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ABSTRACT. We consider a class of unbounded quasiperiodic Schrodinger-type operators on
?%(Z%) with monotone potentials (akin to the Maryland model) and show that the Rayleigh—
Schrodinger perturbation series for these operators converges in the regime of small kinetic
energies, uniformly in the spectrum. As a consequence, we obtain a new proof of Anderson
localization in a more general than before class of such operators, with explicit convergent
series expansions for eigenvalues and eigenvectors. This result can be restricted to an energy
window if the potential is only locally monotone and one-to-one. A modification of this
approach also allows the potential to be non-strictly monotone and have a flat segment,
under additional restrictions on the frequencies.

1. INTRODUCTION

In this paper, we consider a class of quasiperiodic Schrédinger-type operators on £2(Z<)

(1.1) (H(zo)$)n =€ > Pn-mbm + [0 + 10 w)t.

mecZ4

The frequency vector w € (—1/2,1/2)? will always satisfy the assumption that 1,w;, ..., wy
are rationally independent. The parameter zg € R\ (Z + 1/2 4+ Z* - w) is the quasiperiodic
phase. We will always assume ¢ € (1(Z%), so that the first term in the right hand side
(usually referred to as hopping or kinetic term) is a bounded operator on ¢2(Z%). Most of
the time we will assume that ¢, # 0 only for finitely many n € Z? The most common
example is the discrete nearest-neighbor Laplace operator:

(1.2) o= Z €n,

n: |n|;=1

where {e,: n € Z%} is the standard basis in (2(Z%) and | - |; denotes the ¢!-norm.

The real-valued function f is initially defined on (—1/2,1/2); we assume it to be continuous
and satisfy

f(=1/240) = —o0, f(1/2—-10) = +oc.

We then extend f periodically into R\ (Z + 1/2). The assumptions on xy and w imply that
is a well-defined unbounded self-adjoint operator on ¢2(Z<). In the present work, the
most important assumption will be that f is non-decreasing on (—1/2,1/2). In most of the
paper, we assume that f is strictly increasing, with the derivative bounded from below, but
in the last section f will be allowed to have flat pieces.

Spectral theory of operators with strictly monotone functions f dates back to the
classical Maryland model [B [, 4], where f(x) = tan(7x) and the kinetic term is the discrete
Laplacian . Similarly to many other quasiperiodic models, the spectral types of such
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operators depend on the arithmetic properties of the frequencies. We will call the frequency
vector w Diophantine if, for some Cg, > 0 and 7 > d + 1 we have

(1.3) In-w|| = dist(n - w,Z) > Caon|™", Vn e Z4\ {0}.

It is known that for all € > 0, all Diophantine w, and all values of zy, the Maryland model
has Anderson localization, that is, dense pure point spectrum and exponentially decaying
eigenfunctions. In d = 1, a complete description of the spectral type (in particular, the
transitions between pure point and singular continuous spectra depending on whether the
frequency is closer to a Diophantine or a Liouville irrational number) was obtained in in
[7]. See also [9] for an alternative proof in the Diophantine setting. The case of more
general f was studied in [2], and it was shown that the operator has Anderson localization
for Diophantine frequencies and 0 < ¢ < go(w, f, ). The function f was assumed to be
strictly monotone and to have a meromorphic continuation into a strip in C. The approach
of [2] is based on a KAM-type scheme: a diagonalization of H(zy) is constructed via an
infinite sequence of unitary transformations. In a recent work [I1], Anderson localization
for d = 1 is shown for all ¢ > 0 and all Diophantine frequencies, under the assumption
that log |f| € L'(—1/2,1/2). However, the non-perturbative method of [I1], based on [§],
cannot be extended to d > 1. We also mention [10], where singular continuous spectrum of
operators with meromorphic potentials is studied.

In the present paper, we study Anderson localization for in the same perturbative
setting as [2], that is, for |e| < go(w, f,¢). Our conditions on f include all meromorphic
functions from [2], but are formulated completely in terms of the first derivative of f. We
believe that the most interesting aspect of our paper is the method: we construct explicit
series for eigenvalues and eigenfunctions using the standard perturbation theory, and, to our
surprise, in both cases the Rayleigh-Schrodinger perturbation series converge as is, without
the need of multiple KAM-type steps. As a consequence, we are able to write down complete
representations of eigenvalues and eigenvectors in terms of converging power series in €.
Compared to the previous work, our method also covers two new cases (the summary of the
main results is provided in the next section):

e The case when f is monotone and one-to-one on an interval (a,b) C (—1/2,1/2),
with some regularity properties outside of (a,b) (including f~(f(a,b)) = (a,b)), but
does not have to be monotone outside of (a,b). In this case, we obtain localization
on the energy interval slightly smaller than f(a,b), see Theorem m

e The case when f has a flat segment, but is Lipschitz monotone outside of that seg-
ment. In this case, under some additional assumptions on the length of the segment
and the frequencies, we can obtain complete Anderson localization, see Theorem [7.4]

To our best knowledge, this is the first class of examples of convergent perturbation series
in the context of Schrodinger operators with dense eigenvalues. A related phenomenon for
the classical KAM was observed in [3] in the context of ODEs (which does not appear to be
related to monotonicity). Our proof is based on careful observation of cancellations between
terms of the perturbation series with the same power of ¢ (see Remarks , , for the
outline of the cancellation mechanism). While the convergence results use the structure (1.1,
the actual combinatorial procedure of grouping terms in order to prepare them for cancelling
can be formulated in a more abstract context of arbitrary lattice Schrodinger-type operators.
We believe that this procedure may be of independent interest. For example, for bounded
monotone discontinuous potentials such as f(x) = {x} the perturbation series will converge
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on a large (but not full measure) subset of phases zy and thus produce a large number of
exponentially decaying eigenfunctions, whose contribution to the integrated density of states
will approach 1 as ¢ — 0. However, the remaining “resonant” phases will require further
analysis, possibly by different methods. We intend to explore appropriate modifications of
our method in order to study localization and spectral gaps of these operators in subsequent
publications. One can also draw some parallels between our procedure and renormalization
techniques used in statistical physics, such as the work [13] where Anderson localization in
terms of two-particle functions was studied for the quasiperiodic Holstein model.

Acknowledgments. The authors are grateful to David Damanik and Leonid Pastur for
useful discussions, and to the anonymous referee whose suggestions, hopefully, made the
text substantially more readable. The research of LP was partially supported by EPSRC
grants EP/J016829/1 and EP/P024793/1. RS was partially supported by NSF grant DMS—
1814664. IK was partially supported by NSF grant DMS-1846114.

2. RAYLEIGH-SCHRODINGER PERTURBATION SERIES AND MAIN RESULTS

2.1. The perturbation series. Let V be a self-adjoint multiplication operator on ¢%(Z4),
not necessarily bounded:

(2.1) (Vu)y = Van, u= Z Un€n,
nezd

where {e, : n € Z%} is the standard basis in £2(Z%). Let also ® be a Téplitz-type operator:
for a sequence {¢n fnezd, we define

(2.2) (Pu)n= > Pn_mim.

mecZd

We will assume that & is self-adjoint:
(2.3) Dyn = Pum, that is, ¢, = Pn.

In Sections 2 — 5, we also require that ¢, # 0 only for finitely many lattice points n € Z¢, and
wo = 0. In Section 6, this will be generalized to an infinite range case in the quasiperiodic
setting. Define a family of operators

(2.4) H=V+¢ed,

parametrized by € > 0. We will not emphasize the dependence on ¢ in the expression for H,
as long as it is clear from the context. Fix some ny € Z? and assume that

(2.5) Va # Vi, for n # ny.

In other words, the potential attains the value V;,, only at the lattice point ny. We will call
this the algebraic non-resonant condition at ng.

If ¢ = 0, then the operator H has an eigenvalue V,,, with an eigenvector e,,. Rayleigh—
Schrodinger series is a formal perturbation-theoretic expansion, which represents how that
eigenvalue changes after the perturbation with ¢ > 0. In order to construct these series,
consider the eigenvalue equation

(2.6) H = M,
where both A and 1 are formal series in e:
(27) A= )\0—|—€)\1—|—€2)\2—|—...,
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(2.8) ¥ =1y + ey + o + ...

with A\g = V},, being the unperturbed eigenvalue and ¢y = ey, the unperturbed eigenfunction.
Then, one considers (2.6 as an equality of formal series

(2.9) (V4+e®) (o +epr +...) = (Ao + el + ...) (Yo + €1 + ...);

in other words, an infinite system of equations obtained by comparing the coefficients at
each power of £ (note that each equation will have finitely many terms). We will impose the
following normalization conditions:

(2.10) Wi L b, j>0.

In other words, all the correction terms are orthogonal to ey, .

It is well known and easy to see that, under the above assumptions on V' and ®, both A;
and 1; can be uniquely determined from equating the coefficients in at each power of
¢; see also Theorem below. One can start these expansions at any lattice site ng as long
as it satisfies the algebraic non-resonance condition.

2.2. Summary of the main results. The results of the present paper rely on certain
regularity conditions on the function f, which can be stated in terms of the first derivative
of f and are discussed in detail in Section 5. Any meromorphic strictly monotone function
f, such as in [2], satisfies these conditions, and one can state the following theorem in a
self-contained form as a consequence of our results.

Theorem 2.1. Let f: (—1/2,1/2) — R be a strictly increasing function satisfying f(—1/2+
0) = —o0, f(1/2 —0) = +o0 and admitting a meromorphic 1-periodic extension to a neigh-
borhood of the real line in C. Suppose that the frequency vector w satisfies the Diophantine

condition (|1.3))
In-w|| = dist(n-w,Z) > Cqin|™", VneZ\ {0}.

Let H(zo) be the operator with on # 0 for finitely many points n € Z*. There exists
g0 = eold, f,¢,Cdio, ) > 0 such that, for any ¢ € [0,e0), any o € R\ (Z + 1/2 + Z% -
w), and any ng € 74, the Rayleigh-Schridinger perturbation series for the eigenvalues and
eigenvectors of H(xg), started at ng, converge and provide a complete orthogonal system of
eigenvectors for H(xo), parametrized by ng € Z°.

Note that the strict monotonicity of f on (—1/2,1/2) and rational independence of the
components of w (which follows from the Diophantine condition) imply that the potential
in H(zg) satisfies the algebraic non-resonance condition at all lattice points for all z, €
R\ (Z+1/2+ 7% w). In other words, f(zo+m-w) # f(xo+n-w) for m # n.

For the remaining results summarized below, it is more convenient to postpone the exact
statements until further sections.

(1) The main result, from which Theorem follows, is Theorem whose proof is
completed in Section 5. The conditions on f, in both local and global forms, are
described in Section 5.1. These conditions, referred to as Cl.g-regularity, can be
described entirely in terms of the first derivatives of f.

(2) Several generalizations are discussed in Section 6. In particular, the hopping terms
n can be allowed to depend on z in a quasiperiodic way, and infinite range hopping is
allowed, with some natural assumptions that higher range hopping terms have larger
powers of € in front of them. A somewhat technical case is also considered where f,
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while still strictly monotone, is allowed to have intervals on which the lower bound
on the derivative is, essentially, e-dependent. This case serves as a preparation for
the next section. A version of the construction from Section 6 is also used in our
subsequent paper [12].

(3) In the last section, we consider a model example of f which is not necessarily strictly
monotone on (—1/2,1/2) and is allowed to have a flat segment. As a consequence,
the algebraic non-resonance condition is violated for this operator. We describe a
scheme that allows to transform such operators to those satisfying the assumptions
of a general theorem from Section 6. This allows us to obtain Anderson localization
for these operators.

3. GRAPHICAL AND SYMBOLIC REPRESENTATIONS OF THE PERTURBATION SERIES

In this section, we will discuss in detail the construction of the perturbation series. For
simplicity of notation, we will always assume that the series is started at ny = 0. The general
case can be easily considered by translation (or, in the case of quasiperiodic operators, by
changing the phase z).

3.1. Representation in terms of paths on a graph. There are multiple ways of repre-
senting terms in the series . For our purposes, the most convenient way would be to
associate them with paths on a certain weighted graph I'. The vertices of I' are defined as
follows. First, take a copy of Z% and call it the sheet of height 0 (“base sheet”). For each
vertex ko of Z\ {0}, we add a new separate copy of Z%\ {0}, with our vertex kg placed as
the origin (so that ky together with a copy of Z¢\ {0} form a copy of Z¢). Each of these
copies of Z¢\ {0} will be called sheets of height 1. Now, add a separate copy of Z? \ {0}
for each vertex k; on each sheet of height 1, and call these new copies sheets of height
2. The result of this process, repeated indefinitely, will be the set of vertices of the graph
. One can also enumerate the vertices of the graph in a more direct way: each non-zero
vertex of I' on a sheet of height s can be associated with a sequence kg, ki, ..., ks, where
ko, ki,..., ks € Z4\ {0}. If v is a vertex of " that is the point k from one of the copies of
Z% or 7%\ {0}, we will call k the coordinate of v. In other words, a vertex v represented
by a sequence ko, ki, ..., ks has coordinate ky. We will also consider the origin (which only
exists on the base sheet) to be the only vertex with coordinate 0 and denote it by the same
symbol 0 as the origin in Z.

We will say that the vertex associated with a sequence kg, k1, ..., ks 1, ks is directly above
the vertex associated to ko, ki,...,ks_ 1. We will also say that the vertex associated with
ko, ki,..., ks, ..., k; is above the vertex associated with kg, ki,...,ks. In the remaining

text, we will avoid using the sequence notation for vertices, but we will often use the terms
“above” or “directly above”. We will also use the words “the sheet of I' directly above the
vertex v” in the obvious interpretation. Sometimes it is also convenient to use words “below”
or “directly below”, whose meaning is opposite to “above” and “directly above”. Note that,
by construction, none of the vertices of I' are above or below 0.

The edges of the graph T' are defined as follows. In all cases, n and n’ are coordinates of
two vertices v,v’. The graph I' is oriented; however, with each edge it will also contain the
edge in the opposite direction (which may have a different weight — see below). If v and
v’ are on the same sheet, there is an edge between v and v’ if and only if ®,,, # 0. That
includes the origin on the base sheet (recall that other sheets do not have an origin on them).
In addition, if v" is located on the sheet directly above v, then there is an edge from v to v’
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if and only if ®,9 # 0. In a way, v plays the role of the origin in the sheet that is directly
above v.
To each edge of the graph ', we will associate a weight:
én,n
Vo—Vr
if n’ #£ 0, and weight @, if n’ = 0; the latter can happen only on the base sheet.

e If v is directly above v, then the “ascending” edge from v to v’ has weight ij"‘ﬁ’ .

e If v and v' are on the same sheet, then the edge from v to v" will have weight

Don/
Vo—Vn '

Just like on any oriented graph, one can define a path on I" as a sequence of (not necessarily
distinct) edges (eq,...,e,), where the edge e; ends at the starting vertex of e;;. We will
say that this path starts from the starting vertex of e; and ends at the ending vertex of e,.
We will say that a path visits a vertex v if one of the edges ey, ..., e, starts or ends with v.
A path may visit the same vertex multiple times.

We will consider two types of paths on I'. An eigenvalue path is a path that starts and
ends at the origin and never visits the origin in between. An eigenvector path starts at the
origin, ends at some non-zero vertex with coordinate n on the base sheet, and does not visit
the origin in between. It will also be convenient to consider eigenvalue paths that do not
start from the origin. By definition, a non-base (eigenvalue) path is a path on I' that starts
and ends from the same vertex v and only visits vertices above v in between. An eigenvalue
path would be a non-base path that starts from the origin. Since the graph I' above any
point looks identical, one can translate any eigenvalue path into any vertex of [' and obtain
a non-base path. We will not consider non-base eigenvector paths.

Since we will mostly consider eigenvalue/eigenvector paths, any claim about paths, by
default, is applicable only to eigenvalue/eigenvector paths. We will always specify if we are
talking specifically about non-base paths, eigenvalue paths, or eigenvector paths.

In all cases, |P| will denote the length of P (in other words, the number of edges of P).
By Cont(?P), we denote the product of weights of all edges of P. If a path travels along the
same edge multiple times, each of them gives a separate contribution.

If Q is an eigenvalue path and Q' is a non-base path obtained from Q by translating it into
a vertex with coordinate k, then we have

and the “descending” edge from v to v has weight —

(3.1) Cont(Q') = — (Vo — Vi) *Cont(Q),
since the weight of the last descending edge in Q' has an extra factor —(Vp — Vi) 7L

Remark 3.1. In the above construction, I'; has an edge between two points with coordinates
m, n on the same sheet if and only if &, # 0. In some constructions, it is convenient to
assume that has edges between any two points on the same sheet, with weights defined in
the same way as above. At this stage, it is just a formality since newly added edges will
have zero weights and no contribution to any calculations. Later, when one considers z-
dependent hopping terms, it will be convenient that the xz-dependence is only present in the
edge weights but not in the graph I'.

The following is a formulation of the Rayleigh—Schrédinger perturbation theory. See, for
example, [I] for a similar result in a different notation and slightly different setting.

Theorem 3.2. Define V. and ® as in (2.1)), (2.2), and assume that the algebraic non-
resonance condition (2.5)) is satisfied at ng = 0. Define I' and eigenvalue/eigenvector paths



CONVERGENCE OF PERTURBATION THEORY 7

on I' as above. Then the infinite system of equations

(3.2) (V+e®) (o +ethr +...) = (Mo +eX +...) (o + ety + ...),
treated formally by equating left and right hand side at each power of €, with
(33) A ER, ¥, € (27, No=Vo, (¥)o=0, 5>0; = eo,

has a unique solution given by

(3.4) A= > Cont(P),

where the sum is considered over all eigenvalue paths P on T' (with |P| = s), and
(3.5) (b= Y Cont(P), k#0, 5>0,
P: |P|=s

where the sum is considered over all eigenvector paths P (again, with |P| = s) between vertices
with coordinates 0 and k on the base sheet of I

Proof. The first equation obtained from (3.2)) by considering terms with £°, is already con-
tained in (3.3)). The next equation (corresponding to e') leads to

(36) le + (1360 = V(ﬂ/)l + /\1'¢0.

We will solve this equation by projecting the left and right hand sides onto span{eg} and
span{eg}*. It will be convenient to use the “partial inverse” to the non-invertible operator
V()I -V
(Vo= V)" = (VoI = V)7 (1 — {eo, -)eo),

that is, we always assume that (Vo — V)7! is extended by zero into ker(Vol — V). The
operator (Vo — V)71, as well as V itself, is a possibly unbounded multiplication operator.
However, we will only apply (Vo — V)~! to vectors with finite support, which are always in
its domain. With these conventions, reduces to

)\1 = O, ¢1 = (V() - V)flCI)eg.
The comparison of terms of (3.2)) at €2 yields
(37) V@/JQ -+ ®¢1 == %¢2 + )\1@[11 + )\260.

Projecting (3.7) onto span{eg} and span{eg}* together with the orthogonality condition
;L eg =0 for 7 > 0 lead to

A2 = (D1, eg),
Yo=Vo—V) '@y = M (Vo = V) 'y = (Vo — V) 'dy
In general, the equation at €°
Vips + g1 = Votbs + Mts—1 + Aothso + ... + As1901 + Aseo,
after projecting it onto the same subspaces, becomes a system of two equations
(38) ws = (VO - V)il(q)wsfl - )\2¢372 e T )\371%)

and

(3.9) A= (Pths_1,e0) = (D(Vo — V) ' ®t_s,e0) — Aa(P(Vo — V) 1hs_3, €0)
— M@ (Vo — V) h_g,e0) — ... — Ao (P (Vo — V)" haby, eg).
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One can easily check that, say, for s = 1 and s = 2 this gives the same expressions as ((3.4)),
(3-5). It remains to show that (3.4), satisfy recurrent relations similar to (3.9), (3.8).
Consider the first equality in (3.9). In terms of paths, it corresponds to the following fact:
each eigenvalue path ends at the origin, and the origin is only connected to the base sheet.
Therefore, each eigenvalue path of length s can be obtained from an eigenvector path of
length s — 1 that ends at a vertex with coordinate k on the base sheet by adding an extra
edge from k to 0. By the induction assumption for s — 1, the total contribution of such
eigenvector paths is (¢s_1)x. The extra edge from k to 0 will produce a factor ®gy, which

results in
)\s = Z (I)Ok(ws—l)ka

kezd\{0}
thus arriving to the first equality in .

To establish , suppose that P is an eigenvector path that ends at k on the base sheet.
Then there are two possibilities: either it arrives to k from some other vertex m on the base
sheet, or it descends into k from the sheet directly above k.

In the first case, P is obtained from some other eigenvector path P’ from 0 to m of length
s — 1, by adding an edge from m to k on that sheet. By the induction assumption
with s — 1, the total contribution of such paths from 0 to m is (1s_1)m. The weight of the
extra edge from m to k is @y (Vo — Vi)™, After summing over all possible choices of m,
we arrive to the total contribution of the paths from the first case being

Z (Vo — Vi)™ Pumn (Vs—1)m;

meZd\ {0}

which is equal to the kth component of the first term in (3.8)).

In the second case note that, in order to be able to descend into the vertex k on the base
sheet, the path P should have, sometime earlier, ascended from the same vertex to the sheet
above it. Consider the last time when P ascended from k on the base sheet and break P
into two parts: the part P’ right before that event, and the part Q" after it. The part Q" is a
non-base eigenvalue path that starts and ends at k and spends the rest of time in the sheets
above k. Its contribution can be calculated using , thus obtaining

Cont(P) = Cont(Q')Cont(P') = — (Vo — Vi) 'Cont(Q)Cont(P'),
where Q is the eigenvalue path obtained by translating Q" into the origin. By considering all
possible choices for Q, we arrive to the total contribution of paths in this case being
—> (Vo — Vi)' Cont(Q)Cont(P'),
Q9

where the summation is considered over all eigenvalue paths Q with |Q] = j and all eigen-
vector paths P from 0 to k of length s — 5, with 7 = 2,3,...,s — 1. For a fixed j, one
can factorize the summation and apply the induction assumptions , at stages j
and s — j, respectively, and obtain that, for each j, the contribution of paths P = Q'P’ with
|Q'| = j is equal to

~(Vo=V)™' [ D cont(Q) > Cont(P) | = —(Vo — Vi) A (e

Q:Q|=j PP |=5—j

which can now be identified with a term of (3.8)). O
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3.2. Symbolic and graphical representation of paths on I'. We will use the following
notation in order to describe paths on I'. Let P be an eigenvalue path which only travels
along the base sheet of T" (later, such paths will be called loops). Suppose that it starts at the
origin, then visits the vertices of the base sheet with coordinates ni, ns, ..., ng # 0 (in this
order, and each new visit of the same vertex is accounted for separately), and then returns
to the origin. We will use the following notation for this path:

P = (nny...nyg)

We will also denote eigenvector paths in the same way, but will include the last point in the
notation:

P =(nny...nym),

where m ¢ {ng, 0} is the ending point of the path P. Whether the string denotes an eigen-
value or an eigenvector path, should be specified in the context, otherwise the notation is
ambiguous: for example, the string (1234321) denotes both an eigenvalue path and an eigen-
vector path that starts at 0 and ends at 1 (in this example, we assumed that all coordinates
belong to Z, that is, d = 1, and are not using boldface notation for them).

Whenever a path ascends to a sheet above some vertex, we will write an opening paren-
thesis, and then continue with coordinates of vertices that P visits on the upper sheet. For
example, the eigenvalue path

(3.10) P = (12345(12321)5434321)

travels from the origin to the vertex with coordinate 5 on the base sheet (here we again
assume that all coordinates belong to Z, that is, d = 1), then uses an ascending edge to
ascend the sheet of height 1 directly above the vertex 5, then travels to 3 and back to 1 on
that sheet, and then descends to the base sheet and proceeds along the remaining segment
434321. Whenever the path uses a descending edge to descend to a lower sheet, we use the
closing parenthesis. One can have multiple levels of parentheses, depending on how high the
path climbs. Given the string representing P, one can calculate Cont(P) using the following
rules, which will associate an edge to each pair of consecutive coordinates in that string.
Suppose v and v are vertices with coordinates n, n’ respectively.

e nn' represents the edge from v; to vy assuming that they are on the same sheet.

e n(n’ represents the ascending edge from wv; to vy assuming that ve is on a sheet
directly above v;.

e n)n’ represents the descending edge from v; to v, assuming that v; is on a sheet
directly above v,.

e (n in the beginning of the string represents the edge from 0 to n.

e if P is an eigenvalue path, then n) in the end of the string represents the edge from v
to 0. In case of an eigenvector path, it does not represent anything (one can consider
it as an edge of weight 1 and length zero, meaning that it does not contribute to |P|
and Cont(P)).

To calculate Cont(P), one can multiply the weights of the edges for each pair of consecutive
lattice points in the string, using the rules from the above paragraph and weights from
Section 3.1.

In order to better understand the constructions, we will also use graphical representations
of the paths on I'. A simple path (1234321) will be represented graphically as the following
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diagram:

A path visiting higher sheets of T", such as (12345(12321)5(121)54321), corresponds to the
diagram

In each diagram, an oriented edge corresponds to an edge of the original path. For the
convenience of drawing, each time a path enters a new sheet of I' directly above a vertex
with coordinate n, we create a copy of that vertex on the picture and draw the corresponding
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part of the path starting from that copy. Such ”extra” copy is represented by a diamond-
shaped node. The oriented edges connected to that copy are the corresponding ascending
and descending edges of I". The non-oriented edge connecting n and the diamond n does
not correspond to any edge of I' and only represents the fact that these nodes correspond to
the same vertex of the graph.

In order to recover a path from its diagram, one can start from the node representing the
origin (there is only one such node) and then follow the arrows. In the event a node with
coordinate n is connected with a diamond-shaped node, upon arrival into n one must first
go to the diamond-shaped node and follow the arrows from that node; they will eventually
return back to the diamond-shaped node. Afterwards, one can continue following the arrow
coming out of circle-shaped n. In case n is connected to multiple diamond-shaped nodes, as
in the last example, one needs to treat them all in counter-clockwise order before proceeding
out of n. In particular, this implies that the order in which different attached loops appear
on the diagram is important, since the opposite attachment would correspond to a different
string (12345(121)5(12321)54321).

The contribution Cont(P) can be recovered from the picture by using the following rules,
representing the fact that each oriented edge of I' corresponds to an oriented edge on a
picture and gives a multiplicative contribution. In the below notation, we assume m, n # 0.
We also include non-oriented edges in this table for completeness, emphasizing the fact that
they do not correspond to edges of I' and give no contribution.

(m—® )

DPnm @ $no
Vo—Va Om Vo—Va
_ _Pom _Pno 1
Vo—Va Vo—Va

3.3. Attachment of paths and loops. Recall that any eigenvalue path can be moved into
any point of I', where it becomes a non-base path. Suppose that P is a path and v is a vertex
on P. Let Q be an eigenvalue path. Then, one can construct a new path in the following way:
take the part of P until it reaches v, then insert a copy of Q moved into v (which becomes a
non-base path that starts and ends at v) and then, once the copy of Q returns to v, continue
following the remaining part of P. We will say that the new path is obtained by attaching
Q to P at the vertex v. In the symbolic notation, suppose that n is the coordinate of v. To
attach Q, we replace n by nQn at the corresponding position of n in P. Note that P can
visit v multiple times. In that case, we can attach Q at different positions of v on P and, in
general, obtain different paths.

By an eigenvalue/eigenvector loop, we will denote an eigenvalue/eigenvector path that
does not leave the base sheet of I'. It is easy to see that any path can be obtained from
a loop of the same type by finitely many attachments of eigenvalue loops. For example, to
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obtain the eigenvector path

(12345(123(1234321)321)543),

graphically represented as

we start from the base (eigenvector) loop (1234543), attach (12321) at the vertex with
coordinate 5, thus obtaining (12345(12321)543), and then attach another eigenvalue loop
(1234321) to the vertex with coordinate 3 in the middle. The base loop and all attached
loops that were used in building P will be called loops on P. Note that the difference
between eigenvalue and eigenvector paths is only in the type of the base loop. In both cases,
all attached loops must be of the eigenvalue type.

From , if P’ is obtained from P by attaching an eigenvalue loop £ at n, then

Cont(P') = Cont(P)Cont(L') = —(Vo — Vu) *Cont(P)Cont (L),

where £’ is the non-base loop obtained by moving £ into n.



CONVERGENCE OF PERTURBATION THEORY 13

4. SMALL DENOMINATOR EXPANSION

4.1. Small denominators and resonances. Fix zy € R\ (Z+ 1/2+ Z% - w) and consider
the operator (|1.1)):

(H(x0)¢)n =€ Z Son—m@bm + f(xO +n- W)wn'
mezd

Section 2.1 provides a formal power series for eigenvalues and eigenvectors of the operator
. Our goal is to establish convergence of this series, for some class of functions f. For
general non-monotone f and small ¢, there are two main obstructions to this convergence:
small denominators and resonances. A small denominator appears whenever |n - w| =
dist(n-w,Z) < e. If we assume some regularity of f, this means that f(zo) — f(zo+n-w) is
small. A resonance is a situation when f(z¢) — f(zo + n-w) is small for some other reason:
for example, if f has multiple intervals of monotonicity, it is possible for the values of f
at zop and o + n - w to be close without ||n - w|| being small. Unlike small denominators,
whether or not translation by n creates a resonance depends strongly on xy. Fxcept for
the last section, we will assume that there are no resonances (for example, by considering f
that are monotone or locally monotone). Throughout the text, lattice points n such that
|In - w|| = dist(n - w, Z) is small, will also be called small denominators.

Remark 4.1. Note that, if w satisfies some Diophantine properties, then it takes a relatively
large number of steps along the lattice to reach a small denominator. If ¢ is small, we can
hope to compensate the contribution to Cont(P) from the small denominator by the number
of e factors that we gain at each step. Moreover, if we are traveling between two different
small denominators, similar Diophantine arguments guarantee that the path P has to make
sufficiently many steps in between. Later in the text, these paths will be called safe. The
contributions from safe paths form an absolutely convergent series for which no cancellations
are required. However, there are also unsafe situations: suppose that a path visits the
same small denominator many times, for example, by going back and forth between the
small denominator n and the point n 4+ 1 (similar to earlier examples, we are considering a
quasiperiodic operator on ¢?(Z) and not using boldface font to denote lattice points). Then,
each of these small trips gains £ in the numerator and a factor f(z¢) — f(zo + nw) in the
denominator. If the latter factor is very small, the sum of these contributions diverges.
Fortunately, in the quasiperiodic setting, the contribution of this path almost cancels with
several other paths of the same length. Since these situations can happen on multiple levels
simultaneously, the goal of this section is to identify which paths are to be grouped together
in order to take the biggest advantage of these cancellations.

4.2. Canonical marking and the equivalence relation. To begin with, we introduce
the scale of “the smallness” of denominators. We will use the distance function on Z? defined
by the hopping matrix ®: for k,k’ € Z4, let dist,(k,k’) be the smallest number ! such that
there exists a sequence k = ko, ki, ..., k; = k' with @, ,, # 0 for 0 < j <1 —1; in other
words, this is the shortest distance function on the base sheet of the graph I'. We will say
that two functions

(4.1) level: Z¢ — Z, U{+oc0}, safedist:Z, — Z,,
form a consistent denominator data if the following is true:

(c0) level(0) = +oo, safedist(0) = 0. The function safedist is monotone non-
decreasing in its argument.
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(cl) dist,(m,n) > min{safedist(level(m)), safedist(level(n))}, for m # n.

(c2) Suppose, 0 < dist,(n,m) < safedist(level(m)). Then level(n —m) = level(n).
Lattice points m # 0 with level(m) > 0 will be called small denominators. In order to
simplify the notation, we will also extend the function safedist into Z? by

safedist(n) := safedist(level(n)); safedist(0) := +oc.

Later, we will give specific examples of consistent denominator data in the context of
quasiperiodic operators. Throughout the rest of the section, most of the definitions will
depend on the choice of a consistent denominator data, and we will assume that some such
choice has been fixed.

Definition 4.2. Let £ be an eigenvalue/eigenvector loop. We say that £ is safe, if, between
any two visits of a small denominator m, it makes at least safedist(m) steps.

We will now describe an additional structure on the set of eigenvalue/eigenvector paths
that will allow us to set up the cancellation procedure. Let £ be an eigenvalue/eigenvector
loop. Suppose, m is a small denominator visited by £ multiple times. Consider a segment of
the string that defines £ between two consecutive visits of m by £. For each such segment, we
now choose either to mark it, in which case we put square parenthesis around that segment,
or not to mark it. For example, if £ = (12345432321) and 3 is the only small denominator
on L, then there are four possibilities of marking £:

(12345432321),  (123[454]32321), (1234543[2]321), (123[454]3[2]321).

The same entry of the string may belong to multiple marked segments. We will require
the following: if two marked segments overlap, then one of them must be contained in
another. As a consequence, the positions of the square parenthesis uniquely determines
which segments are marked and which are not. Note that the marking is always applied to
particular segments of £ rather than to corresponding vertices/edges of I'. In particular, if a
marked segment of £ contains a vertex v, it does not automatically imply that all consecutive
visits of v by £ will be marked.

Under the above assumptions, if £ is a loop with markings, one can consider a smaller
loop obtained from £ by removing all marked segments from it, that is, replacing each
marked segment of the form m[...Jm by m (always starting from the shortest segment). For
example, in the above four cases the removal procedure would result in

(12345432321),  (1232321), (123454321), (12321).

Note that a copy of the small denominator also gets removed from the string each time, so
that the loop remains well-defined.
We now define the canonical marking of a loop £. The goal of it is the following: whenever
L has two visits of a small denominator m in a short time, we mark the segment between these
visits. By “short”, we mean shorter than safedist(m). However, if £ visits another small
denominator m’ of smaller level between visits of m, and the segment between visits of m’ is
also short, then we do not want to include it in the calculation of time spent between visits
of m. More formally, do the following procedure, starting from an eigenvalue/eigenvector
loop L.
(1) For each small denominator m of level 1 and each segment between two consecutive

visits of m of length < safedist(1), mark that segment on L.
(2) Denote by L’ the result of removing all marked segments on L.
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(3) For each small denominator m’ of level 2 on £’ and each segment between two
consecutive visits of m’ of length < safedist(2) on £/, mark the corresponding
segment on L.

(4) Denote by L£” the result of removing all previously marked segments on L.

(5) Repeat for levels 3,4,5,...

In other words, we mark every “short” segment between two consecutive visits of each small
denominator. The notion of length used in defining “short” should not count already marked
segments.

Remark 4.3. Assumption (c1) implies that the above procedure will actually produce a
loop with markings; in other words, that for any two overlapping marked segments one of
them will be contained in the other.

If £ is safe, then the canonical marking of £ coincides with £ and it does not have any
marked segments. If one removes all marked segments from the canonical marking of £, the
resulting (shorter) loop will be safe. We would like to draw the reader’s attention to the
following: suppose that £ is not safe, but the definition of “safe” only fails for one segment
between two visits of a denominator, say, of level 1. It is still possible that more than one
segment is marked, because the removal of first segment may shorten segments between
denominators of higher levels. Therefore, it is important that the algorithm proceeds from
lower to higher levels and not the other way around (although it is possible to modify it
appropriately).

We will now define the canonical translation of a loop. We first define it on the level
of strings of symbols and will later check that it defines a path on I'. Let £ be an eigen-
value/eigenvector loop, and suppose that it is canonically marked.

(1) For each vertex v of £ with coordinate n, consider its position in the canonical
marking of £. Suppose that m|...Jm is the smallest marked segment that contains
v. Then replace that entry n by n —m. If n is not on a marked segment, do nothing.
(2) Replace all square parenthesis in the string by round parenthesis.

From (c2), it follows that none of the denominators will change their level after translation.
As a consequence, no point with non-zero coordinate will be translated into the origin, and
therefore the above string will represent a path on I'. We will denote this path by T'(£) and
call it the canonical translation of £. Unless £ was safe, T'(£) will no longer be a loop, as it
will involve visits to non-base sheets (encoded by the round parenthesis).

In other words, we are replacing each entry of the form ml[...)m by m(...)m, where
everything between the parenthesis is translated by —m, unless it is inside some smaller
marked segment. For example, suppose that 3 and 6 are small denominators, and the
canonical marking of £ is £ = (123[456[5]654]321). We will use the same notation for £ and
its canonical marking. Then

T(L) = (123(123(—1)321)321).

In this case, the entry 5 in the middle is translated by —6, and the strings 456 and 654 are
each translated by —3.

We have defined the canonical translation T'(£) of a loop £. Since any path on I' can be
obtained from loops using the attachment procedure, we naturally define T(P) by applying
T to each loop in P, and preserving the attachments at the same locations (based on their
positions in the string of symbols).
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Remark 4.4. Let £ be a loop and T'(£) be its canonical translation. As mentioned above,
T(L) is a path with multiple loops, but every loop of T(£) is safe. Moreover, the base loop
of T(L) is the result of removing of all marked segments from the canonical marking of £.

Remark 4.5. One can also define canonical marking and canonical translation directly for
paths P. If P visits a vertex v on a sheet .S twice, we will say that the visits are consecutive
if, between these visits, there are no other visits of v and there are no visits of the sheet
directly below S. In this case, in order to determine whether or not P has made sufficiently
many steps between these visits, we do not count previously marked segments and visits of
sheets above S. Similarly, one needs to start from denominators of level 1 and gradually
add markings whenever the part of the path between visits is too short. In the translation
procedure, for each vertex v, we determine the smallest marked segment on the same sheet
which contains v and translate that segment by the coordinate of its endpoints.

Definition 4.6. Two eigenvalue/eigenvector paths P and Q are called translationally equiv-
alent if T(P) = T(Q). Denote by [P] the equivalence class of P, and let

Remark 4.7. Grouping the paths into translational equivalence classes is one of the central
ideas of the paper. In all applications, the cancellations will happen inside the equivalence
classes. In fact, the proof of the convergence of the perturbation series

Z gk Z Cont(P)

k=0 P |Pl=k

will be based on absolute convergence of the series

Yo D leont(IP)]]

[P]: |P|=k

where we assume that each equivalence class is counted once in the summation. It is easy
to see (cf. Remark [4.8)) that the series for individual loops

(4.2) S DT Jeont(P)] | =D el|cont(P)].

k=0 P |P|=k

will diverge if )¢ is not an isolated eigenvalue of H at ¢ = 0 and the hopping term is the
usual Laplacian (if one considers more general hopping, one needs to assume that I is not
“too disconnected”).

4.3. Some examples. The loop with canonical marking £ = (123[456[5]654]321) has four
elements in its equivalence class: (1234565654321), (123(1232321)321), (123(123(—1)321)321),
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and (123456(—1)654321), graphically represented by
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Remark 4.8. As mentioned in Remark [£.7, the cancellation will be achieved inside each
equivalence class. Before proceeding with the general construction, let us illustrate the
usefulness of these equivalence classes on the following example. Let d = 1, V,, = f(nw),
where, say, f is a smooth 1-periodic function on R such that and f’(z) > 1 in a neighborhood
of 0. Let w € R\ Q and ® be the usual discrete Laplacian operator:

Di; = (A)ij = ijp1 +6ij—1, H =V +eA.

Suppose that, say, dist(bw,Z) < €, so that |V5| = |f(0) — f(5w)| < . Suppose also that 5
is the only small denominator:

level(5) =1, 1level(l)=1level(2) = level(3) = level(4) =0, safedist(5) > 3.

Typically, we would have |V — V;| ~ £52fe4ist() which would mean that one needs to make

safedist(5) > 3 steps to compensate for the factor |f(0) — f(5w)|~!. Consider the following
eigenvalue path:
Pr = (123454545 . . . 454321)

where ... represents repetition of 745" so that the loop has k visits of 5. Clearly,

Cont(Py) = (Vo—V4) "L (Vo—Va) " (Vo Va) " (Vo= Vi)~ F D (Vo= Vo) F (Vo Va) "1 (Vo— Vo) "L (Vo—V2) L.

Since the loop Py only makes two steps between several consecutive visits of 5, it is considered
non-safe, and its contributions to (#.2)) will blow up, even with the factor /", as k — oo.
The canonical marking of P will be as follows:

P = (12345[4]5[4]5 . . . [4]54321),
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with the canonical translation
T(P) = (12345(—1)5(—1)5...(—1)54321).

Here, the vertices in round brackets denote vertices on the sheet above 5. After the transla-
tion, the vertex 4 becomes —1. In both cases, there are £k — 1 times when a sheet of height 1
is visited. The whole translation equivalence class consists of 2¥=! elements, since there are
k — 1 choices between [4] and (—1). One can factor the total contribution of the equivalence
class as follows:

Cont([P]) = Cont(123454321)(Vy — V5)~FD((Vy — Vi)™ = (Vy — Voy) " Hk!

((f(0) = f(4w)) ™! = (f(0) = f(=w))"D)*!

(f(0) = f(5w))* ’
since the change from [4] to (—1) replaces one of the terms —V; by V_;. Note that, since
||5w]|| is small, we have f(—w) = f(4w). Therefore,

[(f(0) = f(4w)) ™" = (f(0) = f(=w)) ™| =~ [|5w]|

= Cont(123454321)

|/ (4w)]
(f(0) — f(4w))

and
[£(0) = f(5w)| = f(O)I5wl]l = [15w]],
which implies that
|f'(4w) [
(0)5=1£(0) — f (dw) P2
Since f does not vanish around 4w, we can see that the “bad” factor ||5w||~! enters Cont(%P)
with power 1 rather than k.

|Cont(P)| ~ Cont(123454321)f/

Unfortunately, applying this general idea to more complicated situations requires tedious
bookkeeping, which we will now describe.

4.4. Loop stacks. In order to describe the general case, motivated by the last example, we
will use the following definition.

Definition 4.9. A loop stack is an eigenvalue/eigenvector path P on T satisfying the follow-
ing:
(1) All loops of P are safe.
(2) For any loop £ on P that is attached to a vertex with coordinate n, we have
|£| < safedist(n). In particular, the loops on P can only be attached to small
denominators.

We can now describe the translational equivalence class of any path P. Let T'(P) be the
canonical translation of P. We will say that a loop £ on T'(P) is short, if it is attached to a
vertex with coordinate n, with |£| < safedist(n). The base loop is never considered short.
Since T'(P) € [P], we can choose T'(P) as the “natural representative” of the equivalence
class of P.

e Let P be an eigenvalue/eigenvector path on I', and suppose that T'(P) has s short
loops. Then #[P] = 2°. The elements of [P] are obtained by replacing some short
loops on T'(P) by marked segments:

m(...)m— m|... +mm,
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where (...) denotes a short loop, and ... + m denotes translation of all coordinates
by m.

e All loops of T(P) are safe, and T'(P) is the only element of [P] with this property.

e One can introduce an attachment procedure for loop stacks similarly to loops: if Py
is an eigenvalue/eigenvector path that has a vertex v with coordinate n and P; is an
eigenvalue loop stack, one can attach P; to Py by replacing

n— nPn

in the string that describes Py. Any path P with T'(P) = P can be obtained from
a base (eigenvalue/eigenvector) loop stack by a sequence of the above attachment
operations, at the points of the base stack or already attached loop stacks. Each
attached loop stack becomes a non-base loop stack on P.

Now, given a path P = T'(P), we would like to break it into loop stacks in some
natural way. In general, there are multiple ways of doing so: for example, one can
treat each loop as a separate loop stack. The opposite of this would be a decomposi-
tion with smallest possible number of loop stacks. Note that any stack may contain
at most one non-short loop (which can only be its base loop). As a consequence, each
non-short loop £ of P, including the base loop of P, must be the base loop of some
stack. For each such loop, we can form the largest possible stack that starts from that
loop using the following “greedy algorithm”: consider all short loops attached to £;
now, consider all short loops attached to the loops considered before, and repeat the
process until we run out of attached short loops. It is easy to see that these stacks
will not overlap and will ultimately contain each loop on P. We will call these stacks
maximal.

e Suppose that the above procedure results in the path P = T'(P) being decomposed
into maximal stacks Py, ...,P,, where Py contains the base loop of P, and P; is
attached to a small denominator n; on one of the previous stacks Py,...,P;_;. In
particular, the base loops of Py, Py, ..., P, are all non-short loops on P. Then

(4.3) Cont([P]) = Cont(Py) ﬁ V. — Vo) 'Cont ([P4)).

s=1

([P)] < el by taking
advantage of cancellations inside [Pg]. In other words, we expect [P,] to behave as a safe
loop of comparable length, thanks to the base loop of P, being non-short. Since |Py| >
safedist(n,), we can absorb the (V;,, — Vo)™ ! factors into Cont([P,]) if we have bounds of
the form

8c-safedist(ns) < |‘/0 . Vns )

In the quasiperiodic case, this will be achieved by imposing a Diophantine condition on the
frequency, combined with choosing a function safedist that does not grow too slowly, see
Section 5 and, in particular, Theorem [5.10]

5. CONVERGENCE OF THE PERTURBATION SERIES

5.1. Regular points of monotone potentials. The cancellation procedure described
above will be applied to quasiperiodic operators, that is, when

Vo= flz4+n-w),
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f is an 1-periodic function on R, and w = (wy, ..., wy) is a vector with rationally independent
components. Theorem gives an asymptotic series for an eigenvalue which would have
been an analytic continuation of the eigenvalue Vo = f(z) of the operator at e = 0, if that
eigenvalue was isolated. In our case, it is not isolated; however, as long as the algebraic
non-resonance condition

flx4+n-w)# f(r) form#0

is satisfied, each term of the perturbation series is well-defined as discussed in Section 3.

We will formulate the convergence results locally, that is, for fixed x, assuming that f is
monotone and one-to-one in a neighborhood of x. We will also provide sufficient conditions
for obtaining convergent expansions for eigenvectors for all x € R\ (Z + 1/2 + Z* - w). In
all cases, we will consider the eigenvector associated with the origin (that is, a perturbation
series that starts from 1y = eg, A\g = f(z)). However, if we obtain such eigenfunctions for
all H(x) with x € {xg+ ng - w : ng € Z%}, their translations will form a complete system of
eigenvectors of H(z) sufficient to establish Anderson localization for that operator.

We will always assume the following:

(f1) f:(=1/2,1/2) — R is continuous, f(—1/2+0) = —o0, f(1/2—0) = 400, and

is extended by 1-periodicity into R\ (Z + 1/2).

Suppose, f satisfies (f1). Let
Crog >0, x9 € (—1/2,1/2)

We say that f is Ciee-regular at xo, if
(cr0) The pre-image f~'((f(xo) — 2, f(xo) +2)) N (—1/2,1/2) is an open interval (denoted
by (a,b)), and [, is a one-to-one map between (a,b) and (f(zo) — 2, f(z0) + 2).
(crl) Let Duyin(zo) == iI(lfb) f'(x). Then,
z€(a,

(5.1) Diin(0) < f'(x) < CregDmin(z0), Vz € (a,b).

At the points where f’(x) does not exist, we require that the inequalities hold for all
derivative numbers (the inf is also taken over the set of all derivative numbers).
(cr2) Define (a1,by) = f~1(f(xo) — 1, f(z0) + 1) C (a,b), and

@) =+ e
g(z) = ———, =
f(xo) — f(x)
extended by continuity to ¢(0) = g(1) = 0 (recall that we also assume f(x + 1) =
f(z), so that the interval (b1, a; + 1) is essentially (—1/2,1/2)\ (a1, by) together with

the point 0 = 1 mod 1). Then, under the same conventions on the existence of
derivatives,

blaal + 1)7

19/ (2)] < CregDmin(70), x € (by,a1 + 1).
Remark 5.1. Suppose, f satisfies (f1) and
fll@) < Cf )+ |f(z) = fy)?) forall z,y € (=1/2,1/2).

Then f is Creg-regular on (—1/2,1/2) (with the value of Cye, depending on C'). In particular,
any meromorphic function satisfying (f1), such that f’(z) > 0 on (—1/2,1/2), has this

property.
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Remark 5.2. One can see Condition (crl) as a statement that f’ does not oscillate too
much on intervals of length determined by the change of the values of f. Note that the
interval (a,b) will shrink as one of its endpoints approaches {—1/2,1/2}. Condition (cr2)
is a “regularity at infinity” condition, which will be important to account for non-small
denominators.

Remark 5.3. In some later results, it will be convenient to consider a “rescaled” version
of Cieg-regularity. To obtain the definition of Cle ,-regularity, replace the interval (f(xq) —
2, f(zo) + 2) in (cr0) by (f(xo) — 2v, f(xo) + 2v) and the interval (f(xzg) — 1, f(zo) + 1) in
(cr2) by (f(zo) — v, f(z0) + V).
5.2. Consistent level functions for monotone quasiperiodic potentials. We will start
by constructing a consistent denominator data on Z¢, suitable for use with locally monotone
quasiperiodic operators. Recall that we need to define two functions safedist and level,
satisfying

(c0) level(0) = +oo, safedist(0) = 0. The function safedist is monotone non-

decreasing in its argument.

(cl) dist,(m,n) > min{safedist(m), safedist(n)}, for m # n.

(c2) Suppose 0 < dist,(n, m) < safedist(m). Then level(n — m) = level(n).
Let w € (—1/2,1/2)% be a Diophantine frequency vector, that is,

(5.2) In-w|| = dist(n-w,Z) > Cqoln|™", Vn € Z%\ {0}.
We will always assume that some 7 > 1 is fixed.

Theorem 5.4. Fix Cgupe > 0 and, for >0, define

(5.3) Be:= 87", keZy; By =00
Define the level and safe distance functions as follows:

(5.4)  levelm)=k if A<|n-w|<Bii neZ'\{0); Level(0)= too

(5.5) safedist(n) = [Csplevel(n)®], n e Z%
Then, for
(56) 0< B < Bmax(Csafea C’di07 diStcpa 7_)

the constructed functions level(n) and safedist(n) satisfy (c1) and (c2), and therefore
define a consistent denominator data on Z°.

Proof. Suppose, min{level(n),level(m)} = k > 1. The Diophantine condition implies
that, if n # m,
(5.7) dist,,(m,n) > ¢;(Cyio, 7, dist,,) 57F/7.
One can obtain (c1) as long as fuax is chosen to satisfy
Clateh® < ¢1(Cao, 7, dist,) 3747,

that is,
B < ¢5(Cuso, 7, dist, ) /FCTFE3R Wk > 1.

safe
The worst case is, essentially, either £ = 1 or £ — oo (up to a factor that can be absorbed into
¢2), and hence (5.6 implies (c1), under an appropriate choice of Bmax(Csate, Caio, disty, 7).
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Let us establish (c2). Let m,n € Z%. By the Diophantine condition, for k > 0,

(5.8)  llm—m)-w| =gl > [~ (n—m) - w|| > Caiofy I —m| "
If

(59) Cdio|n - m|_T 2 2/8167

then one can also obtain a better bound

(5.10) (0 —m) wl| =Gl =|(n-m) w75 = Cdlo\n —m|".

If (5.10) cannot be obtained, then the opposite of . holds, that is,

(5.11) In—m| > 27775

Now, suppose that 0 < dist,(n, m) < safedist(m). Then ({.5) yields
MWN>>01@munmw%%NBMM>m—mw>a

safe safe

which, combined with (5.4)), implies
(5.12) Hm w” < 25[ safe c(dist,)[n— m|1/3]

We would like to show that addition of m will not change the level of n — m. This would
follow from

|m - w| <min{||[(n —m) - w|| — Bk, Bx—1 — ||[(n — m) -w||}, where k= level(n —m).

We will verify that the above inequality follows from the lower bounds (/5.8]), (5.10) and the
upper bound ((5.12). Suppose, ((5.10)) holds. Then we need

(5.13) 23 Cuate"eldisto)lm—ml'/*] %Odioh’l —m| .
Suppose now that ((5.10]) does not hold and we have to use (5.8)). Then one needs to establish
(514) 2/8[Csafe ¢(disty)n—m]|1/3] Cdioﬁ]i+7’n . m‘*T.
Using ((5.11]), one can replace |n — m| in the left hand side by
1 T T
O = g —ml| + 27T Y
and reduce to the inequality
—1/3 .. 1/3
(5.15) 23 Cuare el diste il < Oy BTN — m| 7.

Both (5.13)) and (5.15]) can be obtained by taking a sufficiently small /3, as the bound in the
left hand side is exponentially better both in [n — m| and in f. If £ > 1, one also needs a
similar bound for |||(n — m) - w|| — Bx_1]|, which reduces to

5[05 fo cldisty)ln—m[*/*] %Cdioh’l —m| "

if Cgioln — m|™" > 20,1, and otherwise to

25]—C“fe dlSt¢)5k o1 < CdIO/B1+T|n mlf‘r’

where |
-t = 5ln —ml+ 27T
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In both cases, the inequalities can be obtained in the same way as before. [l

5.3. Lipschitz bounds for loop stacks. In this subsection, we will obtain the central
inductive estimates on Cont([P]), where P is a loop stack, by taking advantage of the cancel-
lations. It will be convenient to introduce some notation in the beginning. In the remainder
of the section, we will assume that § € (0,1) is fixed and the denominators are leveled
according to Theorem [5.4] The main results will be obtained under additional assumptions
on 3 being small enough. Let P be an eigenvalue/eigenvector loop stack.

e Denote by height(P) the height of P, which is the maximal height of sheets of T’
visited by P.

e Let height(k) and maxlevel(k), respectively, be the maximal possible value of
height(P) and the maximal level of a denominator on P, considered over all loop
stacks P with |P| = k.

e Let m € R. For each loop of P, calculate the maximal level of denominators on that
loop. Among these numbers, consider only those that are > m and add them together.
Denote the resulting number by level(P,m). Let also level(P) = level(P,0).

e Let den(P,m) be the total number of denominators on P of level > m. Here, each
denominator is counted as many times as the corresponding lattice point is visited by
P: however, the contributions from the descending edges are not counted. Let also
totallevel(P, m) denote the sum of levels of all these denominators.

e Let loops(P,m) be the number of loops of P that contain a denominator of level
> m. We have den(P,0) + loops(P,0) = |P|.

e Let nbloops(P,m) and nblevel(P, m) denote the same quantities as above (loops
and level), but the base loop is not counted.

e Let also downedges(P,m) be the number of descending edges on P that lead to
denominators of level > m. We have downedges(P,0) = loops(P,0) — 1, since P has
to exit each non-base loop once.

Lemma 5.5. In the above notation, the following bounds hold:
. log(k)
1 level(k) < o, T, disty) —>22
(5.16) maxlevel( )_max{c(C’d 7, dis ‘P>10g(5_1) 0}
(5.17)
height(k) < 1 + height(safedist(maxlevel(k))) = 1 + height([Ciuemaxlevel(k)?®]).

Proof. Let P be an eigenvalue/eigenvector loop stack with |P| = k. Estimate follows
directly from the Diophantine property. To show (5.17), note that any loop on P that is
directly attached to the base loop, can be of length at most safedist(maxlevel(k)). Then
one can consider the stack that starts from that loop and apply the induction assumption. [

Remark 5.6. In order to obtain a meaningful bound, one needs to choose the parameters
to satisfy Csueemaxlevel(k)® < k, in which case height(k) will be a very slowly growing
function. The bound can be achieved either by choosing small Cy,¢ or small 5.

Recall that, for a fixed 2o € R\ (Z + 1/2 4+ Z% - w), we have

Vo= f(zo+n-w).
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In order to describe loop translations, it will be convenient to introduce an additional pa-
rameter ¢ as follows:

_ ft+zo+n-w), n#0
Va(®) {f(xo), n=0.

so that V,,(0) = Vi, Vo(t) = Vb. Denote by Cont(P,t) the function obtained by replacing all
Vi in Cont(P) with V,(¢). We will only consider this function in a neighborhood of the origin
small enough (cf. (5.19)) so that Vi(t) # Vo for n # 0, thus avoiding zero denominators.
Clearly, Cont(P) = Cont(P,0). Let us also extend the above definition to the equivalence
class:

Cont(| Z Cont (P, ¢
P[P

Lemma 5.7. Suppose, [ is Cieg-reqular at zy. Let n € Z4\ {0}, [t| < 3[n-w||. Then
(1) S max {Dmin(xo)glevel(n)Jrl 9 1}7
reg * AX {m, Dmin(:vo)} - (r.h.s of (1)).

Proof. First, let us note that, if {¢ + n-w} is large enough so that
mo+t+n-wé(ab)=f"((f(zo) =2 flwo) +2)) N(-1/2,1/2),

then one can use (cr0) and bound the denominator by 1 in (1) and use (cr2) in (2). Otherwise,
one can use the lower bound in (crl) (5.1]) combined with ||t 4+ n - w|| > 3||n - w]. O

1

V()—Vn(t)
Va(®)

(Vo=Va())? | —

If Dpin(o) is large, some denominators of small levels may actually be not very small. It
is convenient to introduce an extra parameter which will indicate the minimal level at which
a denominator can in principle be smaller than 1. Denote by

log(4/Dmm(Z‘0))

5.18 My = -1
(5.18) 3 o 7 ,
that is,

4
M,3+l e —
6 Dmin<x0)

In the sequel, it will be convenient to use the notation n € £ if the loop £ visits a lattice
point n.

Lemma 5.8. Let £ be an eigenvalue/eigenvector loop. Suppose, f is Cieg-reqular at xoy and

1
_ < Zmin|n-wl.
(5.19) 1< min -]
Define Mg by (5.18). Then
1£] 4 den(£,Mp) —totallevel(L,Mg)—den(L,Mg)
(1) Icont(£,8)] < el (i) 3 Mg)—den(£,M5)

(2) The function Cont(L, ) is Lipschitz continuous:

d 4
aCont(L,t) /Blevel +1,Dmin<x0)} ’ (T.h.S Of (1))

Proof. Both estimates directly follow from Lemma and counting the contributions from
each denominator. d

<L - Cheg rnax{
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Remark 5.9. The previous lemma does not assume £ to be safe. If it is safe, then one
can estimate the number of denominators of level > M > 1 on £ by [c(distw)%im] As a
consequence, totallevel(L,0) < gd—aft L|. Here, Cyis¢ denotes a constant that only depends
on the distance function.

The following theorem is the main technical result of the section. It establishes a bound
on the class of equivalence of a single loop stack, thus providing a bound on each Cont([Py])

in .

Theorem 5.10. Let P be an eigenvalue/eigenvector loop stack. Suppose, f is Creg-reqular
at xo and L is the base loop of P. Define Mg by (5.18). Let

1. .
|t‘ < Z Ir{1€1£l Hn . w“, 0< 5 < ﬁmax(dlStgm C’di07 T, Csafe)-

Then
(1)

(Cont ([, 8)] < (Ca ll)” (

B—totallevel(ﬂ’,Mg)—den(ﬁP,Mﬁ)

4 den(P,Mg)
) 9

Dmin (xﬂ)
4 nbloops(P,Mg)
CVclownedges(f]’,M/;) ( ﬂ—nblevel((P,Mﬁ)—nbloops((P,Mg)

e min (.%'0)

(2) The function Cont(P,-) is Lipschitz continuous with the bound on the derivative

d
ECont([iP],t)‘ < Cleg - Max {ﬁ, Dmin(fﬂo)} - (r.h.s of (1)).

Proof. Before starting the proof, we have a few remarks on the structure of the terms. The
first line in the right hand side of (1) is the “safe” part of the contribution, similarly to (1) in
Lemma 5.8, This is what the estimate would be like if we ignored all extra factors appearing
in the attachment points. As in the example following Definition [4.6] the extra attachment
factors will be cancelled with small numerators that appear as the result of subtracting a
loop contribution term and its translation. Each such cancellation will introduce a derivative
factor, similar to the extra factor (2) in Lemmal5.8l We only need to do this if the attachment
denominator Vj,, (t) — Vo is small enough; that is, level(n;) > Mjy or, equivalently, that we
cannot bound [V, () — Vo| by 1 from below. The number of such attachments is equal to
downedges(P, My). For each of these attachments, we apply the induction assumption (2),
which ultimately reduces to part (2) of Lemma . In this case, there are two possibilities:
the level of the attached loop is still > Mg, or it becomes less than My (note that it must
be smaller than level(n;) due to the shortness condition in the loop stack structure). In
both cases, we get Cyeg in the derivative bound, but the rest will depend on which argument
of the max function is bigger. The number of times we use the first factor is, ultimately,
controlled by nblevel and nbloops.

An important observation is that, in estimating the derivative factor, one can always use
the loop at the lowest level, since it will always contain the smallest denominator. The
contribution from differentiating other loops is additive, and can hence be absorbed into a
combinatorial factor O(‘igi)i“ where Cyis; only depends on the distance function.

Both claims are proved by induction in height(P) at the same time. The case height(P) =
0 is contained in Lemma [5.8f Any P satisfying the assumptions of the theorem can be split
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into the base loop £ (which is eigenvalue/eigenvector loop, depending on the type of P) and
several eigenvalue loop stacks P;, where P; is attached to a vertex v; on £ with coordinate
n;, which is a small denominator. Then, since the loop translation operation is equivalent
to replacing t by ¢ + n; - w, we have

(5.20) Cont([P],t) = Cont(L, 1) H(VO — Va, (8)) " (Cont([P)], ¢ + n; - w) — Cont([P;],1)).

J

Clearly,
level(P, My) = level(L, Mg) + Y level(P;, My), |P|=|L]+ ) (1+]|P;)),
] J

J

loops(P) = loops(L) + Z loops(P;),
J

den(P, Mg) = den(L, Mg) + Z den(P;, Mp).

J

totallevel(P, Mj) = totallevel(L, Mj) + Z totallevel(P;, Mp).
J
For each nj, calculate the estimate of [Vg(z) — V4, ()|~ provided by Lemma . The cases
will be based on which of the arguments of the max function in that lemma is larger. If the
lemma provides [V — Vj, ()] 7' < 1 (the second argument of max), use the direct estimate

(5.21) |Cont([P;],t + n; - w) — Cont([P;], )| < |Cont([P;], ¢+ n;-w)|+ [Cont([P;],1)]

and the induction assumption (1) (we will verify the necessary prerequisite shortly). This
means that (3 is small enough so that the denominator (Vo — Vi, (t))™" does not need to be
treated as small, and no derivative factors appear. Each time the estimate is applied, we
gain the bound from the previous induction step and an extra factor of 2, which can be
absorbed into the combinatorial factor.

In the case |Vo — V4, ()| is smaller (meaning that the best that Lemma can provide
is [Vo — Vi, (t)| 7' < B with some B > 1, using the first argument of the max function), we
apply the induction assumption (2) and estimate |Cont([P;],+n; - w) — Cont([P,;], )| using
the derivative of P;.

Let us verify the prerequisites for applying the induction assumptions on the range of ¢.
Since [t| < 1|n; - wl], the assumption would follow from

1
(5.22) ;- wl} < < min |n- wf],
J

where £ is the base loop of P;. Recall that the denominator leveling constructed in Theorem
implies

(5.23) I - wll < 282720, [n o > R,

where n is from the right hand side of (5.22). In the special case level(n;) = 1, we have
|£;| < Csate, and the second inequality can be improved to

HII ’ WH > Cdio‘cdistcsafe’_‘r-

Thus, one can achieve (5.22)) by choosing a small § (depending on Cs,g) and applying the
first inequality in (5.23)).
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Let us now consider the case level(n;) > 2. In this case, one can reduce (5.22)) to

1
level(n;)—1 < level(Lj)‘
2 - 16B

Recall that P is a loop stack, and therefore £; is a short loop: |£;| < safedist(n;). The
bound ({5.16)) implies

(5.24) level(L;) < maxlevel(]£;|) < maxlevel(safedist(n;)) < level(n;),

assuming again that Sy is small enough (depending on Cy,e and other parameters specified
in the statement). Thus, in both cases we have (5.22). If we are applying the induction
assumption (2) to each P;, we use the bound

1

Dyl -]

(5.25) (Vo — Vi, ()71 <

The difference |Cont([P;], + n; - w) — Cont([P;], )| can be estimated by the bound (2) on
the derivative, times ||n; - w||. As a consequence, we have

Cont([(Pj], t+n,- w) - Cont([in], t) 4
% _ an (t) S Creg max Dminﬁlevel(ﬁj)'i'l’ 1;- (1)j7

where (1); denotes the right hand side of (1) for the induction assumption for P;, and £;
is the base loop of P;; we have also cancelled |n; - w||. We see that we obtain Cl, each
time the differentiation happens, and we do not gain D, in the numerator. The latter is
important since, in the high energy region, D,,;, can be very large.

To complete the proof of (1), note that the factor appears downedges(P, Mp) times.
Out of these, the first argument in the max function is chosen nbloops(P, Mjz) times, and
the second argument appears downedges(P, Mz) — nbloops(P, Mz) times.

To show (2), consider the derivative of (5.20), and suppose that the product runs over
7 =1,...,m. Asaresult of differentiating the product, we obtain 2m+1 terms. The estimate
from differentiating Cont (L, t) or (Vo—Vy, (¢)) " follows from Lemma 5.8 or Lemma , plus
the induction assumption (1) for the remaining factors combined with ((5.21]).

In the case of differentiating the last factor Cont([P;], ¢ + n; - w) — Cont([P;],¢) in (5.20),
we estimate the derivatives of both terms by absolute value:

(5.26)

d d
ECont([ij],t +n;-w)— %Cont([ij], t)
Each time we do the last operation, we gain a factor of 2. Ultimately, the power of 2 is equal
to the number of attachment points and can therefore be absorbed into 16*. We also get a
factor 2m + 1 < 5k each time we apply the induction. The total contribution from the last
factors is bounded by (5k)e8t(*) which can ultimately also be absorbed into 16* (recall
that height(k) is an extremely slowly growing function).

d
< ECont([ij], t+mn;-w)

d
+ ’ECOthTj]? t) .

O
5.4. The main result. Suppose that P is a loop stack, |P| = k. Then we have the following:
k
den(P, My) < :
en( 7 6) o max{l, C’distc’safe]\fg}7

k
bl P ML) <1 P, Mz) < )
nbloops(P, M) < loops(P, Mp) < 2 exp{c(disty, Caio, T) max{Mg,0}}’
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C'distk
Chate max{ Mz, 1}
downedges(P, Mp) < k/2.

Here, as above, Cy;s; denotes some constant that only depends on the distance function and
can be different from one estimate to another. Note that the bound on downedges(P, Mp)
cannot be improved much, since once the base loop of P reaches a small denominator of level
M, we can attach an unlimited amount of shortest possible loops (that is, of length 2) to
that denominator. Recall now the main bound from Theorem [5.10]

4 den(P,Mpg)
|Cont([P], )] < (Cuistl 0]l )" (D , )

) nbloops(P,Mpg)

nblevel(P, Mz) < totallevel(P, Mz) <

Bftotallevel(f}’,M,g)7den((P,M5) %

ﬁ—nblevel(fP,M/g)—nbloops(fP,Mﬂ)
Dmin
Combining it with the previous estimates, we obtain (assuming additionally Dy, > 1)

Cdist )

(Cont ([, £)] < CH2(Caimllplloo)8~ ¥ (+25).

reg

downedges(P,Mg) 4
><C’reg s (—

Recall that these bounds rely on § being sufficiently small in order to satisfy the consistency
condition ([5.6):
0< B < Bmax(csafea C’dim diStcpa T)
and a bound of the form
Ciatemaxlevel (k)? < k,

which is required for (5.17) and (5.24) and is possible due to (5.16)) (see also Remark [5.6)).
If Mg > 0, then all the bounds only become better. Note that Dy, can be arbitrarily large,

and it is important that it is always in the denominator. We arrive at the following main
result.

Theorem 5.11. Suppose, [ is Creg-regqular at zg € (—=1/2,1/2)\ (Z +1/2 + Z? - w) and
Dyin > 1. Consider the operator (1.1)):

(H(xO)w)n =€ Z Yn-m¥Pm + f(xO +n- W)¢n'

meZd

Let Vi, = f(zo + n-w), and consider the perturbation series
(527) )\0 + 8)\1 + 82)\2 + ...,

V=1 +er+ePa+ ...
with Ao = f(x) and 1y = e, constructed in Theorem . There exists v = (T, Cao, dist,,)
such that the the terms of the eigenvalue series satisfy

(5.28) Al < G (Caisllplloe) ™y "

— “reg

/2(C’dist\|<pHoo)_1'y, so that the series converges. Then

dist, (n,0)
Odist || QOHoo C’reg) 6distsp(n,O)
)

Suppose, in addition, that € < C’r;é

(5.29) ] = Hem )] < ( -

so that 1 € (2(Z%) and it satisfies the eigenvalue equation
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Proof. Recall that the coefficient at ¥ at the eigenvalue series is a sum of the following terms:

Cont([P]) = Cont(Py) H . — Vo) *Cont([P,]),

s=1

Each Cont([P,]) factor can be estimated using Theorem [5.10} Due to the Diophantine
condition, extra denominators V5, can be absorbed into the bound.

For the eigenvector series, the same argument is sufficient to obtain the convergence of the
series for each component of the eigenvector. However, note also that the most “efficient”
way to contribute into 1, is to consider a path that only has a safe base loop, since each
attachment “resets” the route, and, due to cancellations, we do not need to worry about
multiple attachments at small denominators. The bound follows from the safe loop
bound similar to Lemma [5.8 O

Corollary 5.12. Suppose that f is (uniformly) Creg-reqular on an interval (a,b) C (—1/2,1/2).
Denote by \(z), where x € (a,b) \ (Z + 1/2 + Z¢ - w), the result of applying Theorem [5.11]
to the operator H(z). Then, the function A(x) extends to a continuous strictly monotone
function on (a,b).

Proof. We have, from ,
Mz) = f(z) +e(z) + X)) +

The first term is strictly monotone in x with a positive lower bound on the derivative. The
derivatives of the remaining terms can be estimated in a manner similar to (5.28)), using part
(2) of Theorem [5.10] Therefore, after possibly choosing a smaller ¢, A(z) will have the same
lower bound on the derivative (which can be made arbitrarily close to that of f). U

(=1/2,1/2) \ (Z + 1/2 + Z¢ - w) and Y[n]ym = ¥(xo + n - W)m. Here, N(z) is defined in
the same way as in Corollary and (x) as in Theorem [5.11]. Then

(5.30) H(o)y[n] = Ant[n],

where Ay = AN(zo +1n-w). The spectrum of H(xy) is pure point, and the above eigenvectors
form a complete system.

Corollary 5.13. Suppose, f is Cieg-regular on (=1/2,1/2) and Dy, > 1. Let zy €

Proof. The eigenfunction equation ([5.30) follows from a standard translational covariance
computation. Consider the operator U with columns ¢ [n]. Clearly,

\UU* —I|| <ce, JJUU-—-I| <ce,

where ¢ = ¢(Csage; Caio, dist,, ||¢]|oo, 7). Therefore, the span of the eigenvectors ¢[n] is dense
in (2(Z%). Corollary n implies that the spectrum is simple. O

Remark 5.14. The inverse function A\7'(E) is equal to N(E) — 1/2, where N(E) is the
integrated density of states of the ergodic operator family H(z). The easiest way to see that
is to define IDS as the expectation value of the spectral measure.

Remark 5.15. One can easily check that if f is a meromorphic function in a neighborhood
of R, then both \(x) and N(FE) are also meromorphic.
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Remark 5.16. Under the assumptions of Corollary [5.13] one can normalize the eigenfunc-
tions ¥[n] in £>°(Z%) in order to satisfy uniform localization:

(5.31) Ul =1 [ofnlm] < el 5], m oz,

where ¢ and cgisy can be picked uniformly in the region of applicability of Theorem [5.11}
that is, whenever f is Cyee-regular at {xp + n - w}. In other words, each eigenvector is a
small perturbation of e,, and its components decay exponentially in the distance from the
“localization center” n, with an upper bound that is uniform for all eigenvectors.

Remark 5.17. The fact that A(z) extends continuously into (—1/2,1/2) has the following
meaning: suppose that * € Z 4+ n-w + 1/2. Then the potential becomes infinite at n. As
usual, one can understand it as a Dirichlet boundary condition imposed at n. For the usual
Schrodinger operator on Z with nearest neighbor hopping, the problem thus splits into a
direct sum of two half-line operators, each having pure point spectrum.

5.5. The local result. Theorem only relies on Cleg-regularity of f at one point z. In
particular, it does not require monotonicity of f outside the interval (a,b) (although it still
needs the “regularity at infinity” condition (cr2)). As a consequence, at any such point z
the perturbation series for the eigenvalue and the eigenfunction will converge. If f is Cieq-
regular on an interval, it implies convergence of the perturbation series for all eigenvalues
and eigenfunctions whose (unperturbed) energies fall into the image of that interval. The
following results state that, if one slightly decreases the size of the interval, then these
eigenfunctions will actually exhaust the spectral projection of H in the smaller interval. In
other words, regularity of f on an interval implies Anderson localization for H on the same
interval.

Lemma 5.18. Suppose that f is Cieg-regular on (o, 5), where —1/2 < o < < 1/2 and
Dpin > 1. Fiz xg € (=1/2,1/2)\ (Z + 1/2 + Z¢ - w) and apply Theorem for all
r=z0+n-wé€ (a,B). In the notation of Corollary denote

o) = span{ym]: {zo +n-w} € (a, B),n € Z4}.

There exist ¢ = ¢(Creg, Caio, disty,) > 0 and g9 = €¢(Creg, Cio, disty, ||¢]loc) such that, for
0<e<ey and allz/JJ_HaB) we have

H( )gf(ﬁ) )w

Proof. Denote by E the orthogonal projection onto the subspace
Ran E = span{e,: {zo+n-w} € (a, ), n € Z4}.
Let also U: (*(Z%) — (*(Z%) be defined on the standard basis by

B (AT
" 0, {zg+n-w} ¢ (a,B).

f(B) = fla)

Y1 )l

' >

One can check, using ((5.31]), that
(5.32) |UU* — E|| < ¢e,

where ¢; depends on ¢ and cgis¢ from (5.31)). Let b L Il ). Then U*t) = 0, and ([5.32)
implies ||EvY| < cie||¢||. Recall that H(zg) = V(x¢) + P, where V(z) is an operator of
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multiplication by f(zo + n-w), and let ' = Evy, ¢ = (1 — E)Y. From the definition of £
it follows that

‘ (V(:co) _ w> || > MW”H > M(l — )|l
By combining the previous bounds, we obtain
HH(JCW B f(a);f(ﬁ)¢”
> (v - L2 L) ] — | (v - 2L o
> (P57 - ey - oy - LD )y,
from which the claim follows. 0

The original definition of Cye-regularity may be too restrictive if the interval (f(a), f(3))
is small, since it requires monotonicity of f in a large neighborhood of that interval. It is
more convenient to formulate a general result using the rescaled version of regularity in the

sense of 5.3t

Theorem 5.19. Suppose that f is Creg,-reqular on («, ), where —1/2 < o < < 1/2 and
Dpin(z) > Dy > 0 on (o, f). There ezists €g = €o(Creg, Caio, disty, |¢]|oc, ¥, Do) such that,
for 0 <e<egand all vg € (—1/2,1/2)\ (Z + Z* - w), the spectrum of H(xq) in the interval
[f(a), f(B)] is pure point, and the eigenfunctions ¥[n], whose energies are in that interval,
form a complete system in the range of the spectral projection onto [f(«), f(5)].

Proof. Since f is Cieg,,~regular on (a, 3), we can assume that f is Cyeg,/o-regular in a slightly
larger interval (o/,’). Now the result follows from applying Lemma to the rescaled
function (v/2)~!f and choosing an appropriately small €. The case of arbitrary Dy can also
be treated by a similar rescaling. O

6. GENERALIZATIONS: THE LONG-RANGE CASE AND NON-CONSTANT HOPPING TERMS

6.1. Non-constant long range hopping terms. A quasiperiodic hopping matriz is, by
definition, a matrix with elements of the following form

(6.1) P () = Pmn(z+ (M +n)-w/2), mncZ

where ¢, : R — C are Lipschitz 1-periodic functions, satisfying the self-adjointness condi-
tion:

¥m = $-m-
Let also

lelloe = sup [l@wlloc, 1¢'llo = 5P [|4ic]loc-

Define Range(®) to be the smallest number L > 0 such that ®,,, =0 for jm —n| > L. We
will only consider hopping matrices of finite range. Note that (6.1) can be reformulated as
the following covariance property:

(I)m—i-a,n—I—a(x) = (I)mn(l' +a- W), m,n,ac Zd.
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Fix some R € N, and suppose that ®!, ®2, ... is a family of quasiperiodic hopping matrices
with Range(®;) < kR, defined by a family of functions ¢ , 2 ,.... A more general class of
operators we would like to consider will be of the following form:

(6.2) H=V4+ed' +202+ ..., 0<e<]l,
where, as previously,
(V)n = Vathn = f(z0 + 10 w)thy.
One can easily check that, assuming
lelloo = sup [[¢]loc = sup [lfy [l < +00, 0<e<1,
J J,m

the part e®! + 202 + ... defines a bounded operator on ¢?(Z%). Similarly to the previous
sections, we are dealing with the equations

(V+ed +20% 4+ .. ) (Yo + ety +...) = Ao+ X+ ...) (%o + ety + ...),

and the initial conditions
Mo = Vo= f(x0), %o=ceo, ;L yforj>0.

Formal equalizing of terms at * leads to
Vipy + @by + ...+ D + DFeg = Aotk + Mo + Aatp—2 + ... + Ne—1thr + Areo

which, after projecting onto span{eg} and span{eg}*, is reduced to
(6.3) i =Vo—V) " (@1 + ...+ D"y + PFeg — Aithyo1 — Aathoo — ... — Ne_1th1) 5

(6.4) A= (P01 + PP o+ ... + DMy, €o)-

In order to establish an analogue of Theorem [3.2] one needs to construct an appropriate
version of the graph I'. It will formalize the following construction: each time a path makes
a jump between two vertices, it can “choose” which term of the kinetic energy will be used
to perform that jump. Naturally, the use of the term ® will cost €’; in other words, the
corresponding graph edge will contribute 5 to the length of the path. In the construction
from Section 3, all edges had length 1.

e Take ® = &’/ and denote the graph constructed in Section 3.1 using only that ®, by
I'; = (€,V;); here € is the set of vertices (same for each I';), and V; is the set of
edges. Let

L= (& |V,

where | | denotes the disjoint union. In other words, T' is a graph on the same set
of vertices as each of the I';, and includes all edges of each I';, considered separately
(thus obtaining a multi-graph). To each edge of I', we associate two numbers: the
length (an integer number j for an edge inherited from I'V) and the weight (defined
in Section 3.1 with ® = ®7). We will also be following the convention from Remark
[3.1] for future convenience.

e As a result, a path in the graph I' is no longer determined by a sequence of vertices,
and requires additional data: for each jump (by a jump we will mean moving from
one vertex in our sequence to the next one), one needs to specify the length of the
edge used for that jump. Any edge of I' is uniquely determined by its length and
starting and ending vertices.
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e The loop translation is now defined in a way that, whenever a piece of a path gets
translated, every edge gets translated into an edge of the same length as it was before
translation. The convention in Remark guarantees that the translated path will
exist. However, since ®/__ depends on z and is no longer translation invariant, a path
with a non-zero contribution may be translated into a path with zero contribution.

If P is an eigenvalue/eigenvector path on I', we will denote by |P| the total length of edges
of P. With the above conventions in place, one can reformulate the main results of Section
2:

where the sum is considered over all eigenvalue loop configurations P (with |P| = s), and a
similar expression for the eigenvector

(Y= Y _ Cont(P), k#0, s> 0;

P,|Pl=s

The definition of a safe loop follows Definition 4.2 with the addition that the number of
jumps is replaced by the total length of the edges. In the definition of Cont (P, ), in addition
to replacing V,, = f(xo+1n-w) by Vyu(t) = f(zo+t+n-w) for n # 0, we also replace &7, (o)
by

®I (x9,1) =D (29 +1) = Qmn(zo + 1+ (M+n)w/2).

The results of Section 4 can be repeated without significant changes. It is helpful to observe
the following: one can treat a jump from m to n, say, with diste(m,n) = 3, as three jumps
of distance 1, where only one of these jumps makes an actual contribution to Cont(?P), and
the contributions of two other jumps are equal to 1. The resulting bounds are only better
(since there are less denominators to care about). Since ¢ is no longer a constant, each time
we are estimating a derivative we have a choice of differentiating one of the ¢ factors. As
a consequence, the factor |||l in front has to be replaced by ||¢]loc + [|¢']|co- An extra
combinatorial factor can be absorbed into C%. ..

Proposition 6.1. Let P be an eigenvalue/eigenvector loop stack with k edges. Suppose, f
is Creg-reqular at xy and L is the base loop of P. Denote Mg by (5.18)), and let

1
t] < 1 rr?el? In-w|, 0<pB < Bmax(disty, Caio, Tdios Csate)-
Then
(1)

4 den(P,Mp)
Cont([P], 1)] < Cg'(H@Hoo + H90/||oo>k <D7 ) ﬂ—totallevel(?,M;s)fden(?,Mﬁ)X

><C,downedges(fP,MB) ( 4 B—nblevel(?,Mﬁ)—nbloops(?,MB)'

reg
Dmin

(2) The function Cont([P],-) is Lipschitz continuous with the bound on the derivative

) nbloops(P,Mpg)

d Ay
%Cont([?],t)‘ < Creg max {m,l)min} . (T.h.S of (1))
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Remark 6.2. The combinatorial factor now depends only on R, since the distance function
and the range of ®' is defined by R. Note that, despite multiple choice of edges, the total
number of paths of length |P| with non-zero contributions is still bounded by C’gl. The power
of ||¢]|sc now depends only on &, which is the number of edges. The fact that one also needs
to differentiate ¢ only affects the result by adding |||« into the factor (||¢|ls + [|¢|lco);
since differentiating ¢ means that we are using ||¢’||« - (r-h.s of (1)) instead of (r.h.s of (2)).
These possible extra ||¢’||o can be absorbed into the factors in front of (1).

Remark 6.3. The reader can easily formulate appropriate versions of the results of Section
4, starting from Theorem [5.11] The only differences are the inclusion of ||¢’||« and different
notation for the distance function.

6.2. The case of monotone potentials with small derivatives. The results of Section
6.1 can easily be extended to the case where the terms &’ of have some additional
dependence on ¢, as long as the estimates of |||« and ||¢'||« are uniform in ¢ in the range
of parameters under consideration. The same arguments can be applied to the dependence
of f on ¢ if one considers both upper and lower bounds on the derivatives described in
the definitions of regularity in Section 5.1. In particular, we always assume that D, > 1
(although rescaling allows to replace 1 by any positive e-independent quantity). In some
of the applications, these assumptions are not flexible enough. In particular, the operators
considered in Section 7, for which f is originally not strictly monotone, can be transformed
into those with monotone f, but the derivative will only admit a lower bound by ce? on
some intervals. The bounds outlined above, essentially, contain a factor D_F  leading to a
coefficient of the order e=%* at £*, not sufficient to guarantee convergence of the series for
such f. In addition to that, C.e will also contain negative powers of ¢.

In order to deal with these problems, we introduce some refinements to our general scheme
which we will now describe. They will involve additional restrictions on the hopping terms
and f. Assume the following:

(sing0) Iy,..., I C (—1/2,1/2) are open intervals whose closures are mutually disjoint.

(singl) f satisfies (f1) from Section 3. Additionally, f is Cieg-regular on (—1/2,1/2)\ (I; U
... U Iy) with Dyin(zo) > 1 for all zyp € (—=1/2,1/2) \ (I1 U ... U I;). For each
Ij = (CLj, bj), let D]H‘ = maX{Dmin(a), Dmin(b)}, Dj,, = min{Dmin(a), Dmm(b)}.

(sing2) For some § > 0, we have ¢; 0" < f'(z) < ¢j+ on I;. As usual, we assume that the
inequalities hold for all derivative numbers in the case f is not differentiable. As a
consequence, f is strictly monotone on (—1/2,1/2).

(sing3) For each xy € I;, we have (cr2) with Dy,n(20) replaced by ¢; 4.

Since f is regular on (—1/2,1/2)\ (I;U...UI}), the results of the previous subsection apply

for o € (—1/2,1/2)\ (I; U...U I;) outside of these intervals.

If zy € I, we can estimate the denominators by considering three cases:

(1) Singularsmall denominators: t+xo € I;, t+xo+n-w € I; for all t under consideration.
In this case, we have to use ¢; 0" as the lower bound for the derivative of f, and
can use ¢;j 4 as an upper bound.

(2) Regular small denominators: x¢ € I;, but either ¢t + x¢ or t + zp + n - w is not in
I;, for some t under consideration. In this case, while f is not regular at xy, we can
treat xo as a small perturbation of ¢t + xy or t + o + n - w. These denominators can
be considered in the same way as the regular case, under some modifications of the
constants: since some of the points are outside of I;, one cannot use c¢;  as an upper
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bound on the derivative but can use CyegD; + as an upper bound and D; _ as a lower
bound.

(3) For non-small denominators, in view of (sing3), one can use CiegCj+ as an upper
bound on the derivative; lower bounds are not needed since the absolute value of the
denominator is at least 1.

For simplicity, let us also assume that 3 is chosen to be small enough so that all denominators
of level 1 or higher are actually small. In other words, Mgz(xo) = 0 for all o € ;. We will
drop Mj from the notation: for example, den(£) will denote den(£,0). For a loop £, denote
by singden(L) the total number of singular small denominators visited by L.

Lemma 6.4. Under the above assumptions, let £ be an eigenvalue/eigenvector loop with k
edges. Let

eI, |t < >minn-w]
xo € 1, _41;n€1£1nw.

Then
(].) |C t(,C t)| < || ||k 4 den(£) B—totallevel(ﬁ)—den(ﬁ) Dj
on VS IPleo \ B, e,

(2) The function Cont(L, ) is Lipschitz continuous:

40~ H Cj+ 4Creng,+
Cj7_/81evel(L)+l ) Dj7_/Blevel(L)+l b] Cregcj,-‘m . (’f’hS Of (1))

) singden(£)

’%Cont(ﬁ,t)’ < |L] -max{

Proof. As described above, we consider three types of denominators. In the case of estimating
(1), non-small denominators do not give any contribution (we use a lower bound by 1 for
each of them). The “regular” small denominators are treated in the same way as in the
regular case, with the same contributions. In the case of singular small denominators, we
replace D; _ by (6%~ )" which produces the last factor in (1) (“replacement factor”).

In the case of (2), we argue similarly to Lemma ; that is, a differentiation would add an

extra factor | £| ‘ Vo‘fg(i)(t) ‘ in the upper bound, and we estimate the ratio in the worst possible
case, again, by considering the three types of denominators. 0

In order to make further estimates less cumbersome, we assume that § and ¢ are small
enough, depending on Cieg, Dj +,¢j +, so that in the conclusion (2) of Lemma we have

40 Hicj 4 4Cee D +
ij_Blevel(L)—H - Dj7_61evel(ﬁ)+

(65) 1 Z CrengH'_.

It will be convenient to introduce some additional notation.

e Let singdownedges(P) denote the number of descending edges of P which lead to a
singular small denominator.
e Let also singden(P) be the total number of singular small denominators visited by

P.

Theorem 6.5. Under the above assumptions on f and ®, let P be an eigenvalue/eigenvector
loop stack with k edges. Suppose that xy € I; and £ is the base loop of P. Let

1 . .
‘t| S 4_1 Ir?elg ”1’1 : Cd”, 0< 6 < C(dIStgm C’dio7 Tdio» Csafe7 Cj7i7 Dj,ia CVreg)

0<od< 50 (diStcpa Cdioa Tdio» Csafea Cj+, Dj,:l:; Creg)-
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Then we have

den(P singden(P
(Cont(P] 0] < O (platl@lln)t () prssmsievas-amy ( Diz )W
- D;j 5/”6]‘7_

i

downedges(P) ) 2 singdownedges(P)
% 4Creng,+ B—nblevel(‘?)—downedges(fP) CJF"Dj,*
Dj2‘77 52/LJC?77DJ7+

Proof. The proof essentially repeats the proof of Theorem [5.10, with modified constants.
The first factor comes from considering the individual loops on P and applying Lemma
to each of them.

The remaining factor comes from considering the attachment factors and the differentiation
) nbloops(P,Mpg)

downedges(P,Mg)

factors. For example, in the factor Creg ( 4

Dmin (530)

we note that downedges(P) = nbloops(P), replace Dyin(2o) by D;_ and Ciez by C“’gD”,

4Cres D+ > downedges(P)

from Theorem |5.10},

D2 Together with 6—nb1eve1(?)—nbloops (P) 7 this

would complete the bounds in the case of no singular small denominators.
For each smgular small denominators, instead of the above procedure, we need to replace
Chreg by —2r, and Dy by ¢, 0%, Wthh produces the last replacement factor. O

thus obtaining the factor (

In order to formulate the main result of this section, let us state an additional condition on
f. We would like to emphasize that ¢ is allowed to depend on ¢.

(sing4) There exists Bmax = Smax(Creg, L, Dj+,¢j+,w) > 0 such that, for 0 < § < Supax there
exist

50—50(57 regal D]ivc]ia )>0> 0<T—7’(5, rega[ Djiac]iaw)<1a
C= O(ﬁ, reg,] D]i,c]i, )>0

such that, for any loop stack P and for any j we have

6,ujsingden(?)+2ujsingdownedges(?) < C]T\ET|T|

We can now state the last result of this section. Its proof, after the above preparations,
repeats the corresponding steps of the proof of Theorem [5.11}

Theorem 6.6. Suppose that f satisfies (sing0)—(sing3) with Creg, Dj s, ¢+, I; independent
of €. Under the assumptions of (singd), and further assuming

0<e<e(B,Creg Lj, Djs,cjr,w,C, e eq,r),
the perturbation series for H(xq) converges for all 1o € R\ (Z +1/2 + Z¢ - w).

7. AN EXAMPLE: MONOTONE POTENTIAL WITH A FLAT SEGMENT
7.1. The class of operators. Fix an interval (a — h,a + h) C (—1/2,1/2), where
—1/2<a—h<a<a+h<1/2

Consider a continuous non-decreasing function f: (—1/2,1/2) — R and a frequency vector
w with the following properties:
f(=1/240) = —o0, f(1/2 —=0) = +o0.
o f is Cyeg-regular uniformly for = € (—1/2,a — h) U (a + h,1/2) for some Cie > 0.
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o fl(x) > 1 for all z € (—=1/2,a — h) U (a + h,1/2) and 0 < f'(z) < ¢y for all
x € [a — 2h,a + 2h] for some c; > 0.

e w e (—1/2,1/2)% is a Diophantine frequency vector. In addition, ||n - wl|| > 6h, for
all n with 1 < |n|, < ¢;. Note that this imposes an additional requirement on the
smallness of h. Here, ¢ is a sufficiently large absolute constant (c; = 6 is sufficient
for the main result of this section; however, we did not intend to optimize it and
believe that a small modification would allow to use ¢; = 3).

Remark 7.1. This class of functions covers the main example that we have in mind: that is,
the case when f is equal to a constant on some sub-interval in (a —hy,a+hy) C (a—h,a+h).
Note that Cieg-regularity outside (a — h, a + h) requires f to be strictly monotone near a — h
and a-+h, which implies that the inclusion must be strict. However, by introducing additional
rescaling that depends on h — hy, one can consider examples with arbitrarily small values of

h — h;.
7.2. Outline of the procedure. Let us consider the following operator family on ¢2(Z%):

(7.1) (H(z)Y)n =e(AY)n + f(z + 10 W),

where z € R\ (Z+1/2+7Z% w), and f is extended into R\ (Z+1/2) by 1-periodicity. Operator
does not satisfy the assumptions of Theorem , as f is not strictly monotone.
However, it is possible to replace it by a unitarily equivalent operator with non-constant
hopping terms which will satisfy the criteria described in Section 6. We will describe the
corresponding unitary transformations in a general form. Suppose that

(H¢)m = m@z)m +¢€ Z q)mm’¢m’-
m’cZd
To begin with, we will define the basic “building block” that will be used in the construction
of the required unitary transformation. Let n # 0. Suppose that Vo = Hog =0, Vi, = Hpn >
0, and
HOn — Iino — E(I)On = 8(I>1r10-
Put
D = \/V2 4+ &2| gyl
Consider the operator U with the following matrix elements:

Va

UOOIUnnzﬁ;
- (I)On i q)n()_ (I)On_
UOn—eD, Uno——eD =t

Unm = 1 for m € Z*\ {0, n};
and all other matrix elements of U are zero. One can check that U is a unitary operator on
(*(Z%). Let us calculate the conjugation of H by U:

U*HU =V + 0,

where
~ Val®onl? = V3 4282 |®gn|? Ve =~
Vo = —52%7 Vo= D|2 on , Vin = Vip for m € Z%\ {0,n};
~ Don|* Py ~ Don|*Pon
$, — _o2|Ponl P05 |Pon| Pon

Dz Dz
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= . Vn (I)nO = o Vn (IDOH d
CI)Om = B@om —+ €?®nm7 @nm = B(an D q)Om for m c 7 \ {O, n},

and P m, = Prmym, for my, m, € Z\ {0,n}.

Remark. Clearly, we can apply this transform even if V4 # 0, as long as V,, # Vp: we
represent H as H = Vol +H and transform H using the procedure described above. Similarly,
one can apply the procedure to any pair of lattice points {k,k + n} through adding k to all
indices in the above procedure: in particular, D = \/(Vajx — Vi)? + 2| P nyik|>.

This procedure will be called elimination of the entry ®go,. Note that, strictly speaking,
it only eliminates it up to the order 2. As a result, new entries can also be created, such as
®n in the above calculations. Using translation, one can describe elimination of any entry
Oy x+n under similar assumptions.

It is natural to consider the elimination procedure in the context of long range operators
from Section 7.1. For example, if one starts from an operator H = V + e®!, the result of
the transformation can be represented as

U HU =V 4 ®' + 2% 4+ 59,
Here, we will ignore the dependence of D on ¢ and group the correction terms based on the
number of € factors in front of them: for example, in the earlier notation, <I>n0 = ‘%r}lj#.
In application, the dependence on € through D will be slow enough so that the upper required
bounds on the off-diagonal terms and their derivatives will be uniform in €. On the other
hand, one will need to deal more carefully with the diagonal terms, since the presence of the
€2 terms will be crucial for establishing monotonicity.

In this new notation, one can state that the procedure completely eliminates ®J, since
the correction to this term goes into ®3. One can repeat this procedure, say, for the pair of
lattice points {0, m}. In this case, we will use the operator U constructed from V +ed?,
without including further terms. As a result, we will eliminate both @, and ®;_. This may
introduce some new higher order terms. The exact result of the operations will, in particular,
depend on the order in which ®}  and @}, are eliminated, but that dependence will only
affect higher order terms.

We intend to apply a sequence of transformations of the above kind to the operator
(7.1), where f satisfies the bullet points in the beginning of the section. The goal of these
transformations will be to construct a new operator, unitarily equivalent to H(x), satisfying
the assumptions made in Section 6.2. We will start by considering H(x) as a “long range”
operator Hy(z) = Vo(x) + e®}(x), where ®}(x) = A. During later steps, the operator will
have non-constant off-diagonal terms of higher range than A. In the notation (I)i(iﬁ)mn above
and below, k is the step of the procedure, j is the order of the perturbation, and mn indicate
the matrix element under consideration. The transformation procedure will be performed in
two steps as follows.

e For every m € Z% such that z + m - w € [a — h,a + h], eliminate all entries ®}(x)mn.
This procedure can be performed in a covariant way, so that the resulting operator
family H;(x) will still be quasiperiodic. After this first step, the family H;(z) =
Vi(z)+e®}(x) +e2®%(z) 4303 (x) will satisfy two additional properties: the diagonal
entries will have lower bounds on the derivatives of the order €2, and for every m € Z¢
such that x + m-w € [a — h,a + h], all edges starting at m will have weight at least
two (in other words, ®}(z)mn = 0).



40 I. KACHKOVSKIY, L. PARNOVSKI, AND R. SHTERENBERG

e On the second step, eliminate all entries ®2(1)pmy for all m € Z¢ with x + m - w €
[a — h,a + h] (again, one needs to do it in a covariant way described below in more
detail).
Afterwards, one needs to check that the new operator family H(x) satisfies the assumptions
(sing0) — (sing4) in Subsection 7.2.

7.3. Step 1. For z € [a—h,a+h] and m € Z¢ with |m|, = 1, denote by Uj y,(z) the unitary
operator that eliminates the off-diagonal entry ®}(z)mn = (A)om(z) = 1 from H(z). Let

D)= [  Uim(2).
meZd: imfp=1
Let Uy(x) = Uy (x) for z € [a— h,a+ h], Us(x) = I for x € [-1/2,1/2)\ [a — 2h, a + 2h], and
“unitarily interpolated” in between:

Uy(a — 2h +th) = (1 = t)I +tUs(a — b)) |(1 — )] + tUs(a — h)| ™", t€]0,1],

and similarly on [a + h,a + 2h]. Additionally, extend Us(z) from [—1/2,1/2) to R by 1-
periodicity and continuity in the variable x.
Next, we would like to spread this transformation to all lattice points by considering

Us(z) = [] Tala(z +n-w)Ty,
nczd

where T, denotes the lattice translation operator. Note that the factors in the product

commute and the product is well-defined in the strong operator topology: for any vector

Y € (2(Z4) with finite support, all factors of Us(x), except for finitely many, will act on 1) as

an identity operator, and the remaining finitely many will commute with each other.
Define

Hi(x) := Us(z)* H(z)Us(z) = Vi(z) + e®;(x) + 27 (2) + 73 (2).

Here, we will use several assumptions discussed above: ®/(z) may depend on ¢ through the
D factors. We will also absorb all higher order terms into ®3(x). Let fi(x) := Vi(z)oo-

Lemma 7.2. Suppose that H(x) satisfies the assumptions from Subsection 7.1. Construct
Us(z) and Hy(x) as above. There exists eg = eo(f,w) > 0 and ¢; = c1(f,w) > 0, co(f,w) > 0,
cs3(d) > 0 such that, for 0 < e < ey we have the following:

(1) fi1 is (Creg — Cog)-regular on [—1/2,a — h| U [a + h,1/2].

(2) fi(x) > 1—coe forxz € [—1/2,a—h]U[a+ h,1/2].

(3) fi(z) < D+ coe for x € [a — 2h,a + 2h).

(4) [(®D)mnller < ca.

(5) The range of ®3(z) is at most 2; in other words, ®3(x)mn # 0 can only happen for

|lm — n|; <2. The range of ®3(x) is bounded by c3(d).
(6) Forz+m-w € [a— h,a+ h| + Z, we have ®}(x)mn = 0.
(7) For x € [a — h,a+ h] + Z, we have f{(x) > ¢1e.

Proof. Properties (1) - (4) follow from the fact that all matrices U;(z) involved in the process
have finite range are small perturbations of identity with ||(/ —U;(2))mnllct < ¢(w, f)e. The
latter follows from the fact that the entries of U;(x) are obtained from m, where
dist(n-w, Z) > 2h (and therefore f is regular either at x or at x+n-w). Property (5) follows
from the construction of the operators U: one can note that any edge created between n



CONVERGENCE OF PERTURBATION THEORY 41

and m will have length at least |m — n|. Note that, since we absorb all lower order terms
into ®3, we cannot argue that its range is bounded by 3. However, it is clearly bounded by
some constant that only depends on the number of matrix multiplications which, in turn,
only depends on the dimension. Property (6) directly follows from the construction of U.
Property (7) is the most important property which follows from the calculations of Section
7.2. For x € [a — h,a + h], we have

fie) = F@) 423 ( ! n ! ) L0
T f@) = flz+w)  flz)— flz—w;) ’

where the last term admits a C''-uniform upper bound in x on [a — h,a + h]. In particular,
we have f{(x) > c£? on [a — h,a + h], where ¢ = ¢(f,w) > 0; note that both z + w; and
xr — w; are outside of [a — h,a + h]modZ, and therefore the derivatives of f are bounded
from below in that region. 0

J=1

7.4. Step 2. The operator Hy(z) is a “borderline” case which just misses the assumptions of
(sing4) and thus Theorem Indeed, we have only one singular interval with p; = 2, v, = 1.
The shortest possible loop starting from a singular small denominator has length 4 (two steps
of length two). By attaching multiple copies of this loop, we can have singdownedges(P) ~
|P|/4, which fall short of satisfying (sing4).

The above issue can be resolved by performing another step of eliminating diagonal entries.
For each n € Z¢ with |n|; < 2 and z € [a — h,a + h], let Us,(z) be the unitary operator
which eliminates the entry ®2(x)g, in the operator V;(x) + £2®%(z). Note that, due to (6)
in Lemma[7.2] we already have ®}(z)on eliminated for # under consideration. Let Us(z) be
the operator obtained from Us,(z) in the same way as Us was obtained from U; (that is,
interpolation with the identity and extension by covariance).

Lemma 7.3. Under the assumptions of Lemmal[7.2] and with the above construction of Us(x),
let

Hy(z) == Us(z)*Hy(2)Us(x) = Va(z) + e®y (1) + £2®5() + 305 (z).

Then, the operator Hy = Vi + e®} + £2®3 + £3®3 satisfies (1)~(7) from Lemma [1.2, In
addition, ®3(x)mn =0 forz+m-w € [a — h,a+ h] + Z.

Proof. The conclusions of Lemmal[7.2]remain true under perturbations of the diagonal entries
by O(e?) and off-diagonal entries of O(?), which is clearly the case if one conjugates H; using
Us. The additional claim follows from the construction of Us, since it completely eliminates
P?(2)pn With x + m - w € [a — h,a + h] + Z, possibly creating additional terms of order &
or higher. 0

Theorem 7.4. Let H(x) be an operator of the class defined in Section 7.1. Construct the
operator Hy(x) using Ui(x) — Us(x) as above, and consider the loop expansion for Hy(x) as
in Section 7.1. There exist Bmax = Pmax(fiw) > 0, C(f,w) > 0 and gy = o(f,w) > 0 such
that, for

0<e<er, 0<fB<Bmax
the operator Ho(x) satisfies (singd) from Section 7.3 and, as a consequence, the perturbation

series for Ho(x) convergence and both H(x) and Hs(x) satisfy Anderson localization for all
re€R\(Z+1/2+7Z% w).
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Proof. In order to check (sing4) for Hy(x), let P be a loop stack. For a non-base loop £ on
P, let us consider the total number of § factors produced by this loop (including the factor
from its attachment). The last bullet point in the beginning of Section 7.1 implies that,
starting from the interval [a — h,a + h], the total length of steps to return to that interval
without ending the loop will be at least 7. As a consequence, any loop L with |L| < 6 does
not have any singular small denominators on it. Therefore, the contribution of this loop is
of the order 672 ~ £, which gives a total contribution of at most O(s=21/3), where k; is
the total length of these loops.

Let ko be the total length of loops £ on P with [£] > 7 (note that Hs(z) may contain
off-diagonal entries of odd ranges). The total contribution of the attachment factors from
these loops is e~#*2/7. Additionally, each such loop can have at most ||£|/6] singular small
denominators (as the result of Lemma [7.3]). As a consequence, the total contribution from
S-factors from these loops will be O(g=42/7=2k2/6) — O(g=19%2/21) By combining all bounds,
we arrive to (conv4) with r = 19/21. O

Remark 7.5. Suppose that f indeed has a flat piece. One can check that then the integrated
density of states of our operator H has a lower derivative number of order ~ 72 on an
interval of length ~ ¢2; outside this interval, derivative numbers are bounded. Thus, if the
‘non-integrated density of states’ exists, it has a pike of order ~ £72 on an interval of length

~ 2 and is bounded otherwise.

Remark 7.6. The assumptions on f listed at the beginning of this section are not optimal.
First of all, we can assume, for example, that f is non-decreasing when = € [a — h,a + h]
and f is Lipschitz monotone (meaning f’(x) > 1) outside of this interval. This allows f to
have continuous derivative (or even be infinitely smooth). The assumptions on the ‘number
of steps’” we need to make to return from the flat piece back to the flat piece can also be
improved. We plan to come back to this class of examples in a subsequent publication and
discuss other effects occurring here.
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