Microservices Architecture Language for Describing Service View

Luka Lelovic®?, Michael Mathews®®, Amr S. Abdelfattah®° and Tomas Cerny®¢
Baylor University, Computer Science, 1311 S 5th St, Waco, TX 76706, U.S.A.

Keywords:

Abstract:

Architecture Reconstruction, Architecture Language, Service View, Intermediate Representation.

Microservices Architecture is a growing trend in recent years that has been promoted due to a number of re-

searched advantages. However, as microservice systems grow and evolve, they can become complex and hard
to understand. In order to face this problem, techniques to reconstruct, describe and visualize these systems
are proposed. Despite this, there are currently no architectural languages actively maintained, adopted, and
promoted as the intermediate between the system reconstruction and its corresponding viewpoints. This paper
proposes a YAML-based architectural language acting as the intermediate representation for microservice ar-
chitecture, specifically in the service view architectural perspective. This paper outlines the new language, its
basis, example descriptions, and possible architectural visualizations of the descriptions. It also details how it
compares to other existing architectural languages in the microservice domain.

1 INTRODUCTION

Microservices Architecture (MSA) is a popular archi-
tectural pattern that emphasizes small, independent
sets of services. Each of these services has its own
codebase and storage system. MSA has been widely
promoted and adopted in recent years for its extensive
benefits in fault tolerance, loose coupling, and high
scalability (Waseem et al., 2021).

A considerable issue arises, however, when trying
to maintain a holistic perspective as new independent
services are introduced. As complexity grows, it be-
comes increasingly difficult to understand the entire
system. Software Architecture Reconstruction (SAR)
attempts to mitigate this issue through either manual,
static, or dynamic analysis. After analysis, the system
information can be extracted into a proprietary inter-
mediate representation (Walker et al., 2021). In this
perspective, system extraction is often tightly con-
nected with a particular purpose, such as the visual-
ization of different system views (service, topologi-
cal, etc.). There then exists an opportunity to uncou-
ple the system information extraction from the task
we target through the form of an architectural lan-
guage.

While a number of architectural languages exist
for various system concerns and architectures, there
are none that exist and have seen widespread adop-
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tion as the intermediate between system reconstruc-
tion and system visualizations. If we introduced an
architectural language to describe service views, we
could divide focus into reliable information extraction
using static or dynamic system analysis from reason-
ing about the system or its visualization or other rea-
soning. This situation is sketched in Fig 1.
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Figure 1: Positioning architectural languages to interface
between system analysis and its interpretation.

In this paper, we propose a Microservice Interme-
diate Representation Language (MIRL) for the Ser-
vice View perspective. It is a YAML-based descrip-
tion language for intermediate system representation
between system reconstruction approaches and con-
sequent visualizations serving human experts. Such
language can be used to track service changes across
system evolution using version control. It can also
be used when planning existing system evolution. In
particular, the system service view description can be
speculatively extended to let human experts reason
about the evolution implication using the planned sys-
tem visual representation.

The rest of the paper is organized as follows: Sec-
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tion 2 describes background information. Section 3
describes related work. Section 4 introduces our lan-
guage. Section 4.2 provides a case study of exam-
ple systems that were described with the language.
Section 5 provides discussion of how our language
can act as the intermediate from a static analysis ap-
proach, and then utilized in a visualization tool. Sec-
tion 6 concludes the paper and provides a discussion
of future work.

2 BACKGROUND

To understand complex systems built with microser-
vices, we typically perform Software Architecture
Reconstruction (SAR). SAR is a reverse engineering
process that obtains a representation of software ar-
chitecture from system artifacts. The aim is to reduce
detail and provide a more abstract view for better un-
derstanding of certain system aspects. SAR can be
performed through many means. It can involve man-
ual, static, or dynamic analysis of the system (see Fig
1) according to the nature of the data, skills of the
team, or available tools. Static data exists in many
forms, such as source code, configuration files, docu-
mentation, code reviews, and the source control com-
mits changes and their messages. The dynamic data
is produced during the runtime, which include logs,
traces, telemetry data, etc. Moreover, some artifacts
share both static and dynamic behaviors, such as sys-
tem tickets which can be static as requirements or dy-
namic as production issues.

In order to successfully reconstruct a system,
effective system views must be chosen to provide
good coverage of system concerns. Work from
(Rademacher et al., 2020) classifies system views into
the following four:

* Domain View: This view covers domain concepts
and domain concerns of the system.

* Technology View: This view describes the tech-
nologies used to implement the microservices.

o Service View: This view describes the service
models that specify microservices, interfaces, and
endpoints.

* Operation View: This view focuses on service de-
ployment and infrastructure for service discovery
and monitoring.

In relation to architectural languages, these views
mentioned above are of primary concern. Since each
microservice is self-contained and should have an in-
dependent codebase, system polyglots can exist using
different languages and conventions (Wiggins, 2017).
The disadvantage of this is it results in a more chal-
lenging reconstruction process.
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Rademacher et al. (Rademacher et al., 2020) sug-
gested performing SAR manually by analyzing var-
ious codebase artifacts and existing documentation.
Such a process must analyze individual microservices
and combine the analyzed results before some bene-
fits like conformance checking, system-centric view
perspectives, and others can be provided.

The major challenge in microservices is the de-
centralized codebase and a missing system-centric
overview which could help with system evolvabil-
ity (Bogner et al., 2021) (i.e., avoid ripple effects,
better plan evolution). Constructing a service de-
pendency graph is one the most beneficial perspec-
tives for microservices, as it gives a system-centric
perspective (Bogner et al., 2021). While each SAR
perspective adds value to human experts, the ser-
vice view fits within the service dependency graphs
that describe dependencies between microservices. It
shows where microservices call each other (Mayer
and Weinreich, 2018). Moreover, (Mayer and Wein-
reich, 2017) and (Rademacher et al., 2020) identified
that this view plays an essential role in understand-
ing how microservice-based systems operate. There-
fore, supporting it should be one of the most impor-
tant goals of SAR.

The service view has been recently used by many
dynamic analysis tools like Jaeger, or Kiali (Gort-
ney et al., 2022). These tools use distributed tracing,
log analysis, and monitoring, from which they extract
dependency call graphs that can be aligned with the
boundaries of particular microservices. However, the
use of dynamic analysis requires system interaction to
collect data, and thus the results can only be as com-
plete as good the collected data are. Dynamic analysis
often gives a black-box view of the system.

Static analysis techniques can also be employed
to generate intermediate representations for the sys-
tem (i.e., for the service view). These representa-
tions serve as an intermediary to technical reasoning
or facilitate documentation extraction and can be used
to track systems’ performance, architecture improve-
ments, and degradation during the evolution process
(Rademacher et al., 2020).

As opposed to dynamic analysis, static analysis
can be performed on a system before it is deployed.
Its techniques are employed which inspect source
code to extract the service description and its API
specifications. Extracting this representation requires
the detection of the endpoints of each service. Some
software frameworks help in defining the endpoints,
such as Swagger'. Once the list of endpoints and
calls is collected for each service, the analysis process
uses the relative endpoint URL, the HTTP method,

'Swagger: https://swagger.io

221



CLOSER 2023 - 13th International Conference on Cloud Computing and Services Science

and parameters to match the calls to endpoints. The
result is a service dependency graph representing the
system, showing how the services communicate with
each other.

3 RELATED WORK

There are numerous description languages ranging
in type and purpose. A number of related studies,
SAR tools, and languages have been published as pro-
moted solutions for MSA composition, for brevity in
this paper length we refer to a related mapping study
(Lelovic et al., 2022) on architectural languages in re-
lation to microservice systems.

4 PROPOSED LANGUAGE: MIRL

To describe the service view MIRL uses various
building blocks. At a basic level, it enforces a sys-
tem name, version, and an array of node objects.
Within the node objects consist of the following four
attributes:

1. nodeName: This is the name of the current system
node/object being described.

2. nodeType: This is the type of the current node
(service, kafka, etc). The types of systems can
have any range of values depending on what the
stakeholder of a particular system defines.

3. dependencies: This is an array of objects depict-
ing incoming connections into the current node.

4. targets: This is an array of YAML objects depict-
ing outgoing connections into other nodes.

The dependency and target arrays depict endpoints for
each microservice in a particular system. The only

Listing 1: Basic MIRL Example.

systemName: MIRL-Basic-Example

systemVersion: 0.0.1

nodes:

- nodeName: basic-service-1
nodeType: service
dependencies: []
targets:

- nodeName: basic-service-2

- nodeName: basic-service-2
nodeType: service
dependencies:

- nodeName: basic-service-1
targets: []
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requirement for dependency and target objects is that
a node name is provided.

A basic MIRL example can be seen in Listing 1.
This shows a general example/template of the mini-
mum requirements in our language. In the basic ex-
ample template, the basic-service-1 has no incom-
ing dependency endpoints, but makes an outgoing
connection to basic-service-2. The basic-service-2
node then describes this dependency to basic-service-
1. This would ideally be visualized in a workflow per-
spective as an arrow between basic-service-1 to basic-
service-2.

The core language constructs are extensible. It is
possible to capture other attributes such as the end-
point types and execution steps of a particular node.
MIRL allows endpoints to be described either at a
high-level or fine granularity depending on the archi-
tect’s needs. This can be seen with Listing 2 where
each dependency and target node is only given a name
and associated request array describing the type of re-
quest the node is making on the current, and the step
of execution in the flow of the system. By contrast,
Listing 3 describes more in the endpoints and their
requests (e.g. arguments, return types, etc). Overall,
this structure provides the capability for orchestrating
microservices and their choreography, as well as de-
scribing the workflows between them.

MIRL as well requires a systemName and sys-
temVersion. This provides the capability for version
control to tracks changes as the system evolves. Com-
paring across multiple MIRL system versions can al-
low service changes to be tracked by human experts
utilizing the language alongside various correspond-
ing visual tools.

Despite being a language for microservices, the
language also supports other types of node objects
within the system. A list of node types is speci-
fied in a separate JSON file as a list. These types
can be extended as well to fit the architect’s needs
of node types. These types are used to gener-
ate the node images from the Python Diagrams li-
brary. The node types provided are: [customer, src-
Sink, archive, kafka, service, bucket, pipeline, proxy,
writer, database, config, and API]. These types were
derived based on assessment of industry project ar-
chitectures and feedback from practitioners involved
in microservice system development.

MIRL is provided with a JSON schema for val-
idation. This schema can validate both YAML and
JSON descriptions. The main requirements/concepts
of MIRL nodes and their relationships can be seen in
Figure 2.
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Table 1: Comparison of Features with MIRL and Other Languages.

Language Notation Language Agnostic | Intermediate Solution | Visual Component
Jolie OL

Medley JavaScript

Thrift Thrift

Silvera Python

BPMN XML v

TOSCA YAML v

MicroART Java v v

MIRL YAML v v v

4.1 Feature Comparison with Other
Languages

When looking at a broader context, we based MIRL’s
structure on common service composition approaches
found in existing description languages, and the per-
spectives within the example systems that we describe
in Section 4.2. We compare to similar languages
for microservice description from related work by
(Lelovic et al., 2022), and breakdown language ca-
pabilities and features in Table 1 in acting as interme-
diate solutions based on the 4 criteria:

» Notation: The notation of the language is impor-
tant to note as it outlines what format visualizers
would have to parse.

» Language Agnostic: This feature ties into the no-
tation, where architectural languages that utilize
language’s with compilers (Java, Jolie, etc) are
platform-dependent and cannot be easily parsed.

* Intermediate Solution: This feature outlines
whether a language is initially proposed as an
intermediate between reconstruction and corre-
sponding visualizations. Currently MicroART
and MIRL are the only two found for this.

* Visual Component: This feature describes
whether a language is coupled with its own vi-
sualization tool or generator for building a visu-
alization from the language.

From Table 1, it can be seen that MIRL is the only lan-

Nodes
/ Node \
dependencies nodeName targets
nodeType
Node Node

nodeName
nodeType

nodeName
nodeType

Figure 2: Relationship Structure in MIRL.

guage that was found to be language agnostic, com-
posing an intermediate solution, and being coupled
with a visualization component.

4.2 Sample Demonstrations

For a demonstration we describe two existing MSA-
based systems in MIRL. The first system is the
architecture pipeline model for Red Hat Insights’.
The second is an existing microservice benchmark
TrainTicket (Zhou et al., 2018) while using the ser-
vice view architecture reconstructed by static analy-
sis provided in (Walker et al., 2021)3. From both of
these descriptions, a visual model was then generated
by parsing our language and utilizing the Python Di-
agrams library and is shown to demonstrate the final
outcome.

4.2.1 Red Hat Pipeline

The Red Hat pipeline, seen in Figure 3, is a manually
modeled diagram by the system architect. It sketches
the flow of microservices within Red Hat’s system ar-
chitecture. The description in MIRL was performed
manually based on the model and its captured ser-
vices.

The service view of the Red Hat pipeline is repre-
sented through the nodes within the dependency and
target arrays. These nodes describe the microservices,
interfaces, and endpoints which model the interaction
between the nodes. Listing 2 shows a particular node
in the Red Hat description. In the SHA-extractor, the
targets array shows one outgoing connection. The
SHA-extractor node has an array of requests extended
with it. This requests array is not enforced by the lan-
guage. The request in the array describes an outgoing
POST request to this node that is being made as the
first step in the system execution.

The topology of the Red Hat pipeline is shown as a
singular network through the array of nodes that binds

Zhttps://github.com/RedHatInsights/insights-results-
smart-proxy/blob/master/docs/Overall_architecture.png
3http://demo1986600.mockable.io/train
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the entire system together. Any node in the system
must be described in this array as a YAML object.
The topology is coupled with the service view of de-
pendencies.

Figure 4 shows the Red Hat pipeline visualized
based on the service view that is described in the lan-
guage. While the provided visualization is a differ-
ent perspective from the initial model in Figure 3, the
information provided within the model remains one-
to-one. It is important to note as well that the Python
Diagrams library limited our visualization to certain
node images. In Figure 4, there are nodes with given
images that are not the same as the ones from the ini-
tial pipeline model. One thing that could be extended
in the future for the Red Hat description and its vi-
sualization is describing the clustering of nodes and
layers, such as the 3Scale layer.

4.2.2 Feedback from the Architect

After describing the Red Hat pipeline in MIRL and
generating a corresponding visualization, the results
were given to a Red Hat architect for feedback. The
architect provided a positive reception of the lan-
guage and found its structure to be potentially re-
usable for several purposes. One area the architect
noted for improvement and optional extension was
providing additional information on the messaging
formats between nodes and additional information on
the nodes themselves. Visualization tools could then
provide this additional information when nodes are
clicked on. This would be similar to the function-
ality provided here.* MIRL fully supports optional

Listing 2: Red Hat Pipeline (snippet) in MIRL.

- nodeName: SHA-extractor
nodeType: pipeline
dependencies:
- nodeName:
Kafka-topic-platform.upload.buckit
requests:
- requestType: POST
executionStep: "#1"
- nodeName: S3-bucket

requests:
- executionStep: "#2"

targets:

- nodeName: Kafka-topic-archive-results
requests:

- requestType: POST
executionStep: "#17"

“https://redhatinsights. github.io/insights-results-smart-
proxy/overall-architecture.html
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attributes such as this, but does not standardize any
in its schema. The schema could be improved in the
future to provide this.

4.2.3 Train Ticket System

The second system analyzed and described was the
benchmark train ticket system. While the description
of the Red Hat pipeline was minimally extended out-
side of the requirements that the language enforces,
the train ticket system demonstrates MIRL’s extensi-
bility in a greater amount. Given the example train
ticket YAML file that was reconstructed, we wrote a
Python script to parse the language into MIRL. This
increased the accuracy of our description and reduced
the manual effort required in contrast to the Red Hat
pipeline.

The service view of the Train Ticket System is rep-
resented largely the same as the Red Hat pipeline.
In Listing 3, the order other service is shown, with
one node of the many nodes in its dependencies ar-
ray given, and the only node in its targets array de-
scribed as well. The incoming and outgoing connec-
tions differ from the Red Hat pipeline by the differ-
ent attributes displayed in the requests array. While
the type of request is still given, other attributes such
as the arguments, return types, function names, and
request paths are also given. These attributes are en-
tirely given by the train ticket system and not enforced
by MIRL’s schema. Other attributes as well such as
the length and width of the connections are given,
which could be translated into visualization software.

The topology is similar to the Red Hat pipeline.
The same array of nodes is required. One notable ex-
tension of the train ticket system is that the shape of
the node is provided. The order other service is given
a node shape of a box. Like the length and width at-
tributes within the dependencies and targets array, the
node shape could also be used within visualization
software to display how the individual node looks.
This further shows how the MIRL language can act
as the intermediate between the software reconstruc-
tion and the visualization of the system. This also
demonstrates how the topology is necessarily repre-
sented alongside the service view to maintain a com-
plete view of the system.

Figure 5 shows the train ticket system fragment vi-
sualized based on the service views described in the
language. Since everything in the benchmark sys-
tem is a service, the nodes all contain the same node
image. The visualization shows a notable difference
from the Red Hat pipeline in terms of the dependen-
cies and connections between nodes. Due to multi-
ple requests, a particular service in the system makes
to outgoing services, there are often multiple connec-
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tions between nodes. While one advantage of this
may be that it shows the detailed coupling between
nodes, a downside is the readability of the visualiza-
tion.

S DISCUSSION

This section discusses the language’s ability to act as
an intermediary. In particular, we demonstrate how
MIRL acts as the intermediate between static analysis
and a 3rd-party visualization tool. This was the aim
we presented in Figure 1.

5.1 Static Analysis Approach

The initial retrieval of the Train Ticket system was
taken from an existing reconstruction output of the
benchmark system performed through static analy-
sis by (Walker et al., 2021). The output of this was
then parsed and translated into a MIRL description
following the MIRL schema through a Python script.
It should be noted that the reconstruction method,
however, could be modified to create output in MIRL
rather than its custom metadata. However, this opens
MIRL usage to any other approach, whether using
static or dynamic analysis or manual intervention. For
instance, we could perform event trace analysis from
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Listing 3: Train Ticket System in MIRL.

- nodeName: ts-user-service
nodeType: service
nodeShape: box
dependencies:
- nodeName: ts-admin-user-service
requests:
- type: DELETE
argument: "[@PathVariable ...]"
msReturn: ResponseEntity<Response>
endpointFunction:
path: "/UserController/deleteUserById"

targets:

- nodeName: ts-auth-service
requests:
- type: POST

argument: "[@RequestBody ...]"
msReturn: HttpEntity<Response>
endpointFunction:
path: "/AuthController/createDefaultUser"
length: 200
width: 1

a microservice system and extract service dependen-
cies as commonly done by other researchers or tools
like Jaeger or Kiali. The great benefit of an intermedi-
ary language is that we can extract the current system
version service view and speculate on system evolu-
tion to assess possibilities before we perform the ac-
tual implementation.

5.2 3 Rd-Party Visualization

To demonstrate the other end of the intermediary, we
show the use of a third-party tool that we can feed
with MIRL. A 3-dimensional visualization tool has
been identified aiming at constructing visualizations
of microservice systems >. This tool imports a JSON
format of the system data. The system described in
MIRL can be converted to such a JSON and adopted
to visualize the system described by the intermedi-
ate language. Figure 6 shows the Red hat pipeline
visualized within this tool. The tool can provide vi-
sualization in both a 3-dimensional perspective and
a 2-dimensional perspective. This demonstrates the
potential applicability of our language to outside vi-
sualization tools as an imported format.

5.3 System Evolution

There exists another promising exploration in observ-
ing the evolution of a system through system version-

Shttps://github.com/patrickeharris/Architecture Visualiz
ationPOC
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Figure 5: Train Ticket System Visualized (fraction of the
whole system).

ing provided in MIRL. This evolution of the system
includes adding a new service, a new version, and
moving endpoints between services. Therefore, rep-
resenting the service view intermediary helps to high-
light these dependencies in an early stage.

Through this avenue, the analysis and the tracking
of changes support detecting the impact on the archi-
tecture degradation over time. Therefore, MIRL sup-
ports the system to be automatically updated, tracked,
and shown in a visualization or provenance tracking
tool. Thus it would become easier to keep going with
the rapid evolution pace of the system development.

tatform.notifications.ingres

CVEs-dat:

Figure 6: Red Hat Pipeline Visualized with 3rd Party.



6 CONCLUSION

In this paper, we presented a new Architectural Lan-
guage for the Service View perspective (MIRL) which
can act as an intermediary step to interface between
various system analysis approaches and consequent
reasoning or visualization to aid human experts. In
addition, it can serve to better understand the evolu-
tionary changes of a system as it can be easily tracked
in version controls.

When compared to other languages that could act
as potential intermediates, such as BPMN, TOSCA,
and the MicroART-DSL, these languages were found
to either have a number of complex requirements re-
sulting in parsing hurdles or be proposed for a differ-
ent domain or understanding of a system. Compared
to other languages, MIRL is lightweight and allows
considerable extensibility for the architect to examine
and the visualization tool to easily parse.

There are several planned areas of future work.
The first is to conform a currently maintained visual-
ization tool(s) to accept MIRL as an import. The sec-
ond is to develop or extend an existing reconstruction
technique to generate system descriptions conforming
to the language schema. Ultimately this would allow
architects to automatically retrieve a description and
corresponding visualization of their microservice sys-
tems. A final area of future work would be adding
more optional descriptive attributes for nodes in the
MIRL schema, such as clusters, layers, and node or
request descriptions.
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