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Print Page Summary:

Introduction

The Anthropocene is marked by an accelerated loss of biodiversity, widespread population
declines, and a global conservation crisis. Given limited resources for conservation intervention,
an approach is needed to identify threatened species from among the thousands lacking adequate
information for status assessment. Such prioritization for intervention could come from genome
sequence data, as genomes contain information about demography, diversity, fitness, and adaptive
potential. However, the relevance of genomic data for identifying at-risk species is uncertain, in
part because genetic variation may better reflect past events and life histories than contemporary
conservation status.

Rationale

The Zoonomia multispecies alignment presents an opportunity to systematically compare neutral
and functional genomic diversity and their relationships to contemporary extinction risk across a
large sample of diverse mammalian taxa. We surveyed 240 species spanning the Least Concern to
Critically Endangered categories as published in the International Union for Conservation of
Nature’s Red List of Threatened Species. Using a single genome for each species, we estimated
historical effective population sizes and distributions of genome-wide heterozygosity. To estimate
genetic load, we identified substitutions relative to reconstructed ancestral sequences, assuming
that mutations at evolutionarily conserved sites and in protein coding sequences, especially in
genes essential for viability in mice, are predominantly deleterious. We examined relationships
between the conservation status of species and metrics of heterozygosity, demography, and genetic
load, and used these data to train and test models to distinguish threatened from non-threatened
species.

Results

Species with smaller historical effective population sizes are more likely to be categorized as at
risk of extinction, suggesting that demography, even from periods more than 10,000 years in the
past, may be informative of contemporary resilience. Species with smaller historical effective
population sizes also carry proportionally higher burdens of weakly and moderately deleterious
alleles, consistent with theoretical expectations of the long-term accumulation and fixation of
genetic load under strong genetic drift. We found weak support for a causative link between fixed
drift load and extinction risk; however, other types of genetic load not captured in our data, such
as rare, large-effect, deleterious alleles, may also play a role. Although ecological (e.g.
physiological, life-history, and behavioral) variables were the best predictors of extinction risk,
genomic variables non-randomly distinguished threatened from non-threatened species in
regression and machine learning models. These results suggest that information encoded within
even a single genome can provide a risk assessment in the absence of adequate ecological or
population census data.



Conclusion

Our analysis highlights the potential for genomic data to rapidly and inexpensively gauge
extinction risk by leveraging relationships between contemporary conservation status and genetic
variation shaped by the long-term demographic history of species. As more resequencing data and
additional reference genomes become available, estimates of genetic load, recent demographic
history, and accuracy of predictive models will improve. We therefore echo calls for including
genomic information in assessments of the conservation status of species.
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Figure caption: Genomic information can help predict extinction risk in diverse mammalian
species. Across 240 mammals, species with smaller historical effective population sizes had lower
genetic diversity, higher genetic load, and were more likely to be threatened with extinction.
Genomic data were used to train models that predict whether a species is threatened, which can be
valuable for assessing extinction risk in species lacking ecological or census data.



Abstract: Species persistence can be influenced by the amount, type, and distribution of
diversity across the genome, suggesting a potential relationship between historical demography
and resilience. Here, we surveyed genetic variation across single genomes of 240 mammals
comprising the Zoonomia alignment to evaluate how historical effective population size (N.)
impacts heterozygosity and deleterious genetic load and how these factors may contribute to
extinction risk. We find that species with smaller historical N. carry a proportionally larger
burden of deleterious alleles due to long-term accumulation and fixation of genetic load, and
have higher risk of extinction. This suggests that historical demography can inform
contemporary resilience. Models that included genomic data were predictive of species’
conservation status, suggesting that, in the absence of adequate census or ecological data,
genomic information may provide an initial risk assessment.

One-Sentence Summary: Genomic data from 240 species show that information encoded
within a single genome can provide a conservation risk assessment.



Main Text:

The current rate of biodiversity loss amounts to a sixth mass extinction(/) and is compounded by
substantial population declines across nearly one third of vertebrate species(2). Many species
need immediate conservation intervention, a process that is especially challenging for the more
than 20,000 species currently listed as “Data Deficient” by the International Union for
Conservation of Nature (IUCN). Fortunately, genomic data, which are increasingly available for
a broad taxonomic range of species, may hold promise for helping to identify at-risk species by
providing readily accessible information on demography and fitness-relevant genetic variation(3,
4). It remains poorly explored, however, to what extent genomic data on their own are sufficient
to help triage endangered species for conservation intervention.

Population genetic diversity and individual heterozygosity are long recognized correlates of
fitness-relevant functional variation(5, 6). Our previous analysis of 124 placental mammalian
genomes showed that lower heterozygosity and stretches of homozygosity are more common in
species in threatened [UCN Red List categories(7). However, functional diversity, including
estimates of adaptive variation and genetic load, may also be useful correlates of population
resiliency. Such measures are increasingly accessible with emerging genomic tools(8) and
comparative genomics resources such as the Zoonomia alignment of placental mammalian
genomes (table S1)(7). The Zoonomia alignment provides high-resolution constraint scores and
reconstructed ancestral sequences that can help to identify deleterious alleles at functionally
important sites(7, 9).

Here, we surveyed the distribution of neutral and functional genetic variation across 240 species
in the Zoonomia alignment to determine how historical effective population sizes (N.) have
influenced heterozygosity and deleterious genetic load (fig. S1). We test the value of genomic
data to more precisely target species for conservation efforts by comparing the outcome of
predictive models of conservation status that use ecological data, genomic data, or both. While
we acknowledge the limitations of assuming that single genomes are representative of a species,
our approach capitalizes on the unique resource provided by the Zoonomia consortium to explore
whether genomic data can provide initial risk assessments that may be useful to triage data-
deficient species and guide resource allocation for conservation intervention.

Historical population size is relevant to contemporary extinction risk

Species with historically small N, tend to be classified in threatened IUCN Red List categories
(Fig. 1). Species classified as Near Threatened (NT), Vulnerable (VU), Endangered (EN) or
Critically Endangered (CR) had significantly smaller harmonic mean N. (meanmreatened=18,950)
compared to non-threatened species (Least Concern (LC); meannon-threatened=27,839; p<3.3e-5
when accounting for relationships across the phylogeny; Fig. 1B; figs. S2). N, was also
significantly smaller in threatened compared to non-threatened species within two of three
taxonomic orders with sufficient numbers of species to test (Cetartiodactyla:

meanreatened= 18,336, Meannon-threatened=22,0648, p=0.023; and Carnivora: meanmreatened=9,636,
Meannon-threatened=20,195, p=2.4e-5; but not Primates: meanmreatened=22,508, meannon-
threatened=24,373, p=0.31; fig. S3). Within these two orders in particular, large-bodied herbivores
and carnivores have declined in both geographic range and population size during the
Anthropocene(/0, 11). Smaller populations are expected to have higher extinction risk, yet these
historical N, estimates reflect periods more than 10,000 years in the past, suggesting that long-



term characteristics of ancestral populations can be informative about population size and
extinction risk today. These results support the utility of metrics of genome-wide diversity in
conservation assessments, a topic that is currently debated(/2, 13).

Estimates of historical N, can also identify previously large populations that have experienced
contemporary declines. Specifically, if the estimate of historical N, is large while N, is small, this
inflates the N./N. ratio. In a study of pinnipeds, for example, most species that had undergone
recent declines had smaller population census sizes (V) than expected based on their historical
Ne (14). To test this across the taxonomic range of the Zoonomia alignment, we examined the
ratio of deep historical N, to contemporary N, for 89 species with population census information
available in PanTHERIA(/5). Species in threatened IUCN categories had larger N./N. ratios, i.e.
smaller contemporary N. relative to historical Ne (meanmreatened=1.07€-3; meannon-threatened=4.29¢-
4; p=0.012; Fig. 1C). The relationship was also significant within Primates (phylolm,
Mmeanreatened=3.46€-3; Meannon-threatened=1.11€-3; p=0.029), the only order with available N./N.
estimates and sufficient numbers of taxa in the two threat categories, indicating that the pattern
holds among species with similar life-history traits. Across taxa, the largest N./N. ratios included
American bison (Bison bison), giant panda (4diluropoda melanoleuca), and hirola (Beatragus
hunteri), all of which have declined due to recent human activities(/6—18).

Historically smaller populations carry proportionally larger burdens of genetic load

Historical N. is correlated with the proportion of deleterious substitutions in mammalian
genomes, reflecting the accumulation and fixation of genetic load over long evolutionary time
periods. We called derived, single nucleotide substitutions for each species relative to the
reconstructed sequence of the nearest ancestral phylogenetic node and called heterozygous sites
from resequencing data mapped to the focal genome. We inferred the impacts of derived
substitutions and heterozygous variants assuming that mutations at sites that are conserved across
taxa (phyloP>2.27)(9) and nonsynonymous mutations are predominantly deleterious (fig.
S1)(19). Assuming most substitutions are fixed and mutation rates are similar across the
phylogeny (20)(21), the proportion of substitutions that are deleterious should be correlated with
the total number of fixed deleterious mutations in the genome. Deleterious substitutions should
therefore largely reflect fixed drift load that reduces the mean fitness of the population, whereas
heterozygous deleterious variants reflect segregating mutational load(22).

We found that species with smaller N. had proportionally more substitutions at evolutionarily
conserved sites genome-wide (phylolm, p=9.65e-3) and proportionally more missense
substitutions in genes (phylolm, p=7.76e-5; fig. S4). Phylop kurtosis, which describes the
extreme phyloP outliers in the tail of the distribution across substitutions, was positively
correlated with N, (phylolm, p=0.014). This means that species with smaller N, had smaller right
tails and therefore fewer substitutions at extremely conserved sites. To further parse potential
fitness impacts of mutations in protein-coding regions, we examined genes with associated
viability phenotypes in single-gene knockout mouse lines classified by the International Mouse
Phenotyping Consortium (IMPC), assuming that, when aggregated across many genes, viability
classifications are correlated to their fitness impacts in other species(23). Species with smaller Ne
had proportionally more missense mutations relative to coding mutations in nearly all categories
(phylolm, p<3.00e-5; Fig. 2; figs. S5-S6). We observed proportionally fewer missense mutations
in IMPC lethal genes relative to IMPC viable genes (ANOVA, p<4.42e-9; fig. S7), reflecting



stronger purifying selection in the lethal gene class, but the negative correlation was nonetheless
consistent for both lethal and viable categories (Fig. 2). This relationship supports both
theoretical predictions that smaller populations experiencing strong drift accumulate and fix
weakly and moderately deleterious alleles (drift load)(/2, 24) and empirical studies involving
fewer or single taxa(25-27).

The correlations between N, and conservation status and between N, and drift load suggests that
historical demography may influence contemporary extinction risk by shaping genome-wide
diversity and genetic load. We found inconsistent relationships, however, between a species’
proportional genetic load and its odds of being threatened. Species with proportionally more
missense substitutions were more likely to be threatened when considering all genes (phyloglm,
p=0.002; fig. S4D), as well as genes in lethal and viable IMPC categories (phyloglm, p<0.023;
fig. S6), as observed in other taxa(28). Drift load estimated from evolutionary constraint across
the genome, however, showed the opposite pattern: species with proportionally fewer
substitutions at evolutionarily conserved sites were more likely to be threatened (phyloglm,
p=1.38e-05; fig. S4C). This latter result contrasts with expectations, given that threatened species
have smaller N. on average (Fig 1) and smaller N. is associated with proportionally more
substitutions at conserved sites (phylolm, p=9.6e-3; fig. S4A). Interestingly, a previous study of
100 mammal genomes also found that threatened species had lower mean conservation scores
across mutations(29). They suggested that the pattern may reflect fewer recessive deleterious
alleles due to purging or the loss of these rare alleles to drift. The conflicting relationships
between conservation status and metrics of drift load thus do not provide strong support for a
mechanistic link between fixed drift load as measured in this study and species’ resilience
against extinction.

Genomic information can help predict extinction risk

Historical N. was the most consistent genomic predictor of conservation status across regression
models, while the predictive value of genetic load metrics varied with phylogenetic context (Fig.
3, tables S2-S3). Ordinal and logistic regression models incorporating genomic variables with
taxonomic order and dietary trophic level showed that the effect of N, varied by ecological
context. For example, an herbivore with a given N. was more likely to be threatened than a
carnivore or omnivore with the same N. (Fig. 3B), supporting findings of elevated extinction risk
in herbivores despite larger populations(30). Similarly, Carnivora and Primates both had
increased risk with lower levels of severely deleterious genetic load. However, the specific
metric of load that predicted conservation status differed among taxonomic orders, perhaps
reflecting differences in natural history or ecological flexibility (figs. S8-S10). Principal
components (PC) regression of demographic and genetic load variables showed that, overall,
threatened species tended to have proportionally more deleterious mutations in coding regions,
lower heterozygosity, and smaller N, (PC1; p=0.0038), as well as proportionally more missense
substitutions (PC3; p=5.6e-4; Fig. 3A, table S3). Although no single genomic variable
unambiguously discriminated threatened from non-threatened species (fig. S2), many have
predictive value, which will be particularly relevant for species lacking adequate ecological or
census data.

Although ecological data were more powerful than genomic data to predict extinction risk in our
predictive models, models using only information from single genomes nonetheless identified



species at risk of being threatened. We generated random forest models to predict conservation
status from ecological traits(3/, 32) and genomic features, using area under the receiver
operating characteristic (AUROC) to evaluate performance. A model with AUROC of 0.5 has no
predictive ability, whereas a model with AUROC of 1.0 has perfect predictive performance. We
selected predictive variables from among 13 genome-wide summary statistics including
demographic history, genetic diversity, and genetic load variables, ~57,000 window-based
metrics per genome, and 39 ecological variables from PanTHERIA(/5) including physiological,
life-history, and behavioral variables (table S4). Models including only genomic features and no
ecological variables (17 models; AUROC ranged from 0.69-0.82) performed worse than models
including only ecological variables (1 model; AUROC 0.88) and similarly to models including
both genomic and ecological variables (17 models; AUROC range 0.68-0.83; table S5). Models
with only genomic features were, however, consistently better able to distinguish threatened
from non-threatened species (tables S5-S6; fig. S11-13) compared to random chance (i.e.
AUROC of 0.5). Models including only genomic variables performed similarly to other studies
that predicted IUCN status from ecological or morphological data with comparable sample sizes
(e.g. AUC ranging from 0.67-0.90 for n=171-430 species) (33-35).

The number of species with values for ecological, genome-wide summary statistics, and
window-based metrics differed, which may affect model performance. To compare the predictive
value of genomic and ecological features directly, we next tested models in a set of 210 species
for which both data types were available (tables S4 and S6). Again, the model with genome-wide
summary statistics alone was predictive of threatened status (AUROC 0.71), but performed more
poorly than the model with ecological variables (AUROC 0.83). Combining genomic summary
statistics with ecological variables led to a modest improvement in distinguishing threatened
from non-threatened species (AUROC=0.85) compared to genomic variables alone, with N, as
the fourth most important predictor in the model after weaning age, age at first birth, and age of
sexual maturity (fig. S14). Models including genomic window-based features never
outperformed models with ecological variables alone (table S6), suggesting that complementary
information provided by genomic versus ecological data may be better captured by summary or
transformed variables (e.g. principal components) than by numerous weakly informative window
features that may overwhelm the predictive models. Overall, our evaluation suggests that while
genomic information from a single individual is not better than ecological data for predicting
threatened status, these data do have predictive value, especially when ecological variables are
unavailable.

As a demonstration of their utility, we applied our regression and random forest models to
predict the status of three species considered "Data Deficient" by the [IUCN (Fig. 3D). The
models suggest the Upper Galilee Mountains blind mole rat (Nannospalax galili), which lacks
ecological data, is least likely to be threatened (11-44% probability), whereas the killer whale
(Orcinus orca), for which both ecological and genomic data are available, is more likely to be
threatened (35-68% probability), consistent with the identification of some at-risk
populations(36). Predictions for the Java lesser chevrotain (7ragulus javanicus) depend on model
specifications, with the highest threat prediction from the within-order regression model (67%
probability), and other models suggesting it is less likely to be threatened (24-49% probability).
The results indicate that, among the three species, the killer whale should be prioritized for
further study, and demonstrate how genomic data can provide a rapid and inexpensive initial
conservation assessment.
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Discussion

Our results provide empirical support for theoretical predictions that small populations
accumulate and fix weakly and moderately deleterious alleles, and demonstrate a correlation
between historical effective population size and contemporary extinction risk. We found little
evidence, however, that species with historically small effective population sizes have higher
risks of extinction because of elevated drift load. Alternatively, historically small populations
may have elevated extinction risk simply because these populations are small and thus more
vulnerable to other threats such as habitat loss or change, the introduction of infectious disease,
competition with invasive species, and new hunting or predation pressures.

Despite the limitations of assuming that a single genome is representative of the diversity within
a species, our comparative genomics approach allowed us to maximize the number of species
analyzed to explore the power to detect genomic correlates of endangerment. Empirical studies
suggest a single individual can represent a species for characteristics shaped by long-term
evolutionary history; variation in the proportion of deleterious mutations is typically smaller
within species than between(37, 29), and historical N, estimates are consistent across
conspecifics(38, 39). The analysis of multiple resequenced individuals per species, however, will
increase accuracy and resolution by capturing intraspecific variation in genetic diversity,
heterozygosity, and inbreeding (especially for species with strong population structure), enabling
estimation of allele frequencies, improving inference of more recent demographic history, and
allowing better detection of rare and segregating variants(e.g. inbreeding load; 22). The latter
may be particularly important for estimating extinction risk, as segregating variants tend to be
enriched for deleterious alleles(40, 41) and may disproportionately impact extinction risk from
population bottlenecks(/2). In the future, larger data sets comprising multiple individuals per
species may shed light on long-standing questions about the relative impact on fitness of many
weakly deleterious alleles versus a few strongly deleterious alleles(22, 25, 37, 42, 43).

Inferring real-world fitness from genomic data includes caveats. Evolutionary constraint may, for
example, reflect past selection on loci that no longer impact fitness(44). Loci that seem
functionally important in model species may be irrelevant to the species of

interest, compensatory mutations may ameliorate the impact of deleterious mutations, and
factors such as dominance, epistasis, pleiotropy, and purging may also complicate the
relationship between genetic load and fitness. Finally, local differences in habitat may mean that
the impact of deleterious mutations differs among individuals or populations(25, 45, 46). For
these reasons, the impact of the observed proportionally higher load in smaller populations will
be challenging to know in the absence of direct fitness data, such as reproductive success and the
frequencies of genetic diseases and congenital abnormalities(26, 43, 47).

As additional genomes and population resequencing data become available(48), the power and
accuracy of predictions of extinction risk from genomes will improve(8). Our analyses of the
genomes of single individuals, which can be generated rapidly and inexpensively(49),
demonstrate the potential for using genomic estimates of demography, diversity, and genetic load
to triage species in need of immediate management intervention, and we join in the calls for
including genomics into conservation status assessments(50-53).
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Materials and Methods

We provide a summary of our materials and methods below; refer to the Supplemental Materials
and Methods for further detail.

Mammal genomes and metadata

We examined genomic variation in 240 species represented by 241 reference genomes in the
Zoonomia multispecies alignment. The genome assemblies varied in quality, with contig N50
values ranging from 1 KB to 56 MB (table S1). Short-read sequence data, usually from the
reference individual, were used to estimate metrics related to historical demography,
heterozygosity, and heterozygous deleterious variants from single genomes. Homozygous
deleterious genetic load was estimated relative to reconstructed ancestral sequences from the
multispecies alignment (fig. S1). We tested correlations between all genomic metrics, and
between genomic metrics and extinction risk, using a statistical framework that accounts for
phylogenetic relationships across species. Using regression and machine learning models, we
tested the potential for genomic data to predict the conservation status of species.

For all species, we compiled metadata on conservation status, diet, and generation time (table
S1). We assigned a conservation status (Least Concern (LC), Near Threatened (NT), Vulnerable
(VU), Endangered (EN) or Critically Endangered (CR)) to the lowest known taxonomic level of
the sequenced sample, using the IUCN Red List of Threatened Species (IUCN Red List API v. 3)
as a proxy for extinction risk. We classified each species as carnivore, herbivore, or omnivore
based on(54), using information for the genus when species-specific information was
unavailable. From available metadata, we categorized the sample used for both the reference
genome and short-read data as a wild, captive, or domesticated individual.

Tests for correlations between variables were conducted with phylogenetic linear regression or
phylogenetic logistic regression in the R package phylolm(55), incorporating the phylogenetic
tree with branch lengths(56) to account for non-independence.

Estimating historical effective population sizes and genome-wide heterozygosity

We called heterozygous positions in all genomes with short-read data using the GATK best
practices pipeline as described previously(7). Briefly, we mapped paired-end sequencing data to
the respective genome assemblies using BWA mem (version 0.7.15)(57), marked and removed
optical duplicates, and called heterozygous variants using the HaplotypeCaller module of the
GATK software suite (version 3.6)(358).

We inferred the history of effective population sizes (V) for each species using PSMC (version
0.6.5-r67)(59). We called variants in each genome from scaffolds >50KB in length, filtered for
sequence read coverage and base quality score, and used these as input for PSMC. We rescaled
the PSMC output using species-specific generation times(60) and a mammalian mutation
rate(2/) and calculated the harmonic mean across temporal estimates from periods >10 kya. To
compare contemporary population sizes to historical N, we obtained census population
estimates (N.) for 89 species from the PanTHERIA database(/5), estimating N, as the product of
population density and geographic area from census data(/5, 61).

To identify runs of homozygosity (RoH), we used our previously described method(7). For every
assembly, we calculated the ratio of heterozygous to callable positions in non-overlapping, 50-kb
windows, and fit a 2-component Gaussian Mixture Model to the joint distribution, which is
expected to be bimodal with a peak at the lower tail of the distribution corresponding to runs of
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homozygosity (fig. S1B). Windows were then assigned as RoH or non-RoH and used to calculate
the proportion of the genome in RoH (fRoH), genome-wide heterozygosity, and outbred
heterozygosity (i.e. heterozygosity in non-RoH regions; figs. S2 and S15).

Deleterious genetic load

We called heterozygous variants from single sample, short-read data mapped to the reference
genome of each species. Homozygous substitutions were estimated from each reference genome
relative to the closest reconstructed ancestral sequence in the phylogeny using the
halBranchMutations tool in the Comparative Genomics Toolkit(62). Because new alleles
become fixed or lost on the order of <4N. generations(63), most homozygous substitutions
between species are likely fixed. We assessed the potential functional impact of mutations by 1)
evolutionary conservation of the site (phyloP), and 2) the estimated impact of the mutation on
protein-coding genes. Mutations at evolutionarily conserved sites (phyloP>2.27;(9)), and those
that cause nonsynonymous changes in protein-coding genes, were assumed to be predominantly
harmful(79). Variant sites in each genome were assigned human-based phyloP scores estimated
from the multispecies alignment(9). To infer functional impacts on protein-coding genes, each
genome was annotated with human orthologs by lifting over human exon intervals to the target
species. Synonymous, missense and loss-of-function variants were then estimated in the program
SnpEffv.5.0e(64). We also examined mutations in single-copy genes with associated viability
phenotypic data in knockout mice as classified by the International Mouse Phenotyping
Consortium (IMPC)(23), using IMPC categories (e.g. lethal or viable) as a proxies for gene
essentiality and the potential fitness impacts of mutations in these genes(23).

Predicting threat from genomic variables

To predict whether a species is threatened (NT, VU, EN, and CR categories) or non-threatened
(LC category), we modeled conservation status across species from genomic variables using both
regression and machine learning models.

We took two main approaches in our regression models of conservation status across species,
using 1) phylogenetic logistic regression to model threatened versus non-threatened status, which
allowed us to test the significance of predictor variables, but not make predictions for species
with unknown threat status, and 2) ordinal regression models of specific IUCN categories, which
allowed us to test significance and make predictions for species with unknown threat status.
Unlike logistic regression, ordinal regression did not inherently incorporate the phylogeny, so we
included taxonomic order as a factor in the models. We tested 13 genomic variables (table S2),
modeled individually and as principal components, and included taxonomic order and dietary
trophic level, a previously described correlate of extinction risk(65). We estimated model error
by fitting parameters on 80% of the data and testing the remaining 20% of the data across 100
runs with different data subsets.

We used random-forest based classification to estimate the likelihood that a species is threatened
from 13 genome-wide summary statistics of heterozygosity, demographic history, and genetic
load, and from 5 genomic metrics within homologous S0KB windows (table S4). We trained
models using the two genomic data types (windows-based and genome-wide) separately and
combined, and incorporated 39 ecological variables from the PAnTHERIA database (table S4).
We used the scikit-learn 1.0.2 package for fitting all the models(66).
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We first split our dataset into a 75% training set and a 25% test set. For each model, we
performed preprocessing and imputation steps using only the training data, then trained the
model on the training set and evaluated it on the test set. We ran 5-fold cross validation on the
training set to determine the optimal set of hyperparameters, tuning the number of decision trees,
the maximum depth of the trees, and the number of features used at each decision to optimize a
performance metric. We used AUROC to estimate how well a model predicts the correct output
class. AUROC is designed to be more robust to class imbalance in comparison to a metric such
as accuracy.

To leverage all available data, we first ran models using all species with data for a given data
type (table S5). The number of species with values for ecological, genome-wide summary
statistics, and window-based metrics differed however, which may impact the results. To
compare the performance of ecological and genomic variables and their combination across the
same set of species, we also trained and tested models in the set of species for which both data
types were available (table S6).

The Zoonomia alignment included three species classified as "Data Deficient" by the [IUCN, the
Upper Galilee Mountains blind mole rat (Nannospalax galili), the Java lesser chevrotain
(Tragulus javanicus), and the killer whale (Orcinus orca). The blind mole rat lacked ecological
data on PanTHERIA. We used the within-order and across-order ordinal regression models and
all random forest models to predict the probability that these species are threatened.
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Fig. 1. Demographic history across mammalian orders and IUCN Red List categories. (A)
Estimates of effective population sizes (N.) over time displayed by taxonomic order. Lines
represent individual species, colored by IUCN status (LC= Least Concern, NT=Near Threatened,
VU=Vulnerable, EN=Endangered, CR=Critically Endangered, DD=Data Deficient). Colored
dots correspond to the taxonomic order of species depicted in (B) and (C). For visualization,
only species with N, estimates under 200,000 for every time point are shown. (B) Harmonic
mean N, was significantly lower in threatened IUCN categories relative to non-threatened
(phylolm, p<3.3e-5). (C) The ratio of historical N, to contemporary census population size
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(Ne/N¢) can identify species with smaller N, than expected from historical N, (phylolm, p=0.012).
Points in (B) and (C) show individual species, colored by taxonomic order.
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Materials and Methods

We examined variation in 241 reference genomes from 240 species. Each species was
represented by a single genome, with the exception of Canis lupus, which was represented by
two genomes—one domestic breed and one village dog. The reference genomes varied in
quality, with contig N50 values ranging from 1,039 to 56,413,054, with a median of 45,189
(table S1). For some of these species, no short-read sequencing data were available from NCBI
to map to the reference genome (n=8), variant calling failed (n=11), or downstream pipelines
failed (heterozygosity-related metrics, n=13, PSMC, n=12). The reference genomes were used
to estimate homozygous deleterious genetic load; while the short-read sequence data (usually
from the reference individual) were used to estimate metrics related to historical demography,
heterozygosity, and heterozygous deleterious variants (fig. S1). We examined correlations
between these metrics using statistical methods that account for relationships across the
phylogeny, and examined genomic features of extinction risk to predict the conservation status of
species.

Metadata

We compiled metadata on conservation status, diet, and generation time for the 240
placental mammal species in the Zoonomia alignment (table S1). We determined the
conservation status (Least Concern (LC), Near Threatened (NT), Vulnerable (VU), Endangered
(EN) or Critically Endangered (CR)) and population trends (declining, stable or increasing) using
the IUCN Red List category (IUCN Red List API v. 3) based on the scientific name of the
species. We use IUCN category as a proxy for extinction risk, however we recognize that
because the assessments are often done at the species level, the categorization of a species may
miss important variation between populations. Where we were able to determine a specific
subspecies or population for the sequenced sample, we used the [UCN category for the lower
taxonomic level. For the diet category, we classified each species as either carnivore, herbivore,
or omnivore based on (54). In cases where species-specific diet information was unavailable, we
used data reported at the genus level. We categorized as carnivores all species for which other
animals made up a majority of their diets, including terrestrial vertebrate-eaters, insectivores,
piscivores, and planktivores; we also considered the vampire bat, a hematophage, to be a
carnivore. Any animal with a diet composed of both plant products and animal products was
considered an omnivore. Species for which the diet was all or nearly all plant products were
considered herbivores; some of these species consumed insects occasionally or as a minor part of
their diets. For generation time, we used a published database of mammalian generation lengths
(60). If a species was not in the database, we used the value from the next closest species. We
determined species specific mutation rates per generation by multiplying an average mammal
mutation rate of 2.2e-9 basepairs per year (21) by the species-specific generation time in years.

We compiled additional metadata associated with provenance of the specific sample that
was sequenced for the genome of each species. For 39 samples used for reference genome
assembly, there were no publicly available short-read Illumina sequencing data, which were
necessary for analyses based on heterozygous sites (i.e. heterozygosity, segments of
homozygosity, heterozygous deleterious variants, and PSMC). For 31 of these we identified an
alternate sample with resequencing data, choosing a sample as similar to the reference individual
as possible (e.g. from the same population). For each sample (including both reference genome
samples and, if different, short-read data samples), we determined subspecies or population



information and whether the sample was a wild (including captive offspring of wild-born
parents), captive, or domesticated individual. We obtained sample information from the NCBI
records and published papers that used the sample, such as the genome announcement papers. In
some instances, insufficient metadata were available, but informal project summaries provided
details. For 16 samples, no additional data were available and the sample metadata were marked
as unknown.

Alignment and variant calling of short-read sequencing data

We interrogated the assemblies included in the Zoonomia alignment for heterozygous
positions using the GATK best practices pipeline as described previously (7). We removed
adapters with Cutadapt (version 1.10)(67). This step was not done for the alignments used for
PSMC analysis for the original Zoonomia genomes (7), but this difference should not affect our
results since the alignment algorithm soft clips reads (57). We mapped the paired-end sequencing
data corresponding to each assembly against their respective assemblies using BWA mem
(version 0.7.15)(57). We marked and removed optical duplicates using the PICARD
MarkDuplicates tool (version 2.5.0)(68). Finally, we called heterozygous variants using the
Haplotypecaller module of the GATK software suite (version 3.6)(58).

Phylogenetic regression

All regressions of variables across species were conducted with phylogenetic linear
regression or phylogenetic logistic regression in the R package phylolm (55), incorporating the
phylogenetic tree with branch lengths (56) to account for non-independence. Where we report
means for groups compared in phylogenetic regressions, we report the phylogenetically-adjusted
means.

Dynamics of historical effective population sizes
We inferred the history of effective population sizes (V.) for each species using PSMC

(version 0.6.5-r67)(59). We used the short-read alignments generated for variant calling of
scaffolds greater than 50 kb (69). For each alignment, we used samtools depth (version 1.11-3-
g7028dd4)(70) to determine the average depth of coverage. To prepare for PSMC, we generated
a pileup file with samtools mpileup (version 1.7)(70) from the 50-kb alignment files, retaining
anomalous read pairs (-A) and downgrading mapping quality for reads with excessive
mismatches (-C50). We then called variants on the pileup file using bcftools call (version
1.8)(71), using the consensus caller (-c). From the variant file we generated a consensus fastq file
using vcfutils vef2fq (version 2014)(70), with a minimum coverage of one-third the sample's
average coverage and a maximum coverage of two times the sample's average coverage. We then
generated a PSMC input fasta file using the PSMC's fq2psmcfa with a minimum base quality
score of 20 (-q20). Finally, we ran PSMC with default parameters, except we altered the
parameter intervals to -p "4+25*2+4+6", as suggested for humans (72). We rescaled the output
of PSMC using the species-specific generation times and mutation rates (see Metadata section).

To estimate historical V., we calculated the harmonic mean from the PSMC estimates of
effective population size through time, excluding time intervals less than 10 kya. While our
samples varied in level of inbreeding, we do not expect this to have a substantial impact on our
estimates of historical N.. Previous work examining inbred samples showed similar PSMC
curves regardless of whether runs of homozygosity were included or excluded in the analysis
(38, 73). Additionally, our genomic data varied in other important aspects, including genome
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quality and coverage, and PSMC has been shown to be robust to variation in these characteristics
(39, 74, 75).

Inferring recent population declines from N./N. ratios

To compare contemporary population sizes to historical N, we obtained census population
estimates (N.) for 89 species from the PanTHERIA database (75), estimating N. as the product of
population density and geographic area from census data (15, 67). Although not a true population
census, it provides an overall gauge of the potential number of individuals within a species’
current distribution. N, estimates ranged widely across species, from 2,909 (Bison bison) to
65,971,017,419 (Procavia capensis). Although the values are not meant to be interpreted as real
census population sizes, they provide a gauge of relative census population sizes across species.
As expected, N. was strongly correlated with [UCN status (phylolm, meanwmreatened=16,619,347;
meannon-threatened=90,341,802; p=6.1e-7), as it is a criterion for [UCN status assessments, but
examining N./N. ratios can nonetheless provide additional information on recent declines not
reflected in the genome. Species with larger N./N. ratios were slightly more likely to have
“declining” population trends classified by the [IUCN Redlist than “stable” or “increasing”
(phyloglm, B= 0.59, p=0.026, where each 10-fold increase in N./N. increases odds of being
categorized as declining by 59%), suggesting that N./N. may be useful for identifying recent
declines. N./N. ratios are influenced by life-history traits, including mating strategy, range size,
trophic level, generation time, population structure and population fluctuations (74, 76), but we
nonetheless found a comparable relationship between N./N. and conservation status within
Primates (phylolm, meansreatenca=3.46€-3; Meannon-threatenca=1.11e-3; p=0.029), the only group
with enough N./N. estimates in both threat categories, suggesting that it is not driven by life-
history traits alone. Because N./N. ratios require population census information, and thus it is not
useful for informing conservation status of species that lack this information, N./N. may
nonetheless be valuable for identifying species with historically large populations that have
recently declined.

Estimating runs of homozygosity (RoH) and heterozygosity
We used an identical strategy to the Zoonomia data release paper to identify runs of

homozygosity (RoH) (7). Briefly, for every assembly, we calculated the ratio of heterozygous
positions per callable base pair in non-overlapping, 50-kb windows. Then, we used the
pomegranate python environment (77) to fit a 2-component Gaussian Mixture Model (with a
third component to capture outliers and low confidence windows, such as windows with large
amounts of missing data) to the joint distribution of all heterozygosity windows in the assembly.
These joint distributions are expected to be bimodal, with a sharp peak at the lower tail of the
distribution corresponding to low heterozygosity regions, such as runs of homozygosity. Finally,
each window was assigned to its most likely component (RoH or non-RoH) based on the
model’s posterior probabilities. We note that this method is unable to distinguish between true
segments of homozygosity and other genomic regions with very low heterozygosity. However,
given the large window size, we expect that only a small proportion of the genome would be
miscalled due to low heterozygosity. Additionally, all species are likely to be impacted by this
minor bias, so we do not expect it to substantially affect relative estimates of metrics using RoH.

For each species, from the windows assigned as either heterozygous or homozygous we
calculated the proportion of the genome in RoH (fRoH) (fig. S15), genome-wide heterozygosity,
and outbred heterozygosity. To estimate fRoH we calculated the length of the genome in RoH
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and divided it by the total length of the genome assigned as either RoH or non-RoH. We next
calculated genome-wide heterozygosity as the mean of the heterozygosity estimates from the 50-
kb windows, weighted by the length of the segment to account for the shorter segments at the
ends of scaffolds. Lastly, we estimated heterozygosity in non-RoH regions (i.e. outbred
heterozygosity) using the mode of the distribution of 50-kb window heterozygosity estimates
with regions identified as RoH excluded. To ensure the accuracy of the estimation of the mode of
the non-RoH distributions, we manually inspected both the full distribution and the non-RoH
distribution. In 25 instances, we needed to correct the automated call. One scenario where this
occurred was when the full distribution was not bimodal due to low overall heterozygosity and
the mode of the distribution was zero. For these, we examined the full distribution and set
heterozygosity to the peak when most windows were non-RoH. The second scenario where
automated calls needed to be corrected was when the distribution of the non-RoH segments was
bimodal due to miscalled RoH. In these instances, we were able to visually identify a clear non-
RoH peak in the distribution.

Adding neutral diversity statistics for 79 additional species relative to our previous analysis
(7), we substantiate the result that species with threatened IUCN status had, on average,
significantly lower genome-wide heterozygosity (phylolm, meanireatened=0.0024, meanyon-
threatened=0.0029, p=0.017; fig. S2). However, unlike the previous results, we found that the
proportion of the genome in RoH (fRoH) was highly variable across the expanded dataset (fig.
S15), and the mean was actually lower for threatened species compared to non-threatened
species (phylolm, meanmreatened=0.2 1, meannon-threatenea=0.27, p=0.015). This contrasting result is
likely due to the skewed distribution of RoH (fig. S15). Furthermore, intraspecific variation in
heterozygosity and fRoH, which is not captured in our data because we used a single individual
from each species, may add variability that makes any correlation with endangerment status
more difficult to detect.

Estimating deleterious genetic load

We estimated homozygous substitutions from the reference genome sequences,
calling derived substitutions relative to the most recent ancestral sequence in the multispecies
alignment. Reconstructed ancestral sequences are included in the multispecies alignment HAL
file (https://cglgenomics.ucsc.edu/data/cactus/) that was previously generated using the program
Progressive Cactus (7), which implements ancestral reconstruction for all nodes in the multiple
alignment procedure by incorporating multiple ingroup and outgroup sequences (78). We used
the halBranchMutations tool in the Comparative Genomics Toolkit (62), which annotates the
locations of single nucleotide substitutions on a branch-by-branch basis relative to the closest
ancestral node, thus calling derived substitutions arising along the branch for each species in the
alignment. We assume that most of these substitutions are likely to be fixed because typically
enough time has elapsed since the ancestral node for the derived alleles to have become fixed or
lost (on the order of <4N. generations)(63). We found that genomic windows that aligned to
multiple regions of the genome tended to have many substitutions. Because querying the
multispecies alignment HAL file to directly identify regions with duplicate alignments is very
computationally expensive, we filtered regions with more substitutions than expected from a
poisson distribution, though this step likely excludes true hypervariable regions from our
analysis. Therefore, we filtered potentially spurious calls by fitting the number of substitutions in
all 1IKB windows across the genome to a poisson distribution, and removing windows identified
as outliers at alpha=0.1 using the function aout.pois in the R package alphaOutlier
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(https://CRAN.R-project.org/package=alphaOutlier). Heterozygous variants (which have, by
definition, one derived and one ancestral allele) were identified from single sample, short-read
data mapped to the reference genome of each species as described above. We included in our
analysis only single nucleotide polymorphisms, heterozygous sites with genotype quality (GQ;
the Phred-scaled confidence that the genotype assignment is correct)>80, and read depth (DP) <
three standard deviations from the mean DP across variant sites for a given sample.

To assess the functional impact of each derived mutation, we used 1) evolutionary
conservation at the site, and 2) the estimated impact of the mutation on protein-coding genes.
First, for evolutionary conservation we assigned human-based conservation -logio p-values
(phyloP scores) estimated by the Zoonomia consortium (9). Briefly, the PHAST v1.5 package:
https://github.com/CshlSiepelLab/phast (79) was used to estimate phyloP scores under a null
hypothesis of neutral evolution, performing a likelihood ratio test at each alignment column (--
method LRT) of the human-referenced, 241-way, duplicate-filtered alignment. To assign these
phyloP scores to derived mutations identified in each genome, we lifted over all derived
mutations to the human genome using halLiftover and the 241-way mammalian alignment,
ignoring paralogous alignments using the --noDupes option (62). We were specifically interested
in evolutionarily conserved sites which have a positive phyloP score, and thus to minimize the
influence of negative phyloP scores that reflect accelerated evolution (80), we set all negative
phyloP values to 0. We noted differences in genome-wide phyloP scores across taxonomic
orders. To determine whether the differences could stem from using human-based phyloP scores,
we also assigned phyloP scores derived from mouse and dog genomes to heterozygous sites for a
subset of 115 genomes from across the phylogeny. Mean phyloP scores from human, mouse and
dog were highly correlated (r>>0.99), indicating no substantial bias stemming from the genome
used as the basis for phyloP scores. Furthermore, in tests that account for phylogenetic
relationships (phylolm), mean phyloP scores did not significantly differ across taxonomic orders,
suggesting that phylogenetic regressions adequately account for variation across orders.
Specifically, taxonomic order did not explain mean phylop across substitutions better than
intercept-only phylogenetic regression models (run with the phylostep function of phylolm),
suggesting that the significant relationships between phyloP and other variables identified using
these methods were not driven by the phylogeny.

Second, we inferred functional impacts from genome-specific gene annotations. Genes were
estimated by lifting over human annotated transcripts through genomes in the alignment via
halLiftover (81). Briefly, the human exon intervals were lifted over to the target species, and for
each exon the resulting range was consolidated into a single range per contig with 500 bp added
to both ends. The target sequence within the resulting interval was then aligned to the human
protein sequence using exonerate (82), keeping only the best alignment. The alignment was
checked to make sure that it resulted in a contiguous reading frame, that the predicted protein
started with methionine, and that the predicted protein was within 90-110% of the length of the
human reference protein. Using these gene annotations for each genome, we estimated
synonymous, missense and loss-of-function (LoF) variants using the program SnpEff v.5.0e with
default settings (64). SnpEff defines LoF variants as those causing complete loss of function of
the affected transcripts: stop codon-introducing (nonsense) or splice site-disrupting single
nucleotide variants predicted to disrupt a transcript's reading frame, affecting more than 50% of
the protein-coding sequence. For homozygous sites, the effect of the ancestral allele was
predicted relative to the focal genome, and thus homozygous LoF substitutions could not be
reliably called, and we instead focused only on missense substitutions for homozygous sites. We
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assumed that mutations at sites that are more conserved, that cause missense and LoF changes in
protein-coding genes, especially those that show lethality as a result of LoF, are more likely to be
harmful and to contribute to genome-wide deleterious genetic load (/9).

Given these assumptions, we measured homozygous genetic load as the distribution of
phyloP scores across all homozygous substitutions (mean and Pearson's kurtosis estimated from
the moments package in R), the proportion of homozygous substitutions in protein-coding genes
that are missense, and the proportion of homozygous substitutions that are at an evolutionarily
conserved site (phyloP>2.27; (81)). Because homozygous substitutions were estimated for each
species relative to the closest ancestral node in the phylogeny, the number of substitutions
depended on the distance to the nearest species in the dataset, and ranged from 145,602 for Cavia
tschudii (montane guinea pig) to 53,919,964 substitutions for Hystrix cristata (crested
porcupine). There was a negative correlation between the proportion of putatively deleterious
substitutions and the distance between a species and its closest ancestor (e.g. log-log linear
regression r>=0.415 for missense substitutions at conserved sites). Comparisons between closely
related species are typically enriched for nonsynonymous substitutions relative to more distant
species (41). To adjust for this bias, we performed log-log linear regressions of homozygous
genetic load variables against the total number of substitutions, and for variables that were
significantly correlated (proportion of missense substitutions, proportion of conserved
substitutions, proportion of missense substitutions at conserved sites, and kurtosis of phyloP), we
used the residuals for subsequent statistical tests of the relationship between genetic load and
demographic variables. We reported p-values for the branch-length adjusted variables, and
presented the non-adjusted values and their coefficients in figures for readability and
interpretability. For phylogenetically corrected logistic regression tests (phyloglm), we present
coefficients (P) converted to the change in odds of being threatened using e-1.

To further parse the potential fitness consequences of mutations, we estimated the
proportion of homozygous missense, heterozygous missense and heterozygous LoF single
nucleotide mutations in genes that differ in their essentiality (i.e. the requirement of a gene for an
organism’s survival). We limited the analysis to single-copy genes with associated viability
phenotypic data in knockout mice as classified by the International Mouse Phenotyping
Consortium (IMPC) (23). From all genes (annotated with human orthologs as described above),
we selected single-copy genes using the BUSCO mammalia odb10 dataset, searching pub_og id
names against the OrthoDB v.10 database, and retaining hits identified as single-copy in >90%
of the mammalian species set. The IMPC set of genes with a viability phenotype (Data Release
15.0) is provided for one-to-one mouse-human orthologs, which achieve an agreement support
score of at least 5 out of 12 of the inference methods implemented by HGNC Comparison of
Orthology Predictions (HCOP; 1.e., support>=5, one-to-one in both directions, human to mouse
and mouse to human). Single-gene knockout mouse lines are assigned a lethal, subviable or
viable phenotype category based on the observed number of viable homozygote pups at pre-
weaning stage. These categories can be used as a proxy for gene essentiality and, consequently,
for the potential fitness impacts of mutations in these genes (23). The number of genes in each
category varied across species depending on the completeness of the annotation for that genome.
The IMPC lethal category had on average 263 genes annotated in each genome (range 19-782),
and the IMPC viable category had on average 530 genes (range 40-1564). Because there were
relatively few genes in the IMPC subviable category, and the results from the subviable category
were qualitatively similar to the lethal category, we presented results from only the viable and
lethal gene categories in the main text. To minimize noise associated with estimation of
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heterozygous variants from low sequencing depths, we restricted the analysis to 131 genomes
with mean read depth >= 20x and mean genotype quality (GQ); the Phred-scaled confidence that
the genotype assignment (GT) is correct) >= 80 across heterozygous sites. For homozygous
substitutions, we restricted the analysis to 220 genomes with >=10,000 substitutions in coding
regions. We evaluated both missense and LoF variants at heterozygous sites, and missense
substitutions for homozygous sites. From the genome of a single individual, we are likely to
capture many thousands of mildly and moderately deleterious alleles that are at high frequency
or fixed (drift load), but only a few highly deleterious/lethal alleles (which are typically rare in
the population and across the genome, and comprise mainly inbreeding load); thus we likely do
not have high power to detect differences in highly deleterious alleles between species.

Correlations between demography, genetic diversity, genetic load and conservation status

Species with smaller historical effective population sizes tend to have higher proportions of
mildly to moderately deleterious mutations in their genomes. The proportion of homozygous
substitutions at conserved sites was negatively correlated with species N. (phylolm, p=9.65e-3,
B=-1.14e-3, where each 10-fold increase in N, corresponds to a 1.14e-3 decrease in the
proportion, fig. S4A), and the proportion of homozygous missense substitutions was negatively
correlated with species N. (phylolm, = -0.020, p=7.76e¢-5; fig. S4B). Phylop kurtosis (which
describes the extremity of phyloP outliers in the tail of the distribution across substitutions) was
positively correlated with N. (phylolm, =0.851, p=0.014), i.e. species with smaller N, had
smaller right tails, suggesting fewer extreme conservation scores. In contrast to historical N,
neither genome-wide heterozygosity nor the proportion of the genome in RoH (metrics that are
influenced by more recent population history) were significantly correlated with the proportion
of deleterious variation in the genome (phylolm, all p>0.098).

We then parsed the potential fitness impacts of mutations by examining genes classified as
having lethal, subviable and viable phenotypes in knockout mice (figs. S5-S6). As expected for
genes under strong purifying selection, there were proportionally fewer missense variants in
subviable and lethal gene categories compared to genes in the viable category across species
(ANOVA, all p<2e-16, fig. S7), validating the relative impacts of mutations in genes inferred
from IMPC categories. The historical N, of species was negatively correlated with the proportion
of heterozygous missense variants for all IMPC categories (phylolm, all p< 2.53e-3; fig. S5), and
with homozygous missense substitutions in the viable and lethal categories and in all gene
categories combined (phylolm, all p< 1.72e-5; fig. S5). By contrast, heterozygous LoF variants
were not significantly associated with N,, except for a negative correlation for LoF alleles in
IMPC lethal genes (phylolm, p=0.019; fig. S5), and the proportion of LoF alleles did not
significantly differ between threatened and non-threatened species (fig. S6). Because of the rarity
of LoF alleles in the genome, we had little power to test for differences in LoF alleles across
species. To assess whether differences in annotation impacted our LoF results, we reran the
regression with N, using LoF estimates only for species with at least 200 genes in the IMPC
lethal and viable categories and found that the results did not qualitatively change. Populations
with smaller N, had larger variability in the proportion of LoF alleles, especially in genes in the
IMPC lethal category (fig. S5); however, the overall number of heterozygous sites is lower in
these species, which adds additional stochasticity to the estimates.

While we do find that species with small N. have proportionally higher genetic load, species
with large N. are expected to have more deleterious alleles segregating at low frequency by count
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(12, 22). We examined heterozygous deleterious variants, normalized by the number of genes
annotated in each genome, and found that that species with larger N, have more heterozygous
missense variants in IMPC viable genes (log-log phylolm, f=0.222, p=0.002) and IMPC lethal
genes (log-log phylolm, =0.167, p=0.03), as expected from theory.

Deleterious genetic load in threatened compared to non-threatened species was often, but
not always, consistent with expectations for small compared to large populations, respectively.
Phylop kurtosis was lower on average in threatened than non-threatened species (phylolm,
meanreatened=22.03, Meannon-threatened=22.75, p=0.001), a trend largely driven by Carnivora
(phylolm, meanmreatened=24.39, meannon-threatened=25.95, p=0.047) and Primates (phylolm,
meanreatened=23.96, Meannon-threatened=25.32, p=7.9e-4)(fig. S8). There was no significant
difference in phylogenetically corrected means of proportional genetic load between threatened
and non-threatened species, including the proportion of missense substitutions (phylolm,
p=0.31), the proportion of substitutions at conserved sites (phylolm, p=0.46), and the proportion
of missense substitutions at conserved sites (phylolm, p=0.53)).

There were significant relationships between fixed genetic load and the odds of being
threatened, however, the relationship was different for protein-coding genes compared to
evolutionarily conserved sites genome-wide. Species that had proportionally fewer homozygous
substitutions at evolutionarily conserved sites across the genome were more likely to be
threatened in logistic regression tests (phyloglm, = -0.52, where each 1% increase in these
substitutions is associated with a 52% decrease in odds of being threatened; p=1.38e-05; fig.
S4C), even though species with smaller N, tended to have proportionally more homozygous
substitutions at conserved sites (phylolm, p=9.6e-3; fig. S4A). Species with lower kurtosis of the
phyloP distribution across substitutions (i.e. fewer extremely conserved outliers) were also more
likely to be threatened (phyloglm, =-0.17, p=0.018, fig. S8). In protein coding regions, by
contrast, species with proportionally more missense substitutions were more likely to be
threatened (phyloglm, =0.23, where each 1% increase in these substitutions is associated with a
23% increase in odds of being threatened; p=0.002; fig. S4D). Genomes with proportionally
more missense substitutions in IMPC categorized genes were also more likely to be those of
threatened species for nearly all gene categories (phyloglm, all p<0.053; fig. S6).

Impact of variation in annotation performance across species

The number of genes annotated in each genome across species varied widely (range=1760-
8465, mean=5992, std. dev.=1311), with Primate genomes having the most genes annotated.
However, because we estimated genetic load as the proportion of deleterious mutations relative
to total coding mutations (and not by counts of deleterious mutations), there was not a strong
effect of different numbers of annotated genes used in the analysis. To determine whether
differences in annotation performance may have impacted our results, we estimated the
proportion of missense substitutions using only the subset of genes that were annotated in at least
200 species. The results were very similar and qualitatively identical. The estimated proportion
of missense substitutions for species using the restricted and full sets of single-copy BUSCO
genes were highly correlated (1>=0.94). The significance of the relationships between the
proportion of homozygous missense substitutions and threatened status (phyloglm, = 0.20,
p=0.013), and between the proportion of homozygous missense substitutions and N, (phylolm,
B=-0.019, p=1.72¢-5) were also qualitatively identical with the more restricted set of genes
relative to the full set.
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Additional lines of evidence suggest that overall our estimates of genetic load are robust. 1)
The observation of proportionally fewer deleterious mutations with increasing N. fits theoretical
expectations that purifying selection is more effective at removing/reducing deleterious alleles in
large populations, and confirms that our classification of deleterious mutations is correlated with
the true deleterious fitness impacts across mutations. 2) Mutations and derived alleles were
estimated using distinct methods for homozygous versus heterozygous sites. (Homozygous
derived substitutions were called relative to ancestral reconstructions from the multispecies
alignment, and their impact inferred from evolutionary conservation and/or changes to protein
coding sequences, whereas heterozygous variants were called from short-read data mapped to
reference genomes, and a single derived allele was assumed.) Yet there are negative correlations
between N. and proportional genetic load for both mutation types (Fig. 2), which further supports
our classification of deleterious alleles.

Using single genomes to represent genetic load of a species

While a single genome can never encompass intraspecific variation, by using a single
genome per species we were able to include species that had minimal genomic resources and
increase the number of species analyzed. The proportions of deleterious mutations are driven by
the effects of purifying selection to remove these variants and the effects of genetic drift over
time, and thus we expect that individuals within a species should have similar proportions of
genetic load, and these proportions would not rapidly change with, for example, recent changes
in demography. For example, under population contraction, all variants (deleterious and non-
deleterious) are expected to become increasingly homozygous, but the proportion of deleterious
and non-deleterious homozygous mutations would not change much in the short term.

Empirical studies suggest that most individuals within a species have similar levels of
proportional genetic load. For example, van der Valk, et al. (29) evaluated load based on
evolutionary conservation scores (GERP) across mammals, including resequencing data from
multiple individuals, and found that intraspecific variability in genetic load is typically small (+/-
SD 1.3%), and is smaller than interspecific variability. In a study of the vaquita (Phocoena
sinus), intraspecific variation in the proportion of deleterious variants was also small relative to
interspecies variability (83). Other studies also suggest that proportional drift load is not sensitive
to recent demographic history (84). Although intraspecific variability can not be captured by
sampling a single individual, these studies suggest that it will often provide a reasonable estimate
of drift load that has accumulated over long evolutionary time periods in a given species.

The only two conspecific genomes in the dataset, the domestic dog and the village dog,
have shared evolutionary histories until very recently, when lineages began to diverge in the
Victorian Era. As expected, the domestic dog has slightly lower historical N. (N.=2,131) than the
village dog (N.=2,356), and the domestic dog had a slightly higher proportion of homozygous
missense substitutions (0.3603) than the village dog (0.3591). These differences are very small
compared to all of the species in the dataset, which ranged from 0.224-0.434 across 239
genomes, and the two dog genomes were 202nd and 206th when species were ranked by this
metric. These measures of genetic load reflect older, shared evolutionary histories that have
changed little with recent population divergence and different selective conditions. Other studies
also suggest that proportional drift load is not sensitive to recent demographic history. In
southern white rhinos, individuals sampled before a population bottleneck and after the
bottleneck showed no difference in the proportions of homozygous missense mutations relative
to homozygous synonymous mutations (84). In both of these examples, however, the populations
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have diverged very recently (<200 years). With increasing time since divergence between
populations, samples from different populations are expected to become increasingly dissimilar.

Estimating heterozygosity and genetic load across homologous windows

We used the genomic distribution of heterozygosity and genetic load across mammalian
taxa to train machine learning models for predicting conservation status (see below for machine
learning methods). To generate matrices of heterozygosity and genetic load across homologous
windows, we lifted over 5S0KB windows of 174 species to windows of the human genome using
halLiftover, assigning the estimates of RoH, heterozygosity, mean phyloP across substitutions,
and number of missense substitutions, from windows of each species to the window of the
human genome. We averaged heterozygosity and the amount of RoH in each human-based
window, and removed windows with fewer than SKB that lifted over.

Statistical regression models of threatened status using genomic variables

We took three approaches to model conservation status across species using regression
models. First, we used a phylogenetic logistic regression model, which accounts for evolutionary
relationships across species. This model allowed us to test the significance of predictor variables,
but does not readily make predictions for species with unknown threat status. Second, we used
ordinal regression models, which estimate parameters based on specific IUCN categories. We
included taxonomic order as a factor to account for phylogenetic relationships. These models
allowed us to test the significance of predictor variables and make predictions for species with
unknown threat status. Third, we used principal components (PCs) to summarize genomic
variables, and tested the significance of PCs as predictors of threatened status using logistic
regression. We also tested the ordinal regression and PC models within taxonomic orders to
explore how the predictors of conservation status vary with taxonomy.

We incorporated genomic variables with taxonomic order and dietary trophic level, a
known correlate of extinction risk (65), into these regression models. We subsetted the full
dataset of 240 species to remove 16 domesticated species. We identified 13 possible predictor
variables related to genomic heterozygosity and genetic load (table S2). We examined these
numeric variables for normality by visualizing Q-Q plots, transforming as necessary to improve
normality and rescaling all variables to a Z-score. We then removed the three species with an
IUCN status of "Data Deficient".

We estimated model error by running the ordinal regression and PC regression models on
80% of the data and using the predict function from the R stats package to predict the threatened
status of the remaining 20% of the data. Our estimate of model error was the mean of 100 runs
with different data subsets.

We used a phylogenetic logistic regression model to determine which genomic features
were most predictive of conservation status and to calculate the odds of a classification of
"threatened" (IUCN NT, VU, EN, CR categories), as compared to non-threatened (IUCN LC
category). We combined all four non-LC categories to increase the power of our analyses and
balance sample sizes between threatened and non-threatened groups. Visual inspection of
genomic variables suggested that the four threatened categories were more similar to one another
than to the LC category (fig. S2). To select variables for inclusion into the final model, we used
phyloglm from the R phylolm package (version 2.6.3)(55) with the phylogenetic tree generated
from the X chromosome for the 240 species (56). We tested each of the 13 heterozygosity and
load variables and two categorical covariates (diet category and wild versus captive status)
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individually against threatened status, dropping variables that were not significant at a p=0.10
threshold. For the remaining numeric variables, we examined pairwise correlations and for pairs
with a correlation greater than 0.7, we removed the variable of the pair with the higher p-value in
the individual models predicting conservation status. We ran phyloglm for the final phylogenetic
logistic regression model with the variables that remained after filtering for significance and
correlation. We retained both categorical covariates (the diet category of the species and wild
versus captive status of the short-read data sample) in the final model because they were
significant (p<0.10) when considered individually, and to account for their possible influence on
heterozygosity and fRoH estimates. We dropped four numeric variables that were not significant
individually (p>0.10), and dropped three other numeric variables that were highly correlated
with, but less significant than, another variable. The final model included the phylogenetic tree,
two categorical covariates, three variables related to genome heterozygosity and fRoH, and three
variables related to genetic load. In this final model, both diet category and wild versus captive
status significantly predicted threatened status (p<0.05); and two numeric variables significantly
predicted threatened status (p<0.05): harmonic mean of the historical effective population size
and proportion of the genome in RoH. As expected, lower historical effective population sizes
increase the odds of being classified as threatened. Contrary to expectations, a lower proportion
of the genome in RoH increases the odds of being classified as threatened, likely due to the
skewed distributions of RoH and the captive samples included in the analysis. None of the
genetic load metrics were significant in this model.

We used an ordinal regression model to determine which genomic features were most
predictive of [IUCN category, to estimate the probability of each [UCN category, and to examine
how these probabilities covary with taxonomic order, diet category, and wild versus captive
status. Due to the sparsity of species in a number of taxonomic orders, for this model we used
only five orders that had a sufficient number of species (Carnivora, Cetartiodactyla, Chiroptera,
Primates, and Rodentia). To select variables for inclusion into the final model, we used polr from
the R MASS package (version 7.3.51.4)(85). We tested each of the 13 heterozygosity and load
variables and three categorical covariates individually against [UCN category, dropping
variables that were not significant at a p=0.10 threshold. For the remaining numeric variables, we
examined pairwise correlations and for pairs with a correlation greater than 0.7, we remove the
variable of the pair with the higher p-value in the individual models. We dropped six numeric
variables because they were not significant individually (p>0.10); we dropped three other
variables due to high correlation with and lower significance than another variable. We ran polr
for the final ordinal regression model with the variables that remained after significance and
correlation filtering. The final model included all three covariates, one variable related to
heterozygosity, and three variables related to genetic load, and had a cross validation (CV) error
of 31% for classification of threatened versus non-threatened. In the final model, taxonomic
order, diet category, and harmonic mean of the historical effective population size significantly
(p<0.05) predicted IUCN status. As with the previous model, lower historical N, indicated an
increased probability of being classified as threatened. The impact of a lower historical N, was
greater on species with a diet classification of herbivores, as compared to omnivores and
carnivores (Fig. 3B). We then modeled extinction risk within the three taxonomic orders with
sufficient samples in threatened and non-threatened categories (Carnivora, Cetartiodactyla, and
Primates), using the same process as above (excluding the taxonomic order variable) to select
variables in order-specific ordinal regression models. When examining taxonomic order, the
impact of historical N. was reduced in Chiroptera and Rodentia (Fig. 3C).
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To retain the information from all predictor variables and account for the correlation
between them, we used principal component (PC) regression. Using the same 13 predictor
variables, we removed species with missing data and ran a PC analysis using prcomp from the R
stats package (version 3.6.1)(86). We ran a linear model to predict threatened status using Im
from the R stats package, including the fewest PCs that cumulatively accounted for at least 80%
of the variance in the data (table S3). For the three taxonomic orders with sufficient sample sizes,
we used Im from the R stats package and the same set of PCs to run order-specific PC regression
models. We tested the significance of the first five PCs, which accounted for greater than 80% of
the cumulative variation in the predictor variables, in predicting threatened status. Two PCs were
significant: PC1 (p=0.0038; explaining 35% of the total variance) and PC3 (p=5.6e-4; explaining
13% of the total variance). PC1 broadly represents heterozygosity and genetic load metrics and
PC3 separates the mildly and severely deleterious mutations (table S3).

Given the importance of taxonomic order in all the models we examined, we tested the
ordinal regression and PC models within the three taxonomic orders that had enough individuals
in both non-threatened and threatened categories. Carnivora showed a complex relationship
between threatened status and genomic variables. While a number of variables were significant
when considered individually, none significantly impacted threatened status when considered
together in the ordinal regression model. When PC regression was used to incorporate all the
genomic variables while reducing dimensionality and correlation, the two most significant PCs
were PC1 (p=0.07) and PC4 (p=0.04) that have major contributions from historical N. and
genetic load due to viable heterozygous loss of function (fig. S9). For Carnivora, the ordinal
regression model had a CV error of 28% and the PC regression model had a CV error of 38%.
Within Cetartiodactyla, there were no significant (p<<0.05) predictors of threatened status in
either the ordinal or PC regression models, however a few predictors were significant at a p=0.10
threshold, suggesting either a weak relationship and/or a lack of power due to small sample sizes.
Additionally, Cetartiodactyla contains two groups with distinct ecological niches, one terrestrial
and one aquatic, which may influence the genomic predictors of extinction risk in the two
groups. The ordinal regression model had a CV error of 39% and the PC regression model had a
CV error of 47%. Primates had a single variable that was significantly predictive of threatened
status—the kurtosis of phylop, which is a measure of the tailedness of the distribution of phylop
scores across substitutions. Primate species that are threatened tend to have fewer variants in the
tail of the phylop distribution (phylolm, p=0.003), suggesting that purging of deleterious variants
may be common in Primates (fig. S8). For Primates, the ordinal regression model had a CV error
of 39% and the PC regression model had a CV error of 44%.

To make predictions for species classified as "Data Deficient", we used the predict function
from the R stats package with the ordinal regression models and the PC regression models
(excluding the phylogenetic PC regression model because there is no predict function available
in the phylolm package).

Machine learning (ML) methods for categorizing IUCN status using genomic features

We next used random-forest based classification to identify the genomic features that
predict “threatened” versus “non-threatened” status of species. We used two different genomic
data types: 1) summary statistics of heterozygosity, RoH, and metrics of genetic load within
homologous 50KB windows, and 2) genome-wide summary statistics related to heterozygosity,
demographic history, and genetic load (table S4). For window-based summary statistics, we
lifted over each genome to common coordinates of the human genome as described above (see
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Estimating diversity across homologous windows). We generated five genomic feature matrices
by estimating the following within windows of each genome: heterozygosity, RoH, mean phyloP
of substitutions, number of missense substitutions, and number of missense substitutions at
evolutionarily conserved sites. We ran the two genomic data types separately and combined, and
additionally incorporated 39 numeric ecological features from the PanTHERIA database (table
S4) to assess predictive performance of genomic features in comparison with ecological
variables, considered a “gold standard” for prediction (317, 32).

We started with five genomic feature window matrices in 57,509 homologous 50KB
windows for at least 197 and up to 236 species depending on the statistic (table S5). Because we
observed little impact of removing domesticated species in the regression models, we included
them in the random forest models. We normalized counts of missense substitutions and counts of
conserved missense substitutions by dividing by the total number of protein-coding variants for a
given species. For each of the five genomic feature window matrices, we removed species that
had missing values in more than 30,000 windows (which varied based on the statistic).

We included 13 genome-wide summary statistics describing demographic history, diversity,
and genetic load (table S4). Of a total of 39 possible ecological features, the number of features
included in each model depended on the number of species that had complete data for each
model included in the training set, and this varied depending on which genomic feature dataset
was used (window matrices, genome-wide summary statistics, or the two types combined).

We first split our dataset into a 75% train set and a 25% test set, and removed three data-
deficient species (Orcinus orca, Tragulus javanicus and Nannospalax galili) lacking an [UCN
status. This split was defined by a reproducible seed (ranging from 1 to 5), and repeated to test
for robustness. Then, to prevent data leakage, we performed preprocessing and imputation steps
using only the training data. We removed window-based metrics that had (1) missing values in
more than 75% of the species, or (2) features with the mode value occuring in more than 75% of
non-missing values. (All genome-wide summary statistics and ecological features passed these
criteria.) Missing values were imputed within a feature vector using two methods (1) computing
the median across all other species, or (2) by leveraging taxonomic order as follows: first, we
compute the median of the species within the same genus; if there are no non-missing values,
then we move up to compute the median value within the same family; then order. Missing
values within the test set were imputed analogously using only the values within the training set.

We grouped the IUCN conservation status into two classes, threatened (NT/VU/EN/CR)
and non-threatened (LC), with the goal of distinguishing between threatened and non-threatened
species. Our models take as input the filtered window-based statistics, genome-wide summary
statistics, and ecological variables. The output is a probability of the species being threatened.

Similar to previous work (37, 32), we used random forest classifiers to assess the
relationship between features and IUCN status. Random forests is an ensemble learning
approach, making predictions by combining the outputs of hundreds of decision trees. We ran 5-
fold cross validation on the training set to determine the optimal set of hyperparameters, which
define the structure and learning process of the internal decision trees. Specifically, we tuned the
number of decision trees, the maximum depth of the trees, and the number of features used at
each decision to optimize a performance metric. For all models (except for the model trained on
solely the 13 genomic summary variables), we added an additional hyperparameter governing
the number of features selected during feature selection. During cross-validation, our median-
based imputation was computed within each fold, whereas our phylogenetic imputation was
computed on the entire training set. We used the area under the receiver operating characteristic
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(AUROC) curve to evaluate performance. AUROC is a performance metric that estimates how
well a model assigns (predicts) the correct output class, and is designed to be more robust to
class imbalance in comparison to a metric such as accuracy. A model with AUROC of 0.5 has no
predictive ability, whereas a model with AUROC of 1.0 has perfect predictive performance.
Using the selected features and hyperparameters, we re-trained a model on the training set,
evaluated it on the held-out test set, and reported the performance metric used during
optimization. For all models, we ranked the features based on the model feature importance, a
measure of the predictive power of the feature relative to other features in the model. Feature
selection was performed in all cases except for genome summary, which had only 13 features.
We used the scikit-learn 1.0.2 package for fitting all the models (66).

The number of species with values for ecological, genome-wide summary statistics, and
window-based metrics varied, and so we ran two types of models: “individual” and “composite”
models using 5-fold cross-validation for model selection. First we ran “individual” models
including all species available for each dataset (table S5). The individual models help us evaluate
the utility (i.e. predictive performance) of genomic variables as predictors of conservation status
while leveraging all the data available for each metric. The method of imputation had an impact
on predictive power, with imputation based on phylogeny showing superior performance over
imputation based on median across all species regardless of taxonomic order (table S5). The
model including only ecological variables across all available species had the best predictive
AUROC (median across 5 training-test replicates was 0.88), while the models with genomic
features had lower, but still good predictive power. Genomic window-based metrics varied in
their predictive power, with AUROC ranging from 0.69-0.82 (table S5). The median AUROC
values across five training-test replicates were 0.69 for the model with the proportion of
missense substitutions, 0.70 for the proportion of conserved missense substitutions, 0.78 for
RoH, 0.79 for heterozygosity, 0.74 for all window-based metrics combined, and 0.82 for the
model with three window-based features combined (RoH, heterozygosity, and mean phyloP).
The results suggest that windows of mean phyloP across substitutions, RoH, and heterozygosity
were relatively more predictive than the other window-based features. Genome-wide summary
variables were also somewhat predictive of threatened status, with a median AUROC of 0.68.
There was little variance in model performance across the five training-test replicates for each
individual model (mean coefficient of variation across models = 0.07, range=0.01-0.22; fig.
S11).

To compare the effect of combining ecological and genomic variables on classification, we
ran “composite” models, testing genomic (genome-wide summary and window-based) features
and ecological features in the set of species for which both data were available (tables S4 and
S6). We used the best performing window-based features derived from feature selection among
the window-based features alone, and imputed missing data by phylogeny, which showed
superior performance in the “individual” models. There was little variance in model performance
across the five training-test replicates for each composite model (mean coefficient of variation
across models = 0.08, range=0.03-0.21; fig. S12-S13). Models for 210 species with ecological
variables and genomic summary statistics combined (median AUROC=0.85) modestly
outperformed those with ecological variables alone (median AUROC=0.83). Among all 52
variables included in these models, there were three genomic variables that consistently appeared
among the top 20 predictive features across replicates, 1) historical N. (five replicates), 2)
proportion of heterozygous missense variants in IMPC lethal genes (four replicates), and 3)
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proportion of substitutions at conserved sites (three replicates) (fig. S14). Models including
window-based features never outperformed models with ecological variables alone (table S6).

Our evaluation suggests that genomic variables provide reasonable predictive performance,
demonstrating the utility of using genomic variables when ecological variables are unavailable.
We note caveats to our models: the species included in the model affect the results, as AUROC
differs between independent and composite models (tables S5 and S6); our sample size is small
and including additional observations and species will likely improve predictions and decrease
this stochasticity. Our study is a pilot that demonstrates the potential usefulness of genomic data
for triaging data deficient species, and motivates further studies exploring larger datasets and
with feature transformation (e.g. using principal components) for improved predictive
performance.

Predicting conservation status of Data Deficient species

For the three species that are [UCN classified as "Data Deficient", we used both the
regression and the random forest models to predict their probability of having a threatened status
(Fig. 3D). The ordinal regression models generate predictions for each specific [IUCN category;
however, given the reduced power to distinguish between IUCN threatened categories due to
small sample sizes in each, we focused on the broader classification of threatened versus non-
threatened. From the regression models overall, the Upper Galilee Mountains blind mole rat
(Nannospalax galili) is least likely to be a threatened species, with probabilities estimated at 12%
and 14%. (Note there were not enough Rodentia species classified as threatened to do an order
specific model). The Java lesser chevrotain (Tragulus javanicus) is also predicted to be a
threatened species; however, probability estimates ranged from 27-63%. The higher risk
prediction is from the within-order models. A killer whale (Orcinus orca) from the Norwegian
herring-eating population (87), is likely to be in a threatened category, with probability estimates
ranging from 62-68%.

Random forest model predictions for Data Deficient species differed somewhat from the
regression-based predictions, but the relative likelihoods of threat for the three species were
nonetheless consistent to the regression model predictions (Fig. 3D). All genomic feature-only
models consistently predicted Nannospalax galili as the least likely to be threatened (median
probability: 0.18, range: 0.11-0.44). Tragulus javanicus had a higher probability of being
threatened, but was more likely to be classified as not threatened (median probability: 0.32,
range: 0.24-0.49). Orcinus orca was the most likely to be threatened (median probability: 0.48,
range: 0.35-0.61).
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Figure S1.

Overview of methods for estimating heterozygosity, historical V., and genetic load across individual
mammalian genomes. (A) For each species in the Zoonomia alignment, homozygous derived substitutions were
estimated relative to the reconstructed sequence of the closest ancestral node in the phylogeny. Heterozygous
variants were estimated from the short-read data mapped to the reference genome. (B) Mean heterozygosity and
proportion of the genome in runs of homozygosity (fRoH) were estimated from the distribution of 50-kb genomic
windows. (C) Historical effective population size (N.) was estimated over time and summarized by the harmonic
mean (dashed line). (D) Genetic load was inferred from the evolutionary conservation (measured by phyloP) of
mutated positions, assuming that mutations at sites conserved across placental mammals are likely deleterious, and
from the predicted impact of mutations in protein-coding genes, including single-copy genes with associated
phenotypes in knockout mouse lines. Genetic load was estimated from the proportion of homozygous derived
substitutions that were deleterious (fixed drift load), and the proportion of heterozygous variants that were
deleterious (segregating mutational load), relative to total mutations of each type.
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Figure S2.

Distribution of genomic variables of demography, diversity and genetic load in species across [UCN threat
categories. All variables (except N./N.) were used in regression and machine learning models to predict threatened
and non-threatened IUCN status (see tables S2 and S4).
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Effective population sizes (/Ve) were significantly smaller in threatened compared to non-threatened species
within two of three taxonomic orders with enough samples in both threat categories to test: Cetartiodactyla
(phylolm, p=0.023) and Carnivora (p=2.4e-5), but not Primates (phylolm, p=0.31).
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Figure S4.

Contrasting patterns of drift load based on conserved sites across the genome and missense substitutions in
genes. A) N. was negatively correlated with the proportion of homozygous substitutions that were at evolutionarily
conserved sites (phylolm, p=9.6e-3, p=-0.0011, where a 10-fold increase in N. corresponds to a decrease in
proportion of 0.0011). B) N. was negatively correlated with the proportion of homozygous missense substitutions
that were at evolutionarily conserved sites (phylolm, p=7.76e-5, = -0.020, where a 10-fold increase in N,
corresponds to a decrease in proportion of 0.020). Lines show coefficients estimated with phylogenetic correction
using phylolm. C) Species that had proportionally fewer homozygous substitutions at evolutionarily conserved sites
across the genome were more likely to be threatened (phyloglm; p=1.38e-05; = -0.52). D) Species that had
proportionally more homozygous missense substitutions in protein-coding genes were more likely to be threatened
(phyloglm; p=0.002; B=0.23).
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coding genes classified as lethal, subviable or viable in knockout mice for non-threatened and threatened species.
For most IMPC categories, species with proportionally more heterozygous and homozygous missense alleles were
more likely to be threatened. P-values shown were estimated using phylogenetic correction in phyloglm. 3
coefficients indicate the change in odds of being threatened with a 1% increase in deleterious mutations.

Phylogenetically corrected means did not significantly differ (all p>0.15).

51



0.45
0.401
0.351

1ons
o
w
S

mutat
o o
NN
S o

© o o o]
A OO0 O N

o
o

0.04 1

Deleterious mutations/coding
2 )
0.0 w

0.02 1
0.011

0.001

Lethal Viable
IMPC gene category

Figure S7.

8suassI 8SUasSI

407
snobAzois1oH

snobBAzowoH

snobAzois1oH

Primates
Cetartiodactyla

® Carnivora
Chiroptera
Rodentia
Afrosoricida
Cingulata

@ Dermoptera

@ Eulipotyphla

@ Hyracoidea
Perissodactyla

® Pholidota

® Pilosa

@ Proboscidea

® Scandentia

@ Sirenia

@ Tubulidentata

Proportionally fewer missense mutations in genes associated with lethal phenotypes. Missense mutations were
less frequent in genes classified as IMPC lethal relative to genes classified as IMPC viable (ANOVA, p<2e-16 and

p=4.42¢-9 for homozygous and heterozygous mutations, respectively). The difference between the two categories
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Figure S8.

Genome-wide conservation scores suggest fewer substitutions at highly conserved sites in threatened species. A) Kurtosis of the phyloP distribution across
substitutions (larger numbers reflect fatter right tails) was significantly lower in threatened species across all taxa (p=0.004), and within Primates (p=0.003) and
Carnivora (p=0.019). Horizontal lines show coefficients of means after phylogenetic correction in phylolm. B) Proportion of genome-wide substitutions in
phyloP bins for threatened and non-threatened species, showing fewer substitutions in higher phyloP bins in threatened compared to non-threatened species
across species. (C) Proportion of genome-wide substitutions in phyloP bins for threatened and non-threatened species, showing fewer substitutions in higher
phyloP bins in threatened compared to non-threatened species within Primates. Lines show smoothed means for [IUCN categories.
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Predictive metrics for Carnivora A) Plots of N. through time estimated from PSMC and used to calculate
historical N.. B) Historical V. is significantly lower in threatened species (ordinal regression, p=0.0055). C) The
proportion of heterozygous variants that were loss of function in genes categorized as viable (het. LOF V) is
significantly lower in threatened species (ordinal regression, p=0.0064). D) PCA space of the most significant PCs
(PC1, p=0.075; PC4, p=0.040) of genomic predictor variables in PC regression models. Vectors indicate variable
loading with the two most significant variables from ordinal regression models shown in red. Dots represent species
and show their scores in PCA space. Colors in all panels represent the [UCN category of the species. SoH=runs of
homozygosity.
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Predictive metrics for Primates A) PhyloP kurtosis is significantly lower in threatened species (phylolm,
p=0.003). B) Probability of IUCN categories for phyloP kurtosis score in the ordinal regression model (p=0.01). C)
PCA space of genomic predictor variables showing PC1 (p=0.62) and the most significant predictor in the PC
regression model PC4 (p=0.063). Vectors indicate variable loading, with PhyloP kurtosis (shown in red) as the
major contributor to PC4. Dots represent species and show their scores in PCA space. Colors in all panels represent

the IUC

N category of the species. SoH=runs of homozygosity.
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Figure S11.

window-based metrics and/or genome-wide summary statistics (table S5; see table S4 for data descriptions).
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Performance measurements (AUROC) across five training-test replicates of “composite” models that included
genome-wide summary statistics, ecological variables, or both (table S6; see table S4 for descriptions).
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Performance measurements (AUROC) across five training-test replicates of “composite” models that included
genomic window-based metrics, genome-wide summary statistics, ecological variables, or combinations of these
data types (table S6; see table S4 for descriptions).
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Top 20 most important features in random forest models to predict conservation status. Most important
features from the model including 13 genomic summary variables and 40 ecological variables across
(AUROC=0.85). Feature importance was averaged across five test-training replicates. Genomic features are
highlighted in white and ecological features from PanTHERIA are in dark gray.
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Distribution of fRoH values for A) all species with fRoH estimates and B) species represented by a wild caught
individual only.
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Table S1. Data for the 241 Zoonomia species analyzed, including species name, taxonomic order, diet classification,
wild or captive status of the sequenced sample, IUCN Red List category, NCBI accession numbers, genome
contiguity statistic (contig N50), generation time, census size (Nc¢), and values for 13 genomic summary statistics
used in analyses.
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Table S2. Details and results for variables used in statistical regression models, including the transformation used to increase normality of the distribution and
number of samples with an estimate. Model results indicate if the variable was dropped from the final model (and the reason it was dropped) or the p-values and
untransformed coefficients for the final model. Bold values indicate the variable was significant in the model at the p=0.05 threshold.

Carnivora Cetartiodactyla |Primate

variable transfor [sampl |logistic ordinal ordinal ordinal ordinal

name variable description m e size |regression regression regression regression regression
harmonic mean of temporal p=3.8e-05, p=0.009, p=0.29,

historical N. |estimates of N. from PSMC log 210  [coefficient=-1.42 |coefficient=-0.85 |coefficient=-1.17 |dropped (p=0.40) |dropped (p=0.14)

dropped

heterozygosity |genome-wide heterozygosity  |none 209  |(correlated) dropped (p=0.18) |dropped (p=0.22) |dropped (p=0.25) |dropped (p=0.32)

outbred mode of heterozygosity in non- p=0.25, p=0.68,

heterozygosity |RoH regions log 209  |coefficient=-0.33 [dropped (p=0.17) |coefficient=0.52 |dropped (p=0.33) |dropped (p=0.69)
percentage of the genome in square p=0.028, p=0.084,

fRoH RoH root 208  |coefficient=-0.63 [dropped (p=0.97) |dropped (p=0.83) |coefficient=0.88 |dropped (p=0.56)

p=0.99,

hom. proportion of homozygous p=0.19, coefficient=-

conserved substitutions with phylop>2.27 |log 241 coefficient=-0.31 10.0055 dropped (p=0.31) |dropped (p=0.27) |dropped (p=0.80)

phyloP tailedness of phylop distribution p=0.023,

kurtosis across substitutions none 241 dropped (p=0.33) |dropped (p=0.33) |dropped (p=0.47) |dropped (p=0.70) | coefficient=-1.06
proportion of hom. missense

hom. missense|that are at sites with dropped dropped

conserved phylop>2.27 none 239 |(correlated) (correlated) dropped (p=0.30) |dropped (p=0.47) |dropped (p=0.38)
in lethal genes, the proportion

het. missense |of heterozygous coding variants dropped p=0.18,

L that are missense log 190  |dropped (p=0.12) [(correlated) coefficient=2.23 |dropped (p=0.76) |dropped (p=0.98)
in viable genes, the proportion p=0.99,

het. missense |of heterozygous coding variants p=0.40, coefficient=0.008

A% that are missense log 196  |dropped (p=0.16) |coefficient=-0.23 |6 dropped (p=0.28) |dropped (p=0.59)
in lethal genes, the proportion
of heterozygous coding variants |log p=0.41, p=0.60,

het. LoF L that are LoF (+0.01) [190 [coefficient=-0.15 |dropped (p=0.56) |dropped (p=0.81) |coefficient=-0.29 |dropped (p=0.55)
in viable genes, the proportion |log p=0.067,

het. LoF V of heterozygous coding variants |(+0.001) [196 |dropped (p=0.62)|dropped (p=0.77) |coefficient=-1.15 |dropped (p=0.32) |dropped (p=0.14)
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that are LoF

in lethal genes, the proportion

hom. missense|of homozygous coding variants dropped dropped
L that are missense log 239  |(correlated) (correlated) dropped (p=0.65) |dropped (p=0.37) |dropped (p=0.53)
in viable genes, the proportion
hom. missense|of homozygous coding variants p=0.38, p=0.59,
A% that are missense none 239  |coefficient=0.25 [coefficient=-0.17 |dropped (p=0.55) |dropped (p=0.26) |dropped (p=0.28)
p=0.023, 0.045,
0.41,0.93;
coefficients=-
2.12,-1.67, 0.62,
order taxonomic order NA 241 NA 0.058 NA NA NA
p=0.014, 0.64; [p=0.0037, 0.86; p=0.15, 0.034;
coefficientn=1.46 | coefficientn=1.88 coefficienti=1.59
diet type (herbivore, omnivore, R R dropped (rank- |, dropped (rank-
diet carnivore) NA 241 coefficiento=0.28 |coefficiento=0.11 |deficient) coefficient,=4.07 | deficient)
sample from wild or captive p=0.020, p=0.96, p=0.93,
wild population NA 225 coefficient=-0.97 | coefficient=-0.20 |dropped (p=0.34) |coefficient=0.099 [ dropped (p=0.30)
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Table S3. Loadings for genomics summary statistics of the first five principal components (PCs; accounting for
>80% of total variance) used in models to predict threatened status of species across all orders. P-values are reported
for PCs that significantly predicted threatened status. Summary statistics are described in table S2.

PC1 (p=0.0038) [PC2 ?p(i35.6e-4) PC4 PC5
hom. conserved 0.215 0.305 -0.302 0.403 -0.080
phyloP kurtosis -0.122 -0.282 0.317 -0.483 0.171
historical N. -0.306 0.091 -0.384 0.191 0.125
heterozygosity -0.242 0.419 -0.118 -0.244 -0.056
outbred
heterozygosity -0.229 0.416 -0.004 -0.273 0.023
fRoH 0.124 -0.455 -0.082 0.322 -0.027
hom. missense
conserved 0.386 0.283 0.096 0.104 0.039
het. missense L 0.347 -0.167 -0.258 -0.24 -0.066
het. missense V 0.375 -0.148 -0.112 -0.216 0.048
het. LoF L 0.111 -0.044 -0.431 -0.392 -0.644
het. LoF V 0.107 -0.025 -0.517 -0.221 0.713
hom. missense L 0.384 0.264 0.177 -0.062 0.047
hom. missense V 0.371 0.248 0.26 -0.089 0.103
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Table S4. Genomic and ecological variables used in machine learning models to predict [IUCN status in mammalian
species. Genomic window-based variables were estimated within S0KB homologous windows lifted over to the
human genome. Genomic summary variables are genome-wide summary statistics. Ecological variables were

obtained from the PanTHERIA database.

Genomic window-based
variables

Description

Heterozygosity

Mean heterozygosity in homologous 50KB windows

2 RoH Mean RoH in homologous 50KB windows
3 Mean phyloP Mean phyloP across substitutions in homologous S0KB windows
4 Missense conserved substitutions Proportion of homozygous missense substitutions in homologous S0KB windows
that are at evolutionarily conserved sites (phyloP>2.27)
5 Missense substitutions Proportion of homozygous coding substitutions in homologous 5S0KB windows that
are missense
Genomic summary variables
1 Historical N¢ Harmonic mean of historical effective population size
2 Heterozygosity Mean genome-wide heterozygosity
3 Heterozygosity (non-RoH) Mean heterozygosity outside of RoH
4 fRoH Proportion of the genome in RoH
5 Conserved homozygous Proportion of homozygous that are at evolutionarily conserved sites (phyloP>2.27)
6 PhyloP kurtosis Kurtosis of phyloP across homozygous
7 Missense homozygous at conserved  [Proportion of missense homozygous that are at evolutionarily conserved sites
sites (phyloP>2.27)
8 Heterozygous missense lethal Proportion of heterozygous coding variants in IMPC lethal genes that are missense
9 Heterozygous missense viable Proportion of heterozygous coding variants in IMPC viable genes that are missense
10  [Heterozygous LoF lethal Proportion of heterozygous coding variants in IMPC lethal genes that are LoF
11 |Heterozygous LoF viable Proportion of heterozygous coding variants in IMPC viable genes that are LoF
12 |[Homozygous missense lethal Proportion of homozygous coding variants in IMPC lethal genes that are missense
13 |Homozygous missense viable Proportion of homozygous coding variants in IMPC viable genes that are missense

Ecological variables

X5 1 Adult Body Mass g

Mass of adult (or age unspecified) live or freshly-killed specimens (excluding

pregnant females) using captive, wild, provisioned, or unspecified populations; male,
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female, or sex unspecified individuals; primary, secondary, or extrapolated sources;
all measures of central tendency; in all localities

X13 1 Adult Head BodyLen mm

Total length from tip of nose to anus or base of tail of adult (or age unspecified) live,
freshly-killed, or museum specimens using captive, wild, provisioned, or unspecified
populations; male, female, or sex unspecified individuals; primary, secondary, or
extrapolated sources; all measures of central tendency; in all localities

X2 1 Age at Eye Opening d

Age at which both eyes are fully open after birth using captive, wild, provisioned, or
unspecified populations; male, female, or sex unspecified individuals; primary,
secondary, or extrapolated sources; all measures of central tendency; in all localities

X3 1 Age at First Birth d

Age at which females give birth to their first litter (eutherians), or their young attach
to teats (metatherians) or hatch out (monotremes), using non-captive, wild,
provisioned, or unspecified populations; primary, secondary, or extrapolated
sources; all measures of central tendency; in all localities

X18 1 Basal Met Rate mL O2 hr

Basal metabolic rate of adult (or age unspecified) individual(s) using captive, wild,
provisioned, or unspecified populations; male, female, or sex unspecified
individuals; primary, secondary, or extrapolated sources; all measures of central
tendency; in all localities. Metabolic rate was measured when individual(s) were
experiencing neither heat nor cold stress (i.e. are in their thermoneutral zone); are
resting and calm; and are post—absorptive (are not digesting or absorbing a meal) and
data were only accepted where there was also a measure of body mass for the same
individual(s)

X5 2 Basal Met Rate Mass g

Mass of individual(s) from which the basal metabolic rate was taken

X6 1 Diet Breadth

Number of dietary categories eaten by each species measured using any qualitative
or quantitative dietary measure, over any period of time, using any assessment
method, for non-captive or non-provisioned populations; adult or age unspecified
individuals, male, female, or sex unspecified individuals; primary, secondary, or
extrapolated sources; all measures of central tendency; in all localities. Categories
were defined as vertebrate, invertebrate, fruit, flowers/nectar/pollen,
leaves/branches/bark, seeds, grass and roots/tubers

X9 1 Gestation Len d

Length of time of non-inactive fetal growth, using captive, wild, provisioned, or
unspecified populations; male, female, or sex unspecified individuals; primary,
secondary, or extrapolated sources; all measures of central tendency; in all localities.
Gestation was measured between specified start and end points as follows: Start
points — conception, fertilization, first observed copulation, fertilization,
implantation, laying, palpably pregnant, removal of pouch young, capture (except
marsupials) or unspecified. End points — birth, hatching or unspecified

X12 1 Habitat Breadth

Number of habitat layers used by each species measured using any qualitative or
quantitative time measure, for non-captive populations; adult or age unspecified
individuals, male, female, or sex unspecified individuals; primary, secondary, or
extrapolated sources; all measures of central tendency; in all localities. Categories
were defined as above ground dwelling, aquatic, fossorial and ground dwelling

10

X22 1 Home Range km2

Size of the area within which everyday activities of individuals or groups (of any
type) are typically restricted, estimated by either direct observation, radio telemetry,
trapping or unspecified methods over any duration of time, using non-captive
populations; male, female, or sex unspecified individuals; primary, secondary, or
extrapolated sources; all measures of central tendency; in all localities

11

X22 2 Home Range Indiv km2

Size of the area within which everyday activities of individuals are typically
restricted, estimated by either direct observation, radio telemetry, trapping or
unspecified methods over any duration of time, using non-captive populations; male,
female, or sex unspecified individuals; primary, secondary, or extrapolated sources;
all measures of central tendency; in all localities

12

X14 1 Inter birth Interval d

The length of time between successive births of the same female(s) after a successful
or unspecified litter using non-captive, wild, provisioned, or unspecified populations;
primary, secondary, or extrapolated sources; all measures of central tendency; in all
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localities

13

X15 1 Litter Size

Number of offspring born per litter per female, either counted before birth, at birth or|
after birth, using captive, wild, provisioned, or unspecified populations; male,
female, or sex unspecified individuals; primary, secondary, or extrapolated sources;
all measures of central tendency; in all localities

14

X16 1 Litters Per Year

Number of litters per female per year using non-captive, wild, provisioned, or
unspecified populations; male, female, or sex unspecified individuals; primary,
secondary, or extrapolated sources; all measures of central tendency; in all localities

15

X17 1 Max Longevity m

Maximum adult age measured either through direct observation, capture-recapture
estimates, projected from physical wear or unspecified, using captive, wild,
provisioned, or unspecified populations; male, female, or sex unspecified
individuals; primary, secondary, or extrapolated sources; in all localities

16

X5 3 Neonate Body Mass g

Mass of live or freshly-killed specimens of infants at either a near term embryonic
stage, birth, immediately after birth or up to an age of seven days after birth, using
captive, wild, provisioned, or unspecified populations; male, female, or sex
unspecified individuals; primary, secondary, or extrapolated sources; all measures of
central tendency; in all localities

17

X21 1 Population Density n km2

Number of individuals per square kilometer, estimated with either direct, indirect or
unspecified counts, measured in any area size within a human, ecological or
unspecified boundary, over any duration of time, using non-captive, non-provisioned
populations; male, female, or sex unspecified individuals; primary, secondary, or
extrapolated sources; all measures of central tendency; in all localities

18

X10 1 Population Grp Size

Number of individuals, adults or definition unspecified in a group that spends the
majority of their time in a 24 hour cycle together, measured over any duration of
time, using non-captive populations; male, female, or sex unspecified individuals;
primary, secondary, or extrapolated sources; all measures of central tendency; in all
localities

19

X23 1 Sexual Maturity Age d

Age when individuals are first physically capable of reproducing, defined as either
physically sexually mature, age at first mating or unspecified (males and females),
age at first estrus or age at first pregnancy (females only), age at spermatogenesis or
age at testes descent (males only), using captive, wild, provisioned, or unspecified
populations; male, female, or sex unspecified individuals, primary, secondary, or
extrapolated sources; all measures of central tendency; in all localities

20

X10 2 Social Grp Size

Number of individuals, adults or definition unspecified in a group that spends the
majority of their time in a 24 hour cycle together where there is some indication that
these individuals form a social cohesive unit, measured over any duration of time,
using non-captive populations; male, female, or sex unspecified individuals;
primary, secondary, or extrapolated sources; all measures of central tendency; in all
localities

21

X24 1 Teat Number

Total number of teats present, using captive, wild, provisioned, or unspecified
populations; male, female, or sex unspecified individuals; primary, secondary, or
extrapolated sources; all measures of central tendency; in all localities

22

X251 Weaning Age d

Age when primary nutritional dependency on the mother ends and independent
foraging begins to make a major contribution to the offspring’s energy requirements,
measured as either weaning/lactation length, nutritionally independent, first solid
food, last observed nursing, age at first flight (bats only), age at pouch exit or length
of teat Attachment (marsupials only) or unspecified definition, using captive, wild,
provisioned, or unspecified populations; male, female, or sex unspecified
individuals; primary, secondary, or extrapolated sources; all measures of central
tendency; in all localities

23

X5 4 Weaning Body Mass g

Mass of live or freshly-killed specimens of weanlings, using captive, wild,
provisioned, or unspecified populations; male, female, or sex unspecified
individuals; primary, secondary, or extrapolated sources; all measures of central
tendency; in all localities
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X16 2 Litters Per Year EXT

Species medians of the consolidated values

4
X26 1 GR Area km2 Total extent of a species range with a global equal-area projection
25
X26 2 GR Max Lat dd Maximum latitudinal extent of each species range calculated using a global
26 geographic projection (decimal degrees)
X26 3 GR Min Lat dd Minimum latitudinal extent of each species range calculated using a global
27 geographic projection (decimal degrees)
X26 4 GR Mid Range Lat dd Median latitudinal extent of each species range calculated using a global geographic
28 projection (decimal degrees)
X26 5 GR Max Long dd Maximum longitudinal extent of each species range calculated using a global
29 geographic projection (decimal degrees)
X26 6 GR Min Long dd Minimum longitudinal extent of each species range calculated using a global
30 geographic projection (decimal degrees)
X26 7 GR Mid Range Long dd Median longitudinal extent of each species range calculated using a global
31 geographic projection (decimal degrees)
X27 1 Hu Pop Den Min n km2 Minimum human population density (persons per km?) using the Gridded Population
32 of the World (GPW) (CIESIN and CIAT 2005) for 1995
X27 2 Hu Pop Den Mean n km2 Mean human population density (persons per km?) using the Gridded Population of
33 the World (GPW) (CIESIN and CIAT 2005) for 1995
X27 3 Hu Pop Den 5p n km2 5th percentile human population density (persons per km?) using the Gridded
34 Population of the World (GPW) (CIESIN and CIAT 2005) for 1995
X27 4 Hu Pop Den Change Mean rate of increase in human population density using the Gridded Population of
the World (GPW) (CIESIN and CIAT 2005) for 1990 and 1995 as: (1995—
35 1990)/1990
X28 1 Precip Mean mm Mean monthly precipitation (mm) calculated using data from
36 ftp://ftp.ngdc.noaa.gov/Solid_Earth/Ecosystems/GEDII a/datasets/a03/lc.htm
X28 2 Temp Mean 01 deg C Mean monthly temperature (0.1°C) calculated using data from
37 ftp://ftp.ngdc.noaa.gov/Solid Earth/Ecosystems/GEDII a/datasets/a03/lc.htm

X30 1 AET Mean mm Mean monthly AET (Actual Evapotranspiration Rate) from 1920 to 1980 (mm)
calculated using the Global Resource Information Database of UNEP and is
available from

38 http://www.grid.unep.ch/data/grid/gnv183.php)

X302 PET Mean mm Mean monthly PET (Potential Evapotranspiration Rate) from 1920 to 1980 (mm)
calculated using the Global Resource Information Database of UNEP and is
available from

39 http://www.grid.unep.ch/data/grid/gnv183.php)
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Table S5. Machine learning models to predict conservation status from genomic summary statistics, genomic
metrics in homologous 50KB windows, and ecological variables across mammal species. Performance was
measured by the median AUROC across five training-test replicates. The first AUROC value is for models where
missing data was imputed by the median of the lowest taxonomic level, the second value in parentheses is for
models with missing data imputed across all species. Data types included in the models were grouped as window-
based metrics (Genomic windows), 13 genome-wide summary statistics (Genomic summary), and 39 ecological

variables (Ecological).

Data types

Model AUROC ‘ Genomic Gfsnomlc

N Ecological summary windows
Ecological variables 0.88 (0.88) 212 X
Genomic summary statistics + 0.86 (0.86) 210 X X
ecological variables
Windows-based mean phyloP + 0.77 (0.8) 236 X X
genomic summary statistics
Windows-based mean phyloP 0.78 (0.77) 236 X
Windows-based mean phyloP + 0.73 (0.75) 208 X X
ecological variables
Windows-based missense substitutions + 0.78 (0.74) 208 X X
ecological variables
All five genomic windows-based metrics + 0.73 (0.74) 195 X X
genomic summary statistics
Windows-based missense substitutions + 0.78 (0.74) 208 X X X
genomic summary statistics + ecological variables
All five genomic windows-based metrics 0.74 (0.73) 195 X
Windows-based missense substitutions 0.69 (0.73) 236 X
Three best genomic windows-based metrics + 0.82(0.73) 173 X X
ecological variables
Windows-based mean phyloP + genomic 0.75(0.73) 208 X X X
summary statistics + ecological variables
Windows-based conserved missense substitutions  0.82 (0.72) 208 X X

+ ecological variables
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Data types

Model AUROC ‘ Genomic Gfsnomlc

N Ecological summary windows
Three best genomic windows-based metrics + 0.78 (0.72) 173 X X X
genomic summary statistics + ecological variables
All five genomic windows-based metrics + 0.79 (0.71) 172 X X
ecological variables
All five genomic windows-based metrics + 0.77 (0.71) 172 X X X
genomic summary statistics + ecological variables
Three best genomic windows-based metrics 0.82 (0.7) 196 X
Windows-based RoH + ecological variables 0.81 (0.7) 174 X X
Windows-based conserved missense substitutions  0.76 (0.7) 236 X X
+ genomic summary statistics
Three best genomic windows-based metrics + 0.79 (0.69) 196 X X
genomic summary statistics
Windows-based missense substitutions + genomic  0.72 (0.69) 236 X X
summary statistics
Windows-based conserved missense substitutions  0.81 (0.69) 208 X X X
+ genomic summary statistics + ecological
variables
Windows-based conserved missense substitutions 0.7 (0.67) 236 X
Windows-based RoH + genomic summary 0.83 (0.66) 174 X X X
statistics + ecological variables
Genomic summary statistics 0.68 (0.65) 236 X
Windows-based RoH + genomic summary 0.78 (0.63) 197 X X
statistics
Windows-based heterozygosity + ecological 0.68 (0.61) 174 X X
variables
Windows-based heterozygosity + genomic 0.7 (0.61) 174 X X X

summary statistics + ecological variables
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Data types
Model AUROC ‘ Genomic Gfsnomlc
N Ecological summary windows
Windows-based RoH 0.78 (0.59) 197 X
Windows-based heterozygosity + genomic 0.78 (0.53) 197 X X
summary statistics
Windows-based heterozygosity 0.79 (0.52) 197 X
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Table S6. Performance (median AUROC across five training-test replicates) of machine learning models to predict
conservation status across the same set of species, comparing models with genomic variables only, ecological
variables only, and combining both ecological and genomic variables.

Ecological Ecological +

Genomic variable type Genomic only only Genomic # species
Genome-wide summary statistics 0.71 0.83 0.85 210
Window-based Missense substitutions 0.75 0.85 0.74 209

Window-based Mean phyloP of
substitutions 0.73 0.82 0.78 209

Three best window-based genomic

metrics 0.70 0.83 0.73 174
All five window-based genomic metrics 0.69 0.80 0.68 173
Window-based RoH 0.67 0.82 0.72 175
Window-based Heterozygosity 0.64 0.80 0.75 175

Window-based conserved missense
substitutions 0.64 0.84 0.75 209

72



Submitted Manuscript: Confidential
Template revised February 2021

73



