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Abstract

In this paper, we show that one-dimensional discrete multi-frequency quasiperi-
odic Schrodinger operators with smooth potentials demonstrate ballistic motion
on the set of energies on which the corresponding Schrodinger cocycles are
smoothly reducible to constant rotations. The proof is performed by establishing
a local version of strong ballistic transport on an exhausting sequence of subsets
on which reducibility can be achieved by a conjugation uniformly bounded in the
C*-norm. We also establish global strong ballistic transport under an additional
integral condition on the norms of conjugation matrices. The latter condition is
quite mild and is satisfied in many known examples. © 2000 Wiley Periodicals,
Inc.

1 Introduction

1.1 Types of ballistic motion
Let H be a discrete Schrodinger operator on ¢2(Z):

(1.1) (HY)(n) =¢(n—1)+¥(n+1)+ Vy(n), n e Z.

where {V}, }ncz is a sequence of real numbers (the potential). The operator H is
a Hamiltonian of a single quantum particle with wave function ¢: Z — C, whose
time evolution is described by the time-dependent Schrodinger equation:

0

(1.2) i5y =Y, $(0) € (7).
Using the spectral theorem, one may explicitly solve (1.2) via
(1.3) Y(t) = e (0).

Let B be a self-adjoint operator associated to an observable quantity. The Heisen-
berg evolution of B is described by

B(T) = ¢'TH ge=iTH,
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In the present paper, we will be interested in spatial transport properties of a quan-
tum particle on the lattice Z. The relevant observable quantity is the position oper-
ator

(X¢)(n) :=np(n), n €L,

which is an unbounded self-adjoint operator with the natural domain of definition

Dom X = {1 € *(Z): Y |[nf*lih(n)[* < +00}.
ne”Z
One can check by direct calculation that the Heisenberg evolution of the position
operator can be expressed in the following form:

T
(14)  X(T):=eTHXxe TH = X 4 / e Ae= ™ gt T e R,
0

where

(1.5) Ap(n) = i(P(n+1) —(n—1))

is sometimes known as the current operator (a tight binding analogue of the gra-
dient operator V). Since A is bounded, (1.4) implies that X = X (0) and X (7")
have the same domain. We will be interested in the phenomenon of ballistic mo-
tion, which states, informally, that the position of the particle grows linearly with
time (“X (T') ~ T”). More precisely, we will address the following limits:

. 1
0. N

where, initially, 19 € Dom X. One can consider the limit (1.6), if it exists, as
the “asymptotic velocity” of the state vy at infinite time. The asymptotic velocity
operator can therefore be defined by

e L ,-1Tz‘tH —itH
(1.7) Q= Ts:}l}glo fX(T) = 7§:>1}|—r£o T /0 e Ae dt.
The first limit can only be considered on Dom X, but, since the term %X (0) of
(1.4) disappears as T — oo, it is natural to drop it from consideration. We say that
a Schrodinger operator H demonstrates strong ballistic transport, if the strong limit
in the right hand side of (1.7) exists, is defined on the whole 2 (Z) and, moreover,
ker @ = {0}.

An immediate consequence of (1.4) and (1.7) is that all of the moments of the
position operator grow ballistically in time. More specifically, for any p > 2 and
0 # 1o € Dom | X |P, we have

(19) Jim T P(X(T)Pyo, vo) = QNP o, vo) > 0.

If we take p = 2, (1.8) immediately implies that H has ballistic motion. More
precisely, we say H has ballistic motion if

(1.9) lziminfT_Q(]X(T)IQwo,z/Jo> >0, o€ DomX, 0.
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Note that (1.9) is weaker than (1.8) with p = 2. One can also consider (1.9) for
p#2

Ballistic motion is one of the examples of wave packet spreading, which indi-
cates absence of localization. The fundamental work in this aspect is the RAGE
Theorem [15] which states for a Schrodinger operator H, if 1) € ¢*(H), then for
any N > 0,

ZTH
(1.10) TETOOT/ > (G0, e dt =

O |nj<n
where
(e(H) = {0 € (L) : py = pry,c} = G (H)F
is the subspace corresponding to the continuous spectrum of H. In other words, a
wavepacket in the continuous subspace of H will spend most of the time outside of

any fixed compact subset of Z. In the case of the absolutely continuous subspace,
(1.10) can be further improved to a version that does not involve time averaging:

. iTH 2 9, 2
(1.11) TETOOENW"’@ Y)|2dt =0, o€ (2 (H).

Both (1.10) and (1.11) imply the following growth conditions on the moments:

1 T
12yl LX) = oo, 0# 0 € ()
(1.13) A (X (T)Pyo, o) = +00, 07 ¢ € Loo(H).

However, it is harder to estimate the exact rate of growth. In fact, this rate can be
related to the Hausdorff dimension of the spectrum and spectral measures of H,
see [45]. For the absolutely continuous case, the Guarneri—-Combes—Last Theorem
[45] states that, for any p > 2,

(1.14)

1 T )
gglilg Tori / (| X ()[Pbo, o) dt >0, Vi € Dom|X|P, 0# ¢ € l3.(H).

One can compare the above versions of transport as follows:

(1.15)
existence of (1.7) with trivial kernel = (1.8) = (1.9) for all p = (1.14) = (1.12)
\
(1.13).

Thus, strong ballistic transport (as defined in (1.7)) can be viewed as the strongest
version of ballistic motion. Note that, since the operator A is bounded, (1.4) im-
plies an elementary ballistic upper bound on the wave packet spreading. In other
words, no transport can be stronger than ballistic.
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In general, ballistic transport is not expected on any spectra other than purely
absolutely continuous. In particular, it was shown in [48] that point spectrum can-
not support any ballistic motion. However, one can still expect it after restricting
the operator to a subspace that supports purely absolutely continuous spectrum. In
this regard, we will need a version of the above definition that would be local in
energy. Let  C R be a Borel subset. We will say that H has strong ballistic
transport on IC if there exists a self-adjoint operator () such that

T
(1.16) s-lim 1/ e 1y (H) Al (H)e ™ dt = 1xQ1x
T——4o00 0

and ker Q = Ran(1x)". While we will be able to establish (1.16) in a range of
situations, a significant gain in generality can be achieved by slightly relaxing the
above definition. We will say that H has local ballistic transport on K if there
exists a self-adjoint operator () and a sequence of Borel subsets {K; }‘;‘;1 such that
K = U;K; and H satisfies (1.16) on each ;. As a part of the definition, we
require that @ is the same operator for all K;, and ker Q(K) = Ran(1x)*. For
the purpose of the diagram (1.15), local ballistic transport implies lower bounds on
wavepacket spreading just as good as strong ballistic transport. More precisely, if
1 € Ran 1x(H), then, for large j, we have

T
(1.17) ;/0 e Ae™ ™My dt = 1xc,Qp + v (T) + o(1),

where )+ (T') is orthogonal to 1 x; @, and hence can only increase the norm. Note
that we are using the right hand side of (1.6) instead of %X (T')%, since we cannot
guarantee that the intersection Ran 1x-(H) N Dom X is large enough. However, if
¥ € Dom X is sufficiently close to Ran 1x(H ) (for example, ||(1 —1x(H))y|| <
$11cQ|), then (1.17) implies a ballistic lower bound on || X (T)¢||. The set of
such 9 is dense in Ran 1x(H). The difference between (1.16) and (1.17) is that
the latter may have a non-trivial “tail” which stays within the range of 1)-(H ), but
eventually escapes any Ran(1x,(H)) with finite j. However, this tail can only
strengthen the ballistic lower bound. As a consequence, local ballistic transport
still implies (1.8) and (1.9).

Unlike (1.14) and (1.13), we are not aware of any results of the form (1.7)—(1.9)
for general Schrodinger operators with absolutely continuous spectra.! Instead, all
known results only apply to potentials of special structure. First results of this type
were obtained in [8] for periodic operators in the continuum. Later, a tight binding
analogue was obtained in [19] for discrete periodic Jacobi matrices, motivated by
applications to XY spin chains. See also related paper [ 18] about anomalous (non-
ballistic) transport for Fibonacci-type operators with singular continuous spectra.

1Except for potentials decaying on infinity, where one can obtain these bounds using scattering
theory. In general, ballistic transport is expected to be stable under decaying perturbations. We do
not go into the details in the present paper.
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The limit-periodic case was studied in [22] where an analogue of (1.6) was proved
by periodic approximations.

1.2 Quasiperiodic operators

The next natural class of operators with absolutely continuous spectra, where
one can expect ballistic motion/ballistic transport, is quasiperiodic Schrodinger
operators, which will be the subject of the present paper. Let v € C*(T¢;R) be
a smooth function. We will identify Z?-periodic functions on R¢ with functions
on T¢. Let also a € RY be a frequency vector. We will always assume that
{1,041, ...,aq} are independent over Q. A smooth multi-frequency quasiperiodic
Schrodinger operator is an operator of the form

(1.18) (Hzpp)(n) =¢(n—1)+¢(n+1) +v(x + na)(n), ne Z.

Here = € T% is the quasiperiodic phase, and one usually considers the whole family
{H l‘}xe'ﬂ‘d'

Quasiperiodic operators (1.18) with small analytic potentials v are often known
to have purely absolutely continuous spectra, see [21, 2, 6, 13, 10, 9]. In [41],
it was shown that a large class of such operators (in all cited regimes, except for
the Liouville case in [9]) satisfies x-averaged strong ballistic transport. In other
words, instead of (1.6), one has the following convergence statement in the direct
integral space L2(T¢ x Z):

1 @ 52
Yg;l}glo <T » X(z,T) d:n) = /. Q(x) dx.
where X (z,T) := ¢/THs Xe~THz_ The proof used the duality method based on
[36]. Like [19], the work [4 1] was motivated by applications to the XY spin chains.
The z-averaged version of ballistic transport implies existence of the limit (1.7) on
a subsequence of time scales for almost every = and hence is sufficient for the
conclusion on the XY spin chain. However, it does not imply any of the claims
(1.7)—(1.9) in full. In the same year, a KAM-type approach was developed in [53]
in order to obtain bounds of type (1.9) in the perturbative setting. The advantage
is that it works for all  and does not require to take a subsequence of time scales.
However, it falls short of establishing existence of (1.7). The KAM method of [53]
was later expanded in [51] to treat the one-frequency Liouvillean case, by further
weakening (1.9) to a lower bound on some transport exponents.

1.3 Outline of the approach

The goal of the present paper is to obtain a result which has the advantages of
both [41] and [53]. One can see it as a refinement of either of the papers, however,
the general line of the argument is closer to [41]. In the quasiperiodic case, one
of the results of [41] is the calculation of the asymptotic velocity operator Q(x),
but, since it is only obtained on a sequence of time scales, one cannot exclude the
possibility of large oscillations around the limiting value. Moreover, [41] predicts a
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possible mechanism of convergence: after applying duality, it becomes a procedure
of diagonal truncation of an operator dual to (1.5) in the basis of the eigenvectors
of the dual Hamiltonian with purely point spectrum. The convergence of the trun-
cation is only obtained in the Fourier dual direct integral space L?(T x Z%), which
is not enough to guarantee pointwise strong convergence in the original direct inte-
gral space. A natural question arises: can extra information on the dual operator
Sfamily improve the rate of convergence in (1.7)? If yes, what kind of information
can be used?

In order to obtain a pointwise bound, we would like to replace L?(T? x Z) by
L>®(T% ¢%(Z)) or by C(T%; ¢?(Z)). One can try to obtain that by improving con-
vergence in the dual space: for example, to £!(Z%; L%(T)). On any finite box, ¢
and ¢2-norms are equivalent (with the constants depending on the size of the box).
Therefore, one possible way of obtaining ¢!-convergence would be to obtain a uni-
form ¢! bound on the tails. The latter can be achieved by investigating quantitative
character of the localization for the dual model. For example, one can take advan-
tage of exponential dynamical localization in expectation which has been obtained
in [30] and [26] under some assumptions. Along these lines, one can obtain the
desired control on the tails, which would imply strong ballistic transport for almost
every x € T¢. This approach was partially implemented in the preprint [40], which
is no longer intended for publication since the current paper supersedes it in several
ways.

The main results of the present paper are Theorem 2.1 (the local result) and
Theorem 2.2 (the global result). In Theorem 2.1, we state that the operators (1.18)
have local ballistic transport on the set of energies on which the corresponding
Schrodinger cocycles are C®-reducible with s > d (see Section 2.1 for precise
definitions). We do not require any quantitative information on the conjugating
matrices and do not care about Diophantine properties of the frequency vector.
While the result falls short of the complete strong ballistic transport, most of its
conclusions (such as ballistic motion) also hold, as described above. In Theorem
2.2, we state that one can obtain strong ballistic transport under an additional inte-
gral condition on the norms of the conjugating matrices. Several known examples,
including the settings of [53] and [26], satisfy this condition.

The proof of the local result is based on the following observation: suppose that
‘R is the set of energies under consideration, and

KickeC...CR

is a sequence of Borel subsets such that R ~ (U;K;) has zero spectral measure
with respect to H,. Then, it is sufficient to check that the limit (1.16) exists on
each ;. The main problem in obtaining “nice” localization bounds for the dual
model is the fact that regularity of the conjugation matrices (Bloch waves) is not
uniform in the energy and depends on the Diophantine properties of the rotation
number. Quantitative estimates, such as in [26], can be quite delicate. On the other
hand, if one is allowed to restrict to a subset of energies, we can get, basically, as
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good control of the localization parameters as desired. In particular, we can get
a ridiculously strong version of uniform localization, which is not even remotely
available on the whole spectrum. As expected, the constants will get worse as one
increases the set of energies under consideration. Since we only need ¢! control
of the tails, we also do not require Anderson (exponential) localization, and are
satisfied with polynomial decay of eigenfunctions, which allows us to consider
smooth potentials rather than analytic. The idea of restricting to an exhausting
subset of energies/rotation numbers while maintaining control on the regularity is
not unlike the argument in [25].

The global result is somewhat more delicate. While we cannot expect any uni-
form reducibility bounds, the desired bound still contains an integral in ¢, and
hence, just as in the proofs of dynamical localization, one can hope for a quanti-
tative result “in expectation”. Using a variant of the covariant representation for
the eigenfunctions of the dual operator by duality such as in [36], we reduce the
integral

(1.19) / (O €105, | dB
T

that appears in the proof of dynamical localization, to a convolution-type bound
on the eigenfunctions which, in turn, can be controlled in terms of C® or Sobolev
norms of the conjugating matrices, averaged over the rotation number. Unfor-
tunately, in order to obtain better bounds, we would ideally want to estimate a
different, smaller integral

/<5m,eitL95n>\rd9, r>1,
T

and we were not able to find any way to take advantage of » > 1, which actually
appears in our desired bounds. Still, by taking some losses, we were able to ob-
tain a bound by a series of convolution-type estimates for expressions of the form
(1.19). As a result, in the global theorem, the smoothness requirement is of the
form C*® with s > 5d/2, rather than s > d as in the local result. Still, our integral
condition is satisfied by a large margin in the models where exponential dynami-
cal localization is obtained such as [26]. It is also easy to reformulate our global
result as a conditional one: for example, strong ballistic transport will hold on /X if
we assume C'-reducibility on K (without any quantitative control) and power law
dynamical localization on K:

/ (6, 1 (Lg)ete6,)| do < , s> 4d,
T

(14 |m —nl)s
which is weaker than, say, exponential dynamical localization in expectation.

In both cases, the stated arguments would only imply the corresponding version
of ballistic transport for almost every = € T¢, since the duality ignores measure
zero subsets of phases. In the case of the dual operator, this can be a real issue: for
example, one cannot expect localization for all # € T [39]. However, quantities
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related to the absolutely continuous spectrum are known to be more phase stable.
We were able to recover continuity in = by comparing the pre-limit expressions
in the definition of Q(x) and the alternative definition of Q)(x) and showing that
they are both uniformly continuous in the strong operator topology. In the latter
case, we had to use quantitative continuity of the absolutely continuous spectral
measures discussed in Section 5. As stated, one can only obtain it in the setting of
local ballistic transport, since one has to restrict the operator to one of the subsets
K;. However, that particular part survives after passing to the union of K;, and
thus is also applicable to the global case.

2 Preliminaries and statements of the results

2.1 Schrodinger cocycles and reducibility
Let A € C*(T¢;SL(2,R)), and consider a frequency vector o € R? such that
{1,01,...,aq} are independent over Q. By definition, a quasiperiodic C*-smooth
SL(2,R)-cocycle is a map
Td C2 Td (CQ.
(o, A): x C* — T* x C=
(z,v) = (x + a, A(z)v).
The iterates of («, A) are of the form (o, A)" = (na, Ay,), where

A, () Alx + (n—1a)--- Alx + a) A(z), n > 0;
x) =

" ANz +na)A Yz +(n+1)a) - A7 (z—a), n<O.

We will usually simply call the above maps cocycles. Similarly, one can talk about
SL(2, C)-cocycles. The Lyapunov exponent of the cocycle (a, A) is defined by

1
L(a, A) := lim — / In |4, (z)||dx.
Td

n—oo n

A cocycle (o, A) is called uniformly hyperbolic if, for every z € T¢, there

exists a continuous splitting C2 = E*(x) @ E%(z) such that for every n > 0,
An(2) ] < Cel], v € B*(a),
|An(z) 1o < Ce=|v|, v € E%(z + na),
for some constants C, ¢ > 0. This splitting is invariant under the dynamics, i.e.,
A(x)E*(z) = E*(z 4+ ), A(z)E%(z) = E%x+a), YzeT<

Assume that A € C°(T%; SL(2,R)) is homotopic to the identity. It induces the

projective skew-product Fq: T¢ x S' — T¢ x S! with
A(z) - w
Fy(z,w) = <x+a, > .

[A(z) - wl

In other words, Fia: T? x T — T% x T can be expressed as (z,y) — (z + a,y +
©vz(y)), where @,: R — R is a 1-periodic continuous function (defined modulo
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translations by integers on both copies of R). Let 1 be any probability measure on
T? x T invariant under F4 and whose projection onto the coordinate z is given by
the Lebesgue measure. The number

@.1) pla, A) = /T - eul) dna.g) mod

depends neither on the lift o nor on the measure p, and is called the fibered rotation
number of (o, A) (see [28, 38] for more details; see also [10, Appendix A] for a
detailed exposition). Let Ry denote the rotation matrix

cos 2wl —sin 2wl
(2.2) Ry := <sin 210  cos 2wl > , 0€T.

Any continuous map A: T¢ — SL(2,R) is homotopic to  ++ R,,., for a unique
n € Z%. We call n the degree of A and denote it by deg A. The fibered rotation
number is invariant under real conjugacies which are homotopic to the identity.
More generally, if (o, A1) is conjugated to (a, As), i.e., B(x+a) ' A1 (x)B(x) =
Ag(x), for some B: T¢ — PSL(2,R) with deg B = n, then

(2.3) p(aa Al) = p(Ot, AQ) tn-a.

A typical example of a quasiperiodic cocycle is a Schridinger cocycle (o, Sp—y),
where
S o(z) = (E70@ —1)  per
1 0
Any formal solution ¢ = {¢(n)},ez of the eigenvalue equation H,yp = Evb,
where H, is the quasiperiodic Schrodinger operator (1.18)

(Hyp)(n) = (n —1) +(n +1) + v(z + na)y(n), n€Z, xe T,

satisfies the following relation with Sg_,(x):

(7’%21) = Sg—y(x + na) (Jﬁ:) , VnelZ.

It is well known that the spectrum o(H,), denoted by X, ,, is a compact sub-
set of R, independent of x if {1,aq,...,aq} are rationally independent. The
spectral properties of H, and the dynamics of («, Sg_,) are related by the John-
son’s theorem [37]: E € X, if and only if (o, Sg_,) is not uniformly hyper-
bolic. Throughout the paper, we will use the notation L(E) = L(«, Sg—,) and
p(E) = p(a, Sg—,) for brevity.

2.2 Reducibility of quasiperiodic cocycles

We will only consider cocycles («, A) with deg A = 0. A quasiperiodic C*-
cocycle (a, A) with {1, a1, ..., ag} rationally independent is called C*-rotations
reducible if there exists B € C*(T¢; SL(2,R)) and § € C*(T% R) such that

(2.4) B(z +a) tA(z)B(z) = Ry(z)-
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We will call a cocycle reducible if it is rotations reducible to a constant rotation.
In this case, one can choose § = p(«, A). For reducible cocycles, it will be more
convenient diagonalize the rotation matrix and consider B € C*(T¢;SL(2,C))
satisfying

mip(a,A)
(2.5) B(z + a) 'A(z)B(z) = (62 ’ 0 ) :

0 6727rip(o¢,A)

Note that our use of the definition is more narrow than usual. More accurately,
we should have used the wording “reducible to a constant rotation”. Usually, one
considers reducibility to a general constant matrix in the right hand side of (2.4).

Let {H,},cra be a quasiperiodic operator family, and (c, Sg—,,) be the corre-
sponding Schrddinger cocycle. Define the following subset:
Rao =1{F € R: (o, Sp_y) is C*-reducible}
CRRy, = {E € R: (o, Sp—y) is C*-rotations reducible}.

We will sometimes drop the indices and simply use R or R'R, if the values of the
indices are clear from the context.

From Shnol’s theorem [12, 27, 49, 50], it follows that RRZ,U C Xq,v- More-
over, subordinacy theory [42, 31, 32] implies that the restriction of the spectral
measure of H, into R'Ry, ,, is purely absolutely continuous for any s > 0. The

same also holds for Rg, .
We will also need some conventions about normalizations of the cocycles in
L2(T%). Let us rewrite the reducibility equation (3.1) as

((E —v(x))bi1(x) — bar(w) (E —v(z))bia(x) — b22($))
bia(z) bia(z)
B (62m‘0b11(x 4 a) 672m‘9b12(x 4 a))
- 627ri0b21(x 4 Oz) 672m'0b22(x 4 a) .

One can see that the columns of B(x) are not intertwined, and one can multiply
one column and divide another by the same constant without affecting the determi-
nant. Note also that Hbﬂ”LQ(’]I‘d) = Hle”LQ(Td)’ HbUHLQ(’]I‘d) = ‘bQQ”LQ(Td). As a
consequence, we can choose a constant so that the columns are “balanced’:

Hbll”L2(Td) = Hb21”L2(1rd) = HleHLQ(Td) = Hb22”L2(11‘d)7

without affecting the regularity of the matrix B in the variable x. So, we would
have

(26) HBHiQ(Td) - 4”[)1]“%2(11“1)7 V’L,j € {172}7

where in the left hand side we are using the Hilbert—Schmidt matrix norm. In the
statements of the main results, we will always assume that the conjugation matrix
B is balanced in the above sense. Also, we will not always require det B(z) = 1,
but sometimes instead choose B to be L2-normalized (and balanced).
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2.3 Statements of the results

In order to formulate the main result, we will need the definition of the density
of states measure of the operator family {H, },cpa: for a Borel subset B C R,
define

(2.7) N(B) = /Td<].B(Hz)5o, 50> dz.

In other words, the density of states measure is the expectation value of the spectral
measures. We also introduce the integrated density of states (denoted by the same
symbol with a slight abuse of notation):

(2.8) N(E) := N((=00, E]) = N((-o0, E)),

the cumulative distribution function of the density of states measure. It is well
known that N is a non-decreasing continuous function of E. Clearly, if the spectral
measures are absolutely continuous, then the IDS is also absolutely continuous
(with respect to the Lebesgue measure). The IDS is related to the fibered rotation
number defined above in (2.1) in the following way [20]:

N(E)=1-2p(E).
Let £ C R be a Borel subset. The following function will be important:

— L Eck
2.9 E) ={ ™N'(E)Y
(2.9) gk (E) {O, EcR\K.

Note that gx(E) is well defined (Lebesgue) almost everywhere on K N %, ,,. As a
consequence, the operator gx (H,) is well defined as long as H, has purely abso-
lutely continuous spectrum on /C.

For a (Borel) subset L C R, denote by 1x(z) the indicator function of K. If H
is a self-adjoint operator on ¢2(Z), denote by H(K) the restriction of H into the
subspace Ran 1x(H) C ¢%(Z). Here, 1xc(H) is considered in the standard sense
of functional calculus for self-adjoint operators. For the current operator A defined
in (1.5), let

A('T’ ]C) = 1IC(Hx)A1/C(H:c)'
In the case of A(x,K), it is convenient not to restrict it into Ran 1(H,) and
instead let it have a zero block.

We are ready to formulate the first (local) main result of the paper.

Theorem 2.1. Let { H,.} ,cqa be a quasiperiodic operator family with v € C*(T%; R),
s > d. Denote by R the set of energies on which the corresponding Schrodinger
cocycle is C3-reducible. Then H, has local ballistic transport on R. In other
words, there exists a representation R = U;K; such that the following limit exist
forall x € T and all C;:

N R —itH,
Q) = pelim o [ €M A K)o e dt = g (IT,).
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As a consequence,
ker Q(z, ;) = (Ran 1g; (Hp))*.

Theorem 2.1 is “soft” and requires very little regularity. As a consequence, we
can only get local bounds. Still, as stated in the Introduction, even these bounds
imply ballistic motion such as in [53].

If one has some control over the dependence of || B||cs in the E variable, the
result can be improved to “true” strong ballistic transport. Unfortunately, there is
no hope in getting any kind of estimates that are uniform in energy, since regularity
of the reducibility matrix depends on Diophantine properties of the rotation num-
ber (see, for example, [26]). However, we can formulate a sufficient integral-type
condition. We will say that («, Sy—p) is C*-reducible in expectation on K if it’s
C#-reducible for every E € K, and there exists a choice of L?(T%)-normalized
conjugations B(F; ) such that

(2.10) /HB Mk o) dp(E) < +c.

We can now formulate the second (global) main result.

Theorem 2.2. Let {H,} cra be a quasiperiodic operator family whose cocy-
cles are C*-reducible in expectation on K for some s > 5d/2. Then the family
{Hy}  ema has strong ballistic transport on K. In other words, the following limit
exists for all x € T%:
1 [T .
Q(z,K) = s-lim / e Az, K)e e dt = gic(H,).
T—+o00 0

As a consequence,
ker Q(z,K) = (Ran 1xc(H,))*.

We will also state a version of Theorem 2.2 in terms of the localization property
of the dual operator

(Lg))(n Z Op_mtp(m) + 2cos 2m(n - o+ O)ap(n), n € Z%
mezZd

We will say that the family { Ly } gcT has s-power law dynamical localization (sSPDL)
on K, if the spectra of Ly (k) are purely point for almost every § € T, and there
are C' > 0, s > 0 such that

[ i etz
T

The following is a corollary of the proof of Theorem 2.2.

C

(1+|m—mn|)s

Corollary 2.3. Let {H,},cta be a quasiperiodic operator family whose cocycles
are Cl-reducible on K, and the dual family { Lg}gcr satisfies s-power law dynam-
ical localization on KC with some s > 4d. Then the family {H,} cra has strong
ballistic transport on K.
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The assumptions of Theorems 2.1 and/or 2.2 are satisfied for several different
classes of operators. In order to formulate some of them, recall that a frequency
vector a € R? s called Diophantine (denoted o« € DCy4(y, 7) for some vy > 0,7 >
d—1)if

(2.11) dist(k - o, Z) > y|k|™",  Vk € Z24\{0}.
We will use the notation

DCy = U DC(y, 7).

¥>0; 7>d—1
In the one-frequency case « € R\Q, denote also

In
f(a) = lim sup ﬂ,
k—o0 dk

where ’q’—’; — « are the continued fraction approximants. Note that « € DCy
implies 5(a) = 0, but not vice versa.

Remark 2.4. Condition (2.10) is formulated in terms of C*-norms in order to avoid
overloading this section with terminology. In fact, in the proof we will use (weaker)
Sobolev H?-norms, since they behave better under some convolution-type opera-
tions appearing in the process.

2.4 Applications of Theorems 2.1 and 2.2

As stated earlier, Theorem 2.1 falls in the middle between ballistic motion and
strong ballistic transport. Its advantage is that it is applicable in a wide range of
situations.

(1) Let v € C¥(T;R) be an analytic one-frequency potential, and §(a) = 0.
Then there exists a Borel subset > C R such that 32 supports the absolutely
continuous components of the spectral measures of H, for all x € T, and
the corresponding Schrodinger cocycle Sg_,, is analytically rotations re-
ducible for all E' € ¥ due to [9, Theorem 1.2]. Since 5(«) = 0, by solving
the cohomological equation, one can improve rotations reducibility to re-
ducibility for all E € X. Thus, Theorem 2.1 applies. One can state its
conclusion in the following way: if { H, },cT is an analytic one-frequency
quasiperiodic operator family with 5(«) = 0 and ¥ does not support sin-
gular spectral measures of H, then H has local ballistic transport and, as
a consequence, has ballistic motion on X..

(2) In [52], some of the results [10, 9] were extended to the case of finitely
smooth cocycles. As a consequence, the results from the previous case
also extend to finitely differentiable potentials.

(3) In[!1], it was shown that almost Mathieu operators with potentials v(x) =
2 cos(2mx) withlog A < —f(«) satisfy full measure analytic reducibility.
As a consequence, they also satisfy local ballistic transport (and hence
ballistic motion) on the whole spectrum. The corresponding quantitative
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localization results for the dual operator exist [33, 34, 35], but are very
delicate.

Let us now discuss applications of the more precise Theorem 2.2 and Corollary

2.3.
ey

2

In [21, 2] it was shown that if & € DCy, v € C¥(T%R), and 0 < £ <
eo(a, v), then the operators H, with the potential ev have purely abso-
lutely continuous spectra (see also [53]), and their Schrodinger cocycles
are reducible on a set of energies of full spectral measure. In [26], expo-
nential dynamical localization in expectation (which is stronger that SPDL
for all s) was established for the corresponding dual operators. Therefore,
Corollary 2.3 applies. The proof of [26] is based on quantitative reducibil-
ity estimates. It can be checked that these estimates, actually, guarantee
convergence of the integral (2.10) (within a significant margin), and there-
fore one can also apply Theorem 2.2 directly. Therefore, in the setting
of [53], we actually have strong ballistic transport on the whole spectrum,
rather than just ballistic motion.

A combination of [9] and [6] implies that, if v € C¥(T;R), f(a) < 00,
and 0 < ¢ < go(v,B()), then the operators {H, },er with potentials
ev have purely absolutely continuous spectrum, and the corresponding
Schrédinger cocycles are reducible for almost every energy. Exponential
dynamical localization for the dual operators has been established in [30]
(as stated, only for the almost Mathieu operator, but the argument easily
extends to the general long range case, since it relies on [6, Theorem 5.1]
which is established for the long range case; see also [26] for the Diophan-
tine case). Therefore, again, Corollary 2.3 implies strong ballistic transport
on the whole ¢2(Z). Note that, for 3 = 0, it gives a non-perturbative ver-
sion of the result of [53], also with strong ballistic transport.

3 On reducibility and localization

In this section, we will refine some of the results from [36] in order to extend
them to a local quantitative setting. For a function f € L2(T¢), denote the Sobolev
norm by

1 ey = S (4 m)>* | Fm)P,

mezZd

where f(m) are the Fourier coefficients:

fa) = 3 fmpemme.

meZd

We will only consider s > d/2, in which case H® is embedded into C(T%) and
its elements are ordinary continuous functions, rather than equivalence classes.
Coincidentally, the same condition is sufficient for H® being an algebra with respect
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to the pointwise multiplication, which will also be important; see, for example [1,
Theorem 4.39].

Proposition 3.1. Let s > d/2 and f,g € H*(T?). Then fg € H*(T¢), and
1 £ 9lluas(ray < C(d, ) f s ray 9l eas (ma) -

Letv € C(T%,R), and o € R? such that {1, 1, ..., a4} are independent over
Q. Consider the following quasiperiodic Schrédinger cocycle (o, Sg—,), where

Spou(x) <E —1v(:c) —01> '

Adapting the definition from Section 1, we will say that (o, Sg_,,) is H*-reducible
if there exists B € H*(T%; GL(2, C)) such that

627rip(E) 0

- d
(3.1 B(z +a) 'Sp_,(z)B(z) = ( 0 €2m'p(E)) , VaxeT?
where p(E) is the fibered rotation number of («, Sg_,), as defined in Section 1.

As a consequence, deg B = 0.

Definition 3.2. Let £ C R be a Borel subset. We will say that («, Sg—,,) is H®-
reducible on K if there exists and an L?-normalized balanced family of conjugating
matrix functions { B(E)}gei, satisfying (3.1) for all E € K, and the following
bound:

(32) J By () < o0

At this moment, we also do not assume any regularity of B in the variable F.
For example, B(E) itself may not be measurable in F, as long as there is an upper
norm bound by a measurable function satisfying (3.2). However, one can obtain
the following:

(1) Assuming that B(E) with above properties exist on K, one can pick a
measurable parametrization of B(F) in E.

(2) As in Section 1, let R be the set of energies such that (o, Sp_,) is C*-
reducible. Then, for a given c¢; > 0, the set of £ € R such that there exists
B(E) satistying (3.1) with, say, || B(E)| cs(ra;sp(2,r)) < c1, is measur-
able.

Claims (1) and (2) can be obtained from the following fact: selecting a B satisfy-
ing (3.1) is the same as selecting two linearly independent Bloch wave solutions
of the Schrédinger equation which, in turn, are completely determined by their ini-
tial data. These solutions determine the values of B(x) on a dense subset of x,
and therefore contain all information on the regularity of the corresponding Bloch
functions, as well as the matrix elements of B (as long as the latter are continu-
ous). One can also independently obtain measurability for almost every E' (which
is equally good in our case) from the duality arguments below, similarly to [36].
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Recall that the rotation number of the Schrodinger cocycle («, Sg—,) is a con-
tinuous non-increasing map p: R — [0, 1/2], which maps X, ,, onto [0, 1/2]. The
relation

N(E) =1-2p(E)

implies that the pre-image of the Lebesgue measure on [0,1/2] under p is half
of the density of states measure. For § € [0,1/2] \ (Z + « - Z9), denote by
E(6) the unique value E € X, , such that p(E) = 6 (note that the uniqueness is
violated at the endpoints of spectral gaps, which correspond to the removed values
of ). Extend it as an even function into [—1/2,0], and then extend it into R by
1-periodicity. Denote the resulting function, defined on R . (Z + a - Z%), by the
same symbol E(#). Let

0 = (p(K) U (—p(K))) \ (Z/2+ o Z%)2).

Then E: © — ¥, , is a measurable map which takes each of its values twice, and
whose range is equal to K except, at most, for a countable subset. Note that we
only needed to remove Z + « - Z¢ for the above argument. However, the further
construction will require removal of half-a-rational frequencies.

Let us recall the definition of the dual operator family.

3.3)  (Lev)(n) = Z Up—mt®(m) + 2cos2n(n-a+ 0)Y(n), 6cT.

mezZ?
In order to formulate the main result of this section, introduce the translation oper-
ator:
T 0224 — (2%, (T°Y)(n) == ¢(n +a).
An important property of the eigenvectors of the operators (3.3) is the following
covariance relation. Suppose that Lyy) = Ev), ¢ € ¢?(Z%) Then

(3.4) Lote.aTh(0) = E(O)T (0), Ve 74

As a consequence, if one wants to study localization properties of the family
{Lg}geT, it may be beneficial to pick only one representative from each “equiv-
alence class” defined by (3.4). There are obvious difficulties with this approach, as
it dangerously resembles the procedure of constructing a non-measurable subset of
the circle. However, in our setting it is possible and is discussed, for example, in
[36]. The main result of this section is the following refinement of [36].

Theorem 3.3. Suppose that the family of Schrodinger cocycles (o, Sp_,) is H®-
reducible on IC C R with sone s > d/2. Construct the subset © C [0, 1] and the
function E(-) as above. Then there exists a measurable function f: © x T¢ — C,
such that the following claims hold.

(1) Foreach® € ©, ||f(0,")|lL2(rey = 1, and
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A~

(2) Foreach 8 € ©, the vector (0;m) = f(0, m) (the Fourier transform in
the second variable) is an eigenvector of the dual operator:

Lyip(0) = E(0)y(8).
(3) For ¢ € Z% such that § — { - o € ©, construct additional eigenvectors of
Ly by
bo(0) = T (0 — £ - ),
so that, using (3.4), we have

Lotratbe(8) = E(0)e(0).

Then, for almost every 0 € T, the spectrum of Lg(K) is purely point, and
the constructed eigenfunctions

(3.5) {e(0): 0 —C-a €O},

form a complete system for Lg(K).
(4) Denote by 1.(0) the following convolution vector:

Uu(0;p) = D [(6;m)y(6;m +p)|.

meZa

Then the following Sobolev localization property holds:
(3.6) > 1+ 1ph* / |4 (6; p)|? d6 < +o0.
©

p

Proof. Most of the the argument is very close to [36]. See also a similar argument
in [25, Section 3]. Let E(#) be constructed as above. The arguments of [36] imply
that one can take ( )
Bll Z, E(0

| Bi1(z, E( ))HLQ(Td)

for € ©N[0,1/2] and extend it by the relation f(z, —0) = f(x,#) into ©. Then,
for each 6 € ©, ¥(0;n) = f(0;n) would be an ¢?(Z?)-normalized eigenfunction
of Lg:

(3.7 Lyp(0) = E(0)1(0),

which implies the first two claims. Let us establish completeness. Again, the argu-
ment is similar to [36]: we calculate the “partial density of states measure”, using
the expression (2.7) with the spectral projection of Ly replaced by the projection
onto the subspace spanned by eigenfunctions (3.5). If that measure coincides with
the complete IDS, this would indicate completeness of the eigenfunctions (for al-
most every 6). The calculation is straightforward if we assume (6) to be measur-
able. One can recover measurability from that of B(E), but there is also a more
direct argument as follows.

Let Py(6) be the spectral projection of Ly onto the eigenspace corresponding
to the eigenvalue E(§ — ¢ - «), for § — £ - o € ©. The above construction implies
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Py(0) # 0forf € © + £ - a. Let p(0) be a measurable branch of an element from

Py(0), ||¢(0)|| = 1. Eventually, we will show that p(6) = ¢(0)y(0) for almost

every 0. However, at this point we cannot state that the spectrum of Ly is simple.

Fortunately, for the following calculations ¢(#) is just as good as 1(#). Denote

p0(0) = Thp(0 — £ - a).

Then, by covariance, we have the following eigenvalue equation similar to (3.7).
Lope(0) = E(0 — La)pe(0), if 06— -a€O.

As a consequence, we have py(60) € Ran P;(0), and

%:A<Pg(9)50,50>1@(9 —0-a)df > zg:/T [(pe(6),50)[*1e(8 — £ - o) db

=3 [ 166(0).5-016(0)d0 = o) = N ).

Since the left hand side cannot be larger than | N (KC)|, all inequalities are actually
equalities, which also implies simplicity of the spectrum for almost every 6. Since
measurable parametrization of eigenvectors was obtained independently of mea-
surability of B(E) and that the eigenvalues of Ly are simple on O, this gives us
measurability of B(FE) in retrospective.

It remains to establish Claim (4). We will obtain it as a consequence of Claim
1. Let

fiO,2) = > [0, —m) [T, fo(0,m) = Y |(0;m) [T
mGZd meZd
Clearly, we have

10, ) grs ray = 1£20, s ray = 1 (0, )|l gzs (pay-
Then one can express ¥, as a convolution:
¢*(9;p) = (f1(9> ) * f2(97 ))(p)a
and hence, by definition of the Sobolev norm and Proposition 3.1, we have
D (L4 D> [ (0:p)F = [1£1(0.) 200, )l < 150, )l
P
One can now get Claim (4) by integrating in 6. O

We will also need a Sobolev version of the dynamical localization.

Theorem 3.4. Under the assumptions of Theorem 3.3, there exists h € H*(T%)
such that

/T (6. Lie(Lo)e™05,)| dB = (g — p).
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Proof. We have, using the notation of the previous theorem,

(3.8) hy —/ (6, L(La)e""L05,)| d6 < Z/ o6, p)e(0, 0)) dO

tezd
_Z/ V(O —L-a,p+ 00 —L-o,q+0)|db
tezd ” Otta
1/2
=% [0+ 0ub.ar ol < ( [ o.a-nra) .
ez4d ©

Due to covariance, h,, only depends on ¢ — p. We have the following thanks to the
last claim in Theorem 3.3:

S (1+ [p) o ? < /Zmpr 25\¢*(0p|2d9</!!f M. O

pEZA pEZA
Suppose that, instead of a Sobolev bound, we have a uniform bound

sup || f(0; ')HCS(Td) < +o0.
00

In this case, the dual operator family demonstrates an extremely strong form of
uniform localization, which would allow us, ultimately, to relax regularity require-
ments on the reducibility.

Lemma 3.5. Suppose that, in the notation of Theorem 3.3, we have
sup || f(0; ')HCS(’JI‘d) =M < +o0.
0cO

Then, for almost every 8 € T, we have the following uniform dynamical localiza-
tion bound:

; C(s, M)
ess—sup |(8,, Lce™95,)| < —
feT 16 2 (1+1Ip—q|)*d

Proof. Using the representation from Theorem 3.3, we have

e CO)
’w€(97Q)|_|f(9_€ 7q+£)’§ (1+’q+€’)s

The rest follows from Lemma 6.1. O

4 From localization to strong ballistic transport

In this section, we will prove Theorem 2.2 by studying the consequences of the
results from the previous section to the operator (1.18):

(HyY)(n) =9Y(n—1)+9(n+ 1) +v(z +na)y(n), neZ.
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In order to formulate the main result, we will need to introduce the dual operator
family. Define the Fourier coefficients of v by 9,,, where

U(H?) _ Z ,[)ne27rin~:r;.
nezd

Let {Lg}ger be the dual family on ¢2(Z%):
4.1 (Low)(n) = > dn_mtb(m) + 2cos 2m(n - a + 0)1(n).

meZd
As stated in the introduction, denote by A the current operator on £2(Z):

(AY)(n) = i(P(n +1) =y (n —1)).

For a Borel subset IC C R, we defined

Az, K) = 1 (Hy) Al (Hy).
Recall also that, by definition,

It is convenient to assume that A(z, K) acts on the whole ¢?(Z) and H,(K) is re-
stricted to Ran 1x(H,,), since, in the latter case, the wording “o(H,(K)) is purely
absolutely continuous” has intended meaning and does not need to account for the
large kernel of Ran 1x(H,)*. Recall the definition of the function gx(E) :

— Eeck
E) = wN'(E)’
9x(E) {0, EeR\K.

Definition 4.1. An analytic quasiperiodic operator family {H},ca Will called
KC-regular if the following properties are satisfied:

(1) The spectra of H;(K) are purely absolutely continuous.
(2) The families 1x(H,) and gx(H,,) are strongly continuous in the parameter
r € T

The results of [16] imply that, under the above assumptions, || gx(Hz)| < 2.

Theorem 4.2. Let { H,(K)} . cra be a K-regular family such that the dual operator
family {Lg}ger satisfies H®-localization in expectation on K for some s > 5d/2,
or s-uniform power law localization in expectation on K for some s > d. Then the
conclusion of Theorem 2.1 holds. In other words, for every x € T% the limit

IR 4
Q(z,K) :;JE?O/O ey (H,) Al (Hy)e  He g,

exists and

ker Q(z,K) = (Ran 1x(H,))" .
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Remark 4.3. In Section 6, we obtain K-regularity as a consequence of local C*
rotations reducibility for the corresponding Schrodinger cocycles. Therefore, it
holds in all considered cases.

In order to prove Theorem 4.2, we will need several additional calculations with
duality involving direct integrals. Each of the families { H, }, 4 and { Ly }geT can
be considered as a single operator in the appropriate direct integral space:

$H = £2 Z)dx, = / (2% d
Td
Denote the unitary duality operator ¢/: $ — $ on functions ¥ = U(z,n) by
(4.2) UD) (O, m) = V(0 +m-a,m),
where ¥ denotes the Fourier transform in both discrete and continuous variables:
(4.3) U(O,m)=>" / 2mind=2mima g (1 n) da.
nez

In the notation, we will always write the continuous variables before discrete vari-
ables in the arguments of functions, even when their roles are switched under du-
ality. As mentioned above, the operator families {H, }, e and {Lg}peT can be
represented by direct integrals

D 52}
H:= H,dx, L:= / Ly do.
Td T

Aubry duality (see, for example, [23]) can be formulated as the unitary equivalence
of the above direct integrals:

(4.4) UHU = L.

One can apply duality to other operators and operator families on £2(Z). For ex-
ample, the operator family corresponding to the operator A (constant in x) has the
following dual family:

&) S _
U (/ Adx) Ut :/ A(6) d,
Td T
where

(4.5) (A(0))(m) = 2sin2x(m - o + O)(m), m e Z°.

Note that an z-independent family may become #-dependent after the duality trans-
formation, and vice versa. For any (Borel) function f, we have

@
4.6) UfH) U =Uf (/ H, dx) Ut

—u</f d:c>Z/{_ /ng = f(L).
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For a Borel subset K, denote

A(0,K) = 1(Lo) A(0)1(Lo).
Then, one can check that A(0, K) is dual to A(z, K):

1 [T/ e . .
Z/I/ (/ M=t A(z, IC)e~ et da:) dtu=!
T 0 Td

1 g @ iLlot A —iLgt
= = et A0, KC)e 0t de ) dt.
T 0 T

The following proposition is, essentially, established in [41] for the case K =
o(Hy,) in a slightly different form. We include most of the proof for the conve-
nience of the reader.

Proposition 4.4. Under the assumptions of Theorem 4.2, denote by Ey(0), 1 (0)
the eigenvalues and eigenfunctions of Lg(K) (the exact choice of parametrization
does not matter). Then, for almost every 0 € T, the following limit

T ~ .
Q(Q,K) = s-lim 1/ eitLGA(e,/C)e_”LG dt

T—+o00 T 0
exists and is a diagonal operator in the representation of eigenvectors of Lg(K).
More precisely,
~ 1
4.7 0,K 0) = ————F—Ur(0).

As a consequence, for almost every 6 € T we have

Q(ea ,C) = glC(LG)'

Proof. We only sketch the main ideas, since most of the argument is contained
in [41]. The existence of the limit and the fact that it is diagonal in the basis of
eigenvectors of Ly follows from the following standard calculation:

1Ty~ .
7| (A e e 0),000)) at

T -
_ <;/ it(Ee(0)— By (0)) dt) (A(0)r(0),1(0))
0
and the fact that

I
1 / B ~Ex(0) gt < 1.
T J =

T J—
lim — / Lt OB g _ ) b Br(0) =
T—>+OOT 0 0’ Ek(e)?éEg(e)
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As a consequence, we obtain
(438) 5
(Q0, ) (0), ¥ (0)) = (AB) e (0), ¥ (0)) = > 2sin2m(0+m-a)|thy(0,m) .

meZd

In order to establish (4.7), consider the Fourier transforms of the eigenvectors of
Lg (’C)

f]g(l',e) _ Z 627”'“%1/%(9,71,),

nezd
where (0, n) is the nth component of 15 () (the latter is considered as a vector
from (2(Z)). If 0 ¢ Z + o - 7, then (see Appendix C of [7], and also Remark 5.1
in [36])

4.9)  d(0) := e fi(,0) fu(x — a,0) — e 2™ fr(x,0) fu(x — o, 6) # 0.

By direct calculation and (4.8), we also have

(4.10) di(0) = (Q(0, K)r(0), ¥r(9)),
which implies that ker Q = {0}. Let

() = (E —1v(:z) —01)

be the Schrodinger cocycle, and consider a matrix function B(z, #) defined by

1 fu(z,6) fr(z,0) .
B(z,0) = W <62”9fk(x —a,0) e2m‘9M> ’

note that the matrix is invertible since dj(6) # 0. Then

B 627Ti0 0
Bla+a0) Seu @860 = (T ).
Kotani’s theory (see the argument in [4 1] with additional references) implies that
there exists a subset £ C K of full Lebesgue measure (as a consequence, full
spectral measure for each H,(K)) such that, if Ex(6) is constructed above and
Ex(0) € &, then
1
mN'(Ex(0))

Comparing the last equality with (4.10), both of which hold for almost every 6 € T,
we complete the proof. Note that the function g is only defined Lebesgue almost
everywhere on K. However, for almost every § € T, all eigenvalues Ej(0) will
be at differentiability points of IV, and hence g(Ly) will be well defined. As a

di(0) =
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consequence, using (4.6), we have
4.11)
S5 2
Q(K) = / Q(z,K)dx = / g (Hy) dx
Td Td

=uy! </f Q(6,K) d0> U=uy-1 (/f g (Lg) dw) U:=U"'9(kK)yuo

Denote by Q(z, T, K) the pre-limit expression:
(4.12)

T D
Q. T.K) = = / ¢ A, K)o itHe dt,  Q(T,K) = / Q. T,K) de.
0 Td

=7
We would like to show the following, for all p € Z:

(4.13) Q(z,T,K)5, — Q(x,K)d,,
where {8, } ¢z denote the standard basis vectors in £*(Z). Let

for(x) = Q2,T,K)op,  fp(x) = Qx, K)dp.

Denote by f, 7(x,n) and fy,(z,n) the n-th components of f, r(z), f,(x) respec-
tively, where n € Z. One can treat f,  and f,, as elements of L?(T¢ x Z). Denote

also by f;,,T(G, m), f;,(&, m) the Fourier transforms of f, r, f, in both variables
defined as in (4.3):

s 0 _ 2mind—2mim-x dz.
Fur0.m) =3 [ e o (e,n) da

nez
Lemma 4.5. Foranyp € Z, x € T and T > 0, we have

2

@) @) = Gl < [ | X 1Fr(Om) = oml | .

meZ4

Proof. First, let us note that both x — f,7(x) and  — f,(x) are continuous
as maps from T to ¢2(Z). In particular, they are continuous component-wise.
Denote by fpj(x, 0) the Fourier transform only in the variable n, and same for
fp(:n, 6). Using the Parseval’s identity, continuity in z, and £! bound for the Fourier
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transform, we have the following:

@15) sup o (x) ~ fyl@)lizy = sup D () = fyla, )l

nez

2
—sup [ Ufur(e.0) = fu(o0)ab < [ (ess suplfr(o.6) = fy(o0)]) ot

2

< [\ X o) = Fo.m)l | .

meZd
O

Remark 4.6. It is crucial that the left hand side of (4.14) is continuous in x, other-
wise we would not have been able to obtain convergence for all 2 € T¢, as the right
hand side of (4.14) does not allow to recover any data about measure zero subsets
of T¢ in the variable . The said continuity, ultimately, reduces to the assumption
of K-regularity of the family {H, },cT.

Remark 4.7. Let U be the duality operator. Then
fp,T(ev m) - (ufp,T)(Q —m-a, m)a .]?17(07 m) - (ufp)(e —m-a, m)

Therefore, in order to show (4.13), we can apply Lemma 4.5 and reduce it to a
convergence statement about the images of f, 7 under duality.

We will use the following notation for the dual pre-limit expressions:

~ o . ~ @ _
Q6,T,K) :_;/O etto A(9, K)e Eo dt, Q(T,IC)—/T Q0,T,K)db.

Finally, consider d,, as an element of L2(T¢ x 7Z) that is a constant function in the
x variable. Then, it’s Fourier transform in both variables is equal to

(0,)(8,m) = U8,) (0 —m - o, m) = 2950 (m),
which implies

for(0,m) = (UQ(T,K)8,)(0 —m - a,m)
= (Q(T,K)US,)(0 —m -, m) = 2P Q0 — m - o, T, K)o,

and similarly

Fp(0,m) = UQ(K)8,) (0—m-a,m) = (Q(K)US,)(0—m-c, m) = 2P *Q(O—m-av, K)b.
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As a consequence, we can rewrite the conclusion of Lemma 4.5 as

(4.16)

2 1/2

sup @)~ @l < | [ | [Foro.m) = Fo.m| | a0

meZd

) 2 1/2

- /T b ‘(@(9—771-a,T,IC)éO—@(e—m.a,]c)(sO) (m)| | a6

meZd
e ~ - s \1/2
= Z </]r‘(Q(e_m'avTJC)‘SO_Q(G_m'a,lc>50) (m) d9>

meZd

= 3 {6 @67 0030 — GG KD = |a. )50 — Q)
meZd

HLQ(’JI‘ HZEL2(T))

The factor ™7 was absorbed into the absolute value, and the second inequality
is the triangle inequality. Let

U(0,m), |m| <N

(PN\I/)(va> = {0 ’m‘ S N

be the projection onto a neighborhood of the origin in discrete Z? variable. The
following is the main technical estimate of this section that uses the localization
bounds.

Lemma 4.8. Suppose that the family { Ly }gcr satisfies Sobolev localization on K
in the sense of Theorem 3.4 with s > 5d/2. Then the norms

1Q(T, K)doll 1 (za,e2 (1)

are bounded uniformly in T. As a consequence,

(1 = Pn)Q(T, K)doll 1 (z4,1.2(1y) < (),

where ¢(N) — 0 as N — o0, uniformly in T.
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Proof. First, let us replace @(9, T, K) by the non-averaged expression e?% A (0, K)e~ithe
(thus proving a stronger inequality). As a consequence, we would like to estimate

(4.17) ( / ‘ etho 4(0, KC)e —”L950>)2 d9>
nezd

1
<9 Z (/‘ eitlo A(0, K)e —“L950>] d9)2

M

< 2 Z / ‘ 1 Lg ZL9t5n,5k><g(0)(5k, 1;C(L9)€_iL9t(50>’ de

‘i kezd

2

<4 | X / [(Lic(Lo)e™ 0%, 61) Ok, Lic(Lo)e™**'0)| df |

neZd \keZzd

where in the second inequality we used the fact that the integrand is bounded by
2 in absolute value to replace L2 norm by L' norm, and then used the fact that
A(0) is a diagonal operator acting on dy as a scalar (we also transferred 1y (Ly)

to e~*Le! and hence there is no more K in Z(Q)). In the case of sPDL, we can
continue the chain of inequalities as follows, using Lemma 6.1:

1/2
@I <ad | > /\ Lic(Lg)e "F0'5,,, 61) (6k, 1ic(Lg)e 0" 60) | dO

nezd \kezd
1/2

<Y (X / [(Lic(La)e 018, 510 |Y21{6%, Lic(La)e ot 50)|/2 df

neZd \kezZd

1/2

1/2
<1} ( / (Lic(L)e=iLots,, 6, df / (00, 1xc(Lo)e ’L9t50>|d0>

nezZd \kezd

Let
by = / (1 (Lg)e "5, 8,)| A0, n € Z°.
T

Then, by covariance, we have the following bound (recall that « denotes the stan-
dard convolution for functions on Z%):

@in<4 (h1/2 % h1/2>1/2 (n).

nezZd: |n|>N



28 L. GE, I. KACHKOVSKIY

Therefore, in order to obtain decay, we need to verify (h'/2 x h1/2) Vep (Z%).
We will need to use some bounds on weighted ¢? spaces with the norms

lallfe = D (14 [n])*u(n) .

nezd

Their properties are summarized in the Appendix. Since h € ¢2(Z%), we have the
following inclusions, see also Appendix (“4” means the number has to be strictly
larger):

h'/? e fi/z—d/4+§

W2 pt? e 2,

S

w = (W2« B2 ¢ o sajars

S

{1+ [n])*/273 w(n) }yepa € (27).

In order to get w into £'(Z?), we can use Holder inequality, for which it would be
sufficient to have

{4 [nl) B2y, g0 € (27

This, ultimately, gives us the requirement s/2 — 3d/4 > d/2, which reduces to
s > bd/2. O

Corollary 4.9. The conclusion of Lemma 4.5 also holds for Q(K).

Proof. Recall that, being a direct integral, @(T, KC) converges to é(lC) in the
strong operator topology on L2(T x Z%). As a consequence, there is a subsequence
of time scales T}, such that O(T},, K)dy converges to Q(K)dy almost everywhere
on T x Z% as k — oo (here, as before, dg is considered as an element of L?(T x Z%)
constant in 8). Hence, the result follows from Fatou’s lemma. O

Conclusion of the proof of Theorem 4.2

Since the operator norms of Q(x, 7, K) are uniformly bounded, it suffices to
show that Q(z, T, K)d, — Q(z, K)o, for all p € Z. In other words, it is sufficient
to show that the right hand side of (4.16) converges to zero. Take N > 1. Using
the triangle inequality, Lemma 4.5, and Corollary 4.9, we have

|a )80 — Q)3

£1(2412(T))

< HPN (é(T,/C)ao - é(n)ao)

£1(2412(T))

+[a - 2w (8r 08 - Sucyn)

£1(2412(T))

+ 2¢(N),

< (2N)d/2 HQ(T,/C)(SO - é(/C)(So’ L2(Tx24)
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where in the last inequality we use the fact that /' (Z%; L2(T)) norm is bounded by
the L2(T x Z%) norm on the range of Py (with an appropriate constant). Now,
since || (T, K)do — Q(K)éoHLz(Tde) — 0, the proof can be completed using the
standard £/2 argument. O.

The proof of Theorem 4.2 in the uniform case

Suppose, instead of Theorem 3.4, we have the conclusion of Lemma 3.5 with
s > d. By covariance, we have

hp—m = ess—sup ‘(5717 1/C(L9)eitL0 5m>‘
0eT

for some A which satisfies
h(n) < M(1+ |n|)~".
Similarly to (4.17), we can estimate
C(M)
T+ "

Therefore, the conclusion reduces to {(1 + |n|)~=9}, _,a € (X(Z%), which is
satisfied for s > d.

(6, €™M0 A0, K)e 050V | < (h* h)(n) <

4.1 On the proofs of the main results

The proof of Theorem 2.2 is complete, modulo XC-regularity which will be es-
tablished in the next section. To finish the proof of Theorem 2.1, consider

Kj={E € K: ||B(E)|cs(rey < 5}

and apply the uniform result on each K;, together with K-regularity. To prove
Corollary 2.3, follow the same lines as in the proof of Theorem 4.2, using Lemma
6.1 instead of the Sobolev bounds. We did not try to optimize the condition s > 4d
in this case.

5 Regularity of the absolutely continuous spectral measures

This section is mostly expository. Let {H,},cra be a quasiperiodic operator
family (1.18):

(HyY)(n) =9Y(n—1)+9(n+ 1) +v(z +na)y(n), neZ.

For a Borel subset L C R, we will say that the family of Schrodinger cocycles
(v, SE—y) is C*-uniformly rotations reducible on K, if there exists ¢ > 0 and a
family of matrices B(E;-) € C*(T%; SL(2,R)), E € K, such that
(5.1
1 _ _ [cos2mf(x) —sin2n6(z)
B(z + o, E) %w@W@E)me@m%%@ cos 20)(x)
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where § € C*(T;R) and
B E)llcs(rasniry < ¢ VEEK.
For a Borel subset F' C R, denote by
Hpg(F') = (8p, 1p(Hz)dg)

a spectral measure of H,. Clearly, p;, = ugigz +n- Hence, one simplify the

computations by assuming p = 0.

Moreover, since &y and ¢; form a cyclic subspace for H,, one can easily check
the following (say, by repeatedly applying H,, to dp or d; and eliminating previous
elements by induction):

8, = p "V (Hy) 60 + ¢V (H,)d1,

xT
where pén_l), q;gn_l) are polynomials of degree < n — 1, whose coefficients are

C?-smooth in z. As a consequence, in order to establish smoothness of spectral
measures (see below), it would sufficient to consider p, and ) (x).

Proposition 5.1. Suppose that a family of Schridinger cocycles (o, Sg_,) is C'-
uniformly rotations reducible on a Borel subset I C R. Then, for all x € T%, and
any Borel subset F' C IC, we have

1
(5.2) oo (F) = 2/ (521(957E)2 + 522(337E)2) dE.
TJF
(5.3)
1
M&(F) = % /F (bgl(x, E)b21 (x + «, E) + bQQ(JC, E)bgz(ﬂ? + «a, E)) dE.

Proof. Both claims follow from some standard calculations from the Kotani theory.
We will, essentially, use the notation from [17]. ForIm E' > O and = € T<, denote
by uy (z, E') the unique solutions of the eigenvalue equation Hu = Ewu satisfying
ut(z, £;0) =1, wuy(x,E;n) — 0 as n — £oo,
and the m-functions
my(z, F) = —ug(z, B £1).
Using the eigenvalue equation, one can also obtain
u_(z,E;1) =m_(z,E)+ E —v(x).
The Green’s function can be expressed through the above Jost solutions:
u_(z, E;n)uy (z, Esm)
er(.’E, E) + m*(xv E) +E - U(x)

Gnm(x,E) = <(5n, (HI — E)_16m> = —

Asa consequence,

-1
o Goo(z, E) = my(x, E)+m_(z,E) + E —v(z)’
Goi(z, B) = melr
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We can also extend m (E, z) into E € R by considering limits m (E +ic, z) as
¢ — 04, which will exist for almost every E for which L(E) = 0. In particular,
they will exist almost everywhere on K. The values of m4 (E, z) for E € R can
be calculated as follows. Any matrix B € SL(2,R) defines the following action
on the upper half plane C:

_ Bz + Bro
Bo1z + Bay’

Suppose that B(-, E) satisfies (5.1). Then, for almost every pair (E, z) € KC x T¢,
we have

(5.5) my(z, E+1i0) = B(z, E) oi = —m_(z, E + i0).

The continuity arguments similar to [5] (see also [17, Footnote on page 10]) imply
that (5.5) actually holds for all z € T% and almost every E € I, where “almost
every” depends on . However, in the following considerations zero measure sets
will not be important, and hence one can use (5.5) as an alternative definition of
m4 (z, E +40). Using (5.5), we can calculate

. b1t +b b12b22 + b11b . 1
ma(z, B 4 i0) = A 012 b 52 ;1 21 ; -
ba1i + b2o b3 + b3 by1 + b3
where b;; = b;;(x, E) are the matrix elements of B(z, E'). Note that (5.5) implies
that the denominators in (5.4) are purely imaginary for £ € K + ¢0. Therefore,

one can calculate densities of spectral measures (i, (45, as follows:

Bo zeCT.

dpgo _ 1 , 1 b31 + b3
= = Im Goo(a, E +i0) = — = .
PR 00, B +10) 2r Immy (z, E + i0) 27
d,ugl 1 . Re m+(a:,E + ZO) b12b2o + b11bo1
MO _ 2 1y Gy (2, E +i0) = — — 12722 T oo
JB G B i) = e e B i0) on

O
We immediately obtain the following regularity claim.

Corollary 5.2. Under the assumptions of Proposition 5.1, the spectral measures
Mg are absolutely continuous on KC with respect to the Lebesgue measure. More-
over, their densities are Lipschitz continuous in x:

z y
dpipg _ dppq
dE dE

where C),_, depends on p — q and the constant c from the uniform rotations re-
ducibility assumption.

< CP*(I"ZU - y|7

Theorem 5.3. Suppose that the family {H},cqa is Cl-uniformly rotations re-
ducible on a Borel subset K C R. Let g € L>(R), suppg C K. Then, for any
To € T, we have

s-lim g(H,) = g(Hmo)'

T—T0
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Proof. Since g(H,) are uniformly bounded, it would be sufficient to show g(H)d,, —
g(Hz, )0y, strongly. By shifting the x variable, one can assume n = 0. Since
g(H,)&o are also uniformly bounded in #2(Z), it is sufficient to establish the fol-
lowing:

(5.6) (Ons 9(Hy)d00) = (On, g(Hyy)0o), Yn € Z

(5.7) lg(Hz)doll = [lg(Ha, )doll-
To establish (5.6), note

|<5n7 g(Hx)50> - <5n, g(H:vo)50>|
/ 9(B)dyito(E) - / o(E)dpuy(E)

where ¢, is the constant from Corollary 5.2. Similarly, (5.7) can be established
using the fact

< calz — ol IK[lglL,

lg(Ha)do|l* = (b0, l9(Ha)[*do),
and then repeating the earlier argument applied to the function |g|2. U

Corollary 5.4. Suppose that the conclusion of Theorem 5 is satisfied for a fixed
function g € L>°(R) and a sequence of Borel subsets K1 C Ky . ... Then it also
satisfied for K = U;K;.

Proof. The statement follows from the Banach — Steinhaus theorem: indeed, the
family of operators {g(H;)},cra is uniformly bounded, and the convergence can
be verified on the dense set U; Ran(1x;(H)), by applying the previous theorem
with € = K;. O

6 Appendix

In this section, we will establish some elementary bounds which will happen
to be useful later. All functional spaces denoted by ¢ with some indices will be on
Z%. Denote by ¢2 the space of Fourier transform of functions from H*(T?) with
the following norm:

lulZ = 37 (1 Il [u(n)P.

nezad
Recall the Holder inequality: for u € /P, v € ¢4, we have
1 1 1
(61) HUUHZT S HUHZP“U”K‘M - =—-+ ] 1 S b,q,T S .
r p g

The following lemma is elementary:

Lemma 6.1. Let a € Z% and s1 + so — d > 0.

Z 1 6(81752733ad)
=, (U fa =l (U [nl) = (T fa)ore
n
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Proof. We have

1
2 (1 +la—mn])>(1+ |n])*

nezd

1
<(Z RN > )<1+|a—n|>81<1+|n>82

In|<a/2 |n—al<a/2 |n|>a/2,|n—a|>a/2

1 1
S AT 2= (T m)e

In|<a/2
1 1 1
F T > Gt X G
o/l | 2 Wl | 2 (At

< c(s1,82,a)(1+ |a|)d_51_52.

g

Finally, recall that u(p) = (1 + |n|)~° belongs to ¢" for rs > d. We will need the
following “square root” bound.

Lemma 6.2. Suppose that u € (%, and let v(n) = |u(n)|'/2. Then

d
lelle < Crs, Dllulle, 0<r <2 -7
Proof. The condition u € ¢ is equivalent to {(1 + |n|)*u(n)}, cze € €2, which is
in turn equivalent to { (1 +|n|)*/?v(n)},cz¢ € ¢*. We can multiply it by an appro-
priate power of (14-|n|) ! in order to get it back to £2: since {(1+4|n|)*'},,cz4 € £*
for s’ > d/4, we have by Holder inequality

{(A+ [n))™ A+ n))*?0(n)}ega € 2, & > d/4.

which implies the statement of the lemma. g

Finally, the following is the dual version of the multiplicative Sobolev inequal-
ity [1, Theorem 4.39] on the language of convolutions. One can also prove it
directly and use in the proof of multiplicative inequalities.

Lemma 6.3. Let u € (2

S1°

(uxv)(n)= Z u(n —m)v(m).

meZd

vE E?Q. Denote their convolution by

Then

lus vl < s, 1,52 lullg lollee,. 0 <5 <51+ 52— /2
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