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Rhizobial bacteria have complex lifestyles that involve growth
and survival in bulk soil, plant rhizospheres and rhizoplanes,
legume infection threads, and mature and senescing legume
nodules. In nature, rhizobia coexist and compete with many
other rhizobial strains and species to form host associations.
We review recent work defining competitive interactions across
these environments. We highlight the use of sophisticated
measurement tools and sequencing technologies to examine
competition mechanisms in planta, and highlight environments
(e.g. soil and senescing nodules) where we still know
exceedingly little. We argue that moving toward an explicitly
ecological framework (types of competition, resources,

and genetic differentiation) will clarify the evolutionary ecology
of these foundational organisms and open doors for
engineering sustainable, beneficial associations with hosts.
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Introduction
Bacterial competition for resources and habitat can occur
both within and between species [1]. Competition can be

and George C diCenzo®

loosely divided into the nonmutually exclusive categories
of exploitative competition (e.g. enzymes [2]) and inter-
ference competition (e.g. weapons [3]). Here, we refer to
competition as any interaction between organisms that
positively alters the fitness (i.e. reproductive success) of
one organism at the expense of the other. These interac-
tions may occur directly between competing organisms or
be indirectly mediated by interactions with other organ-
isms via cooperation or predation [4]. As bacteria reproduce
via asexual reproduction, whole-organism fitness is a re-
flection of the ability of a strain to undergo cell division,
which in turn depends on its ability to compete for access
to resources, endure periods of nutrient scarcity, and sur-
vive attacks by other members of the microbial and mac-
robial community.

"The rhizobia are a polyphyletic group of soil bacteria able to
establish facultative, N,-fixing endosymbiotic relationships
with legumes. Rhizobia have complex lifestyles that involve
growth and survival in bulk soil, plant rhizospheres and
rhizoplanes, legume infection threads, and mature and se-
nescing legume nodules (Figure 1a) [5]. Competition me-
chanisms will shift across these environments as competitor
density, metabolic overlap, resource availability, degree of
spatial structure, and abiotic condition changes (Figure 1b).
Similarly, differences between legume hosts (e.g. determi-
nant versus indeterminant nodule growth) may also shift
multiple aspects of competitive interactions (Box 1).

Here, we review recent advances in understanding the
competition mechanisms that influence the evolutionary
ecology of rhizobia, focusing on competition 1) within
members of a single rhizobial species irrespective of
whether they are capable of legume symbiosis, and 2)
berween different rhizobial species that share habitat ni-
ches in host root rhizospheres and nodules. While many
gaps remain, we mention our perspective on whether
competition mechanisms in each environment are more
likely to be based on exploitation versus interference
versus apparent competition, what resources (space,
macronutrients, and micronutrients) underlie competi-
tion, and if we might expect competition to be stronger

* Issue Focus: Plant-microbe and plant-microbiome interactions with a focus on how microbes compete in the soil and colonize their plant hosts.
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Rhizobial environments and competition mechanisms. Rhizobia
compete in many different environmental contexts before, during, and
after host association. Below, we summarize these major environmental
niches (a) and offer hypotheses about the strength of different
categories of competition, resources over which rhizobia compete, and
whether competition is stronger between strains of the same species or
between different species (b). Darker shades indicate categories
hypothesized by the authors to be of little (light gray), intermediate
(gray), and critical (dark gray) importance. For most categories,
systematic experimental work will be necessary to confirm these
hypotheses. Abbreviations: resources (R) and predators (P)

between versus within rhizobial species (Figure 1b).
Ecological theory suggests the baseline expectation that
resource competition will be stronger within species be-
cause they have more similar genomes and tend to exist
in similar niches. However, in specific contexts, this
expectation may not hold.

Competition in the soil and rhizosphere

Bulk and rhizosphere soils provide dramatically different
arenas for bacterial competition. Bulk soils are often
resource- (e.g. carbon) limited, with high diversity and
high dormancy, whereas rhizosphere communities re-
present a less diverse subset of the bulk soil community
with strong but more transient connections among com-
munity members [6]. Genera that contain N-fixing rhi-
zobia are enriched in many plant rhizospheres (e.g.
Rhizobium and Mesorhizobium). In croplands planted with
members of the family Leguminosae, the wider rhizo-
sphere microbial communities were enriched with more
fast-growing bacteria with higher N-fixation potential,
whereas nitrification was more prominent in the bulk soil
[6]. These divergent environmental characteristics sug-
gest that competitive interactions among rhizobia species
and berween strains in bulk soil and rhizosphere en-
vironments may also differ, although such interactions
are rarely studied. In bulk soil, competitive outcomes
may depend more on long-term survival under stress and
opportunistic growth on diverse substrates. In contrast,
in the rhizosphere, high resource-driven rapid growth
and direct competition (e.g. bacteriocins [7]) may be
more important (Figure 1b).

In bulk soils, bacterial age distributions in the soil vary
widely across spatial scales, and many environments
have very slow net generation times (e.g. weeks) [8].
Because these methods can only examine mean gen-
eration time, and some rhizobia can asymmetrically
partition resources during division, rhizobial age dis-
tributions are likely to have long tails, which means that
cells of different ages (e.g. parents and offspring) may
compete against each other [9,10]. The slow net gen-
eration times suggest that long-term survival, rather
than cell division, is likely to be a key determinant of
competition, as well as the ability to respond to sto-
chastic nutrient influxes rapidly. Although little re-
search has been performed to understand traits
influencing rhizobium fitness in bulk soil, we expect
that the ability of rhizobia to survive in soils would
depend heavily on various abiotic (e.g. pH, resource
availability, temperature, and moisture) and biotic
modifiers (e.g. phages, predators, and antibiotics). In
particular, phages are likely to play an important role in
mediating within-species apparent competition (Figure
1b) given that the phage host range is strain-specific,
and there is evidence of the coevolution of rhizobia and
phage populations in natural environments [11]. Simi-
larly, many rhizobia encode bacteriocins (narrow-range
antimicrobial protein toxins) that can directly alter
competition between strains in, for instance, peat
media [12]. Ultimately, we need new spatially explicit
methods to disentangle and clarify the diverse me-
chanisms, frequency, and outcomes of competition oc-
curring between rhizobia in bulk soils, including
nonsymbiotic rhizobia.
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Compared with bulk soil, rapid growth is likely to be a
more important contributor to within- and between-
species competition in the rhizosphere. High-
throughput mutagenesis studies suggest that 2-2.5% of
rhizobial genes contribute to growth in the rhizosphere
[13,14]. Many of these are metabolic genes; organic acids
are major carbon sources available in the rhizosphere
[15], and the ability of rhizobia to catabolize these sub-
strates is associated with increased competitive success
[16]. In addition to organic acids, rhizobia encode a di-
verse array of transporters and catabolic genes that would
facilitate the uptake and metabolism of the many mac-
romolecules available in the rhizosphere (see Ref. [17]
for a nice review of carbon transport and metabolism in
the model rhizobium Sinorkizobium meliloti). Appropriate
protein and RNA-based regulation of metabolism al-
lowing for the hierarchical use of preferred carbon
sources are also expected to contribute to successful
competition in the rhizosphere or rhizoplane [18]. In
addition to macromolecules, competition for micro-
nutrients, such as iron, influences the success of mi-
crobes in the rhizosphere environment [19], and indeed,
at least some of these siderophores can contribute to
intra- or interspecies competitive success of rhizobia by
inhibiting the growth of strains unable to use the side-
rophore [20]. While much is known about the metabo-
lism of model rhizobium species [15,21], little is known
about direct interference competition between rhizobia
in the rhizosphere. Nevertheless, rhizobia have the po-
tential to directly compete (Figure 1b) via bacteriocins or
other inhibitory substances in the rhizosphere [22];
however, the impact of these molecules on rhizosphere
competition remains largely unexplored.

Competition for nodule occupancy

Depending on the species, legumes will form several
dozen (e.g. bean) to more than a thousand (e.g. peanut)
nodules per plant. Most, but not all, legume nodules are
infected by a single founder rhizobium, and thus in the
majority of cases, the rhizobial population within a single
nodule is isogenic [23]. Consequently, only a tiny pro-
portion of rhizobia in a plant’s rhizosphere will suc-
cessfully compete for nodule occupancy. This has two

Multi-faceted rhizobial competition Burghardt and diCenzo 3

important implications. First, stochasticity, or chance, in
which rhizobial strains enter nodules, has the potential
to alter the evolutionary dynamics of a rhizobial popu-
lation significantly. Second, the large bottleneck at this
stage will create strong selective pressure for traits im-
proving competitive fitness [24,25]. Many traits asso-
ciated with intra- or interspecies competition for nodule
occupancy have been described in rhizobia. These in-
clude the ability to communicate with the host plant
effectively [26], chemotaxis and movement toward seed
and root exudates [27,28], the production of bacteriocins
or other toxins targeting other rhizobia [22], the ability to
catabolize various carbon sources [29], and stress toler-
ance [30]. In particular, factors influencing host specifi-
city, such as host-encoded incompatibility factors [31],
can be important mediators of within- versus between-
species competitive outcomes during nodule formation
and beyond. The relative importance of within-
versus between-species competition will vary with host
promiscuity (e.g. whether the host forms nodules with
several genera or a single subspecies or rhizobia), but in
general, we expect greater within-species competition
due to shared host compatibility factors (Box 1). Last,
competition for nodule occupancy is influenced by rhi-
zobial genotype x legume genotype x environment
(GxGxE) interactions [32,33], which can influence the
global ecology and distribution of rhizobial spe-
cies [34,35].

Other rhizobia and nonrhizobial organisms in the rhizo-
sphere also influence competitiveness for nodule occu-
pancy. The effect of additional organisms can act
directly or be mediated through the host legume. A re-
cent study nicely demonstrated that Bacillus spp. could
alter the between-species competitive dynamics of rhi-
zobia-nodulating soybean potentially as a result of ap-
parent competition, with the Bacillus improving the
growth of one species but impairing the growth of the
other [36]. Likewise, apparent competition mediated by
phages can alter within-species competitive success, fa-
voring strains with resistance to the phage [37]. In con-
trast, a recent study found that within-species
competition outcomes are not altered by the presence of

Box 1 Hypothesized effects of variation in legume symbiosis types [64] on competitive interactions

* Infection (crack entry versus root hair formation): The method of entry could shift a) the likelihood of multistrain/species nodules, b) resource
availability, and c) the likelihood of interference competition between strains.

e Sequestration (fixation threads versus symbiosomes): The extent of compartmentalization or rhizobia within fixation threads, located outside of
plant cells, is likely less than that for rhizobia within symbiosomes, located inside host-derived membranes within plant cells. The extent of
compartmentalization is likely to influence opportunities for interference competition, and competition for macronutrients and micronutrients.

* Nodule growth (determinant versus indeterminant): In nodules with determinant development, the space rhizobia inhabit is limited, and growth
is finite. In indeterminant nodules, nodule growth and/or branching could increase space allocated to rhizobia. Influences timing and pat-

terning of nodule senescence, release, and habitat availability.

¢ Differentiation (with or without terminal differentiation): Determines whether the nitrogen-fixing rhizobial cells can revert to a free-living state and
return to the soil during nodule senescence. Could influence the primary location and type of competition in the nodule, as well as mac-

ronutrient accumulation dynamics.

® Rhizobium partner range of plant host (broad versus narrow): influences identity of rhizobial competitors and degree of niche overlap.
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additional isolates of the same rhizobial species; instead,
a competitive hierarchy emerges where the success of an
isolate in multi-isolate populations can be predicted
from pairwise results [32]. Last, nonrhizobial members
of the rhizosphere can also positively [38] or negatively
[39] influence the number of nodules formed by the host
legume, thereby altering the nodule habitat size avail-
able to rhizobia and potentially altering competitive
dynamics (Figure 1b).

Despite identifying numerous traits and genes influen-
cing competition for nodule occupancy [40], a mechan-
istic understanding of how and when these traits
influence competition is lacking. For example, it is not
clear why the loss of the ability to catabolize a single
carbon substrate should have a large impact on compe-
tition for nodule occupancy. Nodule occupancy reflects
the cumulative fitness across multiple stages of the
symbioses, including rhizosphere colonization, growth in
the infection thread, and survival in the nodule, among
others. However, common methods for studying com-
petition for nodule occupancy [41,42] cannot disentangle
during which stage of nodule formation is important. For
instance, an often-overlooked environment with respect
to competition for nodule occupancy is the infection
thread. The number of infection threads formed by a
legume generally far outnumbers the number of nodules
that are formed, and existing infection thread growth can
be stopped once nodules form [43]. It is, therefore,
reasonable to expect that rhizobia capable of rapidly
progressing through infection threads have a competitive
advantage for nodule occupancy. Considering the agro-
nomic importance of competitiveness for nodule occu-
pancy [41], this is an important future research direction.

Competition in nodules (direct and indirect)
Once inside nodules, the potential types of competition
depend on 1) whether multiple rhizobium strains or
species coinhabit the same nodules or if each rhizobium
inhabits different nodules on the same plant, and 2) the
physiological state of the rhizobia in the nodules, in-
cluding whether the bacteria remain as free-living bac-
teria outside of plant cells, or are present as N-fixing
bacteroids inside plant cells (Box 1). Progress on un-
derstanding the relative importance of competition
within versus between nodules in nature is hampered by
a lack of understanding of 1) the relative frequency of
mixed nodules in natural and agricultural contexts, 2)
the difficulty of studying competition mechanisms 77
vivo inside hosts, and 3) the challenge of quantifying
rhizobial fitness.

Competition between nodules is hypothesized to be
primarily driven by indirect competition for limited host
resources. One long-studied mechanism that could drive
competitive outcomes between rhizobia is host-

mediated selective partitioning of resources [44]. If hosts
can differentially allocate resources (e.g. photosynthate)
to nodules based on benefits received (e.g. fixed ni-
trogen), this leads to adaptive sanctions/rewards whereby
rhizobia fixing the most nitrogen get the most resources
and fitness benefits [44]. Recent studies show that these
allocation mechanisms are less effective when dealing
with quantitative variation [45,46] in strain quality
compared with binary effective/noneffective compar-
isons [47]. In other words, there is a limit to 1) plants'
ability to discriminate between strains that are helpful
and somewhat helpful [24], and 2) in nature where many
rhizobial species and strains coexist, the benefit of a
strain and thus competitive outcomes are relative to
which other strains are there [32]. Nuanced new papers
also show that the effectiveness of sanctions depends on
external resources [45]. Moving forward, careful at-
tempts are needed to quantify the effect of differential
resource allocation during nodule habitation on the
number of rhizobia released from nodules during se-
nescence and resource accumulation during sym-
biosis [48].

On the other hand, the relative importance of competi-
tion wizhin nodules for rhizobial evolution iz nature is still
very much up for debate [41,42] and may depend on
host specificity and specific entry methods (Box 1).
Carefully designed surveys of individual nodule in-
habitants sampled from nature will allow these para-
meters to be measured explicitly. Nevertheless, in the
past several years, multiple papers highlighted that in
lab conditions, mixed nodules are not rare, even if they
are not the majority [41], and may consist of a mixture of
effective symbionts and ineffective ‘cheaters’ [49]. Yet,
even in mixed nodules, different symbionts may be
compartmentalized in different plant cells [50], limiting
the opportunity for direct rhizobium competition to the
infection thread. How rhizobia compete within a nodule
remains poorly understood, but potentially could include
interference competition, direct competition for host
resources, or apparent competition via susceptibility to
host-produced compounds such as nodule-specific cy-
steine-rich peptides [51]. If within-nodule competition is
rare compared with between-nodule competition, then
we expect it to be a minor contributor to the overall
evolution of rhizobia. We also note that while not about
competition per se, recent work showing increased rates
of conjugation and plasmid transfer inside nodules
[52,53] could allow horizontal transfer and sharing of
competition mechanisms that could benefit coinfected
rhizobial strains or species in other shared environments.

Competition during nodule senescence

Nodulation can only positively impact the fitness of
rhizobia in nodules if the rhizobia can return to the soil;
yet, the factors affecting the success of rhizobia during

Current Opinion in Microbiology 2023, 72:102281
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Box 2 Future directions and key questions

Multi-faceted rhizobial competition Burghardt and diCenzo 5

What are the relative contributions of competition in different environments to rhizobial evolution?
How vital are additional, less-studied habitats (e.g. leaves, nonlegume roots)?

Do multiple mechanisms underlie competitive success within and across stages?

Do the same mechanisms of competition operate within and between rhizobial species?

¢ What scales of genetic differentiation are the most critical drivers of rhizobial competition (strains, species, and genera)?

e What are the key abiotic modulators of competitive outcomes?

How sensitive are pairwise competitive outcomes in each environment to additional rhizobia, microbes, or macrobes?

* How can we counteract biases resulting from rhizobial collections consisting almost entirely of strains isolated from nodules?
* How do population density and the initial ratio of competitors impact the outcomes of competition?

senescence represent one of the biggest knowledge gaps
in the rhizobial lifestyle. One way that nodule-compe-
titive outcomes could influence soil emergence is via
shifts in the timing of nodule senescence and the size of
rhizobial populations within nodules capable of sur-
viving the transition to the soil [50]. Another key para-
meter during nodule senescence is the ability of rhizobia
to generate internal nutrient and energy stores. The
best-studied example is the accumulation of the carbon
and energy storage compound poly-3-hydroxybutyrate
(PHB) by nitrogen-fixing bacteroids of determinate, but
not indeterminate, nodules [54] (Box 1). Recent work
demonstrated a heritable component to the amount of
PHB accumulated by rhizobia in nodules [48], and ex-
perimental and modeling studies have shown that PHB
stores have the potential to support rapid rhizobial
growth and long-term survival following senescence in
part through the use of a bet-hedging strategy [48,55,56].
Aside from PHB accumulation, many other factors may
influence rhizobial fitness during senescence. Indeed, a
recent large-scale functional genomics study identified
several genes potentially relevant to the fitness of rhi-
zobia during senescence in lab conditions [13]. Senes-
cing nodules also create a resource-rich environment
with many bacteria that could attract predators and de-
composers. This suggests that efficient resource use
(exploitation competition) and predation and/or phages
(apparent competition) may play important roles in re-
lative success (Figure 1b). In addition, a recent study
used synthetic communities to demonstrate how com-
petitive interactions and antibiotic production of non-
rhizobial nodule endophytes change as nodules age [57].
We believe that going forward, more research should be
undertaken to examine the processes and ecological in-
teractions occurring during nodule senescence, fa-
cilitated by recently developed methods such as
insertion-sequencing [13], sequential passaging [24], and
spatially resolved matrix-assisted laser desorption ioni-
zation coupled to time-of-flight (MALDI-TOF) mass
spectrometry [57].

Rhizobial competitiveness and the
effectiveness of nitrogen-fixing symbiosis
Fitness trade-offs whereby traits that make rhizobia
more competitive also make them less beneficial to

plants are often assumed in mutualism models and in
literature discussions. Such trade-offs set up an evolu-
tionary scenario that destabilizes the mutualism and
leads to the proliferation of ‘cheaters’. Interestingly, re-
cent empirical results in both Sizorkizobium [28,46] and
Rhizobium (23] enabled by high-throughput, cumulative
competitive fitness assays and single-strain assessments
of plant benefits suggest an overall lack of fundamental
trade-offs between rhizobial competitive fitness and
symbiotic efficiency at the phenotypic and genomic
level. However, these results may be rhizobial system-
specific. Gano-Cohen et al. came to the opposite con-
clusion in Bradyrhizobium using genospecies frequencies
in nodules of natural Acmispon populations and plant
benefit assessments of genospecies representatives [58].
Overall, the results offer the hope that agroecological
contexts can be constructed where rhizobial and host
fitness interests are aligned [41,42].

Conclusions

Rhizobia inhabit ecologically diverse niches, and their
overall fitness is a product of their success in each niche
(e.g. bulk soil, rhizosphere, and nodules) and their ability
to move between them. Recent research suggests that
the ability to compete to occupy these distinct niches,
coupled with the potential for environmental trade-offs,
is likely to promote the maintenance of high genetic
variation within rhizobial species, as well as to contribute
to the maintenance of rhizobia genotypes with poor N-
fixing capabilities. While many traits impacting the
ability of rhizobia to inhabit the rhizosphere, compete
for nodule occupancy, and fix nitrogen have been iden-
tified, we know little about the competitive mechanisms
underlying these traits. We suspect that the diversity of
symbiosis formation types (infection, sequestration,
growth type, differentiation, and host selectivity) plays
important, mostly unexplored, roles in mediating com-
petitive interactions between rhizobia (Box 1). Further,
competition mechanisms in some niches remain largely
unexplored (e.g. bulk soil and during release from se-
nescing nodules). While outside the scope of this article,
we also note that rhizobia live and compete in many
more environments, including the phyllosphere and
root, flower, and leaf endospheres of legumes [59], and
many nonlegume niches [60]. We posit that framing
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future research with careful consideration of competition
mechanisms, the genetic scale of competitors, and the
resources being competed for [61], will provide new
clues about how competitive interactions have and will
continue to evolve (see Box 2 for a list of future research
directions and unresolved questions). Ecological
knowledge will aid in predictions of how rhizobium in-
oculants will behave in agricultural settings [62]. Even
more broadly, genes and mechanisms identified in rhi-
zobia competition are also likely to be important in other
host-associated bacterial interactions [63].
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