming languages. Tijana et al. [14] presented 
Language Independent Code Clone Analyzer (LICCA), a 
tool for the identification of duplicate code fragments across 
multiple languages. LICCA is integrated with the Set of 
Software Quality Static Analysers (SSQSA) [29] platform 
and relies on its high-level representation of code in which 
it is possible to extract syntactic and semantic characteris-
tics of code fragments positing full cross-language clone 
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detection. SSQSA manages single implementations of each 
analysis algorithm for all supported languages to guaran-
tee the reliability of software analysis and consistency of 
results, regardless of the input language. The authors uti-
lize the intermediate representation of source code entities 
in SSQSA to achieve cross-language analysis. It generates 
an enriched Concrete Syntax Tree (eCST) [29], which is 
universal to all languages. eCST is a syntax tree that inte-
grates concrete syntax with specific abstractions. This tech-
nique combines the higher recall and the fast detection of 
the token-based algorithms using the Longest Common 
Subsequent (LCS) [30] algorithm with the higher precision 
of AST-based algorithms using eCST representation. It is 
evaluated using 16 scenarios written in the five languages 
currently supported by LICCA, i.e., Java, JavaScript, C, 
Modula-2, and Scheme. However, LICCA has limitations. 
For example, clone detection is limited to semantically simi-
lar fragments written using syntactic elements with similar 
shapes, while functionally similar fragments implemented 
by constructs with different shapes (e.g., loops vs. recursion) 
are not yet covered. Besides, statement order insensitivity is 
an additional limitation caused by the comparison algorithm 
choice. Therefore, a refinement of the implementation and 
involvement of a filtering mechanism is required to increase 
the precision of results. In addition, code transformation 
techniques could be used to increase sensitivity.

Continue in deeper contribution related to microser-
vices architecture. Zhao et al. [22] claim that their work is 
the first that analyzes the reasons systematically for cross-
service clones’ occurrences. They first adopted the widely-
used Nicad tool [31] to detect code clones in microservice 
projects. Then they created a tool to automatically iden-
tify cross-service clones from the detection results. Next, 
they extracted the files and methods involved in the clones. 
Finally, they manually analyzed the characteristics of files 
and methods to understand the reasons for the emergence of 
cross-service clones. Most microservice projects are imple-
mented in Java [22]; therefore, the authors only considered 
projects implemented in Java, especially with Spring Boot 
and Spring Cloud frameworks. Although this study con-
siders the syntactic clone more than the semantic one, it 
states the methodology that has a deeper understanding of 
the cloning analysis granularity. They categorized all ser-
vices into one of three groups: 1) DPFile (Data-processing 
File), which means a file directly adds, deletes, or modifies 

data; 2) DRFile (Data-related File), which means a file con-
tains data queries or data beans; 3) DIFile (Data-irrelevant 
File), means a file that is not directly related to data. They 
conducted a pilot study on three benchmarks: train-ticket1, 
wanxin2, and swarm3. Through the quantitative analysis, 
they have presented that DRFiles are more likely to induce 
cross-service clones. They constructed a dataset with 2,722 
cross-service code clones from 22 open-source projects.

The summary of the approaches discussed above and 
listed in Table 1 highlights the lack of focus on enterprise 
architecture and microservices in the field of code clone 
detection, particularly in regard to semantic clones. This 
lack of coverage represents a gap in the current literature 
and highlights the need for further research and attention 
in this area. This paper brings new insights into the field 
of code clone detection by addressing the shortcomings in 
previous studies of enterprise and microservices-based sys-
tems [9, 32]. It aims to improve semantic clone detection 
by reducing the training time for machine learning methods 
and simplifying PDG computations. The paper introduces a 
Component-based approach specifically tailored for enter-
prise and microservices systems and leverages a machine 
learning approach with a focus on the semantic analysis of 
architecture layers and their flows for more efficient results.

Relevant Comparative Analysis to Our Approach

From prior research, Zhao et al. [22] addressed microser-
vice syntactic clones. They conducted their study on the 
train-ticket benchmark, which is also used in this study. To 
motivate the reader and justify the needs for our approach, 
we examine their results and compare them with our method 
findings as summarized in Table 2. Therefore, we identify 
the gap that motivates our methodology for filling it. Details 
of our method and the case study results presented here are 
provided in later sections.

We analyzed the results from Zhao et al. [22] and inves-
tigated the 201 method pairs they published at this link4. 

Table 2   Comparative Analysis 
Results using manual analysis 
on TrainTicket (0.1.0) 
benchmark. ( � s: Microservice)

Ref. Clone Inter- service Granularity #clones #cloned �s

[22] Syntactic No Methods 201 Pairs of Methods 26 �s
This Work Semantic Yes CCG​ 27 Pairs of CCG​ 9 �s

1  Train-Ticket benchmark: https://​github.​com/​Fudan​SELab/​train-​
ticket, accessed on 2/5/2023.
2  Wanxin benchmark: https://​github.​com/​mikuh​uyo/​wanxin-​p2p, 
accessed on 2/5/2023.
3  Swarm benchmark: https://​github.​com/​macro​zheng/​mall-​swarm, 
accessed on 2/5/2023.
4  Syntactic Clone results from [22]: https://​micro​servi​cedata.​github.​
io, accessed on 2/5/2023.

https://github.com/FudanSELab/train-ticket
https://github.com/FudanSELab/train-ticket
https://github.com/mikuhuyo/wanxin-p2p
https://github.com/macrozheng/mall-swarm
https://microservicedata.github.io
https://microservicedata.github.io


SN Computer Science           (2023) 4:470 	 Page 7 of 23    470 

SN Computer Science

Out of the 201 clones in the compared study, none of them 
matched the 27 we detected manually using our approach. 
The compared study found many instances of syntactic 
clones due to duplicated switch-case statements, utility 
methods, unit tests, and initialization methods (i.e., construc-
tors) among multiple services. It is common to have similar 
syntax and structure while they can hold different seman-
tics. For example, the initialization of AccountInfo and 
SecurityConfig entities in services ts-inside-pay-
ment-service and ts-security-service, respec-
tively, are classified as clones, but they have different data 
and purposes. However, with the microservice architecture 
introducing bounded context, it is common to find dupli-
cated entities between services, regardless of exact fields or 
different fields. This results in many clones produced from 
encoding and decoding the same entity across services com-
munications, such as the Order entity constructor appear-
ing many times as a clone in multiple services.

Additionally, the compared study recognizes many other 
pairs that have the same structure but different semantics. 
Methods getAllContacts and queryAll in services 
ts-contacts-service and ts-config-service, 
respectively, appear similar but communicate with differ-
ent services and repositories to produce lists of Contacts 
and Config entities, respectively. Methods listFood-
StoresByStationId and queryByAccountId in 
services ts-food-map-service and ts-consign-
service have different entity types and return data types. 
Methods updateFoodOrder and updatePriceCon-
fig in services ts-food-service and ts-price-
service work on different data entities but have similar 
syntax. However, the same updateFoodOrder method 
is also a clone with deletePriceConfig, but they serve 
different purposes for update and delete functionality. As a 
result, these outcomes will likely be discarded by developers 
and produce unnecessary effort rather than direct benefits. 
This could demotivate the developers to pay attention to 
future subsequent reports that provide a large unprioritized 
set of suspected smells with unobvious benefits to the system 
quality.

Next, we compare the results from the manual perfor-
mance of our methodology to results by the Zhao et al. [22] 
study’s results. Zhao et al. approach detected 53 cloned pairs 
from the benchmark’s service layer, but none of them inter-
sected with our 27 clone pairs. These 27 pairs came from 9 
microservices of the same system.

Out of these 27 clone pairs, our manual classification 
identified 14 clone pairs between services ts-order-
other-service and ts-order-service as clones, 
but none of them appeared in the syntactic approach. This 
could be due to their service methods containing long 
source code with additional logs and empty line differ-
ences, which are syntactic; however, they share similar 

semantics. The same reasoning applies to one clone of the 
preserve method in services ts-preserve-service 
and ts-preserve-other-service. Additionally, 
our classification identified eight pairs of clones between 
ts-travel2-service and ts-travel-service. 
Moreover, three pairs between ts-contacts-service 
and ts-admin-basic-info-service services were 
not syntactically recognized due to the usage of a REST 
call on one side instead of a repository method call on the 
other side. However, they serve the same functionality of 
the same entity type and match the rest of the control graph 
attributes. The Zhao et al. study results also could not detect 
the one clone of the deleteConfig method in services 
ts-config-service and ts-admin-basic-info-
service due to different code structures that hold similar 
logic and persistence data on both sides.

In conclusion, the results of the syntactic analysis have 
confirmed that there is a significant degree of duplication 
between the structures of enterprise systems and the struc-
tures of the services they offer. This overlap is particularly 
noticeable in terms of the communication layers and the 
call graphs in these systems. This highlights the need for 
abstracting components based on their function rather 
than their structure, as well as the importance of a seman-
tic approach to detecting clones in enterprise systems. By 
combining both the syntactic and semantic approaches, a 
comprehensive analysis of clones in enterprise systems can 
be achieved. This will provide valuable insights and help to 
optimize the use of developer efforts and improve the overall 
quality of enterprise systems.

Semantic Code Clone Methodology

Enterprise applications build on well-established devel-
opment standards and components which are recognized 
across various platforms [33]. These types of applications 
usually follow a three-layer architectural design that man-
ages data processing and storage. In addition, current trends 
emphasize decentralized design solutions, such as micros-
ervices, which can result in the use of multiple program-
ming languages within a single application (a.k.a. polyglots). 
All these factors should be considered when attempting to 
impact the enterprise industry.

Our proposed Component-based Semantic Clone (CSC) 
detection method concentrates on the detection of semantic 
clones in the call graphs of enterprise applications5, which 
span different layers of the application’s architecture, from 

5  Note that while the examples and implementation demonstrations 
of our method are specific to the Java platform, it is not limited to just 
this platform



	 SN Computer Science           (2023) 4:470   470   Page 8 of 23

SN Computer Science

system endpoints to data persistence. Moreover, it examines 
the semantics and properties of the components utilized in 
the source code. These components are employed as a best 
practice to design the application’s functionality according 
to its relevant semantic context.

Therefore, we start the process by deriving the call graphs 
of the enterprise application endpoints into which we embed 
additional metadata about the cross-cutting components and 
their properties. Similar to related works, to avoid the high-
cost graph matching [20, 28], we reduce the component-
augmented call graph to Component Call Graph (CCG). 
Such intermediate representation provides a higher-level 
view of the system, reflecting its architectural elements and 
their dependencies. It shows the flow of control from one 
component to another, and the way components interact and 
depend on each other within and across the boundaries of a 
single microservice.

The following steps outline the method for identifying 
semantic clones in enterprise application call graphs. First, 
we construct the call graphs, then quantify their properties. 

Afterward, we perform a similarity comparison to deter-
mine the overlap of two compared CCGs. Finally, we use a 
machine learning classification model to identify the clones. 
The entire process is illustrated in Fig. 1 and will be dis-
cussed in further detail in the next subsections.

Graph Construction

The first phase of the CSC process is the call graph con-
struction phase. Using static analysis, we can recognize 
arbitrary low-level language constructs used in the enter-
prise application source code. This can utilize language-
specific parsers (i.e., JavaParser or Javassist [34] for the 
Java platform) for scanning the code and identifying all 
declared methods and classes within the application or 
specific modules of a multi-module application. These 
parsers also enable the identification of method calls 
within each method’s body to build a method call graph 
depicting the relationship between methods.

Fig. 1   Component-based 
Semantic Clone Detection 
Process Phases

Fig. 2   The CCG of the example 
in Listing 1
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The entry points of an enterprise application, usually 
represented as REST endpoints, are crucial to its under-
standing. To locate these entry points, a depth-first search 
finds all methods with no calling methods.

For illustration, Listing 1 shows a code example, such 
that there is an endpoint method create in the Record-
Controller which calls the save method in the ser-
vice component RecordService. Next, RecordSer-
vice makes two procedure calls, first to some third-party 
API using restTemplate, and the second to save rou-
tine in RecordRepository. The resulting call graph 
is depicted in Fig. 2; it starts from the endpoint interface 
in the controller component, RecordController, fol-
lowing the arrows that move through the graph regarding 
each method call until it ends up with the constructing a 
complete graph.

Table 3   Component types and their properties

Component Type Properties

Controller Method name, HTTP method, arguments, return 
type

Service Method name, arguments, return type
Repository Database operation, arguments, return type
REST Call URL, HTTP method, return type

Fig. 3   Components’ Properties 
and their Similarity Vector
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Graph Quantification

After constructing call graphs, we augment the graph with 
cross-cutting components. The Component Call Graphs 
(CCG) include broader semantic details from the enter-
prise perspective. This involves linking each component of 
the CCG to its component type and its set of properties. 
As illustrated in Fig. 2, the component type is indicated 
within brackets ([]), and the properties for each component 
are presented in square rectangles that are connected to its 
component.

To annotate the CCG, we first identify the component 
type of each method. We search for four types of compo-
nents, as outlined in Table 3. This is done by analyzing the 
wrapping components using common enterprise architecture 
practices such as annotations in Java Spring framework.

The properties that are linked to each component type 
are different and can be seen in Table 3. In the context of an 
enterprise system, these properties reflect the semantic role 
that the component plays in the system, such as a database 
connector, entry point, or service.

Language-specific parsers can be used to extract those 
properties that have different extraction approaches based on 
the source code language. For example, a controller method 
in Java may have a piece of metadata (i.e., annotation) for 
the HTTP method, which the parser can extract and link with 
the component type. However, a generalized approach using 
detection patterns can be used [33]. In summary, the added 
properties transform the call graph into a CCG and provide 
a deeper understanding of each component and its role in the 
system for the next phase.

Individual CCGs derived for each endpoint combine into 
a representation of one microservice. Furthermore, similar 
to the detection of components, we can detect external calls 
since these are realized through well-defined interfaces or 
constructs [33]. These REST calls can then connect to other 
endpoints of external microservices by method signature 
match, which forms a more comprehensive perspective of 
system dependencies.

Similarity Comparison

The similarity phase in our method involves comparing each 
component type in a pair of CCG to its counterpart in the 
other CCG. We compare the extracted properties listed in 
Table 3 for each component type to generate a similarity 
ratio as shown in Fig. 3. For example, for the controller com-
ponent, we compare the method names, HTTP method, argu-
ment lists, and return types of each controller component 
from the CCG pair. We calculate a similarity value between 
0 and 1 for each property pair. However, the comparison 

of properties has different considerations in calculating the 
similarity value.

We begin with name comparisons, which apply to method 
names, argument names, and custom type names properties. 
We utilize a project based on WordNet [35] to detect names 
similarity percentage based on the meaning of the name.

For the data type comparisons, which apply to arguments 
and return type properties. There are two cases to consider, 
native data types (e.g., String, int) and custom types (e.g., 
class, struct, DTO, entity). Our approach uses a literal com-
parison of native types to determine if they are the same type 
or not. For custom types, the microservice architecture pro-
motes the use of bounded context, where the same domain 
entity can be duplicated in multiple services with slightly 
different names and the number of variables. Therefore, we 
calculate the similarity ratio between the entity name and 
its variables as well. Our approach extracts the type name 
and its contained variables from the source code, and then 
it compares the two types based on their names’ similarity 
and the best matches between their contained variables. For 
example, if one type contains three variables and the other 
contains four, the method checks for the best similarities 
combinations between the three variables and the four vari-
ables. Moreover, the method considers the comparison of 
names and types of those variables, such that the same tech-
nique is used for native and custom types similarity checks. 
The calculated similarity value is the average of the name 
and all variable’s similarities ratios.

For the database operation property, a different compari-
son logic is used. Our approach considers logical matching, 
meaning that the operation type should match exactly, except 
for insert and update operations which are considered equal 
since they serve a similar purpose of retaining information in 
databases. Some frameworks have the same method for both 
purposes, so it only depends on whether the item already 
exists in the database to decide if it’s an insert or update 
operation. For example, the same method name “save” in 
the Spring framework is used for both insert and update.

Finally, the similarity of the HTTP method and URL 
properties are calculated as a literal comparison. The simi-
larity of the HTTP method (e.g. GET, POST) depends on 
an exact match with its counterpart on the other side. The 
same applies to the URL, especially for microservices-based 
systems that commonly use a service discovery identifier 
instead of a literal IP address and Port. Comparing the URL 
base considers the invoked service rather than the deployed 
instance since every service could have multiple deployed 
instances with different IP addresses. In addition, compo-
nents that make REST calls may have parameters that are 
included in the URL (such as Path parameters) or in the 
request body. To reflect this, we combined the similarity 
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value into the URL property as a single value that represents 
the complete request path.

Classification

In the previous phase, the comparison properties described 
generate numerical features that indicate the semantic simi-
larity between two CCGs. These numerical features are 
aggregated into a similarity vector as shown in Figure 3.

Given the potential availability of labeled data for CCG 
pairs, we propose using supervised machine learning to pre-
dict whether two CCGs are clones based on their similarity 
vector. We believe these features have descriptive semantic 
meaning for their CCG and its components, so a simple lin-
ear model, such as a logistic regression classifier [36, 37], 
should be sufficient to capture the relationship.

The logistic regression model is a simple yet effective and 
robust approach that works well with scarce tabular data (as 
in this usecase). It is a parametric model that attempts to 
learn the following function:

where x is the similarity vector, and y is a binary target6, 
with y = 1 indicating that the CCGs are clones and y = 0 
indicating they are not.

The hypothesis function h used by the model to approxi-
mate f is given by:

(1)f (x) = ℙ[y = +1|x)

where w is a vector of scalar weights, b ∈ ℝ is the bias term, 
and � is the logistic function defined as:

The model’s weights and the bias term are adjusted using 
gradient descent [36] to maximize the likelihood of the train-
ing data. This means maximizing the probability that the 
training data came from the model.

Furthermore, a logistic regression model does not directly 
output a number that is 0 or 1. Instead, it outputs a continu-
ous value in the range [0, 1], which is an estimate of the 
probability ℙ[y = +1|x) . This value can be interpreted as the 
degree of certainty the model has about a similarity vector 
being classified as a clone. To convert it to a binary classifi-
cation, a user of the model must set a threshold that defines 
the range of values that indicate a positive result. This is, 
on input x , the positive class is predicted if h(x) ≥ thr , for a 
chosen threshold value thr.

Case Study

In this section, we demonstrate the effectiveness of our 
proposed methodology through a case study on an existing 
microservice benchmark. We have developed a prototype 
that incorporates our methodology, consisting of both static 
code analysis and machine learning projects. Our study dem-
onstrates that we can accurately detect code clones by utiliz-
ing the properties we have extracted.

(2)h(x) = �(wT
x + b)

(3)�(z) =
1

1 + exp(−z)
;z ∈ ℝ

Fig. 4   Benchmark microservice 
overview. Sourced from the 
TrainTicket 1 documentation

6  The domain of this binary output is usually modeled in one of two 
ways: {1, 0} or {1,−1} for positive and negative classes respectively. 
We assume the {1, 0} model for the purposes of the explanation.
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Benchmark Application

As our benchmark, we chose a public, mid-sized microser-
vices application that follows enterprise conventions. Train-
Ticket1 was designed as a train ticketing service that logs the 
application’s output for fault detection. This benchmark is 
structured into distinct controllers, services, and reposito-
ries, and communication between the modules of the appli-
cation is facilitated through REST API calls. It utilizes the 
Java Spring Boot framework for its implementation. An 
overview of the TrainTicket structure is depicted in Fig. 4. 
The benchmark has multiple versions with varying numbers 
of microservices. In this study, we examine three of these 
versions, labeled 0.0.1, 0.1.0, and 1.0.0, which contain 41, 
37, and 29 microservices, respectively. We use them to iden-
tify semantic code clones in the application.

Prototype Implementation

The implementation of the prototype is split into two parts. 
The first project primarily focuses on analyzing the source 
code of enterprise Java applications, while the second 
project implements a machine learning model to identify 
semantic clones from the data generated by the first project. 
The source code for the prototype is publicly available at 
this link7.

For the static analysis project, we use Java-specific tools 
to extract and construct quantified CCGs from the source 
code using the Java Reflection library and Javassist [34]. 
The focus is on the Java Spring framework, which uses 
annotations for component implementations, such as @
Controller and @RestController for controllers, 
and @Repository and @Service for repositories and 
services. We use the WS4J project8 - and WordNet [35] to 
determine the similarity percentage based on the meaning of 
the names. The properties of each component are extracted 
and associated, and the similarity between each pair is cal-
culated as described in section 4.3.

For the machine learning project, we use logistic regres-
sion from the scikit-learn [38] library in Python to build our 
classification model. It operates on the data generated from 
the static analysis project, classifying the CCG pairs into 
clones or non-clones, and calculates the accuracy metrics 
for detecting clones from the testing project.

Manual Analysis

To construct the ground truth for semantic clones, we exe-
cuted our prototype on the TrainTicket benchmark (release 
0.1.0) and obtained 238 CCGs. These CCGs resulted in 
27,221 pairs of combinations. We investigated and assessed 
the source code of these components, not just the extracted 
properties that are discussed and shown in Table 3. Two 
authors evaluated the semantic similarity of these pairs 
whether they are clones or not based on the components’ 
semantics of each CCG (i.e., Controller, Service, Repository, 
REST Call), and one more author validated the classifica-
tion result.

Our focus was on semantic meaning rather than syntactic 
similarities. This means that the two call-graphs have the 
same logic and similar impact on the system, regardless of 
whether they employ the same syntax or not. For example, a 
syntactic analysis may identify clones where the CCG com-
ponents have the same syntax structure, but handle different 
entity types. However, in our approach, this does not mean 
that they are clones, but it could be a sign of non-clones 
classification. On the other hand, Two semantically matching 
service components that retrieve similar entity data, one by 
calling a repository and the other by calling a Rest service, 
can be considered a semantic clone since they retain logic 
with a difference in the source of data. Similarly, when the 
logic of all components matches in the CCG pair, we label 
them as a clone. As a result, we categorized 27 pairs as 
clones, while the rest were labeled as non-clones. This led 
to an imbalanced dataset that we will consider in our pro-
cessing. The classified dataset can be accessed at this link9.

Measurement Metrics

To evaluate the effectiveness of our implementation, we 
selected certain metrics as a means of assessment. Utilizing 
the labeled data created through the manual analysis, our 
regression model produces a compilation of the following 
values:

–	 True Negative (TN): Non-clone examples correctly pre-
dicted as non-clones.

–	 False Positive (FP): Non-clone examples incorrectly pre-
dicted as clones.

–	 False Negative (FN): Clone examples incorrectly pre-
dicted as non-clones.

–	 True Positive (TP): Clone examples correctly predicted 
as clones.

7  Our Prototype:https://​github.​com/​cloud​hubs/​Distr​ibuted-​Syste​ms-​
Seman​tic-​Clone-​Detec​tor, accessed on 2/5/2023.
8  WS4J: https://​github.​com/​Sciss/​ws4j, accessed on 2/5/2023.

9  Our Semantic Clone Dataset (V1): https://​zenodo.​org/​record/​76328​
39, accessed on 2/11/2023.

https://github.com/cloudhubs/Distributed-Systems-Semantic-Clone-Detector
https://github.com/cloudhubs/Distributed-Systems-Semantic-Clone-Detector
https://github.com/Sciss/ws4j
https://zenodo.org/record/7632839
https://zenodo.org/record/7632839
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We utilize these values to compute valuable metrics to assess 
the quality of a binary classification model. Each of the fol-
lowing metrics reflect a valuable assessment of the model 
effectiveness: accuracy, balanced accuracy, precision, recall, 
and F1 score [39, 40].

The model’s accuracy reflects the share of correct clas-
sifications the model makes. It is defined as:

The balanced accuracy is somewhat similar to the accuracy. 
However, it is particularly useful in our case when working 
with an imbalanced dataset because it operates in such a 
way that correctly predicting an instance of an undersam-
pled class contributes more to the final score than correctly 
predicting an instance of an oversampled one. It is defined 
as follows:

The precision, a.k.a. positive predictive value (PPV), indi-
cates in this domain the share of the model’s predictions of 
clones that are true clones. It is defined as:

(4)A =
TP + TN

TP + FN + TN + FP

(5)BA =
1

2

(
TP

TP + FN
+

TN

TN + FP

)

The recall, a.k.a. true positive rate  (TPR), indicates in this 
domain the share of the actual clones that are classified as 
clones by the model. It is defined as:

Finally, the F1 score measures how well the model is doing 
considering both precision and recall simultaneously. For-
mally, it is defined as the harmonic mean of precision and 
recall:

Study Execution

The evaluation of our methodology starts with running the 
prototype on the TrainTicket benchmark (release 0.1.0) 
and generating 238 CCGs, which resulted in 27,221 com-
binations. These data points were then manually labeled, 

(6)P =
TP

TP + FP

(7)R =
TP

TP + FN

(8)F1 = 2
(
P ⋅ R

P + R
)

Table 4   Classification metrics on the training dataset

Accuracy Balanced Accuracy Precision Recall F
1
 Score

0.999 0.944 0.75 0.888 0.813

Table 5   The similarity properties and their assigned weights of the 
model

Bolder  are the weights with the highest absolute values, i.e., the 
weights contributing more to the output, which could be interpreted 
as the features that are more important

Property Weight

Controller: method name 9.06608
Controller: HTTP method 1.38333
Controller: arguments 1.86721
Controller: return type 4.39439
Service: method name 1.87319
Service: arguments 0.28254
Service: return type 4.02174
Repository: database operation − 1.56188
Repository: arguments − 2.21971
Repository: return type 2.91226
REST Call: URL − 0.58029
REST Call: HTTP method 1.24877
REST Call: return type 0.00397

Table 6   CSC vs. Manual Analysis: Comparison of Clone Detection

Technique #clones #cloned �s

Manual Analysis 27 9 �s
CSC 32 14 �s

Fig. 5   Confusion matrix of the model’s predictions on the training 
dataset.A confusion matrix is a compilation of 4 different values, 
each in a cell of the matrix. From left to right, top to bottom, these 
are: TN, FP, FN, and TP
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as outlined in the section ''Prototype Implementation''. A 
logistic regression model was fitted using these 27,221 data 
points.

Due to the imbalance in the dataset, a weighted version 
of the logistic regression model was employed to give more 
weight to classifying the undersampled class correctly and 
less weight to the oversampled class. The threshold for pre-
diction was set at 0.99, as it maximized the F1 score in the 
training data. This threshold value, referred to as a hyper-
parameter in machine learning, is typically found using 
cross-validation techniques [41], however, due to limited 
data, especially limited clones samples in the dataset, cross-
validation was not performed in this case study.

Metrics Results Analysis

A summary of the model’s performance in the training data 
in terms of accuracy, balanced accuracy, precision, recall, 
and F1 score is given in Table 4.

As an analysis of the measurements, we found that the model 
has a very high accuracy rate, with the majority of examples 
being correctly classified. However, this value is misleading due 
to the imbalance of the dataset. The balanced accuracy, which 
compensates for the imbalance, provides a more accurate rep-
resentation of the model’s performance and it stands at 94.4%. 
A precision percentage of 75% suggests that out of every 4 
examples that the model predicts as clones, 1 will actually be a 
non-clone. On the other hand, the high recall indicates that the 
model is highly effective at identifying the existing clones in 
the data. As the recall value is less than 1, it is anticipated that 
the model may classify some real clones as non-clones. Finally, 
the F1 score, which combines precision and recall into a single 
metric, supports the aforementioned results.

Moreover, the logistic regression model produces weight 
values that reflect the most important features considered 
in making predictions. The results of these weights are 
displayed in Table 5. Upon analysis of the weights, it was 

observed that the controller method name and return type, 
and the service return type were the most significant factors 
in the model’s predictions.

Clones Results Analysis

The results of the semantic clone classification by the model 
are presented in Table 6. This table demonstrates that the 
model detects a larger number of clones and a greater num-
ber of microservices containing clones than were classified 
in the labeled training data.

A confusion matrix in Figure 5 provides a detailed evalu-
ation of the model’s predictions on the training dataset. The 
matrix shows that the model has a high level of precision 
in recognizing clones, with 24 of the 27 total clones in the 
dataset being correctly classified. Additionally, the model 
has a high level of accuracy in classifying the vast majority 
of non-clones, only misclassifying 8 pairs of them.

The cloned services are extracted and listed in Table 7. 
This table shows the pairs of microservices along with 

Table 7   TrainTicket 
microservices’ clones analysis 
( �s : Microservice, MA: Manual 
Analysis)

The 3 false negatives were actual clones, they are found in the two pairs marked with (**) in the table at 
lines 1 and 2. When examining the 8 false positives, it was found that 6 of them were actual clones which 
we missed in the manual analysis. These are found in the pairs marked by (*) in rows 3, 5, 6, 7, and 8 of the 
table

# �s1 #CCGs �s2 #CCGs #clones (MA) #clones (CSC)

1 ts-contacts-service 8 ts-admin-basic-info-service 21 3 ** 1
2 ts-config-service 6 ts-admin-basic-info-service 21 1 ** –
3 ts-order-other-service 16 ts-order-service 16 14 15 *
4 ts-preserve-service 2 ts-preserve-other-service 2 1 1
5 ts-travel2-service 12 ts-travel-service 12 8 11 *
6 ts-route-service 6 ts-admin-route-service 4 – 1 *
7 ts-rebook-service 3 ts-inside-payment-service 9 – 1 *
8 ts-basic-service 3 ts-ticketinfo-service 3 – 2 *

Table 8   Semnatic Clones Dataset for TrainTicket (0.1.0)

Version #clones (CCGs Pairs) #non-cloned 
(CCGs Pairs)

V19 27 27,194
V210 33 27,188

Table 9   TrainTicket releases’ clones analysis

Train-
Ticket 
Release

#clones # services #cloned 
services

#CCGs #cloned 
CCGs

0.0.1 36 41�s 18�s 250 71
0.1.0 32 37�s 14�s 238 64
1.0.0 30 29�s 12�s 257 60
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their total number of CCGs and how many were classified 
as clones by both manual analysis and the model. Further 
analysis was conducted on the 11 misclassified pairs, which 
included 8 false positives and 3 false negatives.

When examining the 8 false positives, it was found that 
6 of them were actual clones which we missed in the 
manual analysis. This is marked by (*) in rows 3, 5, 6, 
7, and 8 of the table. However, two of them were found to 
be correct non-clones after a manual investigation. These 
were the pair between ts-rebook-service and ts-
inside-payment-service at row 7, and one of the 
two CCGs at row 8 between ts-basic-service and 
ts-ticketinfo-service. This shows that the model 
has a promising ability to learn the properties of compo-
nents and identify faults in the training dataset created 
through manual analysis.

On the other hand, the 3 false negatives marked with 
(**) in the table were actual clones. This may have occurred 
because these 3 CCGs pairs have similar properties, where 
one calls a repository routine, and the other invokes a Rest 
service to achieve the same functionality. As analyzed, ts-
admin-basic-info-service calls a Rest service to 
delete the contact, while ts-contacts-service calls 
a repository method to delete the contact. Similarly, the call-
graph for modifying contact functionality. The same case 

exists between ts-config-service and ts-admin-
basic-info-service for deleting configuration. This 
highlights the need for the model to be trained with cross-
similarity values between repository components and REST 
call components, as they both serve as data sources for the 
other components in the call-graph.

Semantic Clone Dataset

In this study, a new Semantic Clone Dataset was created 
and verified through manual analysis and the results of our 
method. This dataset provides a valuable resource for the 
community in improving semantic clone detection and it 
contains 27,222 pairs of CCGs.

The dataset includes 16 columns, with 13 of them corre-
sponding to the 13 properties extracted and listed in Table 3. 
Two columns contain the pair of CCGs, and the final column 
provides a label indicating whether the pair is a clone or a 
non-clone.

To make the dataset accessible and useful, we have pub-
lished two versions of the dataset, as described in Table 8. 
The first version (V19 ) was classified manually and used 
to train our model. The second version (V210) includes an 
additional 6 clones that were detected using our CSC method 
and manually verified; these are not present in the first data-
set version. These extra clones are marked in the dataset 
for easy tracking and were explained in previous sections 
of the study.

Tracing Clones through System Evolution

The analysis of semantic code clones while the system 
evolves over time is an interesting use case. This can be 
achieved by fitting a model to a specific version of a sys-
tem and then evaluating the clone prevalence in a different 
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Fig. 6   TrainTicket CCGs clones percentage

Fig. 7   Configuration Page

10  Our Semantic Clone Dataset (V2): https://​zenodo.​org/​record/​
76328​42, accessed on 2/11/2023.

https://zenodo.org/record/7632842
https://zenodo.org/record/7632842
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version. This approach assumes that the weights obtained 
from fitting the model are dependent on the system but not 
time-dependent, meaning the model generalizes well to dif-
ferent versions of the same system.

The TrainTicket system was analyzed using our frame-
work to compare two versions of the system, an older ver-
sion (0.0.1) and a newer version (1.0.0), with the version 
used for training (0.1.0). According to Table 9, the number 
of microservices decreases as the system evolves, likely due 
to merging services to reduce communication overhead. The 
analysis reveals that the overall number of clones, the num-
ber of services with clones, and the number of cloned CCGs 
all decrease over time, with the newest version having the 
fewest clones in terms of services and CCGs, even though 
it has the highest number of CCGs among the different ver-
sions. The percentage of CCGs clones per each release is 
illustrated in Fig. 6. This demonstrates that the system is 
being refactored and kept clean by reducing the number of 
clones in previous versions.

In addition, the older version (0.0.1) introduced 11,558 
new CCG pairs not seen in the training version. Our model 
classified 8 of these pairs as clones, and after investigation, 
it was found that 5 of the 8 were correct. This highlights 
the stability of the model in detecting clones even for out-
of-sample pairs. The newer version (1.0.0) generated 7,132 
new CCG pairs, all of which were found to be non-clones.

Integration to the Development Process

Code clones can lead to several problems in the codebase 
(or distributed codebases) if left unaddressed by develop-
ers. Moreover, developers will likely not run reports with 
each change to the application. While there are tools such 
as SonarQube11 which can catch Type 1 of syntactic clones 
during the CI/CD process and force developers to address 
them before merging their code, nothing like that exists for 
semantic code clone detection.

We address the developer interaction through two com-
munication channels tapping into the SDLC. One perspec-
tive we address is integration with Integrated Development 
Environment (IDE). The other perspective is integration 
with the CI/CD.

IDE Interactive Tool

To allow developers to quickly assess semantic code clones 
in their application using graphical user interfaces we inte-
grated our prototype tool with a selected Integrated Develop-
ment Environment (IDE). This integration allows developers 
to localize and remove code clones from their codebase(s). 
We published this tool12 - as open source. It consists of a 
Configuration Page and Code Clone Page.

Fig. 8   The first two sections of 
Clone Page

11  SonarQube: https://​www.​sonar​qube.​org, accessed on 2/5/2023.
12  Our Interactive Tool: https://​github.​com/​svaci​na/​proph​et, accessed 
on 2/5/2023.

https://www.sonarqube.org
https://github.com/svacina/prophet
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Fig. 9   The third section of 
Clone Page

Fig. 10   Entity Inconsistencies 
Page
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The developer configures essential properties, as shown 
in Fig. 7. The path to the system on the local file system. We 
assume that the developer downloads the system and has 
at least read access to the files. Next, a path to a script that 
can open the IDE. We assume that the developer configures 
IDE and has to execute access to the IDE. We configured our 
example with TrainTicket1 - and VSCode IDE13.

The code clone page is displayed with a list of code 
clones. Each code clone component has three sections. The 
first section is a table with an overview of how similar are 
the parts of one CCG with the other. The table, as shown in 
Fig. 8 has two columns. The first column lists all parts of 
the CCGs, controller, services, repositories, and the REST 
call. The second column shows the percentages of similarity, 
which are calculated based on each CCGs components simi-
larity, and also each component similarity is considered as 
an average of the similarity between each component-related 
properties. For example, the controller similarity is the aver-
age of the following properties: method name, arguments, 
return type, and HTTP method as listed prior in Table 3. 
This section enables users to quickly assess which parts of 
the CCGs are most likely to include the same behavior. The 
second section displays an identification of a code clone pair, 

showing the percentage of similarity to stipulate code clone 
severity between the CCGs components. The third section 
is a two-column view of both CCGs side by side as shown 
in Fig. 8. This layout enables users to see the same parts 
of each CCG next to each other and enhances the overall 
ability to compare related parts. It displays a comparison 
of CCGs properties together with a code of methods that 
participate in the CCGs (Fig. 9). Each part of CCGs has 
its section (controller, service, repository, REST call). Each 
part contains a table that displays relevant extracted proper-
ties as the following properties: class name of the parent 
class, method name, return type, arguments, and annota-
tions. We also included a code snippet with the actual code 
of the method per each CCG part.

In addition to code clones, our tools also provide a quick 
assessment for data entity layer inconsistencies across 
decentralized microservices. It layouts visual verification 
of the missing fields between data entities. As shown in 
Fig. 10, there is an entity object Money that has inconsist-
ent usage in two microservices, ts-payment-service, and ts-
inside-payment-service. Entity Money is missing two fields 
with their annotations and four validation annotations on two 
other fields. The boxes are displayed with missing fields and 
annotations for entity Money on the left next to the code of 
the complete entity on the right.

Fig. 11   VSCode IDE Integra-
tion

Fig. 12   Gradle plugin output

13  VSCode IDE: https://​code.​visua​lstud​io.​com, accessed on 2/5/2023.

https://code.visualstudio.com
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Furthermore, the names of individual microservices are 
represented as active links that open the file with code in 
IDE (i.e., VSCode13 ) as depicted in Fig. 11. Users can click 
on links to files of the analyzed system to use an external 
IDE to make changes in the code to remove inconsistencies 
and code clones.

CI/CD Process Integration

To support the enforcement of our prototype tool usage 
across large teams we also developed a Gradle-plugin14 - to 
scan the code against the clones and inconsistencies. Apply-
ing our plugin to an application project allows the plugin to 
extend the project’s capabilities. Following the installation 
guide in the repository, it can be integrated with existing 
CI/CD pipelines and automatically warn developers of any 
semantic code clones in their application. Upon execution, 
it prints out in the IDE console semantic analysis results. 
It shows the cloning CCGs analyzed class paths, then the 
percentage of the matching according to their components 
similarities, as depicted in Fig. 12.

This Gradle plugin leverages the semantic code-clone 
detection on the root of the project that holds each of the 
microservices or only on the module one likes to analyze. 
The benefit of using an established standard like Gradle for 
the plugin is the wide configuration options available. The 
plugin also outputs the results to a series of files in a user-
defined output directory.

Discussion

There are multiple perspectives related to the presented CSC 
method that deserve further discussion. First, this method 
has been evaluated on enterprise system middleware, not 
taking into account the user interface part. However, even a 
complete system with a user interface would typically pro-
ceed with interaction through application endpoints. The 
user interface portion would remain not considered by this 
method.

The CSC method provides promising results on the 
considered system benchmark. However, it needs broader 
assessments across other system benchmarks to see the 
implication in a broader context. In addition, it did not detect 
all semantic clones and this may present a limitation to iden-
tifying only a certain class of semantic clones in enterprise 
systems that are not yet categorized and our research may 
contribute to their taxonomy. Moreover, the practical value 

of such detection needs to be further evaluated. On the other 
hand, it must be emphasized that the detection is very quick 
compared to other approaches mentioned in the literature.

This manuscript illustrates weight calibration on a single 
established microservice benchmark version. In this direc-
tion, developers would manually assess their current applica-
tion for semantic code clones to strengthen the ground truth 
to establish appropriate weights for their application. This 
might be influenced by the used framework and program-
ming conventions for utilizing the components’ properties. 
However, this should be seen as the most pessimistic per-
spective. Once established weights on a large system bench-
mark will likely be transferable across projects building on 
the top of the same development framework. However, to 
make such a claim we are missing data and experiments 
to prove it, as well as a proper system, and benchmarks to 
evaluate it which remains for future work.

On the other hand, the CSC method showed impres-
sive results, as indicated in Table 4 and Fig. 5. The analy-
sis demonstrated the ability of the method to detect 6 extra 
clones that were not present in the training dataset. This 
also illustrates that if the initial calibration was necessary to 
be used for a particular system, the method is robust to an 
imperfectly labeled dataset resulting in promising outcomes. 
Additionally, the system evolution analysis showed that the 
method can be generalized to different versions of the same 
system, performing well on unseen data.

In order to evaluate the method’s applicability to applica-
tion polyglots there are multiple steps to be accomplished. 
First, we must implement parsers and component detectors 
for other platform development frameworks to build CCG 
for applications coded in these frameworks (i.e., Django, C#, 
etc.). While preliminary work was performed by Schiewe 
et al. [33], it still does not build CCG. Second, experimen-
tation must be performed to identify proper component 
attributes and calibrate weights for the method. Thirds, the 
same component types across platforms must be assessed to 
identify equivalent component properties and then analyze 
conversions in equivalence across platforms. These steps 
present a plethora of future work. However, there are no 
known limits to the method rather than efforts to perform 
this.

Furthermore, it could be considered to include CFG 
instead of CG in the method and recognize fine details like 
conditionals or loops. These are currently reduced to a single 
path, possibly influencing to false-positive clone detection. 
The method could thus extend and associate multiple CFGs 
with each current CCG. The similarity evaluation would 
match each of these CFGs across the assessed CCG pairs.

14  Our Plugin: https://​github.​com/​cloud​hubs/​proph​et-​gradle-​plugin, 
accessed on 2/5/2023.

https://github.com/cloudhubs/prophet-gradle-plugin
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Threats to Validity

Using Wohlin’s taxonomy [42], we examined four types of 
validity threats: external validity, concept validity, internal 
validity, and conclusion validity. We also elaborate on our 
custom thresholds used in the proposed method.

Construct Validity

Construct validity is the degree to which the measures 
correctly reflect real-world constructs. In our assessment, 
we used a third-party enterprise system benchmark that 
is based on microservices and utilizes a well-established 
development framework utilizing up-to-date development 
standards and components. This benchmark is used by the 
microservice community to demonstrate their research out-
comes. This represents realistic conditions under which our 
approach operates. At the same time, there are numerous 
other frameworks that could be used and yield alternative 
results, which illustrate that our results must be considered 
in such a context. Furthermore, the selected benchmark may 
introduce a biased representation of coding practice; how-
ever, we negated this by manual analysis.

Our method considers components like controllers, ser-
vices, repositories, and entities that are recognized across 
enterprise platforms. In addition, we considered endpoints 
and REST calls to these endpoints from other microser-
vices, but we omitted messaging systems in our assessment. 
This implies that our method is unsuitable for general pro-
grams that do not consider components (i.e., Java Standard 
Edition).

Furthermore, it must be recognized that there is no clone 
benchmark using enterprise constructs for semantic clone 
detection with an established ground truth; however, we used 
the same system applied by related work when searching 
syntactic code clones, and the outcomes of our work bring 
such a benchmark for community use.

Internal Validity

Internal validity challenges the study methods and data anal-
ysis; this involves experiment errors and bias. Our method 
uses several weights for semantic clone detection. These are 
implied from manually labeled data which could be biased. 
To reduce the bias, multiple authors were involved in labe-
ling the data. Next, we used logistic regression over the com-
ponent attribute values in the labeled dataset to produce an 
optimal solution for our labeled dataset. Yet, upon evalua-
tion, our model produced false positives for the manually 
labeled dataset; however, upon careful evaluation, multi-
ple of these proved to be true positives, and our manually 
labeled dataset did not prove to be ground truth. Also, from 

the perspective of Machine Learning, we cannot ensure the 
weights obtained generalize to out-of-sample data because 
we did not have data to validate the generalization capabili-
ties of the model.

A non-standard development practice for enterprise 
application development can influence the accuracy of our 
method. We have optimized the method to sustain the wrong 
system cuts in a way if a component in the component call 
graph is missing in compared pair, the component is not con-
sidered. This perspective is relevant to the evaluated system 
of version 0.0.1.

Our experiment only included a single system, and to 
strengthen our conclusions, many other systems across plat-
forms need to be tested. It remains to be determined whether 
weights transfer across systems or across systems using the 
same platforms.

Furthermore, it is possible to perform a database delete 
through a GET endpoint call, where standard practice is to 
use a DELETE endpoint call. If two methods with differ-
ent HTTP types perform the same operation, their similar-
ity might be impacted, and our method could produce false 
negatives. Similarly, two different methods with the same 
name, parameters, and HTTP type can perform entirely dif-
ferent operations. Our method may produce false positives. 
However, this indicates poor coding practice; these situa-
tions require more evaluation.

External Validity

These threats concern the generalization of our results. 
Given that enterprise systems use component-based devel-
opment, using components that realize enterprise standards 
across platforms, the approach generalizes well to these 
systems.

However, the main threat is the weight setting for compo-
nent properties used for similarity comparison. To calibrate 
the weights, we conducted the tests on the TrainTicket1 , 
a community-established system benchmark that follows 
enterprise standards. We used machine learning to make a 
statistically informed decision on how to set the weights.

We focused on the Java platform in this prototyping 
because of its strong presence in the enterprise domain. Our 
case study demonstrates that we can successfully analyze 
such a Java-based system following enterprise standards. 
We, however, cannot conclude that in the same setting, we 
can transfer the method across platforms or even across the 
different systems using the same platforms as it was not 
tested.

To mitigate the limitation of assessing the method at a 
single system was addressed by considering different ver-
sions of this system, which are significantly different (41 
microservices down to 29). Testing other systems is planned 
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in future work, and assessment for different or across 
domains requires the development of component call graph 
parsers across these domains. However, the system interme-
diate representation format is already defined for this aim by 
this work. Despite the method target to microservices, this 
approach can be used in monolithic systems as well.

On the other hand, in case an enterprise application would 
not use standard components, then it would likely not follow 
best practices. As a result, for the method to work, it would 
require modifications to consider application-specific nam-
ing conventions of used modules across architectural layers.

Conclusion Validity

The threats concern whether the conclusions are based on 
the available data. Our work aimed at proof-of-concept of 
a method capable of addressing problems not yet solved in 
enterprise systems. It did not aim at statistically significant 
conclusions but rather to produce preliminary data and draw 
possible implications for the community. As a secondary 
result, it also produced a semantic clone dataset necessary 
for future research advancements and experimentation.

Our finding’s reliability might have been compromised by 
the limited variation in the considered system benchmark. 
At the same time, our conclusions are limited to what we 
observed in the case study. There is no reason to believe that 
it is not more generally applicable to other enterprise sys-
tems and platforms; however, this has not been empirically 
assessed. We share our method as open-source, and so are 
the different versions of the used TrainTicket benchmark1 , 
which facilitates replication of the study.

Conclusion

Semantic code clones pose a significant challenge in enter-
prise systems, as it has not yet been widely addressed. The 
CSC method, proposed in this manuscript, targets microser-
vices as the mainstream architecture for enterprise applica-
tions, attracting both industrial and academic interests. By 
considering an established enterprise system standards and 
components, the use of CCG extracted from these systems 
is proposed as a means to analyze semantic code clones. It’s 
noteworthy that this approach is relatively inexpensive com-
pared to existing methods, such as those involving PDGs, as 
CCG carries high-level semantic information that might not 
be easily extracted from low-level code analysis without rec-
ognizing standard enterprise constructs through established 
component types. The abstraction of CCG also reduces the 
number of pairs to be compared and focuses on a specific 
number of features, resulting in a machine-learning model 
that fits the data more efficiently.

The proposed CSC method has shown promising results 
with high accuracy when assessed on a third-party system 
benchmark and exhibits robustness to an imperfectly labeled 
dataset. It was also demonstrated to be usable across system 
evolution, with calibration being a one-time task. Although 
it is believed that such calibration can be transferred across 
different systems (i.e., the same platform), future work will 
need to demonstrate such a perspective.

In addition to its practical applications, this work provides 
several outcomes that could benefit the community. Two ver-
sions of datasets containing classified semantic clones are 
published publicly, along with a visualization tool that pre-
sents the code clones in a user-friendly format. Furthermore, 
the method is implemented as a plugin that can be integrated 
with development tools to detect semantic clones during the 
development lifecycle.

Future work will consider polyglot systems. It will also 
consider using CFG within identified clone candidates to 
better cope with false positives while still offering a quick 
turnaround. From a short-term perspective, we plan to repli-
cate the experiment on a well-established C# system bench-
mark, which we currently statically analyze. Thus, we can 
experiment one more step towards the model generalization 
over the different platforms.
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