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Abstract

In this paper, we show that one-dimensional discrete multi-frequency quasiperi-

odic Schrödinger operators with smooth potentials demonstrate ballistic motion

on the set of energies on which the corresponding Schrödinger cocycles are

smoothly reducible to constant rotations. The proof is performed by establishing

a local version of strong ballistic transport on an exhausting sequence of subsets

on which reducibility can be achieved by a conjugation uniformly bounded in the

C`-norm. We also establish global strong ballistic transport under an additional

integral condition on the norms of conjugation matrices. The latter condition is

quite mild and is satisfied in many known examples. © 2000 Wiley Periodicals,

Inc.

1 Introduction

1.1 Types of ballistic motion

Let H be a discrete Schrödinger operator on `2(Z):

(1.1) (Hψ)(n) = ψ(n− 1) + ψ(n+ 1) + Vnψ(n), n ∈ Z.

where {Vn}n∈Z is a sequence of real numbers (the potential). The operator H is

a Hamiltonian of a single quantum particle with wave function ψ : Z → C, whose

time evolution is described by the time-dependent Schrödinger equation:

(1.2) i
∂ψ

∂t
= Hψ, ψ(0) ∈ `2(Z).

Using the spectral theorem, one may explicitly solve (1.2) via

(1.3) ψ(t) = e−itHψ(0).

Let B be a self-adjoint operator associated to an observable quantity. The Heisen-

berg evolution of B is described by

B(T ) = eiTHBe−iTH .
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In the present paper, we will be interested in spatial transport properties of a quan-

tum particle on the lattice Z. The relevant observable quantity is the position oper-

ator

(Xψ)(n) := nψ(n), n ∈ Z,

which is an unbounded self-adjoint operator with the natural domain of definition

DomX = {ψ ∈ `2(Z) :
∑

n∈Z

|n|2|ψ(n)|2 < +∞}.

One can check by direct calculation that the Heisenberg evolution of the position

operator can be expressed in the following form:

(1.4) X(T ) := eiTHXe−iTH = X +

∫ T

0
eitHAe−itH dt, T ∈ R,

where

(1.5) Aψ(n) = i(ψ(n+ 1)− ψ(n− 1))

is sometimes known as the current operator (a tight binding analogue of the gra-

dient operator i∇). Since A is bounded, (1.4) implies that X = X(0) and X(T )
have the same domain. We will be interested in the phenomenon of ballistic mo-

tion, which states, informally, that the position of the particle grows linearly with

time (“X(T ) ≈ T ”). More precisely, we will address the following limits:

(1.6) lim
T→+∞

1

T
X(T )ψ0,

where, initially, ψ0 ∈ DomX . One can consider the limit (1.6), if it exists, as

the “asymptotic velocity” of the state ψ0 at infinite time. The asymptotic velocity

operator can therefore be defined by

(1.7) Q = s–lim
T→+∞

1

T
X(T ) = s–lim

T→+∞

1

T

∫ T

0
eitHAe−itH dt.

The first limit can only be considered on DomX , but, since the term 1
TX(0) of

(1.4) disappears as T → ∞, it is natural to drop it from consideration. We say that

a Schrödinger operatorH demonstrates strong ballistic transport, if the strong limit

in the right hand side of (1.7) exists, is defined on the whole `2(Z) and, moreover,

kerQ = {0}.

An immediate consequence of (1.4) and (1.7) is that all of the moments of the

position operator grow ballistically in time. More specifically, for any p ≥ 2 and

0 6= ψ0 ∈ Dom |X|p, we have

(1.8) lim
T→+∞

T−p〈|X(T )|pψ0, ψ0〉 = 〈|Q|pψ0, ψ0〉 > 0.

If we take p = 2, (1.8) immediately implies that H has ballistic motion. More

precisely, we say H has ballistic motion if

(1.9) lim inf
T→+∞

T−2〈|X(T )|2ψ0, ψ0〉 > 0, ψ0 ∈ DomX, ψ0 6= 0.
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Note that (1.9) is weaker than (1.8) with p = 2. One can also consider (1.9) for

p 6= 2.

Ballistic motion is one of the examples of wave packet spreading, which indi-

cates absence of localization. The fundamental work in this aspect is the RAGE

Theorem [15] which states for a Schrödinger operator H , if ψ ∈ `2c(H), then for

any N > 0,

(1.10) lim
T→+∞

1

T

∫ T

0

∑

|n|≤N

|〈δn, e
iTHψ〉|2dt = 0,

where

`2c(H) = {ψ ∈ `2(Z) : µψ = µψ,c} = `2pp(H)⊥

is the subspace corresponding to the continuous spectrum of H . In other words, a

wavepacket in the continuous subspace ofH will spend most of the time outside of

any fixed compact subset of Z. In the case of the absolutely continuous subspace,

(1.10) can be further improved to a version that does not involve time averaging:

(1.11) lim
T→+∞

∑

|n|≤N

|〈δn, e
iTHψ〉|2dt = 0, ψ ∈ `2ac(H).

Both (1.10) and (1.11) imply the following growth conditions on the moments:

(1.12) lim
T→+∞

1

T

∫ T

0
〈|X(t)|pψ0, ψ0〉 dt = +∞, 0 6= ψ ∈ `2c(H).

(1.13) lim
T→+∞

〈|X(T )|pψ0, ψ0〉 = +∞, 0 6= ψ ∈ `2ac(H).

However, it is harder to estimate the exact rate of growth. In fact, this rate can be

related to the Hausdorff dimension of the spectrum and spectral measures of H ,

see [45]. For the absolutely continuous case, the Guarneri–Combes–Last Theorem

[45] states that, for any p ≥ 2,

(1.14)

lim inf
T→+∞

1

T p+1

∫ T

0
〈|X(t)|pψ0, ψ0〉 dt > 0, ∀ψ ∈ Dom |X|p, 0 6= ψ ∈ `2ac(H).

One can compare the above versions of transport as follows:

existence of (1.7) with trivial kernel ⇒ (1.8) ⇒ (1.9) for all p⇒ (1.14) ⇒ (1.12)

⇓

(1.13).

(1.15)

Thus, strong ballistic transport (as defined in (1.7)) can be viewed as the strongest

version of ballistic motion. Note that, since the operator A is bounded, (1.4) im-

plies an elementary ballistic upper bound on the wave packet spreading. In other

words, no transport can be stronger than ballistic.
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In general, ballistic transport is not expected on any spectra other than purely

absolutely continuous. In particular, it was shown in [48] that point spectrum can-

not support any ballistic motion. However, one can still expect it after restricting

the operator to a subspace that supports purely absolutely continuous spectrum. In

this regard, we will need a version of the above definition that would be local in

energy. Let K ⊂ R be a Borel subset. We will say that H has strong ballistic

transport on K if there exists a self-adjoint operator Q such that

(1.16) s–lim
T→+∞

1

T

∫ T

0
eitH1K(H)A1K(H)e−itH dt = 1KQ1K

and kerQ = Ran(1K)
⊥. While we will be able to establish (1.16) in a range of

situations, a significant gain in generality can be achieved by slightly relaxing the

above definition. We will say that H has local ballistic transport on K if there

exists a self-adjoint operator Q and a sequence of Borel subsets {Kj}
∞
j=1 such that

K = ∪jKj and H satisfies (1.16) on each Kj . As a part of the definition, we

require that Q is the same operator for all Kj , and kerQ(K) = Ran(1K)
⊥. For

the purpose of the diagram (1.15), local ballistic transport implies lower bounds on

wavepacket spreading just as good as strong ballistic transport. More precisely, if

ψ ∈ Ran1K(H), then, for large j, we have

(1.17)
1

T

∫ T

0
eitHAe−itHψ dt = 1Kj

Qψ + ψ⊥(T ) + o(1),

where ψ⊥(T ) is orthogonal to 1Kj
Qψ, and hence can only increase the norm. Note

that we are using the right hand side of (1.6) instead of 1
TX(T )ψ, since we cannot

guarantee that the intersection Ran1K(H)∩DomX is large enough. However, if

ψ ∈ DomX is sufficiently close to Ran1K(H) (for example, ‖(1−1K(H))ψ‖ <
1
2‖1KQψ‖), then (1.17) implies a ballistic lower bound on ‖X(T )ψ‖. The set of

such ψ is dense in Ran1K(H). The difference between (1.16) and (1.17) is that

the latter may have a non-trivial “tail” which stays within the range of 1K(H), but

eventually escapes any Ran(1Kj
(H)) with finite j. However, this tail can only

strengthen the ballistic lower bound. As a consequence, local ballistic transport

still implies (1.8) and (1.9).

Unlike (1.14) and (1.13), we are not aware of any results of the form (1.7)–(1.9)

for general Schrödinger operators with absolutely continuous spectra.1 Instead, all

known results only apply to potentials of special structure. First results of this type

were obtained in [8] for periodic operators in the continuum. Later, a tight binding

analogue was obtained in [19] for discrete periodic Jacobi matrices, motivated by

applications to XY spin chains. See also related paper [18] about anomalous (non-

ballistic) transport for Fibonacci-type operators with singular continuous spectra.

1 Except for potentials decaying on infinity, where one can obtain these bounds using scattering

theory. In general, ballistic transport is expected to be stable under decaying perturbations. We do

not go into the details in the present paper.
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The limit-periodic case was studied in [22] where an analogue of (1.6) was proved

by periodic approximations.

1.2 Quasiperiodic operators

The next natural class of operators with absolutely continuous spectra, where

one can expect ballistic motion/ballistic transport, is quasiperiodic Schrödinger

operators, which will be the subject of the present paper. Let v ∈ Cs(Td;R) be

a smooth function. We will identify Zd-periodic functions on Rd with functions

on Td. Let also α ∈ Rd be a frequency vector. We will always assume that

{1, α1, . . . , αd} are independent over Q. A smooth multi-frequency quasiperiodic

Schrödinger operator is an operator of the form

(1.18) (Hxψ)(n) = ψ(n− 1) + ψ(n+ 1) + v(x+ nα)ψ(n), n ∈ Z.

Here x ∈ Td is the quasiperiodic phase, and one usually considers the whole family

{Hx}x∈Td .

Quasiperiodic operators (1.18) with small analytic potentials v are often known

to have purely absolutely continuous spectra, see [21, 2, 6, 13, 10, 9]. In [41],

it was shown that a large class of such operators (in all cited regimes, except for

the Liouville case in [9]) satisfies x-averaged strong ballistic transport. In other

words, instead of (1.6), one has the following convergence statement in the direct

integral space L2(Td × Z):

s–lim
T→+∞

(
1

T

∫ ⊕

Td

X(x, T ) dx

)
=

∫ ⊕

Td

Q(x) dx.

where X(x, T ) := eiTHxXe−iTHx . The proof used the duality method based on

[36]. Like [19], the work [41] was motivated by applications to the XY spin chains.

The x-averaged version of ballistic transport implies existence of the limit (1.7) on

a subsequence of time scales for almost every x and hence is sufficient for the

conclusion on the XY spin chain. However, it does not imply any of the claims

(1.7)–(1.9) in full. In the same year, a KAM-type approach was developed in [53]

in order to obtain bounds of type (1.9) in the perturbative setting. The advantage

is that it works for all x and does not require to take a subsequence of time scales.

However, it falls short of establishing existence of (1.7). The KAM method of [53]

was later expanded in [51] to treat the one-frequency Liouvillean case, by further

weakening (1.9) to a lower bound on some transport exponents.

1.3 Outline of the approach

The goal of the present paper is to obtain a result which has the advantages of

both [41] and [53]. One can see it as a refinement of either of the papers, however,

the general line of the argument is closer to [41]. In the quasiperiodic case, one

of the results of [41] is the calculation of the asymptotic velocity operator Q(x),
but, since it is only obtained on a sequence of time scales, one cannot exclude the

possibility of large oscillations around the limiting value. Moreover, [41] predicts a
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possible mechanism of convergence: after applying duality, it becomes a procedure

of diagonal truncation of an operator dual to (1.5) in the basis of the eigenvectors

of the dual Hamiltonian with purely point spectrum. The convergence of the trun-

cation is only obtained in the Fourier dual direct integral space L2(T×Zd), which

is not enough to guarantee pointwise strong convergence in the original direct inte-

gral space. A natural question arises: can extra information on the dual operator

family improve the rate of convergence in (1.7)? If yes, what kind of information

can be used?

In order to obtain a pointwise bound, we would like to replace L2(Td × Z) by

L∞(Td; `2(Z)) or by C(Td; `2(Z)). One can try to obtain that by improving con-

vergence in the dual space: for example, to `1(Zd; L2(T)). On any finite box, `1

and `2-norms are equivalent (with the constants depending on the size of the box).

Therefore, one possible way of obtaining `1-convergence would be to obtain a uni-

form `1 bound on the tails. The latter can be achieved by investigating quantitative

character of the localization for the dual model. For example, one can take advan-

tage of exponential dynamical localization in expectation which has been obtained

in [30] and [26] under some assumptions. Along these lines, one can obtain the

desired control on the tails, which would imply strong ballistic transport for almost

every x ∈ Td. This approach was partially implemented in the preprint [40], which

is no longer intended for publication since the current paper supersedes it in several

ways.

The main results of the present paper are Theorem 2.1 (the local result) and

Theorem 2.2 (the global result). In Theorem 2.1, we state that the operators (1.18)

have local ballistic transport on the set of energies on which the corresponding

Schrödinger cocycles are Cs-reducible with s > d (see Section 2.1 for precise

definitions). We do not require any quantitative information on the conjugating

matrices and do not care about Diophantine properties of the frequency vector.

While the result falls short of the complete strong ballistic transport, most of its

conclusions (such as ballistic motion) also hold, as described above. In Theorem

2.2, we state that one can obtain strong ballistic transport under an additional inte-

gral condition on the norms of the conjugating matrices. Several known examples,

including the settings of [53] and [26], satisfy this condition.

The proof of the local result is based on the following observation: suppose that

R is the set of energies under consideration, and

K1 ⊂ K2 ⊂ . . . ⊂ R

is a sequence of Borel subsets such that R r (∪jKj) has zero spectral measure

with respect to Hx. Then, it is sufficient to check that the limit (1.16) exists on

each Kj . The main problem in obtaining “nice” localization bounds for the dual

model is the fact that regularity of the conjugation matrices (Bloch waves) is not

uniform in the energy and depends on the Diophantine properties of the rotation

number. Quantitative estimates, such as in [26], can be quite delicate. On the other

hand, if one is allowed to restrict to a subset of energies, we can get, basically, as



BALLISTIC TRANSPORT FOR QUASIPERIODIC OPERATORS 7

good control of the localization parameters as desired. In particular, we can get

a ridiculously strong version of uniform localization, which is not even remotely

available on the whole spectrum. As expected, the constants will get worse as one

increases the set of energies under consideration. Since we only need `1 control

of the tails, we also do not require Anderson (exponential) localization, and are

satisfied with polynomial decay of eigenfunctions, which allows us to consider

smooth potentials rather than analytic. The idea of restricting to an exhausting

subset of energies/rotation numbers while maintaining control on the regularity is

not unlike the argument in [25].

The global result is somewhat more delicate. While we cannot expect any uni-

form reducibility bounds, the desired bound still contains an integral in θ, and

hence, just as in the proofs of dynamical localization, one can hope for a quanti-

tative result “in expectation”. Using a variant of the covariant representation for

the eigenfunctions of the dual operator by duality such as in [36], we reduce the

integral

(1.19)

∫

T

|〈δm, e
itLθδn〉| dθ

that appears in the proof of dynamical localization, to a convolution-type bound

on the eigenfunctions which, in turn, can be controlled in terms of Cs or Sobolev

norms of the conjugating matrices, averaged over the rotation number. Unfor-

tunately, in order to obtain better bounds, we would ideally want to estimate a

different, smaller integral
∫

T

|〈δm, e
itLθδn〉|

r dθ, r > 1,

and we were not able to find any way to take advantage of r > 1, which actually

appears in our desired bounds. Still, by taking some losses, we were able to ob-

tain a bound by a series of convolution-type estimates for expressions of the form

(1.19). As a result, in the global theorem, the smoothness requirement is of the

form Cs with s > 5d/2, rather than s > d as in the local result. Still, our integral

condition is satisfied by a large margin in the models where exponential dynami-

cal localization is obtained such as [26]. It is also easy to reformulate our global

result as a conditional one: for example, strong ballistic transport will hold on K if

we assume C1-reducibility on K (without any quantitative control) and power law

dynamical localization on K:
∫

T

|〈δm,1K(Lθ)e
itLθδn〉| dθ ≤

C

(1 + |m− n|)s
, s > 4d,

which is weaker than, say, exponential dynamical localization in expectation.

In both cases, the stated arguments would only imply the corresponding version

of ballistic transport for almost every x ∈ Td, since the duality ignores measure

zero subsets of phases. In the case of the dual operator, this can be a real issue: for

example, one cannot expect localization for all θ ∈ T [39]. However, quantities
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related to the absolutely continuous spectrum are known to be more phase stable.

We were able to recover continuity in x by comparing the pre-limit expressions

in the definition of Q(x) and the alternative definition of Q(x) and showing that

they are both uniformly continuous in the strong operator topology. In the latter

case, we had to use quantitative continuity of the absolutely continuous spectral

measures discussed in Section 5. As stated, one can only obtain it in the setting of

local ballistic transport, since one has to restrict the operator to one of the subsets

Kj . However, that particular part survives after passing to the union of Kj , and

thus is also applicable to the global case.

2 Preliminaries and statements of the results

2.1 Schrödinger cocycles and reducibility

Let A ∈ Cs(Td; SL(2,R)), and consider a frequency vector α ∈ Rd such that

{1, α1, . . . , αd} are independent over Q. By definition, a quasiperiodic Cs-smooth

SL(2,R)-cocycle is a map

(α,A) :

{
Td × C2 → Td × C2;

(x, v) 7→ (x+ α,A(x)v).

The iterates of (α,A) are of the form (α,A)n = (nα,An), where

An(x) :=

{
A(x+ (n− 1)α) · · ·A(x+ α)A(x), n ≥ 0;

A−1(x+ nα)A−1(x+ (n+ 1)α) · · ·A−1(x− α), n < 0.

We will usually simply call the above maps cocycles. Similarly, one can talk about

SL(2,C)-cocycles. The Lyapunov exponent of the cocycle (α,A) is defined by

L(α,A) := lim
n→∞

1

n

∫

Td

ln ‖An(x)‖dx.

A cocycle (α,A) is called uniformly hyperbolic if, for every x ∈ Td, there

exists a continuous splitting C2 = Es(x)⊕ Eu(x) such that for every n ≥ 0,

|An(x) v| ≤ Ce−cn|v|, v ∈ Es(x),

|An(x)
−1v| ≤ Ce−cn|v|, v ∈ Eu(x+ nα),

for some constants C, c > 0. This splitting is invariant under the dynamics, i.e.,

A(x)Es(x) = Es(x+ α), A(x)Eu(x) = Eu(x+ α), ∀ x ∈ Td.

Assume that A ∈ C0(Td; SL(2,R)) is homotopic to the identity. It induces the

projective skew-product FA : T
d × S1 → Td × S1 with

FA(x,w) :=

(
x+ α,

A(x) · w

|A(x) · w|

)
.

In other words, FA : T
d × T → Td × T can be expressed as (x, y) 7→ (x+ α, y +

ϕx(y)), where ϕx : R → R is a 1-periodic continuous function (defined modulo
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translations by integers on both copies of R). Let µ be any probability measure on

Td × T invariant under FA and whose projection onto the coordinate x is given by

the Lebesgue measure. The number

(2.1) ρ(α,A) :=

∫

Td×T

ϕx(y) dµ(x, y) mod Z

depends neither on the lift ϕ nor on the measure µ, and is called the fibered rotation

number of (α,A) (see [28, 38] for more details; see also [10, Appendix A] for a

detailed exposition). Let Rθ denote the rotation matrix

(2.2) Rθ :=

(
cos 2πθ − sin 2πθ
sin 2πθ cos 2πθ

)
, θ ∈ T.

Any continuous map A : Td → SL(2,R) is homotopic to x 7→ Rn·x for a unique

n ∈ Zd. We call n the degree of A and denote it by degA. The fibered rotation

number is invariant under real conjugacies which are homotopic to the identity.

More generally, if (α,A1) is conjugated to (α,A2), i.e.,B(x+α)−1A1(x)B(x) =
A2(x), for some B : Td → PSL(2,R) with degB = n, then

(2.3) ρ(α,A1) = ρ(α,A2) + n · α.

A typical example of a quasiperiodic cocycle is a Schrödinger cocycle (α, SE−v),
where

SE−v(x) :=

(
E − v(x) −1

1 0

)
, E ∈ R.

Any formal solution ψ = {ψ(n)}n∈Z of the eigenvalue equation Hxψ = Eψ,

where Hx is the quasiperiodic Schrödinger operator (1.18)

(Hxψ)(n) = ψ(n− 1) + ψ(n+ 1) + v(x+ nα)ψ(n), n ∈ Z, x ∈ Td,

satisfies the following relation with SE−v(x):
(
ψn+1

ψn

)
= SE−v(x+ nα)

(
ψn
ψn−1

)
, ∀n ∈ Z.

It is well known that the spectrum σ(Hx), denoted by Σα,v, is a compact sub-

set of R, independent of x if {1, α1, . . . , αd} are rationally independent. The

spectral properties of Hx and the dynamics of (α, SE−v) are related by the John-

son’s theorem [37]: E ∈ Σα,v if and only if (α, SE−v) is not uniformly hyper-

bolic. Throughout the paper, we will use the notation L(E) = L(α, SE−v) and

ρ(E) = ρ(α, SE−v) for brevity.

2.2 Reducibility of quasiperiodic cocycles

We will only consider cocycles (α,A) with degA = 0. A quasiperiodic Cs-
cocycle (α,A) with {1, α1, . . . , αd} rationally independent is called Cs-rotations

reducible if there exists B ∈ Cs(Td; SL(2,R)) and θ ∈ Cs(Td;R) such that

(2.4) B(x+ α)−1A(x)B(x) = Rθ(x).
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We will call a cocycle reducible if it is rotations reducible to a constant rotation.

In this case, one can choose θ ≡ ρ(α,A). For reducible cocycles, it will be more

convenient diagonalize the rotation matrix and consider B ∈ Cs(Td; SL(2,C))
satisfying

(2.5) B(x+ α)−1A(x)B(x) =

(
e2πiρ(α,A) 0

0 e−2πiρ(α,A)

)
.

Note that our use of the definition is more narrow than usual. More accurately,

we should have used the wording “reducible to a constant rotation”. Usually, one

considers reducibility to a general constant matrix in the right hand side of (2.4).

Let {Hx}x∈Td be a quasiperiodic operator family, and (α, SE−v) be the corre-

sponding Schrödinger cocycle. Define the following subset:

Rs
α,v = {E ∈ R : (α, SE−v) is Cs-reducible}

⊂ RRs
α,v = {E ∈ R : (α, SE−v) is Cs-rotations reducible}.

We will sometimes drop the indices and simply use R or RR, if the values of the

indices are clear from the context.

From Shnol’s theorem [12, 27, 49, 50], it follows that RRs
α,v ⊂ Σα,v. More-

over, subordinacy theory [42, 31, 32] implies that the restriction of the spectral

measure of Hx into RRs
α,v is purely absolutely continuous for any s ≥ 0. The

same also holds for Rs
α,v.

We will also need some conventions about normalizations of the cocycles in

L2(Td). Let us rewrite the reducibility equation (3.1) as

(
(E − v(x))b11(x)− b21(x) (E − v(x))b12(x)− b22(x)

b11(x) b12(x)

)

=

(
e2πiθb11(x+ α) e−2πiθb12(x+ α)
e2πiθb21(x+ α) e−2πiθb22(x+ α)

)
.

One can see that the columns of B(x) are not intertwined, and one can multiply

one column and divide another by the same constant without affecting the determi-

nant. Note also that ‖b11‖L2(Td) = ‖b21‖L2(Td), ‖b12‖L2(Td) = ‖b22‖L2(Td). As a

consequence, we can choose a constant so that the columns are “balanced”:

‖b11‖L2(Td) = ‖b21‖L2(Td) = ‖b12‖L2(Td) = ‖b22‖L2(Td),

without affecting the regularity of the matrix B in the variable x. So, we would

have

(2.6) ‖B‖2L2(Td) = 4‖bij‖
2
L2(Td), ∀i, j ∈ {1, 2},

where in the left hand side we are using the Hilbert–Schmidt matrix norm. In the

statements of the main results, we will always assume that the conjugation matrix

B is balanced in the above sense. Also, we will not always require detB(x) = 1,

but sometimes instead choose B to be L2-normalized (and balanced).
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2.3 Statements of the results

In order to formulate the main result, we will need the definition of the density

of states measure of the operator family {Hx}x∈Td : for a Borel subset B ⊂ R,

define

(2.7) N(B) =

∫

Td

〈1B(Hx)δ0, δ0〉 dx.

In other words, the density of states measure is the expectation value of the spectral

measures. We also introduce the integrated density of states (denoted by the same

symbol with a slight abuse of notation):

(2.8) N(E) := N((−∞, E]) = N((−∞, E)),

the cumulative distribution function of the density of states measure. It is well

known thatN is a non-decreasing continuous function ofE. Clearly, if the spectral

measures are absolutely continuous, then the IDS is also absolutely continuous

(with respect to the Lebesgue measure). The IDS is related to the fibered rotation

number defined above in (2.1) in the following way [20]:

N(E) = 1− 2ρ(E).

Let K ⊂ R be a Borel subset. The following function will be important:

(2.9) gK(E) =

{
1

πN ′(E) , E ∈ K

0, E ∈ R\K.

Note that gK(E) is well defined (Lebesgue) almost everywhere on K ∩ Σα,v. As a

consequence, the operator gK(Hx) is well defined as long as Hx has purely abso-

lutely continuous spectrum on K.

For a (Borel) subset K ⊂ R, denote by 1K(x) the indicator function of K. If H
is a self-adjoint operator on `2(Z), denote by H(K) the restriction of H into the

subspace Ran1K(H) ⊂ `2(Z). Here, 1K(H) is considered in the standard sense

of functional calculus for self-adjoint operators. For the current operator A defined

in (1.5), let

A(x,K) := 1K(Hx)A1K(Hx).

In the case of A(x,K), it is convenient not to restrict it into Ran1K(Hx) and

instead let it have a zero block.

We are ready to formulate the first (local) main result of the paper.

Theorem 2.1. Let {Hx}x∈Td be a quasiperiodic operator family with v ∈ Cs(Td;R),
s > d. Denote by R the set of energies on which the corresponding Schrödinger

cocycle is Cs-reducible. Then Hx has local ballistic transport on R. In other

words, there exists a representation R = ∪jKj such that the following limit exist

for all x ∈ T and all Kj:

Q(x,Kj) = s–lim
T→+∞

1

T

∫ T

0
eitHxA(x,Kj)e

−itHx dt = gKj
(Hx).
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As a consequence,

kerQ(x,Kj) = (Ran1Kj
(Hx))

⊥.

Theorem 2.1 is “soft” and requires very little regularity. As a consequence, we

can only get local bounds. Still, as stated in the Introduction, even these bounds

imply ballistic motion such as in [53].

If one has some control over the dependence of ‖B‖Cs in the E variable, the

result can be improved to “true” strong ballistic transport. Unfortunately, there is

no hope in getting any kind of estimates that are uniform in energy, since regularity

of the reducibility matrix depends on Diophantine properties of the rotation num-

ber (see, for example, [26]). However, we can formulate a sufficient integral-type

condition. We will say that (α, Sv−E) is Cs-reducible in expectation on K if it’s

Cs-reducible for every E ∈ K, and there exists a choice of L2(Td)-normalized

conjugations B(E;x) such that

(2.10)

∫

K
‖B(E; ·)‖4Cs(Td) dρ(E) < +∞.

We can now formulate the second (global) main result.

Theorem 2.2. Let {Hx}x∈Td be a quasiperiodic operator family whose cocy-

cles are Cs-reducible in expectation on K for some s > 5d/2. Then the family

{Hx}x∈Td has strong ballistic transport on K. In other words, the following limit

exists for all x ∈ Td:

Q(x,K) = s–lim
T→+∞

1

T

∫ T

0
eitHxA(x,K)e−itHx dt = gK(Hx).

As a consequence,

kerQ(x,K) = (Ran1K(Hx))
⊥.

We will also state a version of Theorem 2.2 in terms of the localization property

of the dual operator

(Lθψ)(n) =
∑

m∈Zd

v̂n−mψ(m) + 2 cos 2π(n · α+ θ)ψ(n), n ∈ Zd.

We will say that the family {Lθ}θ∈T has s-power law dynamical localization (sPDL)

on K, if the spectra of Lθ(K) are purely point for almost every θ ∈ T, and there

are C > 0, s > 0 such that∫

T

|〈δm,1K(Lθ)e
itLθδn〉| dθ ≤

C

(1 + |m− n|)s
.

The following is a corollary of the proof of Theorem 2.2.

Corollary 2.3. Let {Hx}x∈Td be a quasiperiodic operator family whose cocycles

are C1-reducible on K, and the dual family {Lθ}θ∈T satisfies s-power law dynam-

ical localization on K with some s > 4d. Then the family {Hx}x∈Td has strong

ballistic transport on K.
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The assumptions of Theorems 2.1 and/or 2.2 are satisfied for several different

classes of operators. In order to formulate some of them, recall that a frequency

vector α ∈ Rd is called Diophantine (denoted α ∈ DCd(γ, τ) for some γ > 0, τ >
d− 1) if

(2.11) dist(k · α,Z) ≥ γ|k|−τ , ∀k ∈ Zd\{0}.

We will use the notation

DCd =
⋃

γ>0; τ>d−1

DC(γ, τ).

In the one-frequency case α ∈ R\Q, denote also

β(α) = lim sup
k→∞

ln qk+1

qk
,

where pk
qk

→ α are the continued fraction approximants. Note that α ∈ DC1

implies β(α) = 0, but not vice versa.

Remark 2.4. Condition (2.10) is formulated in terms of Cs-norms in order to avoid

overloading this section with terminology. In fact, in the proof we will use (weaker)

Sobolev Hs-norms, since they behave better under some convolution-type opera-

tions appearing in the process.

2.4 Applications of Theorems 2.1 and 2.2

As stated earlier, Theorem 2.1 falls in the middle between ballistic motion and

strong ballistic transport. Its advantage is that it is applicable in a wide range of

situations.

(1) Let v ∈ Cω(T;R) be an analytic one-frequency potential, and β(α) = 0.

Then there exists a Borel subset Σ ⊂ R such that Σ supports the absolutely

continuous components of the spectral measures of Hx for all x ∈ T, and

the corresponding Schrödinger cocycle SE−v is analytically rotations re-

ducible for all E ∈ Σ due to [9, Theorem 1.2]. Since β(α) = 0, by solving

the cohomological equation, one can improve rotations reducibility to re-

ducibility for all E ∈ Σ. Thus, Theorem 2.1 applies. One can state its

conclusion in the following way: if {Hx}x∈T is an analytic one-frequency

quasiperiodic operator family with β(α) = 0 and Σ does not support sin-

gular spectral measures of Hx, then Hx has local ballistic transport and, as

a consequence, has ballistic motion on Σ.

(2) In [52], some of the results [10, 9] were extended to the case of finitely

smooth cocycles. As a consequence, the results from the previous case

also extend to finitely differentiable potentials.

(3) In [11], it was shown that almost Mathieu operators with potentials v(x) =
2λ cos(2πx) with log λ < −β(α) satisfy full measure analytic reducibility.

As a consequence, they also satisfy local ballistic transport (and hence

ballistic motion) on the whole spectrum. The corresponding quantitative
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localization results for the dual operator exist [33, 34, 35], but are very

delicate.

Let us now discuss applications of the more precise Theorem 2.2 and Corollary

2.3.

(1) In [21, 2] it was shown that if α ∈ DCd, v ∈ Cω(Td;R), and 0 < ε <
ε0(α, v), then the operators Hx with the potential εv have purely abso-

lutely continuous spectra (see also [53]), and their Schrodinger cocycles

are reducible on a set of energies of full spectral measure. In [26], expo-

nential dynamical localization in expectation (which is stronger that sPDL

for all s) was established for the corresponding dual operators. Therefore,

Corollary 2.3 applies. The proof of [26] is based on quantitative reducibil-

ity estimates. It can be checked that these estimates, actually, guarantee

convergence of the integral (2.10) (within a significant margin), and there-

fore one can also apply Theorem 2.2 directly. Therefore, in the setting

of [53], we actually have strong ballistic transport on the whole spectrum,

rather than just ballistic motion.

(2) A combination of [9] and [6] implies that, if v ∈ Cω(T;R), β(α) < +∞,

and 0 < ε < ε0(v, β(α)), then the operators {Hx}x∈T with potentials

εv have purely absolutely continuous spectrum, and the corresponding

Schrödinger cocycles are reducible for almost every energy. Exponential

dynamical localization for the dual operators has been established in [30]

(as stated, only for the almost Mathieu operator, but the argument easily

extends to the general long range case, since it relies on [6, Theorem 5.1]

which is established for the long range case; see also [26] for the Diophan-

tine case). Therefore, again, Corollary 2.3 implies strong ballistic transport

on the whole `2(Z). Note that, for β = 0, it gives a non-perturbative ver-

sion of the result of [53], also with strong ballistic transport.

3 On reducibility and localization

In this section, we will refine some of the results from [36] in order to extend

them to a local quantitative setting. For a function f ∈ L2(Td), denote the Sobolev

norm by

‖f‖2Hs(Td) =
∑

m∈Zd

(1 + |m|)2s|f̂(m)|2,

where f̂(m) are the Fourier coefficients:

f(x) =
∑

m∈Zd

f̂(m)e2πm·x.

We will only consider s > d/2, in which case Hs is embedded into C(Td) and

its elements are ordinary continuous functions, rather than equivalence classes.

Coincidentally, the same condition is sufficient for Hs being an algebra with respect
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to the pointwise multiplication, which will also be important; see, for example [1,

Theorem 4.39].

Proposition 3.1. Let s > d/2 and f, g ∈ Hs(Td). Then fg ∈ Hs(Td), and

‖fg‖Hs(Td) ≤ C(d, s)‖f‖Hs(Td)‖g‖Hs(Td).

Let v ∈ C(Td,R), and α ∈ Rd such that {1, α1, . . . , αd} are independent over

Q. Consider the following quasiperiodic Schrödinger cocycle (α, SE−v), where

SE−v(x) =

(
E − v(x) −1

1 0

)
.

Adapting the definition from Section 1, we will say that (α, SE−v) is Hs-reducible

if there exists B ∈ Hs(Td; GL(2,C)) such that

(3.1) B(x+ α)−1SE−v(x)B(x) =

(
e2πiρ(E) 0

0 e−2πiρ(E)

)
, ∀x ∈ Td,

where ρ(E) is the fibered rotation number of (α, SE−v), as defined in Section 1.

As a consequence, degB = 0.

Definition 3.2. Let K ⊂ R be a Borel subset. We will say that (α, SE−v) is Hs-
reducible on K if there exists and an L2-normalized balanced family of conjugating

matrix functions {B(E)}E∈K, satisfying (3.1) for all E ∈ K, and the following

bound:

(3.2)

∫

K
‖B(E, ·)‖4Hs(Td) dρ(E) < +∞

At this moment, we also do not assume any regularity of BE in the variable E.

For example, B(E) itself may not be measurable in E, as long as there is an upper

norm bound by a measurable function satisfying (3.2). However, one can obtain

the following:

(1) Assuming that B(E) with above properties exist on K, one can pick a

measurable parametrization of B(E) in E.

(2) As in Section 1, let R be the set of energies such that (α, SE−v) is Cs-
reducible. Then, for a given c1 > 0, the set of E ∈ R such that there exists

B(E) satisfying (3.1) with, say, ‖B(E)‖Cs(Td;SL(2,R)) ≤ c1, is measur-

able.

Claims (1) and (2) can be obtained from the following fact: selecting a B satisfy-

ing (3.1) is the same as selecting two linearly independent Bloch wave solutions

of the Schrödinger equation which, in turn, are completely determined by their ini-

tial data. These solutions determine the values of B(x) on a dense subset of x,

and therefore contain all information on the regularity of the corresponding Bloch

functions, as well as the matrix elements of B (as long as the latter are continu-

ous). One can also independently obtain measurability for almost every E (which

is equally good in our case) from the duality arguments below, similarly to [36].
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Recall that the rotation number of the Schrödinger cocycle (α, SE−v) is a con-

tinuous non-increasing map ρ : R → [0, 1/2], which maps Σα,v onto [0, 1/2]. The

relation

N(E) = 1− 2ρ(E)

implies that the pre-image of the Lebesgue measure on [0, 1/2] under ρ is half

of the density of states measure. For θ ∈ [0, 1/2] r (Z + α · Zd), denote by

E(θ) the unique value E ∈ Σα,v such that ρ(E) = θ (note that the uniqueness is

violated at the endpoints of spectral gaps, which correspond to the removed values

of θ). Extend it as an even function into [−1/2, 0], and then extend it into R by

1-periodicity. Denote the resulting function, defined on R r (Z + α · Zd), by the

same symbol E(θ). Let

Θ = (ρ(K) ∪ (−ρ(K)))r (Z/2 + α · Zd/2).

Then E : Θ → Σα,v is a measurable map which takes each of its values twice, and

whose range is equal to K except, at most, for a countable subset. Note that we

only needed to remove Z + α · Zd for the above argument. However, the further

construction will require removal of half-α-rational frequencies.

Let us recall the definition of the dual operator family.

(3.3) (Lθψ)(n) =
∑

m∈Zd

v̂n−mψ(m) + 2 cos 2π(n · α+ θ)ψ(n), θ ∈ T.

In order to formulate the main result of this section, introduce the translation oper-

ator:

T a : `2(Zd) → `2(Zd), (T aψ)(n) := ψ(n+ a).

An important property of the eigenvectors of the operators (3.3) is the following

covariance relation. Suppose that Lθψ = Eψ, ψ ∈ `2(Zd) Then

(3.4) Lθ+`·αT
`ψ(θ) = E(θ)T `ψ(θ), ∀` ∈ Zd.

As a consequence, if one wants to study localization properties of the family

{Lθ}θ∈T, it may be beneficial to pick only one representative from each “equiv-

alence class” defined by (3.4). There are obvious difficulties with this approach, as

it dangerously resembles the procedure of constructing a non-measurable subset of

the circle. However, in our setting it is possible and is discussed, for example, in

[36]. The main result of this section is the following refinement of [36].

Theorem 3.3. Suppose that the family of Schrödinger cocycles (α, SE−v) is Hs-
reducible on K ⊂ R with sone s > d/2. Construct the subset Θ ⊂ [0, 1] and the

function E(·) as above. Then there exists a measurable function f : Θ× Td → C,

such that the following claims hold.

(1) For each θ ∈ Θ, ‖f(θ, ·)‖L2(Td) = 1, and
∫

Θ
‖f(θ, ·)‖4Hs(Td) dθ < +∞.
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(2) For each θ ∈ Θ, the vector ψ(θ;m) = f̂(θ,m) (the Fourier transform in

the second variable) is an eigenvector of the dual operator:

Lθψ(θ) = E(θ)ψ(θ).

(3) For ` ∈ Zd such that θ − ` · α ∈ Θ, construct additional eigenvectors of

Lθ by

ψ`(θ) = T `ψ(θ − ` · α),

so that, using (3.4), we have

Lθ+`·αψ`(θ) = E(θ)ψ`(θ).

Then, for almost every θ ∈ T, the spectrum of Lθ(K) is purely point, and

the constructed eigenfunctions

(3.5) {ψ`(θ) : θ − ` · α ∈ Θ},

form a complete system for Lθ(K).
(4) Denote by ψ∗(θ) the following convolution vector:

ψ∗(θ; p) =
∑

m∈Zd

|ψ(θ;m)ψ(θ;m+ p)|.

Then the following Sobolev localization property holds:

(3.6)
∑

p

(1 + |p|)2s
∫

Θ
|ψ?(θ; p)|

2 dθ < +∞.

Proof. Most of the the argument is very close to [36]. See also a similar argument

in [25, Section 3]. Let E(θ) be constructed as above. The arguments of [36] imply

that one can take

f(x, θ) =
B11(x,E(θ))

‖B11(x,E(θ))‖L2(Td)

for θ ∈ Θ∩ [0, 1/2] and extend it by the relation f(x,−θ) = f(x, θ) into Θ. Then,

for each θ ∈ Θ, ψ(θ;n) = f̂(θ;n) would be an `2(Zd)-normalized eigenfunction

of Lθ:

(3.7) Lθψ(θ) = E(θ)ψ(θ),

which implies the first two claims. Let us establish completeness. Again, the argu-

ment is similar to [36]: we calculate the “partial density of states measure”, using

the expression (2.7) with the spectral projection of Lθ replaced by the projection

onto the subspace spanned by eigenfunctions (3.5). If that measure coincides with

the complete IDS, this would indicate completeness of the eigenfunctions (for al-

most every θ). The calculation is straightforward if we assume ψ(θ) to be measur-

able. One can recover measurability from that of B(E), but there is also a more

direct argument as follows.

Let P`(θ) be the spectral projection of Lθ onto the eigenspace corresponding

to the eigenvalue E(θ − ` · α), for θ − ` · α ∈ Θ. The above construction implies
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P`(θ) 6= 0 for θ ∈ Θ+ ` · α. Let ϕ(θ) be a measurable branch of an element from

P0(θ), ‖ϕ(θ)‖ = 1. Eventually, we will show that ϕ(θ) = c(θ)ψ(θ) for almost

every θ. However, at this point we cannot state that the spectrum of Lθ is simple.

Fortunately, for the following calculations ϕ(θ) is just as good as ψ(θ). Denote

ϕ`(θ) := T `ϕ(θ − ` · α).

Then, by covariance, we have the following eigenvalue equation similar to (3.7).

Lθϕ`(θ) = E(θ − `α)ϕ`(θ), if θ − ` · α ∈ Θ.

As a consequence, we have ϕ`(θ) ∈ RanP`(θ), and

∑

`

∫

T

〈P`(θ)δ0, δ0〉1Θ(θ − ` · α) dθ ≥
∑

`

∫

T

|〈ϕ`(θ), δ0〉|
2
1Θ(θ − ` · α) dθ

=
∑

`

∫

T

|〈ϕ(θ − ` · α), δ−`〉|
2
1Θ0

(θ − ` · α) dθ

=
∑

`

∫

T

|〈ϕ(θ), δ−`〉|
2
1Θ(θ) dθ = |Θ| = N(K).

Since the left hand side cannot be larger than |N(K)|, all inequalities are actually

equalities, which also implies simplicity of the spectrum for almost every θ. Since

measurable parametrization of eigenvectors was obtained independently of mea-

surability of B(E) and that the eigenvalues of Lθ are simple on Θ, this gives us

measurability of B(E) in retrospective.

It remains to establish Claim (4). We will obtain it as a consequence of Claim

1. Let

f1(θ, x) =
∑

m∈Zd

|ψ(θ;−m)|e2πim·x, f2(θ, x) =
∑

m∈Zd

|ψ(θ;m)|e2πim·x.

Clearly, we have

‖f1(θ, ·)‖Hs(Td) = ‖f2(θ, ·)‖Hs(Td) = ‖f(θ, ·)‖Hs(Td).

Then one can express ψ∗ as a convolution:

ψ∗(θ; p) = (f̂1(θ, ·) ∗ f̂2(θ, ·))(p),

and hence, by definition of the Sobolev norm and Proposition 3.1, we have
∑

p

(1 + |p|)2s|ψ∗(θ; p)|
2 = ‖f1(θ, ·)f2(θ, ·)‖

2
Hs ≤ ‖f(θ, ·)‖4Hs .

One can now get Claim (4) by integrating in θ. �

We will also need a Sobolev version of the dynamical localization.

Theorem 3.4. Under the assumptions of Theorem 3.3, there exists h ∈ Hs(Td)
such that ∫

T

|〈δp,1K(Lθ)e
−itLθδq〉| dθ = ĥ(q − p).
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Proof. We have, using the notation of the previous theorem,

(3.8) hpq :=

∫

T

|〈δp,1K(Lθ)e
−itLθδq〉| dθ ≤

∑

`∈Zd

∫

Θ+`·α
|ψ`(θ, p)ψ`(θ, q)| dθ

=
∑

`∈Zd

∫

Θ+`·α
|ψ(θ − ` · α, p+ `)ψ(θ − ` · α, q + `)| dθ

=
∑

`∈Zd

∫

Θ
|ψ(θ, p+ `)ψ(θ, q + `)| dθ ≤

(∫

Θ
|ψ∗(θ, q − p)|2 dθ

)1/2

.

Due to covariance, hpq only depends on q−p. We have the following thanks to the

last claim in Theorem 3.3:

∑

p∈Zd

(1 + |p|)2s|h0p|
2 ≤

∫

Θ

∑

p∈Zd

(1 + |p|)2s|ψ∗(θ; p)|
2 dθ ≤

∫

Θ
‖f(θ; ·)‖4Hs . �

Suppose that, instead of a Sobolev bound, we have a uniform bound

sup
θ∈Θ

‖f(θ; ·)‖Cs(Td) < +∞.

In this case, the dual operator family demonstrates an extremely strong form of

uniform localization, which would allow us, ultimately, to relax regularity require-

ments on the reducibility.

Lemma 3.5. Suppose that, in the notation of Theorem 3.3, we have

sup
θ∈Θ

‖f(θ; ·)‖Cs(Td) =:M < +∞.

Then, for almost every θ ∈ T, we have the following uniform dynamical localiza-

tion bound:

ess–sup
θ∈T

|〈δp,1Ke
itLθδq〉| <

C(s,M)

(1 + |p− q|)2s−d
.

Proof. Using the representation from Theorem 3.3, we have

|ψ`(θ; q)| = |f̂(θ − ` · α; q + `)| ≤
C(M)

(1 + |q + `|)s
.

The rest follows from Lemma 6.1. �

4 From localization to strong ballistic transport

In this section, we will prove Theorem 2.2 by studying the consequences of the

results from the previous section to the operator (1.18):

(Hxψ)(n) = ψ(n− 1) + ψ(n+ 1) + v(x+ nα)ψ(n), n ∈ Z.
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In order to formulate the main result, we will need to introduce the dual operator

family. Define the Fourier coefficients of v by v̂n, where

v(x) =
∑

n∈Zd

v̂ne
2πin·x.

Let {Lθ}θ∈T be the dual family on `2(Zd):

(4.1) (Lθψ)(n) =
∑

m∈Zd

v̂n−mψ(m) + 2 cos 2π(n · α+ θ)ψ(n).

As stated in the introduction, denote by A the current operator on `2(Z):

(Aψ)(n) = i(ψ(n+ 1)− ψ(n− 1)).

For a Borel subset K ⊂ R, we defined

A(x,K) = 1K(Hx)A1K(Hx).

Recall also that, by definition,

Hx(K) = 1K(Hx)|Ran1K(Hx)
.

It is convenient to assume that A(x,K) acts on the whole `2(Z) and Hx(K) is re-

stricted to Ran1K(Hx), since, in the latter case, the wording “σ(Hx(K)) is purely

absolutely continuous” has intended meaning and does not need to account for the

large kernel of Ran1K(Hx)
⊥. Recall the definition of the function gK(E) :

gK(E) =

{
1

πN ′(E) , E ∈ K

0, E ∈ R\K.

Definition 4.1. An analytic quasiperiodic operator family {Hx}x∈Td will called

K-regular if the following properties are satisfied:

(1) The spectra of Hx(K) are purely absolutely continuous.

(2) The families 1K(Hx) and gK(Hx) are strongly continuous in the parameter

x ∈ Td.

The results of [16] imply that, under the above assumptions, ‖gK(Hx)‖ ≤ 2.

Theorem 4.2. Let {Hx(K)}x∈Td be a K-regular family such that the dual operator

family {Lθ}θ∈T satisfies Hs-localization in expectation on K for some s > 5d/2,

or s-uniform power law localization in expectation on K for some s > d. Then the

conclusion of Theorem 2.1 holds. In other words, for every x ∈ Td the limit

Q(x,K) = s–lim
T→+∞

1

T

∫ T

0
eitHx1K(Hx)A1K(Hx)e

−itHx dt,

exists and

kerQ(x,K) = (Ran1K(Hx))
⊥ .
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Remark 4.3. In Section 6, we obtain K-regularity as a consequence of local C1

rotations reducibility for the corresponding Schrödinger cocycles. Therefore, it

holds in all considered cases.

In order to prove Theorem 4.2, we will need several additional calculations with

duality involving direct integrals. Each of the families {Hx}x∈Td and {Lθ}θ∈T can

be considered as a single operator in the appropriate direct integral space:

H :=

∫ ⊕

Td

`2(Z) dx, H̃ =

∫ ⊕

T

`2(Zd) dθ.

Denote the unitary duality operator U : H → H̃ on functions Ψ = Ψ(x, n) by

(4.2) (UΨ)(θ,m) = Ψ̃(θ +m · α,m),

where Ψ̃ denotes the Fourier transform in both discrete and continuous variables:

(4.3) Ψ̃(θ,m) =
∑

n∈Z

∫

Td

e2πinθ−2πim·xΨ(x, n) dx.

In the notation, we will always write the continuous variables before discrete vari-

ables in the arguments of functions, even when their roles are switched under du-

ality. As mentioned above, the operator families {Hx}x∈Td and {Lθ}θ∈T can be

represented by direct integrals

H :=

∫ ⊕

Td

Hx dx, L :=

∫ ⊕

T

Lθ dθ.

Aubry duality (see, for example, [23]) can be formulated as the unitary equivalence

of the above direct integrals:

(4.4) UHU−1 = L.

One can apply duality to other operators and operator families on `2(Z). For ex-

ample, the operator family corresponding to the operator A (constant in x) has the

following dual family:

U

(∫ ⊕

Td

Adx

)
U−1 =

∫ ⊕

T

Ã(θ) dθ,

where

(4.5) (Ã(θ)ψ)(m) = 2 sin 2π(m · α+ θ)ψ(m), m ∈ Zd.

Note that an x-independent family may become θ-dependent after the duality trans-

formation, and vice versa. For any (Borel) function f , we have

(4.6) Uf(H)U−1 = Uf

(∫ ⊕

T

Hx dx

)
U−1

= U

(∫ ⊕

T

f(Hx) dx

)
U−1 =

∫ ⊕

Td

f(Lθ) dθ = f(L).
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For a Borel subset K, denote

Ã(θ,K) = 1K(Lθ)Ã(θ)1K(Lθ).

Then, one can check that Ã(θ,K) is dual to A(x,K):

U
1

T

∫ T

0

(∫ ⊕

Td

eiHxtA(x,K)e−iHxt dx

)
dt U−1

=
1

T

∫ T

0

(∫ ⊕

T

eiLθtÃ(θ,K)e−iLθt dθ

)
dt.

The following proposition is, essentially, established in [41] for the case K =
σ(Hx) in a slightly different form. We include most of the proof for the conve-

nience of the reader.

Proposition 4.4. Under the assumptions of Theorem 4.2, denote by Ek(θ), ψk(θ)
the eigenvalues and eigenfunctions of Lθ(K) (the exact choice of parametrization

does not matter). Then, for almost every θ ∈ T, the following limit

Q̃(θ,K) := s–lim
T→+∞

1

T

∫ T

0
eitLθÃ(θ,K)e−itLθ dt

exists and is a diagonal operator in the representation of eigenvectors of Lθ(K).
More precisely,

(4.7) Q̃(θ,K)ψk(θ) =
1

πN ′(Ek(θ))
ψk(θ).

As a consequence, for almost every θ ∈ T we have

Q̃(θ,K) = gK(Lθ).

Proof. We only sketch the main ideas, since most of the argument is contained

in [41]. The existence of the limit and the fact that it is diagonal in the basis of

eigenvectors of Lθ follows from the following standard calculation:

1

T

∫ T

0

〈
eitLθÃ(θ,K)e−itLθψk(θ), ψ`(θ)

〉
dt

=

(
1

T

∫ T

0
eit(E`(θ)−Ek(θ)) dt

)
〈Ã(θ)ψk(θ), ψ`(θ)〉

and the fact that ∣∣∣∣
1

T

∫ T

0
eit(E`(θ)−Ek(θ)) dt

∣∣∣∣ ≤ 1;

lim
T→+∞

1

T

∫ T

0
eit(E`(θ)−Ek(θ)) dt =

{
1, Ek(θ) = E`(θ);

0, Ek(θ) 6= E`(θ).
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As a consequence, we obtain

(4.8)

〈Q̃(θ,K)ψk(θ), ψk(θ)〉 = 〈Ã(θ)ψk(θ), ψk(θ)〉 =
∑

m∈Zd

2 sin 2π(θ+m·α)|ψk(θ,m)|2.

In order to establish (4.7), consider the Fourier transforms of the eigenvectors of

Lθ(K):

fk(x, θ) =
∑

n∈Zd

e2πin·xψk(θ, n),

where ψk(θ, n) is the nth component of ψk(θ) (the latter is considered as a vector

from `2(Z)). If θ /∈ Z+ α · Zd, then (see Appendix C of [7], and also Remark 5.1

in [36])

(4.9) dk(θ) := e2πiθfk(x, θ)fk(x− α, θ)− e−2πiθfk(x, θ)fk(x− α, θ) 6= 0.

By direct calculation and (4.8), we also have

(4.10) dk(θ) = 〈Q̃(θ,K)ψk(θ), ψk(θ)〉,

which implies that ker Q̃ = {0}. Let

SE−v(x) :=

(
E − v(x) −1

1 0

)

be the Schrödinger cocycle, and consider a matrix function B(x, θ) defined by

B(x, θ) :=
1

|dk(θ)|1/2

(
fk(x, θ) fk(x, θ)

e−2πiθfk(x− α, θ) e2πiθfk(x− α, θ)

)
;

note that the matrix is invertible since dk(θ) 6= 0. Then

B(x+ α, θ)−1SE−v(x)B(x, θ) =

(
e2πiθ 0
0 e−2πiθ

)
.

Kotani’s theory (see the argument in [41] with additional references) implies that

there exists a subset E ⊂ K of full Lebesgue measure (as a consequence, full

spectral measure for each Hx(K)) such that, if Ek(θ) is constructed above and

Ek(θ) ∈ E , then

dk(θ) =
1

πN ′(Ek(θ))
.

Comparing the last equality with (4.10), both of which hold for almost every θ ∈ T,

we complete the proof. Note that the function g is only defined Lebesgue almost

everywhere on K. However, for almost every θ ∈ T, all eigenvalues Ek(θ) will

be at differentiability points of N , and hence g(Lθ) will be well defined. As a
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consequence, using (4.6), we have

Q(K) :=

∫ ⊕

Td

Q(x,K) dx =

∫ ⊕

Td

gK(Hx) dx

(4.11)

= U−1

(∫ ⊕

T

Q̃(θ,K) dθ

)
U = U−1

(∫ ⊕

T

gK(Lθ) dx

)
U := U−1Q̃(K)U .�

Denote by Q(x, T,K) the pre-limit expression:

(4.12)

Q(x, T,K) :=
1

T

∫ T

0
eitHxA(x,K)e−itHx dt, Q(T,K) =

∫ ⊕

Td

Q(x, T,K) dx.

We would like to show the following, for all p ∈ Z:

(4.13) Q(x, T,K)δp → Q(x,K)δp,

where {δp}p∈Z denote the standard basis vectors in `2(Z). Let

fp,T (x) = Q(x, T,K)δp, fp(x) = Q(x,K)δp.

Denote by fp,T (x, n) and fp(x, n) the n-th components of fp,T (x), fp(x) respec-

tively, where n ∈ Z. One can treat fp,T and fp as elements of L2(Td×Z). Denote

also by f̃p,T (θ,m), f̃p(θ,m) the Fourier transforms of fp,T , fp in both variables

defined as in (4.3):

f̃p,T (θ,m) =
∑

n∈Z

∫

Td

e2πinθ−2πim·xfp,T (x, n) dx.

Lemma 4.5. For any p ∈ Z, x ∈ Td, and T > 0, we have

‖fp,T (x)− fp(x)‖
2
`2(Z) ≤

∫

T




∑

m∈Zd

|f̃p,T (θ,m)− f̃p(θ,m)|




2

dθ.(4.14)

Proof. First, let us note that both x 7→ fp,T (x) and x 7→ fp(x) are continuous

as maps from Td to `2(Z). In particular, they are continuous component-wise.

Denote by f̂p,T (x, θ) the Fourier transform only in the variable n, and same for

f̂p(x, θ). Using the Parseval’s identity, continuity in x, and `1 bound for the Fourier
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transform, we have the following:

(4.15) sup
x

‖fp,T (x)− fp(x)‖
2
`2(Z) = sup

x

∑

n∈Z

|fp,T (x, n)− fp(x, n)|
2

= sup
x

∫

T

|f̂p,T (x, θ)− f̂p(x, θ)|
2dθ ≤

∫

T

(
ess–sup

x
|f̂p,T (x, θ)− f̂p(x, θ)|

)2

dθ

≤

∫

T




∑

m∈Zd

|f̃p,T (θ,m)− f̃p(θ,m)|




2

dθ.

�

Remark 4.6. It is crucial that the left hand side of (4.14) is continuous in x, other-

wise we would not have been able to obtain convergence for all x ∈ Td, as the right

hand side of (4.14) does not allow to recover any data about measure zero subsets

of Td in the variable x. The said continuity, ultimately, reduces to the assumption

of K-regularity of the family {Hx}x∈T.

Remark 4.7. Let U be the duality operator. Then

f̃p,T (θ,m) = (Ufp,T )(θ −m · α,m), f̃p(θ,m) = (Ufp)(θ −m · α,m).

Therefore, in order to show (4.13), we can apply Lemma 4.5 and reduce it to a

convergence statement about the images of fp,T under duality.

We will use the following notation for the dual pre-limit expressions:

Q̃(θ, T,K) :=
1

T

∫ T

0
eitLθÃ(θ,K)e−itLθ dt, Q̃(T,K) =

∫ ⊕

T

Q̃(θ, T,K) dθ.

Finally, consider δp as an element of L2(Td × Z) that is a constant function in the

x variable. Then, it’s Fourier transform in both variables is equal to

(δ̃p)(θ,m) = (Uδp)(θ −m · α,m) = e2πipθδ0(m),

which implies

f̃p,T (θ,m) = (UQ(T,K)δp)(θ −m · α,m)

= (Q̃(T,K)Uδp)(θ −m · α,m) = e2πipm·αQ̃(θ −m · α, T,K)δ0,

and similarly

f̃p(θ,m) = (UQ(K)δp)(θ−m·α,m) = (Q̃(K)Uδp)(θ−m·α,m) = e2πipm·αQ̃(θ−m·α,K)δ0.
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As a consequence, we can rewrite the conclusion of Lemma 4.5 as

(4.16)

sup
x

‖fp,T (x)−fp(x)‖`2(Z) ≤



∫

T




∑

m∈Zd

∣∣∣f̃p,T (θ,m)− f̃p(θ,m)
∣∣∣




2

dθ




1/2

=



∫

T




∑

m∈Zd

∣∣∣
(
Q̃(θ −m · α, T,K)δ0 − Q̃(θ −m · α,K)δ0

)
(m)

∣∣∣




2

dθ




1/2

≤
∑

m∈Zd

(∫

T

∣∣∣
(
Q̃(θ −m · α, T,K)δ0 − Q̃(θ −m · α,K)δ0

)
(m)

∣∣∣
2
dθ

)1/2

=
∑

m∈Zd

∥∥∥
〈
δm, Q̃(·, T,K)δ0 − Q̃(·,K)δ0

〉∥∥∥
L2(T)

=
∥∥∥Q̃(T,K)δ0 − Q̃(K)δ0

∥∥∥
`1(Zd;L2(T))

.

The factor e2πipm·α was absorbed into the absolute value, and the second inequality

is the triangle inequality. Let

(PNΨ)(θ,m) =

{
Ψ(θ,m), |m| ≤ N

0, |m| > N

be the projection onto a neighborhood of the origin in discrete Zd variable. The

following is the main technical estimate of this section that uses the localization

bounds.

Lemma 4.8. Suppose that the family {Lθ}θ∈T satisfies Sobolev localization on K

in the sense of Theorem 3.4 with s > 5d/2. Then the norms

‖Q(T,K)δ0‖`1(Zd;`2(T))

are bounded uniformly in T . As a consequence,

‖(1− PN )Q̃(T,K)δ0‖`1(Zd;L2(T)) ≤ c(N),

where c(N) → 0 as N → +∞, uniformly in T .
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Proof. First, let us replace Q̃(θ, T,K) by the non-averaged expression eitLθÃ(θ,K)e−itLθ

(thus proving a stronger inequality). As a consequence, we would like to estimate

(4.17)
∑

n∈Zd

(∫

T

∣∣∣〈δn, eitLθÃ(θ,K)e−itLθδ0〉
∣∣∣
2
dθ

) 1

2

≤ 2
∑

n∈Zd

(∫

T

∣∣∣〈δn, eitLθÃ(θ,K)e−itLθδ0〉
∣∣∣ dθ

) 1

2

≤ 2
∑

n∈Zd




∑

k∈Zd

∫

T

∣∣∣〈1K(Lθ)e−iLθtδn, δk〉〈Ã(θ)δk,1K(Lθ)e
−iLθtδ0〉

∣∣∣ dθ




1

2

≤ 4
∑

n∈Zd




∑

k∈Zd

∫

T

∣∣〈1K(Lθ)e−iLθtδn, δk〉〈δk,1K(Lθ)e
−iLθtδ0〉

∣∣ dθ




1

2

,

where in the second inequality we used the fact that the integrand is bounded by

2 in absolute value to replace L2 norm by L1 norm, and then used the fact that

Ã(θ) is a diagonal operator acting on δk as a scalar (we also transferred 1K(Lθ)

to e−iLθt, and hence there is no more K in Ã(θ)). In the case of sPDL, we can

continue the chain of inequalities as follows, using Lemma 6.1:

(4.17) ≤ 4
∑

n∈Zd




∑

k∈Zd

∫

T

∣∣〈1K(Lθ)e−iLθtδn, δk〉〈δk,1K(Lθ)e
−iLθtδ0〉

∣∣ dθ




1/2

≤ 4
∑

n∈Zd




∑

k∈Zd

∫

T

|〈1K(Lθ)e
−iLθtδn, δk〉|

1/2|〈δk,1K(Lθ)e
−iLθtδ0〉|

1/2 dθ




1/2

≤ 4
∑

n∈Zd




∑

k∈Zd

(∫

T

|〈1K(Lθ)e
−iLθtδn, δk〉| dθ

∫

T

|〈δk,1K(Lθ)e
−iLθtδ0〉| dθ

)1/2



1/2

.

Let

hn =

∫

T

|〈1K(Lθ)e
−iLθtδ0, δn〉| dθ, n ∈ Zd.

Then, by covariance, we have the following bound (recall that ∗ denotes the stan-

dard convolution for functions on Zd):

(4.17) ≤ 4
∑

n∈Zd : |n|>N

(
h1/2 ∗ h1/2

)1/2
(n).
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Therefore, in order to obtain decay, we need to verify
(
h1/2 ∗ h1/2

)1/2
∈ `1(Zd).

We will need to use some bounds on weighted `2 spaces with the norms

‖u‖2`2s =
∑

n∈Zd

(1 + |n|)2s|u(n)|2.

Their properties are summarized in the Appendix. Since h ∈ `2s(Z
d), we have the

following inclusions, see also Appendix (“+” means the number has to be strictly

larger):

h1/2 ∈ `2s/2−d/4+;

h1/2 ∗ h1/2 ∈ `2s−d+;

w := (h1/2 ∗ h1/2)1/2 ∈ `2s/2−3d/4+;

{(1 + |n|)s/2−3d/4w(n)}n∈Zd ∈ `2(Zd).

In order to get w into `1(Zd), we can use Hölder inequality, for which it would be

sufficient to have

{(1 + |n|)−(s/2−3d/4)}n∈Zd ∈ `2(Zd).

This, ultimately, gives us the requirement s/2 − 3d/4 > d/2, which reduces to

s > 5d/2. �

Corollary 4.9. The conclusion of Lemma 4.5 also holds for Q̃(K).

Proof. Recall that, being a direct integral, Q̃(T,K) converges to Q̃(K) in the

strong operator topology on L2(T×Zd). As a consequence, there is a subsequence

of time scales Tk such that Q̃(Tk,K)δ0 converges to Q̃(K)δ0 almost everywhere

on T×Zd as k → ∞ (here, as before, δ0 is considered as an element of L2(T×Zd)
constant in θ). Hence, the result follows from Fatou’s lemma. �

Conclusion of the proof of Theorem 4.2

Since the operator norms of Q(x, T,K) are uniformly bounded, it suffices to

show that Q(x, T,K)δp → Q(x,K)δp for all p ∈ Z. In other words, it is sufficient

to show that the right hand side of (4.16) converges to zero. Take N � 1. Using

the triangle inequality, Lemma 4.5, and Corollary 4.9, we have

∥∥∥Q̃(T,K)δ0 − Q̃(K)δ0

∥∥∥
`1(Zd;L2(T))

≤
∥∥∥PN

(
Q̃(T,K)δ0 − Q̃(K)δ0

)∥∥∥
`1(Zd;L2(T))

+
∥∥∥(1− PN )

(
Q̃(T,K)δ0 − Q̃(K)δ0

)∥∥∥
`1(Zd;L2(T))

≤ (2N)d/2
∥∥∥Q̃(T,K)δ0 − Q̃(K)δ0

∥∥∥
L2(T×Zd)

+ 2c(N),
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where in the last inequality we use the fact that `1(Zd; L2(T)) norm is bounded by

the L2(T × Zd) norm on the range of PN (with an appropriate constant). Now,

since ‖Q̃(T,K)δ0 − Q̃(K)δ0‖L2(T×Zd) → 0, the proof can be completed using the

standard ε/2 argument. �.

The proof of Theorem 4.2 in the uniform case

Suppose, instead of Theorem 3.4, we have the conclusion of Lemma 3.5 with

s > d. By covariance, we have

hn−m = ess–sup
θ∈T

|〈δn,1K(Lθ)e
itLθδm〉|

for some h which satisfies

h(n) ≤M(1 + |n|)−s.

Similarly to (4.17), we can estimate

∣∣∣〈δn, eitLθÃ(θ,K)e−itLθδ0〉
∣∣∣ ≤ (h ∗ h)(n) ≤

C(M)

(1 + |n|)2s−d
.

Therefore, the conclusion reduces to {(1 + |n|)−(2s−d)}n∈Zd ∈ `1(Zd), which is

satisfied for s > d.

4.1 On the proofs of the main results

The proof of Theorem 2.2 is complete, modulo K-regularity which will be es-

tablished in the next section. To finish the proof of Theorem 2.1, consider

Kj = {E ∈ K : ‖B(E)‖Cs(Td) ≤ j}

and apply the uniform result on each Kj , together with K-regularity. To prove

Corollary 2.3, follow the same lines as in the proof of Theorem 4.2, using Lemma

6.1 instead of the Sobolev bounds. We did not try to optimize the condition s > 4d
in this case.

5 Regularity of the absolutely continuous spectral measures

This section is mostly expository. Let {Hx}x∈Td be a quasiperiodic operator

family (1.18):

(Hxψ)(n) = ψ(n− 1) + ψ(n+ 1) + v(x+ nα)ψ(n), n ∈ Z.

For a Borel subset K ⊂ R, we will say that the family of Schrödinger cocycles

(α, SE−v) is Cs-uniformly rotations reducible on K, if there exists c > 0 and a

family of matrices B(E; ·) ∈ Cs(Td; SL(2,R)), E ∈ K, such that

(5.1)

B(x+ α,E)−1SE−v(x)B(x,E) = Rθ(x) =

(
cos 2πθ(x) − sin 2πθ(x)
sin 2πθ(x) cos 2πθ(x)

)
.
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where θ ∈ Cs(T;R) and

‖B(·, E)‖Cs(Td;SL(2,R)) ≤ c, ∀E ∈ K.

For a Borel subset F ⊂ R, denote by

µxpq(F ) = 〈δp,1F (Hx)δq〉

a spectral measure of Hx. Clearly, µxpq = µx+nαp+n,q+n. Hence, one simplify the

computations by assuming p = 0.

Moreover, since δ0 and δ1 form a cyclic subspace for Hx, one can easily check

the following (say, by repeatedly applying Hx to δ0 or δ1 and eliminating previous

elements by induction):

δn = p(n−1)
x (Hx)δ0 + q(n−1)

x (Hx)δ1,

where p
(n−1)
x , q

(n−1)
x are polynomials of degree ≤ n − 1, whose coefficients are

Cs-smooth in x. As a consequence, in order to establish smoothness of spectral

measures (see below), it would sufficient to consider µx00 and µx01(x).

Proposition 5.1. Suppose that a family of Schrödinger cocycles (α, SE−v) is C1-

uniformly rotations reducible on a Borel subset K ⊂ R. Then, for all x ∈ Td, and

any Borel subset F ⊂ K, we have

(5.2) µx00(F ) =
1

2π

∫

F

(
b21(x,E)2 + b22(x,E)2

)
dE.

(5.3)

µx01(F ) =
1

2π

∫

F
(b21(x,E)b21(x+ α,E) + b22(x,E)b22(x+ α,E)) dE.

Proof. Both claims follow from some standard calculations from the Kotani theory.

We will, essentially, use the notation from [17]. For ImE > 0 and x ∈ Td, denote

by u±(x,E) the unique solutions of the eigenvalue equation Hu = Eu satisfying

u±(x,E; 0) = 1, u±(x,E;n) → 0 as n→ ±∞,

and the m-functions

m±(x,E) = −u±(x,E;±1).

Using the eigenvalue equation, one can also obtain

u−(x,E; 1) = m−(x,E) + E − v(x).

The Green’s function can be expressed through the above Jost solutions:

Gnm(x,E) = 〈δn, (Hx − E)−1δm〉 = −
u−(x,E;n)u+(x,E;m)

m+(x,E) +m−(x,E) + E − v(x)
.

As a consequence,

(5.4)

G00(x,E) =
−1

m+(x,E) +m−(x,E) + E − v(x)
,

G01(x,E) =
m+(x,E)

m+(x,E) +m−(x,E) + E − v(x)
.
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We can also extend m±(E, x) into E ∈ R by considering limits m±(E+ iε, x) as

ε → 0+, which will exist for almost every E for which L(E) = 0. In particular,

they will exist almost everywhere on K. The values of m±(E, x) for E ∈ R can

be calculated as follows. Any matrix B ∈ SL(2,R) defines the following action

on the upper half plane C+:

B ◦ z =
B11z +B12

B21z +B22
, z ∈ C+.

Suppose that B(·, E) satisfies (5.1). Then, for almost every pair (E, x) ∈ K × Td,

we have

(5.5) m+(x,E + i0) = B(x,E) ◦ i = −m−(x,E + i0).

The continuity arguments similar to [5] (see also [17, Footnote on page 10]) imply

that (5.5) actually holds for all x ∈ Td and almost every E ∈ K, where “almost

every” depends on x. However, in the following considerations zero measure sets

will not be important, and hence one can use (5.5) as an alternative definition of

m±(x,E + i0). Using (5.5), we can calculate

m+(x,E + i0) =
b11i+ b12
b21i+ b22

=
b12b22 + b11b21
b221 + b222

+ i
1

b221 + b222
,

where bij = bij(x,E) are the matrix elements of B(x,E). Note that (5.5) implies

that the denominators in (5.4) are purely imaginary for E ∈ K + i0. Therefore,

one can calculate densities of spectral measures µx00, µx01 as follows:

dµx00
dE

=
1

π
ImG00(x,E + i0) =

1

2π Imm+(x,E + i0)
=
b221 + b222

2π
.

dµx01
dE

=
1

π
ImG01(x,E + i0) = −

Re m+(x,E + i0)

2π Imm+(x,E + i0)
= −

b12b22 + b11b21
2π

.

�

We immediately obtain the following regularity claim.

Corollary 5.2. Under the assumptions of Proposition 5.1, the spectral measures

µxpq are absolutely continuous on K with respect to the Lebesgue measure. More-

over, their densities are Lipschitz continuous in x:
∣∣∣∣
dµxpq
dE

−
dµypq
dE

∣∣∣∣ ≤ Cp−q|x− y|,

where Cp−q depends on p − q and the constant c from the uniform rotations re-

ducibility assumption.

Theorem 5.3. Suppose that the family {Hx}x∈Td is C1-uniformly rotations re-

ducible on a Borel subset K ⊂ R. Let g ∈ L∞(R), supp g ⊂ K. Then, for any

x0 ∈ Td, we have

s–lim
x→x0

g(Hx) = g(Hx0).
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Proof. Since g(Hx) are uniformly bounded, it would be sufficient to show g(Hx)δn →
g(Hx0)δn strongly. By shifting the x variable, one can assume n = 0. Since

g(Hx)δ0 are also uniformly bounded in `2(Z), it is sufficient to establish the fol-

lowing:

(5.6) 〈δn, g(Hx)δ0〉 → 〈δn, g(Hx0)δ0〉, ∀n ∈ Z

(5.7) ‖g(Hx)δ0‖ → ‖g(Hx0)δ0‖.

To establish (5.6), note

|〈δn, g(Hx)δ0〉 − 〈δn, g(Hx0)δ0〉|

=

∣∣∣∣
∫
g(E)dµxn0(E)−

∫
g(E)dµx0n0(E)

∣∣∣∣ ≤ cn|x− x0||K|‖g‖L∞ ,

where cn is the constant from Corollary 5.2. Similarly, (5.7) can be established

using the fact

‖g(Hx)δ0‖
2 = 〈δ0, |g(Hx)|

2δ0〉,

and then repeating the earlier argument applied to the function |g|2. �

Corollary 5.4. Suppose that the conclusion of Theorem 5 is satisfied for a fixed

function g ∈ L∞(R) and a sequence of Borel subsets K1 ⊂ K2 . . .. Then it also

satisfied for K = ∪jKj .

Proof. The statement follows from the Banach — Steinhaus theorem: indeed, the

family of operators {g(Hx)}x∈Td is uniformly bounded, and the convergence can

be verified on the dense set ∪j Ran(1Kj
(Hx)), by applying the previous theorem

with K = Kj . �

6 Appendix

In this section, we will establish some elementary bounds which will happen

to be useful later. All functional spaces denoted by ` with some indices will be on

Zd. Denote by `2s the space of Fourier transform of functions from Hs(Td) with

the following norm:

‖u‖2`2s =
∑

n∈Zd

(1 + |n|)2s|u(n)|2.

Recall the Hölder inequality: for u ∈ `p, v ∈ `q, we have

(6.1) ‖uv‖`r ≤ ‖u‖`p‖v‖`q ,
1

r
=

1

p
+

1

q
, 1 ≤ p, q, r ≤ ∞.

The following lemma is elementary:

Lemma 6.1. Let a ∈ Zd and s1 + s2 − d > 0.

∑

n∈Zd

1

(1 + |a− n|)s1(1 + |n|)s2
≤

c(s1, s2, s3, d)

(1 + |a|)s1+s2−d
.
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Proof. We have

∑

n∈Zd

1

(1 + |a− n|)s1(1 + |n|)s2

≤




∑

|n|≤a/2

+
∑

|n−a|≤a/2

+
∑

|n|>a/2, |n−a|>a/2


 1

(1 + |a− n|)s1(1 + |n|)s2

≤
1

(1 + |a/2|)s1

∑

|n|≤a/2

1

(1 + |n|)s2

+
1

(1 + |a/2|)s2

∑

|n|≤a/2

1

(1 + |n|)s1
+

∑

|n|≥a/4

1

(1 + |n|/4)s1+s2

≤ c(s1, s2, a)(1 + |a|)d−s1−s2 .

�

Finally, recall that u(p) = (1 + |n|)−s belongs to `r for rs > d. We will need the

following “square root” bound.

Lemma 6.2. Suppose that u ∈ `2s , and let v(n) = |u(n)|1/2. Then

‖v‖`2r ≤ C(r, s, d)‖u‖`2s , 0 ≤ r <
s

2
−
d

4
.

Proof. The condition u ∈ `2s is equivalent to {(1 + |n|)su(n)}n∈Zd ∈ `2, which is

in turn equivalent to {(1+ |n|)s/2v(n)}n∈Zd ∈ `4. We can multiply it by an appro-

priate power of (1+|n|)−1 in order to get it back to `2: since {(1+|n|)s
′

}n∈Zd ∈ `4

for s′ > d/4, we have by Hölder inequality

{(1 + |n|)−s
′

(1 + |n|)s/2v(n)}n∈Zd ∈ `2, s′ > d/4.

which implies the statement of the lemma. �

Finally, the following is the dual version of the multiplicative Sobolev inequal-

ity [1, Theorem 4.39] on the language of convolutions. One can also prove it

directly and use in the proof of multiplicative inequalities.

Lemma 6.3. Let u ∈ `2s1 , v ∈ `2s2 . Denote their convolution by

(u ∗ v)(n) =
∑

m∈Zd

u(n−m)v(m).

Then

‖u ∗ v‖`2s ≤ C(s, s1, s2)‖u‖`2s1
‖v‖`2s2

, 0 < s < s1 + s2 − d/2.
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[2] Amor, S. Hölder Continuity of the Rotation Number for Quasi-Perioidic Co-Cycles in

SL(2,R), Comm. Math. Phys. 287 (2009), 565 – 588.

[3] Avila, A. Global theory of one-frequency Schrödinger operators, Acta Math. 215 (2015), 1-54.

[4] Avila, A. Almost reducibility and absolute continuity, preprint. http://w3.impa.br/

˜avila/.

[5] Avila, A. The absolutely continuous spectrum of the almost Mathieu operator, preprint,

https://arxiv.org/abs/0810.2965, 2008.

[6] Avila, A.; Jitomirskaya, S. Almost localization and almost reducibility, J. Eur. Math. Soc. 12

(2010), no. 1, 93 – 131.

[7] Avila, A.; Jitomirskaya, S.; Marx, C. A. Spectral theory of extended Harper’s model and a

question by Erdös and Szekeres, Invent. Math. 210 (2017), no. 1, 283 – 339.

[8] Asch, J.; Knauf, A. Motion in periodic potentials, Nonlinearity. 11, (1998), 175–200.

[9] Avila, A.; Fayad, B.; Krikorian, R. A KAM scheme for SL(2,R) cocycles with Liouvillean

frequencies, Geom. Func. Anal. 21, (2011), 1001-1019.

[10] Avila, A.; Krikorian, R. Reducibility or nonuniform hyperbolicity for quasiperiodic

Schrödinger cocycles, Ann. Math. 164, (2006), 911–940.

[11] Avila, A.; You, J.; Zhou, Q. Sharp phase transitions for the almost Mathieu operator, Duke

Math. J. 166 (2017), no. 14, 2697 – 2718.

[12] Berezanskii, J. Expansions in eigenfunctions of selfadjoint operators, Translated from the Rus-

sian by R. Bolstein, J. M. Danskin, J. Rovnyak and L. Shulman. Translations of Mathematical

Monographs, Vol. 17, American Mathematical Society, Providence, R.I., 1968.

[13] Bourgain, J.; Jitomirskaya, S. Absolutely continuous spectrum for 1D quasiperiodic operators,

Invent. Math. 148 (2002), 453 – 463.

[14] Bourgain, J.; Jitomirskaya, S. Continuity of the Lyapunov exponent for quasiperiodic operators

with analytic potential. J. Stat. Phys. 108 (2002), no. 5, 1203 – 1218.

[15] Cycon, H.; Froese, R.; Kirsch, W.; Simon, B. Schrödinger operators, with application to quan-

tum mechanics and global geometry, Texts and Monographs in Physics. Berlin etc. Springer-

Verlag (1987).

[16] Deift, P.; Simon, B. Almost periodic Schrödinger operators III. The absolutely continuous spec-

trum in one dimension, Comm. Math. Phys. 90 (1983), 389 – 411.

[17] Damanik, D. Lyapunov exponents and spectral analysis of ergodic Schrödinger operators: a

survey of Kotani theory and its applications. Spectral theory and mathematical physics: a

Festschrift in honor of Barry Simon’s 60th birthday, 539 – 563, Proc. Sympos. Pure Math.

76, Part 2, Amer. Math. Soc., Providence, RI, 2007.

[18] Damanik, D.; Lemm, M.; Lukic, M.; Yessen, W. On anomalous Lieb-Robinson bounds for the

Fibonacci XY chain, J. Spectr. Theory. 6, (2016), no. 3, 601–628.



BALLISTIC TRANSPORT FOR QUASIPERIODIC OPERATORS 35

[19] Damanik, D.; Lukic, M.; Yessen, W. Quantum dynamics of periodic and limit-periodic Jacobi

and block Jacobi matrices with applications to some quantum many body problems, Commun.

Math. Phys. 337(3), (2015), 1535–1561.

[20] Delyon, F.; Souillard, B. The rotation number for finite difference operators and its properties,

Comm. Math. Phys., 89 (1983), no. 3, 415 – 426.

[21] Eliasson, L. H. Floquet solutions for the 1−dimensional quasi-periodic Schrödinger equation,

Commun. Math. Phys. 146, (1992), 447–482.

[22] Fillman, J. Ballistic transport for limit-periodic Jacobi matrices with applications to quantum

many-body problems, Comm. Math. Phys. 350 (2017), no. 3, 1275 – 1297. MR3607475

[23] Gordon, A. Y.; Jitomirskaya, S.; Last, Y.; Simon, B. Duality and singular continuous spectrum

in the almost Mathieu equation, Acta Math. 178, (1997), no. 2, 169 – 183.

[24] Germinet. F.; Jitomirskaya, S. Strong dynamical localization for the almost Mathieu model,

Rev. Math. Phys. 13, (2001), no. 6, 755 – 765. MR1841745

[25] Ge, L.; You, J. Arithmetic version of Anderson localization via reducibility, Geom. Funct. Anal.

30 (2020), 1370 – 1401.

[26] Ge, L.; You, J.; Zhou, Q. Exponential Dynamical Localization: Criterion and Applications,

preprint (2019), https://arxiv.org/abs/1901.04258.

[27] Han, R. Schńol’s theorem and the spectrum of long range operators, Proc. Amer. Math. Soc.

147 (2019), 2887 – 2897.
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