ESTIMATING SHAPLEY VALUES OF TRAINING UTTERANCES FOR AUTOMATIC SPEECH
RECOGNITION MODELS

Ali Raza Syed*, Michael I. Mandel?

I'The Graduate Center, CUNY
2Brooklyn College, CUNY

ABSTRACT

Data Valuation in machine learning is concerned with quantifying the
relative contribution of a training example to a model’s performance.
Quantifying the importance of training examples is useful for iden-
tifying high and low quality data to curate training datasets and for
address data quality issues. Shapley values have gained traction in ma-
chine learning for curating training data and identifying data quality
issues. While computing the Shapley values of training examples is
computationally prohibitive, approximation methods have been used
successfully for classification models in computer vision tasks. We
investigate data valuation for Automatic Speech Recognition models
which perform a structured prediction task and propose a method for
estimating Shapley values for these models. We show that a proxy
model can be learned for the acoustic model component of an end-
to-end ASR and used to estimate Shapley values for acoustic frames.
We present a method for using the proxy acoustic model to estimate
Shapley values for variable length utterances and demonstrate that
the Shapley values provide a signal of example quality.

Index Terms— automatic speech recognition, acoustic model,
shapley value, data valuation, data-centric machine learning, struc-
tured prediction

1. INTRODUCTION

Training examples do not contribute equally to model performance
and some examples can even hurt model performance [1, 2]. Re-
cent research has demonstrated that this observation applies to deep
neural networks as well [3, 4]. Data Valuation in machine learn-
ing is concerned with principled methods for quantifying the relative
contributions of individual examples in a training dataset to the perfor-
mance metric achieved by a supervised learning model. The original
motivation for data valuation is for data markets where individuals
or data vendors can be compensated for providing their data [5]. In
data-centric machine learning [6], quantifying the importance of data
has applications in the curation and selection of training datasets.
Identifying high quality data may allow for smaller training subsets
that can reduce training times without a significant impact on model
performance. Low-valued training data may be indicative of noise or
annotation errors. Such examples may be amended to improve model
performance or removed from the training set if they make negative
contributions to a model’s performance. Low values may also signal
that the data arise from a distribution different than the target distribu-
tion of interest, or that the data are irrelevant for a model’s task and
thus not pertinent for a given problem. Hence, quantifying the value
of data is useful for data curation as a means of ranking data based
on the domain or task, and selecting high quality subsets to improve
model performance or reduce training times.

The Shapley value [7], arising from economics and cooperative
game theory, is an equitable method for allocating rewards among
a coalition of game players. In machine learning, it has been used
to value training examples based on their relative contributions to a
model’s performance on a training set [8, 9]. Shapley Values have
been employed in federated learning for incentivizing participants
to provide data [10], and in image [11], dialog [12], and audio [13]
classification tasks for identifying data quality issues.

Modern automatic speech recognition (ASR) systems require
large amounts of data with training that is compute- and time-
intensive. For this reason, ASR systems stand to benefit from
methods for data-efficient training [14] and one way to achieve this
is by identifying high quality data. Methods for computing Shapley
values have proven useful for classification models that accept fixed
length inputs [8, 9]. However, ASR systems perform a structured
prediction task of mapping variable length inputs to variable length
outputs. To date, there has been no straightforward method for
computing Shapley values of training examples for sequential models.
Given a sequential ASR model trained on variable length speech
utterances, our approach is to determine Shapley values of the con-
stituent acoustic frames. We show that these values are indicative of
data quality for an acoustic model. Further, we demonstrate a method
for determining the value of speech utterances based on the utility of
the constituent frames.

2. DATA VALUATION

Data valuation seeks to quantify the value of a training example based
on its relative contribution to model’s performance. There are two
primary methods used for data valuation: influence functions [15]
and Shapley values [8]. Influence functions determine the influence
or value of an example by measuring the change in parameters of a
model when an example is given a little more weight than the other
examples in a training set. However, computing the influence function
requires the model Hessian (second-order derivative) which can be
unavailable or difficult to determine for complex models. The Shapley
value [7] of an example is its expected marginal contribution to model
performance when that example is added to any random subset of the
training data. The Shapley value, described further in Section 3, is
attractive because it is considered an economically equitable valuation
of the data [7, 16]. Empirical results in data valuation [8] have shown
that Shapley values are better for quantifying the importance of data
for simple models such as Naive Bayes, and complex models such as
deep neural network classifiers.



3. SHAPLEY VALUATION

In cooperative game theory, a coalition of players cooperate toward a
common goal to earn a reward. Shapley valuation method for fairly
allocating rewards to individual players [7] based on their contribu-
tion. The resulting allocation uniquely satisfies a set of basic fairness
axioms [7]. In machine learning, training examples are viewed as
players, and the learning algorithm uses information from the exam-
ples (players) to achieve a reward measured by a performance metric
on a held-out set, e.g. accuracy. The Shapley value quantifies the
contribution of each example toward the performance metric. Let
D = {(x:,v:)}L; be the training data and Dew = {(z;, yj)}j-vjl*‘l
be the held-out data used for evaluation. A learning algorithm .4 may
use as input any subset S C D and its performance is measured by an
evaluation function U 4(.S). The Shapley value o (z;) of example x;
is defined as the average marginal contribution of z; when it is added
to all possible subsets of the remaining examples, S C D \ {z;}:
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Shapley valuation is model agnostic and makes no assumptions about
the distribution of the training data, D.

Approximating Shapley values. Computing the Shapley value
is computationally prohibitive (O(2™)), thus Shapley values are of-
ten estimated using Monte-Carlo (MC) algorithms [8]. The Truncated
Monte Carlo (TMC) algorithm [8] allows for more efficient estima-
tion using an early stopping criterion. However, MC methods can be
computationally prohibitive for a complex model since they require
re-training the model in each iteration. It has been shown that exact
Shapley can be computed for k-Nearest Neighbors (KNN) model, us-
ing accuracy as the evaluation measure, with quasi-linear complexity.
It is possible to take advantage of this fast procedure for complex
models by learning a KNN proxy model for the more complex model
[17]. This has been empirically demonstrated for deep neural net-
work (DNN) classifiers in computer vision tasks. The proxy model
approach takes advantage of the representation learned by the DNN.
The neural embeddings are used as inputs, with the classification
labels as outputs, to learn a k-Nearest Neighbors model (KNN) as a
proxy for the DNN classifier.

4. METHODS

ASR systems perform a structured prediction task of mapping variable
length speech to variable length text. We investigate estimating
Shapley values for an end-to-end ASR system with an attention-
based encoder-decoder architecture [18]. The encoder network learns
an acoustic model, while the decoder network learns a language and
transition model for outputting sequences of text. An acoustic model
performs the classification task of mapping an acoustic unit (frame)
to a linguistic unit, e.g. phoneme or grapheme. Thus, we can focus
on the acoustic model component to determine the value of acoustic
frames for that part of the ASR’s function.

4.1. Acoustic Proxy Model

Given a speech utterance, we use the encoder network to map the
constituent frames to the learned representation space. These neural
features are inputs for a KNN model. We obtain ground truth phonetic
labels for the frames by forced alignment, and these labels are outputs
for the KNN model. Since the KNN model learns to map the acoustic
representation of the frame to its phonetic label, it serves as a proxy

for the acoustic model learned by the end-to-end ASR. We evaluate
the utility of the proxy acoustic model by determining the frame
classification accuracy on held-out utterances. We can then use the
proxy KNN model to estimate Shapley values of the acoustic frames.
Finally, we test whether the Shapley values have utility for acoustic
modeling by evaluating the model’s classification performance on
held out frames. We sort the acoustic frames in an order determined
by their Shapley values. In batches, we incrementally grow the
training set by adding examples in the determined order. We learn a
KNN for each batch and its performance on a heldout test set. This
produces a performance curve for evaluating the Shapley values. We
can produce two performance curves to visualize the results when
examples are added in a best-first (highest Shapley values first) or
worst-first order (lower Shapley values first). For a baseline, we
grow the training set by adding examples in a random order. If the
valuations signify utility of the examples for the model, the resulting
performance should indicate when the model is learning from high-
or low-valued examples, especially in comparison to the baseline
where training examples are added randomly.

4.2. Valuation of Utterances

The preceding method allows for computing Shapley values of acous-
tic frames. Identifying high quality frames may prove useful for
understanding the quality of data. However, we are ultimately inter-
ested in identifying subsets of high quality utterances because speech
data for an ASR are almost always annotated at the utterance level.
One approach is to aggregate the Shapley values of the constituent
frames, for example summing the Shapley values for the frames in an
utterance, and normalizing the sum by the duration of the utterance
(or number of frames).

A more principled approach is inspired by the notion of a data
vendor offering a batch of data in a market [5]. Treating an utterance
as a collection of frames that are to be “sold” or valued together,
or not at all, we can use similar methods for valuing the utterance.
Unfortunately, we cannot apply the KNN-Shapley algorithm which
values individual examples rather than batches of examples. Instead,
we devise a hybrid approach by using the proxy KNN in conjunction
with the MC algorithm. The general MC scheme is to uniformly sam-
ple the size of the (random) subset, then randomly select examples
to fill that subset. Measuring the model performance of the training
subset with and without an example provides the marginal contribu-
tion of the example (for one random subset). This is repeated several
times until the values converge. In practice, we use an equivalent and
computationally efficient sampling method, by sampling a random
permutation of the training data, then scanning the permutation. For
each example being scanned, we add it to the examples preceding it,
then measure the change in performance with and without the exam-
ple, to find its marginal contribution. Once the permutation has been
scanned, we have a marginal contribution statistic for each example
in the training set. After several rounds, we average the marginal
contribution of an example to derive its estimated Shapley value. The
TMC algorithm [8] uses a heuristic for early stopping: as a training
subset becomes larger, the changes in performance will diminish
allowing us to stop scanning the permutation once the change falls
below a tolerance level.

For our hybrid approach of valuing an utterance, we modify this
procedure. We assign an index to each utterance, then sample a
permutation of these utterance indices. When an utterance is included
in a set, all of its constituent frames are included in the training
set. Removing an index from the permutation list corresponds to
removing the constituent frames in that utterance from any training



set. Thus, we compute the marginal contribution of each utterance
as the marginal contribution of all the constituent frames included
together. The MC procedure requires re-training the model for each
computation of the marginal contribution. The computational burden
is alleviated through the use of the proxy KNN acoustic model. Our
hybrid approach assumes that the effect of dropping or adding an
utterance from the ASR training set can be approximated by the effect
of adding or dropping the constituent frames from the proxy KNN
model. We can evaluate the Shapley values on the original ASR
model to see how well the assumption holds.

5. EXPERIMENTS AND RESULTS

5.1. Data and ASR Model

For computational reasons, our initial experiments focus on a small
ASR task with a limited vocabulary. The CMU AN4 dataset [19]
consists of 1,078 utterances, about 50 minutes total, from 84 male and
female speakers. The utterances have an average duration 3 seconds
with speakers describing personal information and control words.
The data is split into 948, 100, and 130 utterances for the training,
validation and test sets. The validation set has § speakers, all common
with the training set. The test set has 10 speakers, independent of the
training set. Our inputs are 83-dimensional vectors per 25 ms frame,
using 80-dimensional log-Mel filterbank coefficients concatenated
with a 3-dimensional pitch vector. We employ an end-to-end ASR
system using a hybrid CTC-Attention model [20] using the standard
recipe from the open-source ESPnet ASR framework [21]. We train
the ASR model using the AN4 recipe [22] for 20 epochs. Using the
final model to decode the validation and test sets results in word error
rates (WER) of 16.8 and 9.8, respectively.

5.2. Frame Valuation

We use the ASR encoder to produce 320-dimensional neural features
from the acoustic frames. Our input data for the proxy acoustic model
consists of 56,854, 6,559, and 8,894 frames in the training, validation,
and test sets, respectively. We obtain ground truth phonetic labels
with 78 classes for the frames through forced alignment using the
Kaldi speech recognition framework [23]. We learn a KNN model
to map neural features to phonetic labels. Tuning on a held out set,
we determine an optimal value of k = 8 for the KNN model. The
proxy model achieves an accuracy of 77.7% on a test set with unseen
speakers. The relatively high performance validates our approach of
learning a proxy KNN for the ASR’s acoustic model.

We estimate Shapley values of acoustic frames using the KNN-
Shapley algorithm [17]. We evaluate the utility of the Shapley values
for the proxy KNN acoustic model using a standard approach in the
data valuation literature. We rank the examples in ascending order
of Shapley value (i.e., from lowest-valued, or “worst”, examples to
highest-valued, or “best”, examples). Starting with the complete train-
ing set of acoustic frames, we train a proxy KNN model and measure
its performance on a held out set. We iterate over the ranked data, in
fixed size batches, to incrementally drop the lowest-valued examples,
from the training set. Each time we drop a batch of examples, we
use the remaining (higher-valued) examples to train a proxy KNN
model and measure the resulting performance. This produces a “drop
worst-first” curve. We repeat the procedure by reversing the ranking,
so that we gradually drop the highest-valued frames first. This pro-
duces a “drop best-first curve”. Finally, we repeat the procedure with
training data in a random order to produce a baseline. If the Shapley
values are ordering the data points in a meaningful way, dropping the

“best” examples should result in a large drop in overall performance
and dropping the “worst” examples should result in a minimal drop
in performance or even a performance increase (if those examples are
mislabeled, for example).

0.8 — drop worst first
—— drop best first
0.7 random
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Fig. 1. Evaluation of Shapley values of acoustic frames. We measure
proxy test accuracy as we drop frames used for training the KNN
model. In drop-worst-first, we drop data with lowest Shapley values
first, while in drop-best-first, we drop data with highest Shapley
values first. The random curve shows results from 5 runs with the
mean performance depicted as a dashed line.

Evaluating the Shapley values. The Shapley evaluation curves
are shown in Figure 1. From the “drop worst-first” curve, we see
that that dropping about 12% of lowest-valued frames yields an im-
provement in classification accuracy from 77.4% to 81.0%. Dropping
about 32% of the lowest-valued frames provides the best model per-
formance with 81.6% accuracy. This suggests that Shapley values are
able to identify examples that may be misleading or difficult to learn,
and thus not of utility to the model. We also see that it is possible
to drop up to 82% before we see a decline in model performance
below that from using the entire training data. Thus a model trained
with one-fifth of the data, when selected appropriately, can achieve
better performance than a model trained with all of the data. As the
highest-valued frames are being dropped, the model performance
begins to decline rapidly. This suggests that many frames have re-
dundant information and convey similar patterns to the model. This
is further supported by the “random” curve, which is relatively flat,
suggesting that randomly dropping frames does not produce a signifi-
cant drop in performance. This concurs with observations made for
neural net learning [24]. About 30% of the available data is sufficient
to produce the best performing acoustic model and can be identified
by the (highest) 30% of Shapley values. Thus, we find that Shapley
valuation of data can be used to curate data effectively.

We investigate why some frames received particularly low values
and notice that low-valued frames tend to have annotation errors in
the ground truth data. For example, in the utterance “ftmj-an213-
b”, which has a reference transcription of “RUBOUT PN A M X
SEVENTY TWQO”, one frame with phone label “I'Y” has a particularly
low Shapley value. We also note that the frame appears mislabeled
in the ground truth annotation from the Kaldi model. Studying the
example in Praat, we note that when the speaker utters the letters “P
N” (with phonemes “P 1Y EH N”), the forced alignment is confused
toward the end of the “IY” phone when the utterance transitions to
the “EH” phone. The low Shapley value occurs because of this error
in the annotation. We decode this training utterance using the ESPnet
ASR model and receive a hypothesized transcription of “RUBOUT
TM AM X SEVENTY T O”. We note that the ASR model is also
confused near this region, transcribing “P N as “T M”. Thus the



Shapley values are identifying annotation quality issues at the frame
level and potential for confusion for the ASR model.

5.3. Utterance Valuation
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Fig. 2. Evaluation of Shapley values estimated for AN4 utterances.
Performance scores are computed as word accuracy rate, 1 — WER.
Utterances are dropped from the training set in an order determined
by their Shapley values. The random curve is the mean of 3 runs,
with a 95% bootstrapped confidence interval.

We derive utterance values by aggregating the values of con-
stituent frames and normalizing for duration. The resulting values
do not provide a measure of utility of the training examples. This is
because of a high variance in frame values within any given utterance.
We proceed by valuing an utterance as a collection of frames that
must be added or dropped from the training set. We use our hybrid
approach with the Truncated Monte-Carlo algorithm and proxy KNN
model for estimating the value of utterances. Figure 3 compares the
distributions of the Shapley values of utterances to the Shapley values
of the constituent frames. There is no clear trend between the two
values, as shown by the regression line. For any given utterance, the
Shapley values of frames have a high variance. This confirms our
earlier findings that low quality frames are widely dispersed among
utterances and it is hard to value utterances by aggregating frame
values. Further, only about 3% of the utterances, having negative
values, are hurting model performance. Thus we expect that most
utterances in this dataset help model performance.

We evaluate the Shapley values by training the ASR with all of
the data, then incrementally drop batches of utterances in an order
determined by their Shapley value. We also perform 3 repetitions
of randomly ordered training data. Figure 2 shows the results from
our ASR evaluation. We see that especially in the middle of the
chart, the best-first and worst-first curves are different from each
other and the random curves. This suggests that the valuations have
some utility. We notice within the first 10% of data, on the left of
the chart, dropping the worst- or best-valued utterances both degrade
performance in a similar way. This is different from our previous
observations, where we see performance improve when dropping the
lowest quality data. It may be that the AN4 data is relatively uniform
in quality, and few to none of the examples mislead the model in any
significant way. From the frame-level valuations, we observed a large
number of redundant frames across utterances, with the lowest valued
frames occurring in isolation across many utterances. Thus, there
may be too few utterances that stand out as high or low quality.

We also see that the curves are well separated in the middle
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Fig. 3. Comparing standardized Shapley values of frames and utter-
ances. We plot values of utterances against the corresponding values
of the frames comprising those utterances. There is a wide variance
of frame values within any utterance. The regression line shows the
lack of trend between the two values.

region of the curve. Our method is better at identifying, for example,
the best or worst 30% of training utterances rather than the best or
worst 5% to 10%. It is possible that our Monte Carlo estimation
scheme is better at producing valuations at a coarse or macroscopic
level rather than producing fine-grained rankings of the data. Since
our method treats an utterance as a “bag of frames”, it loses any
information about the sequential structure of the utterances, and does
not account for it in the valuation. Another reason is that the neural
network also learns representation from the data while performing the
structured prediction task, which may require a significant amount of
data. Finally, our valuation is ultimately based on the (proxy) acoustic
model and may not account for the relative importance of data for the
entire end-to-end model.

6. CONCLUSIONS

Data valuation methods have the potential to aid in collection and
curation of high quality data for faster development of ASR sys-
tems. The methods proposed in data valuation have been limited
to classification model and we present a method for applying these
to sequential models performing a structured prediction task. We
demonstrate how a KNN model can serve as a good proxy for the
acoustic model component of an end-to-end ASR. We also show the
acoustic model can be used to value acoustic frames and identify
high and low quality subsets. We present a method for valuing ut-
terances as collections of frames and are able to identify high and
low quality batches of utterances for the end-to-end ASR model. Our
method requires a Monte Carlo method for estimation and works
well for relatively small datasets. In ongoing work, we are working
on scaling the method for valuation of larger datasets. In addition
to scalability issues, another disadvantage of our method is that it
ignores the sequential structure of utterances and does not take into
account the value of data for an ASR model beyond the acoustic
model component. This remains an open problem for future work.
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