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ABSTRACT

Data Valuation in machine learning is concerned with quantifying the

relative contribution of a training example to a model’s performance.

Quantifying the importance of training examples is useful for iden-

tifying high and low quality data to curate training datasets and for

address data quality issues. Shapley values have gained traction in ma-

chine learning for curating training data and identifying data quality

issues. While computing the Shapley values of training examples is

computationally prohibitive, approximation methods have been used

successfully for classification models in computer vision tasks. We

investigate data valuation for Automatic Speech Recognition models

which perform a structured prediction task and propose a method for

estimating Shapley values for these models. We show that a proxy

model can be learned for the acoustic model component of an end-

to-end ASR and used to estimate Shapley values for acoustic frames.

We present a method for using the proxy acoustic model to estimate

Shapley values for variable length utterances and demonstrate that

the Shapley values provide a signal of example quality.

Index Terms— automatic speech recognition, acoustic model,

shapley value, data valuation, data-centric machine learning, struc-

tured prediction

1. INTRODUCTION

Training examples do not contribute equally to model performance

and some examples can even hurt model performance [1, 2]. Re-

cent research has demonstrated that this observation applies to deep

neural networks as well [3, 4]. Data Valuation in machine learn-

ing is concerned with principled methods for quantifying the relative

contributions of individual examples in a training dataset to the perfor-

mance metric achieved by a supervised learning model. The original

motivation for data valuation is for data markets where individuals

or data vendors can be compensated for providing their data [5]. In

data-centric machine learning [6], quantifying the importance of data

has applications in the curation and selection of training datasets.

Identifying high quality data may allow for smaller training subsets

that can reduce training times without a significant impact on model

performance. Low-valued training data may be indicative of noise or

annotation errors. Such examples may be amended to improve model

performance or removed from the training set if they make negative

contributions to a model’s performance. Low values may also signal

that the data arise from a distribution different than the target distribu-

tion of interest, or that the data are irrelevant for a model’s task and

thus not pertinent for a given problem. Hence, quantifying the value

of data is useful for data curation as a means of ranking data based

on the domain or task, and selecting high quality subsets to improve

model performance or reduce training times.

The Shapley value [7], arising from economics and cooperative

game theory, is an equitable method for allocating rewards among

a coalition of game players. In machine learning, it has been used

to value training examples based on their relative contributions to a

model’s performance on a training set [8, 9]. Shapley Values have

been employed in federated learning for incentivizing participants

to provide data [10], and in image [11], dialog [12], and audio [13]

classification tasks for identifying data quality issues.

Modern automatic speech recognition (ASR) systems require

large amounts of data with training that is compute- and time-

intensive. For this reason, ASR systems stand to benefit from

methods for data-efficient training [14] and one way to achieve this

is by identifying high quality data. Methods for computing Shapley

values have proven useful for classification models that accept fixed

length inputs [8, 9]. However, ASR systems perform a structured

prediction task of mapping variable length inputs to variable length

outputs. To date, there has been no straightforward method for

computing Shapley values of training examples for sequential models.

Given a sequential ASR model trained on variable length speech

utterances, our approach is to determine Shapley values of the con-

stituent acoustic frames. We show that these values are indicative of

data quality for an acoustic model. Further, we demonstrate a method

for determining the value of speech utterances based on the utility of

the constituent frames.

2. DATA VALUATION

Data valuation seeks to quantify the value of a training example based

on its relative contribution to model’s performance. There are two

primary methods used for data valuation: influence functions [15]

and Shapley values [8]. Influence functions determine the influence

or value of an example by measuring the change in parameters of a

model when an example is given a little more weight than the other

examples in a training set. However, computing the influence function

requires the model Hessian (second-order derivative) which can be

unavailable or difficult to determine for complex models. The Shapley

value [7] of an example is its expected marginal contribution to model

performance when that example is added to any random subset of the

training data. The Shapley value, described further in Section 3, is

attractive because it is considered an economically equitable valuation

of the data [7, 16]. Empirical results in data valuation [8] have shown

that Shapley values are better for quantifying the importance of data

for simple models such as Naive Bayes, and complex models such as

deep neural network classifiers.



3. SHAPLEY VALUATION

In cooperative game theory, a coalition of players cooperate toward a

common goal to earn a reward. Shapley valuation method for fairly

allocating rewards to individual players [7] based on their contribu-

tion. The resulting allocation uniquely satisfies a set of basic fairness

axioms [7]. In machine learning, training examples are viewed as

players, and the learning algorithm uses information from the exam-

ples (players) to achieve a reward measured by a performance metric

on a held-out set, e.g. accuracy. The Shapley value quantifies the

contribution of each example toward the performance metric. Let

D = {(xi, yi)}
N
i=1 be the training data and Deval = {(xj , yj)}

Neval
j=1

be the held-out data used for evaluation. A learning algorithm A may

use as input any subset S ⊆ D and its performance is measured by an

evaluation function UA(S). The Shapley value σ(xi) of example xi

is defined as the average marginal contribution of xi when it is added

to all possible subsets of the remaining examples, S ⊆ D \ {xi}:

σ(xi) =
∑

S⊆D\{xi}

1
(

N−1

|S|

)

[

UA(S ∪ {xi})− UA(S)
]

(1)

Shapley valuation is model agnostic and makes no assumptions about

the distribution of the training data, D.

Approximating Shapley values. Computing the Shapley value

is computationally prohibitive (O(2N )), thus Shapley values are of-

ten estimated using Monte-Carlo (MC) algorithms [8]. The Truncated

Monte Carlo (TMC) algorithm [8] allows for more efficient estima-

tion using an early stopping criterion. However, MC methods can be

computationally prohibitive for a complex model since they require

re-training the model in each iteration. It has been shown that exact

Shapley can be computed for k-Nearest Neighbors (KNN) model, us-

ing accuracy as the evaluation measure, with quasi-linear complexity.

It is possible to take advantage of this fast procedure for complex

models by learning a KNN proxy model for the more complex model

[17]. This has been empirically demonstrated for deep neural net-

work (DNN) classifiers in computer vision tasks. The proxy model

approach takes advantage of the representation learned by the DNN.

The neural embeddings are used as inputs, with the classification

labels as outputs, to learn a k-Nearest Neighbors model (KNN) as a

proxy for the DNN classifier.

4. METHODS

ASR systems perform a structured prediction task of mapping variable

length speech to variable length text. We investigate estimating

Shapley values for an end-to-end ASR system with an attention-

based encoder-decoder architecture [18]. The encoder network learns

an acoustic model, while the decoder network learns a language and

transition model for outputting sequences of text. An acoustic model

performs the classification task of mapping an acoustic unit (frame)

to a linguistic unit, e.g. phoneme or grapheme. Thus, we can focus

on the acoustic model component to determine the value of acoustic

frames for that part of the ASR’s function.

4.1. Acoustic Proxy Model

Given a speech utterance, we use the encoder network to map the

constituent frames to the learned representation space. These neural

features are inputs for a KNN model. We obtain ground truth phonetic

labels for the frames by forced alignment, and these labels are outputs

for the KNN model. Since the KNN model learns to map the acoustic

representation of the frame to its phonetic label, it serves as a proxy

for the acoustic model learned by the end-to-end ASR. We evaluate

the utility of the proxy acoustic model by determining the frame

classification accuracy on held-out utterances. We can then use the

proxy KNN model to estimate Shapley values of the acoustic frames.

Finally, we test whether the Shapley values have utility for acoustic

modeling by evaluating the model’s classification performance on

held out frames. We sort the acoustic frames in an order determined

by their Shapley values. In batches, we incrementally grow the

training set by adding examples in the determined order. We learn a

KNN for each batch and its performance on a heldout test set. This

produces a performance curve for evaluating the Shapley values. We

can produce two performance curves to visualize the results when

examples are added in a best-first (highest Shapley values first) or

worst-first order (lower Shapley values first). For a baseline, we

grow the training set by adding examples in a random order. If the

valuations signify utility of the examples for the model, the resulting

performance should indicate when the model is learning from high-

or low-valued examples, especially in comparison to the baseline

where training examples are added randomly.

4.2. Valuation of Utterances

The preceding method allows for computing Shapley values of acous-

tic frames. Identifying high quality frames may prove useful for

understanding the quality of data. However, we are ultimately inter-

ested in identifying subsets of high quality utterances because speech

data for an ASR are almost always annotated at the utterance level.

One approach is to aggregate the Shapley values of the constituent

frames, for example summing the Shapley values for the frames in an

utterance, and normalizing the sum by the duration of the utterance

(or number of frames).

A more principled approach is inspired by the notion of a data

vendor offering a batch of data in a market [5]. Treating an utterance

as a collection of frames that are to be “sold” or valued together,

or not at all, we can use similar methods for valuing the utterance.

Unfortunately, we cannot apply the KNN-Shapley algorithm which

values individual examples rather than batches of examples. Instead,

we devise a hybrid approach by using the proxy KNN in conjunction

with the MC algorithm. The general MC scheme is to uniformly sam-

ple the size of the (random) subset, then randomly select examples

to fill that subset. Measuring the model performance of the training

subset with and without an example provides the marginal contribu-

tion of the example (for one random subset). This is repeated several

times until the values converge. In practice, we use an equivalent and

computationally efficient sampling method, by sampling a random

permutation of the training data, then scanning the permutation. For

each example being scanned, we add it to the examples preceding it,

then measure the change in performance with and without the exam-

ple, to find its marginal contribution. Once the permutation has been

scanned, we have a marginal contribution statistic for each example

in the training set. After several rounds, we average the marginal

contribution of an example to derive its estimated Shapley value. The

TMC algorithm [8] uses a heuristic for early stopping: as a training

subset becomes larger, the changes in performance will diminish

allowing us to stop scanning the permutation once the change falls

below a tolerance level.

For our hybrid approach of valuing an utterance, we modify this

procedure. We assign an index to each utterance, then sample a

permutation of these utterance indices. When an utterance is included

in a set, all of its constituent frames are included in the training

set. Removing an index from the permutation list corresponds to

removing the constituent frames in that utterance from any training
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[13] Enis Berk Çoban, Ali Raza Syed, Dara Pir, and Michael I Man-

del, “Towards large scale ecoacoustic monitoring with small

amounts of labeled data,” in 2021 IEEE Workshop on Applica-

tions of Signal Processing to Audio and Acoustics (WASPAA).

IEEE, 2021, pp. 181–185.

[14] Qizhe Xie, Towards Data-Efficient Machine Learning, Ph.D.

thesis, Carnegie Mellon University, 2020.

[15] Pang Wei Koh and Percy Liang, “Understanding black-box

predictions via influence functions,” in International conference

on machine learning. PMLR, 2017, pp. 1885–1894.

[16] Jon Kleinberg, Christos Papadimitriou, and Prabhakar Ragha-

van, “On the value of private information,” in Theoretical

Aspects Of Rationality And Knowledge, 2001, vol. 8.

[17] Ruoxi Jia, Xuehui Sun, Jiacen Xu, Ce Zhang, Bo Li, and Dawn

Song, “An empirical and comparative analysis of data valuation

with scalable algorithms,” arXiv:1911.07128, 2019.

[18] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-

reit, Llion Jones, Aidan N Gomez, Lukasz Kaiser, and Illia

Polosukhin, “Attention is all you need,” Advances in neural

information processing systems, vol. 30, 2017.

[19] Alex Acero, Acoustical and environmental robustness in auto-

matic speech recognition, vol. 201, Springer Science & Busi-

ness Media, 1992.

[20] Shinji Watanabe, Takaaki Hori, Suyoun Kim, John Hershey,

and Tomoki Hayashi, “Hybrid ctc/attention architecture for end-

to-end speech recognition,” IEEE Journal of Selected Topics in

Signal Processing, vol. 11, 2017.

[21] Shinji Watanabe, Takaaki Hori, Shigeki Karita, Tomoki Hayashi,

Jiro Nishitoba, Yuya Unno, Nelson-Enrique Yalta Soplin, Jahn

Heymann, Matthew Wiesner, Nanxin Chen, et al., “Espnet: End-

to-end speech processing toolkit,” Proceedings of Interspeech,

2018.

[22] “ESPnet: AN4 recipe,” Available at https://github.

com/espnet/espnet/tree/master/egs/an4/

asr1. Accessed: 2023-03-13.

[23] Daniel Povey, Arnab Ghoshal, Gilles Boulianne, Lukas Bur-

get, Ondrej Glembek, Nagendra Goel, Mirko Hannemann, Petr

Motlicek, Yanmin Qian, Petr Schwarz, et al., “The kaldi speech

recognition toolkit,” in IEEE 2011 workshop on automatic

speech recognition and understanding, 2011.

[24] Devansh Arpit, Stanislaw Jastrzebski, Nicolas Ballas, David

Krueger, Emmanuel Bengio, Maxinder Kanwal, Tegan Maharaj,

Asja Fischer, Aaron Courville, Yoshua Bengio, et al., “A closer

look at memorization in deep networks,” in ICML, 2017.


