
IEEE CONTROL SYSTEMS LETTERS, VOL. 7, 2023 1825

A Controlled Mean Field Model for Chiplet
Population Dynamics

Iman Nodozi , Graduate Student Member, IEEE , Abhishek Halder , Senior Member, IEEE ,
and Ion Matei , Member, IEEE

Abstract—In micro-assembly applications, ensemble of
chiplets immersed in a dielectric fluid are steered using
dielectrophoretic forces induced by an array of electrode
population. Generalizing the finite population determinis-
tic models proposed in prior works for individual chiplet
position dynamics, we derive a controlled mean field model
for a continuum of chiplet population in the form of a non-
local, nonlinear partial differential equation. The proposed
model accounts for the stochastic forces as well as two dif-
ferent types of nonlocal interactions, viz. chiplet-to-chiplet
and chiplet-to-electrode interactions. Both of these interac-
tions are nonlinear functions of the electrode voltage input.
We prove that the deduced mean field evolution can be
expressed as the Wasserstein gradient flow of a Lyapunov-
like energy functional. With respect to this functional, the
resulting dynamics is a gradient descent on the manifold
of joint population density functions with finite second
moments that are supported on the position coordinates.

Index Terms—Modeling, stochastic systems, uncertain
systems.

I. INTRODUCTION

THIS letter is motivated by micro-assembly applications,
such as printer systems [1], [2] and manufacturing of

photovoltaic solar cells, where an array of electrodes can be
used to generate spatio-temporally non-homogeneous elec-
tric potential landscapes for dynamically assembling the
“chiplets”–micron sized particles immersed in dielectric fluid–
into desired patterns. In such applications, the electric poten-
tials generated by the array of electrodes induce non-uniform
dielectrophoretic forces on the chiplets, thereby resulting in a
population-level chiplet dynamics. The purpose of the present
work is to propose a controlled mean field model for the same.
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There have been several works [3], [4], [5], [6], [7] on the
modeling and dielectrophoretic control of chiplet population.
However, a continuum limit macroscopic dynamics that
accounts for both chiplet-to-chiplet and chiplet-to-electrode
nonlocal interactions, as considered herein, has not appeared
before.

The mean field limit pursued here involves considering the
number of chiplets and electrodes as infinity, i.e., to think
both of them as continuum population. There are two reasons
why this could be of interest. First, the continuum limit helps
approximate and better understand the dynamics for large but
finitely many chiplets and electrodes, which is indeed the situa-
tion in the engineering applications mentioned before. Second,
the distributed control synthesis problem for large but finite
population becomes computationally intractable, as noted in
recent works [6], [8], [9]. A controlled mean field model opens
up the possibility of designing a controller in the continuum
limit with optimality guarantees. Such a controller can then
be applied to a large but finite population with sub-optimality
bounds. We clarify here that in this letter, we only present
the mean field model and its properties. We leave the control
synthesis problem for our follow up work.

As in prior works such as [6], we consider the chiplet
dynamics in two dimensional position coordinate. Specifically,
let x(t) ∈ R

2 denote the position vector of a chiplet at any fixed
time t ∈ [0,∞), and let

u : R2 × [0,∞) �→ [umin, umax] ⊂ R

denote a causal deterministic control policy, i.e., u = u(x, t).
The control u represents the electrode voltage input, and in
practice, the typical voltage range [umin, umax] = [−400, 400]
Volt. We denote the collection of admissible control policies
as U . For a typical experimental set up detailing the sensing-
control architecture, see [6, Sec. II].

A viscous drag force balances the controlled force vector
field f u induced by the joint effect of the chiplet-to-chiplet and
chiplet-to-electrode interactions. At the low Reynolds number
context relevant here, the viscous drag force is proportional
to ẋ, where the proportionality constant μ denotes the viscous
coefficient of the dielectric fluid. Ignoring the acceleration due
to negligible mass of a chiplet, the dynamics then takes a form

μẋ
︸︷︷︸

viscous drag force

= f u
︸︷︷︸

controlled interaction force

+ noise (1)
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where the noise may result from stochastic forcing due to envi-
ronmental fluctuations (e.g., dielectric fluid impurities) and/or
unmodeled dynamics.

Contributions:
• We derive a controlled mean field dynamics (Section III)

for the macroscopic motion of the chiplet population.
The derived model is non-affine in control, and rather
non-standard compared to the existing nonlocal dynamics
models available in the literature.

• We establish that the derived mean field dynamics model
can be understood as the Wasserstein gradient flow
(Section IV) of a free energy functional over the manifold
of chiplet population density functions.

II. NOTATIONS AND PRELIMINARIES

Wasserstein distance: The Wasserstein distance W between
a pair of probability density functions ρ1(x), ρ2(y) (or between
corresponding probability measures in general) with finite
second moments, respectively supported on X ,Y ⊆ R

d, is
defined as

W(ρ1, ρ2) :=
(

inf
ρ∈�2(ρ1,ρ2)

∫

X×Y
‖x − y‖2

2 ρ(x, y)dxdy
) 1

2

(2)

where �2(ρ1, ρ2) is the collection of all joint probability den-
sity functions ρ(x, y) supported on the product space X × Y
having finite second moments, x marginal ρ1, and y marginal
ρ2. As such, (2) involves an infinite dimensional linear pro-
gram that goes back to the work of Kantorovich [10]. It is
well-known [11, p. 208] that W is a metric on the space of
probability density functions (more generally, on the space of
probability measures). Under mild assumptions, the minimiz-
ing measure ρopt(x, y)dxdy is supported on the graph of the
optimal transport map Topt : X �→ Y pushing the measure
ρ1(x)dx forward to ρ2(y)dy. For many connections between
the Wasserstein metric and theory of optimal mass transport,
we refer the readers to [11], [12].

Wasserstein gradient of a functional: Let P(Rd) denote the
space of all probability density functions supported over the
subsets of Rd, and denote the collection of probability density
functions with finite second moments as P2(R

d) ⊂ P(Rd).
The Wasserstein gradient of a functional � : P2(R

d) �→ R,
denoted as ∇W�, evaluated at ρ ∈ P2(R

d), is given by [13,
Ch. 8]

∇W�(ρ) := −∇ ·
(

ρ∇ δ�
δρ

)

(3)

where ∇ denotes the standard Euclidean gradient, and δ
δρ

denotes the functional derivative w.r.t. ρ.
To exemplify the definition (3), consider the functional

�(ρ) = ∫

ρ log ρ (negative entropy) for ρ ∈ P2(R
d). Then

δ�
δρ

= 1 + log ρ, ∇(1 + log ρ) = ∇ρ/ρ, and we get
∇W�(ρ) = −∇ · ∇ρ = −�ρ, where � := ∇ · ∇ denotes
the Euclidean Laplacian operator.

Other notations: The notation 〈·, ·〉 is used to denote either
the standard Euclidean inner product of vectors, or the L2

inner product of functions, as evident from the context. For
any natural number n, we use the finite set notation �n� :=
{1, 2, . . . , n}. The symbols ess sup, E, P, I2, ‖ · ‖2 and ‖ · ‖∞

denote the essential supremum, the expectation, the probability
measure, the 2×2 identity matrix, the vector 2 and ∞ norms,
respectively. The symbol ∼ is used as a shorthand for “follows
the statistical distribution density”.

Given probability measures μ0, μ1 on R
d, the total vari-

ation distance distTV(μ0, μ1) := 1
2 supf | ∫ f d(μ0 − μ1)|

where the supremum is over all measurable f : R
d → R,

‖f ‖∞ ≤ 1. For f : R
d → R, we define its Lipschitz con-

stant ‖f ‖Lip := supx �=y
|f (x)−f (y)|

‖x−y‖2
, and its bounded Lipschitz

constant ‖f ‖BL := max{‖f ‖∞, ‖f ‖Lip}. The bounded Lipschitz
distance [14, Ch. 11.3] between probability measures μ0, μ1
is distBL(μ0, μ1) := sup‖f ‖BL≤1 | ∫ f d(μ0 − μ1)|. Notice that
distBL(μ0, μ1) ≤ 2 distTV(μ0, μ1).

For X ⊆ R
d, we use Cb(X ) to denote the space of all

bounded continuous functions ϕ : X �→ R, and Ck
b(X ) com-

prises those which are also k times continuously differentiable
(in the sense of mixed partial derivatives of order k). We say
that a function sequence {gn}n∈N where gn ∈ L1(X ), converges
weakly to a function g ∈ L1(X ), if limn→∞

∫

X (gn − g)ψ = 0
for all ψ ∈ Cb(X ). We symbolically denote the weak
convergence as gn ⇀ g.

III. CONTROLLED MEAN FIELD MODEL

In this Section, we introduce the chiplet population dynam-
ics. Such model has its origin in the physical processes
enabling silicon microchips to be manipulated by both elec-
trophoretic and dielectrophoretic forces when they are placed
in dielectric carriers such as Isopar-M [3]. These carriers
have low conductivity which allows long-range Coulomb inter-
actions. In general, the dielectrophoretic forces dominate,
and they are induced by the potential energy generated by
electrostatic potentials created in electrodes. The electrodes
are formed by depositing nm-scale Molybdenum-Chromium
(MoCr) onto a glass substrate via vapor deposition and then
directly patterning them with a laser ablation tool. The elec-
trodes are then insulated from the chiplets and dielectric
fluid by thermally laminating a micrometer-scale thick per-
fluoroalkoxy (PFA) film. The dielectric forces act on the
chiplets, while viscous drag forces proportional to their veloc-
ities oppose their motion. Due to the negligible mass of the
chiplets, their acceleration can be ignored.

Let us denote the normalized chiplet population density
function (PDF) at time t as ρ(x, t). By definition, ρ ≥ 0 and
∫

R2 ρ dx = 1 for all t.
We make the following assumptions.
A1. Under an admissible control policy u ∈ U , the chiplet

normalized population distribution over the two dimen-
sional Euclidean configuration space remains abso-
lutely continuous w.r.t. the Lebesgue measure dx for
all t ∈ [0,∞). In other words, the corresponding PDFs
ρ(x, t) exist for all t ∈ [0,∞).

A2. Under an admissible control policy u ∈ U , we have
ρ ∈ P2(R

2) for all t.
The sample path dynamics of a chiplet position is governed

by a controlled nonlocal vector field

f u : R2 × [0,∞)× U × P2(R
2) �→ R

2
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induced by a controlled interaction potential φu : R2 × R
2 ×

[0,∞) �→ R, i.e.,

f u(x, t, u, ρ) := −∇(ρ ∗ φu), (4)

where ∗ denotes generalized convolution in the sense

(

ρ ∗ φu)(x, t) :=
∫

R2
φu(x, y, t)ρ(y, t)dy.

The superscript u in φu emphasizes that the potential depends
on the choice of control policy. In particular,

φu(x, y, t) := φu
cc(x, y, t)+ φu

ce(x, y, t), (5a)

φu
cc(x, y, t) := Ccc(‖x − y‖2)(ū(y, t)− ū(x, t))2/2, (5b)

φu
ce(x, y, t) := Cce(‖x − y‖2)(u(y, t)− ū(x, t))2/2, (5c)

for x, y ∈ R
2 and

ū(x, t) :=
∫

R2 Cce(‖x − y‖2)u(y, t)ρ(y, t)dy
∫

R2 Cce(‖x − y‖2)ρ(y, t)dy
. (6)

The subscripts cc and ce denote the chiplet-to-chiplet and
chiplet-to-electrode interactions, respectively. As before, the
superscript u highlights the dependence on the choice of con-
trol policy. In (5b)-(5c), Ccc and Cce respectively denote the
chiplet-to-chiplet and chiplet-to-electrode capacitances. These
capacitances can be determined using two dimensional elec-
trostatic COMSOL R© [15] simulations for a symmetric chiplet
geometry. Such simulation model comprises two metal plates
with dimensions defined by the chiplet and electrode geom-
etry, surrounded by a dielectric with properties identical to
those of the Isopar-M solution. The capacitances are com-
puted from the charges that result on each conductor when an
electric potential is applied to one and the other is grounded.
Once the capacitance among chiplets and electrodes at dif-
ferent distances are computed, differentiable parameterized
capacitance function approximations (e.g., linear combination
of error functions) can be fitted to that data.

In words, (5a) says that the total controlled interaction
potential φu is a sum of the chiplet-to-chiplet interaction poten-
tial φu

cc given by (5b), and the chiplet-to-electrode interaction
potential φu

ce given by (5c).
The expressions for (5b), (5c), (6) arise from capacitive elec-

trical circuit abstraction that lumps the interaction between the
electrodes and the chiplets. In [6, Sec. III], such an abstraction
was detailed for a finite population of n chiplets and m elec-
trodes. The expressions (5b), (5c), (6) generalize those in the
limit n,m → ∞. On the other hand, specializing (5b), (5c), (6)
for a finite population {xi}i∈�n� with ρ ≡ 1

n

∑n
i=1 δxi where

δxi denotes the Dirac delta at xi ∈ R
2, indeed recovers the

development in [6, Sec. III].
Remark 1: An immediate observation from (5) is that even

though the potential φu
cc is symmetric in x, y, the potential φu

ce
is not. Therefore, the overall controlled interaction potential
φu is not symmetric in x, y.

Without loss of generality, we assume unity viscous coef-
ficient in (1), i.e., μ = 1 (since otherwise we can re-scale
the f u). In addition, assuming the chiplet velocity is affected
by additive standard Gaussian White noise, the sample path
dynamics of the ith chiplet position xi(t) then evolves as

per a controlled interacting diffusion, i.e., as a Itô stochastic
differential equation (SDE) with nonlocal nonlinear drift:

dxi = f u(xi, t, u, ρ) dt +
√

2β−1 dwi(t), i ∈ �n�, (7)

where f u is given by (4), β > 0 denotes inverse tempera-
ture, and wi(t) ∈ R

2 denote i.i.d. realizations of a standard
Wiener process that is Ft-adapted on a complete filtered prob-
ability space with sigma-algebra F and associated filtration
(Ft)t≥0. In particular, F0 contains all P-null sets and Ft is
right continuous.

The study of SDEs with nonlocal nonlinear drift origi-
nated in [16], and has grown into a substantial literature, see
e.g., [17], [18]. In statistical physics, such models are often
referred to as “propagation of chaos”–a terminology due to
Kac [19]. A novel aspect of the model (7) w.r.t. the existing
literature is that the interaction potential φu has a nonlinear
dependence on the control policy u(x, t) as evident from (5).

A. Existence-Uniqueness of Solution for (7)

For a given causal control policy u ∈ U , it is known
[20, Th. 2.4] that an interacting diffusion of the form (7)
with initial condition xi0 ∼ ρ0 admits unique weak solution
provided the following four conditions hold:

(i) the drift f u is jointly Borel measurable w.r.t. R
2 ×

[0,∞)× P(R2),
(ii) the diffusion coefficient

√

2β−1I2 is invertible, and
the driftless SDE dz(t) = √

2β−1dw(t) admits unique strong
solution,

(iii) the drift f u is uniformly bounded,
(iv) there exists κ > 0 such that

‖f u(x, t, u(x, t), ρ)− f u(x, t, u(x, t), ρ̃)‖2

≤ κ distTV(ρ, ρ̃) uniformly in (x, t) ∈ R
2 × [0,∞).

We assume that the capacitances Ccc,Cce in (5)-(6) are suf-
ficiently smooth, and the control u can be parameterized to
ensure smoothness for guaranteeing that ∇xφ

u
cc,∇xφ

u
ce (and

thus ∇xφ
u) are ‖ · ‖2 Lipschitz and uniformly bounded.

As ∇xφ
u is bounded, f u = intR2∇xφ

u(x, y, t)ρ(y)dy, which
being an average of Lipschitz, is itself Lipschitz and thus con-
tinuous. Since f u is continuous, the preimage of any Borel set
in R

2 under f u is a measurable set in R
2×[0,∞)×U×P2(R

2).
Thus, condition (i) holds.

Condition (ii) holds for any β > 0 since z(t) is a Wiener
process with variance 2β−1.

For (iii), we find ess sup
(x,t)∈R2×[0,∞)

‖f u(x, t, u(x, t), ρ)‖∞

= ess sup
(x,t)∈R2×[0,∞)

‖
∫

R2
∇xφ

u(x, y, t)ρ(y)dy‖∞

≤ ess sup
(x,t)∈R2×[0,∞)

∫

R2
‖∇xφ

u(x, y, t)ρ(y)‖∞dy

≤
∫

R2
ess sup

(x,t)∈R2×[0,∞)

‖∇xφ
u(x, y, t)ρ(y)‖∞dy

=
∫

R2
ess sup

(x,t)∈R2×[0,∞)

‖∇xφ
u(x, y, t)‖∞ρ(y)dy (8)
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where we used the Leibniz rule, triangle inequality, and that
ρ ≥ 0. Per assumption, ∇xφ

u is uniformly bounded, and we
have: (8) ≤ M

∫

R2 ρ(y)dy = M for some constant M > 0.
Condition (iv) holds because

‖f u(x, t, u(x, t), ρ)− f u(x, t, u(x, t), ρ̃)‖2

= ‖∇x

∫

R2
φu(x, y, t)(ρ(y)− ρ̃(y))dy‖2

= ‖
∫

R2

(∇xφ
u(x, y, t)

)

(ρ(y)− ρ̃(y))dy‖2

≤ c distBL(ρ, ρ̃) ≤ κ distTV(ρ, ρ̃) ∀(x, t) ∈ R
2 × [0,∞)

for some constant c > 0, κ := 2c, and the second to last
inequality follows from ∇xφ

u being bounded and Lipschitz.
Thus, we can guarantee the existence-uniqueness of sample

path xi(t), i ∈ �n�, solving the interacting diffusion (7).

B. Derivation of the Controlled Mean Field Model

Our next result (Theorem 1) derives the macroscopic mean
field dynamics as a nonlinear Fokker-Planck-Kolmogorov
partial differential equation (PDE), and establishes the con-
sistency of the mean field dynamics in the continuum limit
vis-à-vis the finite population dynamics.

Theorem 1: Supposing A1, consider a population of n
interacting chiplets, where the ith chiplet position xi ∈ R

2,
i ∈ �n�, evolves via (7). Denote the Dirac measure con-
centrated at xi as δxi and let the random empirical measure
ρn := 1

n

∑n
i=1 δxi . Consider the empirical version of the

dynamics (7) given by

dxi = f u(xi, t, u, ρn) dt +
√

2β−1 dwi(t),

with respective initial conditions x0i ∈ R
2, i ∈ �n�, which are

independently sampled from a given PDF ρ0 supported on a
subset of R2. Then, as n → ∞, almost surely ρn ⇀ ρ where
the deterministic function ρ is a PDF that evolves as per the
macroscopic dynamics

∂ρ

∂t
= −∇ · (ρf u)+ β−1�ρ

= ∇ ·
(

ρ∇
(

ρ ∗ φu + β−1(1 + log ρ)
))

, (9)

with the initial condition

ρ(·, t = 0) = ρ0 ∈ P
(

R
2
)

(given). (10)

Proof: To describe the dynamics of ρn as n → ∞, we start
with investigating the time evolution of the quantity

〈

ϕ, ρn〉 := 1

n

n
∑

i=1

ϕ(xi) (11)

for any compactly supported test function ϕ ∈ C2
b(R

2).
Using Ito’s rule, we have

dϕ(xi) = Lρnϕ(xi)dt + ∇ϕ�(xi)

√

2β−1dwi (12)

wherein the infinitesimal generator

Lρϕ(x) := 〈

f u(x, t, u, ρ),∇xϕ(x)
〉+ β−1�ϕ. (13)

Thus,

d
〈

ϕ, ρn〉 = 1

n

n
∑

i=1

dϕ(xi)

= 〈

Lρnϕ, ρn〉dt + 1

n

n
∑

i=1

√

2β−1∇ϕ�(xi)dwi

:= 〈

Lρnϕ, ρn〉dt + dMn
t (14)

where Mn
t is a local martingale.

Because ϕ ∈ C2
b(R

2), we have |√2β−1∇ϕ�(xi)| ≤ C uni-
formly for some C > 0. Notice that the quadratic variation of
the noise term in (14) is

[

Mn
t

]

:= 1

n2

n
∑

i=1

∫ t

0

∣

∣

∣

∣

√

2β−1∇ϕ�(xi(s))

∣

∣

∣

∣

2

ds ≤ tC2

n
,

and using Doob’s martingale inequality [21, Ch. 14.11],

E

(

sup
t≤T

Mn
t

)2

≤ E

(

sup
t≤T

(

Mn
t

)2

)

≤ 4E
(
(

Mn
t

)2
)

≤ 4E
([

Mn
t

]) ≤ 4tC2

n
.

Hence in the limit n → ∞, the noise term in (14) vanishes,
resulting in a deterministic evolution equation.

For any t > 0, we take {ρn}∞n=1 to be the (random) elements
of � = C([0,∞),P(R2)), the set of continuous functions
from [0,∞) into P(R2) endowed with the topology of weak
convergence. Following the argument of Oelschläger [22,
Proposition 3.1], the sequence Pn of joint PDFs on � induced
by the processes {ρn}∞n=1, is relatively compact in P(�), which
is the space of probability measures on �. Oelschläger’s proof
makes use of the Prohorov’s theorem [23, Ch. 5]. The relative
compactness implies that the sequence Pn weakly converges
(along a subsequence) to some P, where P is the joint PDFs
induced by the limiting process ρ. By Skorohod representation
theorem [23, Th. 6.7], the sequence {ρn}∞n=1 converges P-
almost surely to ρ. Since the martingale term in (14) vanishes
as n → ∞, we obtain

d〈ϕ, ρ〉 = 〈

Lρϕ, ρ
〉

dt = 〈

ϕ,L∗
ρρ
〉

dt (15)

where L∗ is the adjoint (see e.g., [24, Ch. 2.3 and 2.5], [25,
p. 278]) of the generator L given by (13), and is defined as

L∗
mρ(x, t): = −∇ · (ρf u(x, t, u,m))+ β−1�ρ

= ∇ ·
(

ρ∇
(

m ∗ φu + β−1(1 + log ρ)
))

where m ∈ P(R2). For any test function ϕ ∈ C2
b(R

2), (15)
is valid almost everywhere, and therefore, ρ is almost surely
a weak solution to the nonlinear Fokker-Planck-Kolmogorov
PDE initial value problem (9)-(10).

Notice that the Cauchy problem (9)-(10) involves a non-
linear nonlocal PDE which in turn depends on control
policy u.

The solution ρ(x, t), x ∈ R
2, t ∈ [0,∞), for the Cauchy

problem (9)-(10) is understood in weak sense. In other
words, for all compactly supported smooth test functions
θ ∈ C∞

c (R
2, [0,∞)), the solution ρ(x, t) satisfies
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∫ ∞

0

∫

R2

(

∂θ

∂t
+ Lρθ

)

ρ dx dt +
∫

R2
ρ0(x)θ(x, 0) dx = 0 (16)

where Lρ is defined as in (13). The reason why ρ satis-
fying (16) for all θ ∈ C∞

c (R
2, [0,∞)) is called a “weak

solution” of (9)-(10) is because such ρ may not be suffi-
ciently smooth to satisfy (9). In the next Section, we provide a
variational interpretation of the solution for problem (9)-(10).

IV. CHIPLET POPULATION DYNAMICS AS

WASSERSTEIN GRADIENT FLOW

The structure of the PDE in (9) motivates defining an energy
functional

�(ρ) := �cc(ρ)+�ce(ρ)+ Eρ

[

β−1 log ρ
]

= Eρ

[

ρ ∗ φu + β−1 log ρ
]

(17)

where Eρ denotes the expectation w.r.t. the PDF ρ, and

�cc(ρ) :=
∫

R2×R2
φu

cc(x, y)ρ(x)ρ(y)dx dy, (18a)

�ce(ρ) :=
∫

R2×R2
φu

ce(x, y)ρ(x)ρ(y)dx dy. (18b)

In (17), the term Eρ[ρ ∗ φu] quantifies the interaction
energy while the term β−1

Eρ[ log ρ] (scaled negative entropy)
quantifies the internal energy. We have the following result.

Theorem 2: Let � : P2(R
2) �→ R be the energy functional

given in (17). Then,
(i) the chiplet population dynamics given by (4), (5), (9) is

Wasserstein gradient flow of the functional �, i.e.,

∂ρ

∂t
= −∇W�(ρ). (19)

(ii) � is a Lyapunov functional that is decreasing along the
flow generated by (9), i.e., d

dt� ≤ 0.
Proof: (i) We start by noticing that the functional derivative

δ�

δρ
= ρ ∗ φu + β−1(1 + log ρ). (20)

Next, we rewrite (9) as

∂ρ

∂t
= ∇ ·

(

ρ∇ δ�
δρ

)

, (21)

which by definition (3), yields (19).
(ii) To show that � is decreasing along the flow generated

by (9), we find

d

dt
� =

∫

δ�

δρ

∂ρ

∂t
dx

(21)=
∫

δ�

δρ
∇ ·

(

ρ∇ δ�
δρ

)

dx

= −
∫ 〈

∇ δ�
δρ
, ρ∇ δ�

δρ

〉

dx

= −
∫ 〈

∇ δ�
δρ
,∇ δ�

δρ

〉

ρdx

= −Eρ

[
∥

∥

∥

∥
∇ δ�
δρ

∥

∥

∥

∥

2

2

]

≤ 0. (22)

In order to get from the second line to the third line of (22), we
used the duality1 between the gradient and divergence oper-
ators, namely the fact that for differentiable scalar field s(x)
and vector field v(x), we have

〈∇s, v〉L2 + 〈s,∇ · v〉L2 = 0, (23)

where 〈p, q〉L2 := ∫ 〈p, q〉dx. Specifically, in (22), s ≡ δ�
δρ

and

v ≡ ρ∇ δ�
δρ

.
Remark 2: Theorem 2 shows that for an admissible control

policy u ∈ U , the chiplet population dynamics (9)-(10) can
be seen as gradient descent of the energy functional � on the
manifold P2(R

2) w.r.t. the Wasserstein metric. We point out
that the statement of Theorem 2 remains valid in the determin-
istic limit, i.e., when the noise strength

√

2β−1 ↓ 0. In that
case, the functional � in (17) comprises of only the interaction
energy term Eρ[ρ ∗φu], and δ�

δρ
= ρ ∗φu. Other than this, the

proof of Theorem 2 remains unchanged.
Remark 3: In the recent systems-control literature, the

Wasserstein gradient flow interpretations and related proxi-
mal algorithms [26], [27] for several linear and nonlinear
Fokker-Planck-Kolmogorov PDEs in prediction and density
control have appeared. New gradient flow interpretations have
also appeared [28], [29], [30] for well-known filtering equa-
tions. We next point out that the Wasserstein gradient flow
interpretation deduced in Theorem 2 allows approximating the
weak solution of (19) by recursive evaluation of a Wasserstein
proximal operator on the manifold P2(R

2).
Theorem 3: For a given control policy u ∈ U and poten-

tials (5), let ̂�(�, �k−1) := E�[�k−1∗φu+β−1 log �], �, �k−1 ∈
P2(R

2), k ∈ N. Consider the Wasserstein proximal recursion:

�k = proxW
τ̂�
(�k−1)

:= arg inf
�∈P2(R2)

{

1

2
W2(�, �k−1)+ τ ̂�(�, �k−1)

}

(24)

over discrete time tk−1 := (k −1)τ with fixed step-size τ > 0,
and with initial condition �0 ≡ ρ0 ∈ P2(R

2). Let ρ(x, t)
be the weak solution of (19) for the same u ∈ U and the
functional � given by (17)-(18). Using the sequence of func-
tions {�k−1}k∈N generated by the recursion (24), define an
interpolation �τ : R2 × [0,∞) �→ [0,∞) as

�τ (x, t) := �k−1(x, τ ) ∀ t ∈ [(k − 1)τ, kτ), k ∈ N.

Then �τ (x, t)
τ↓0−−→ ρ(x, t) in L1(R2) for all t ∈ [0,∞).

Proof: Follows the development in [31, Sec. 12.3–12.5].
Remark 4: For a given control policy u ∈ U , the

Wasserstein proximal recursion (24) can in turn be lever-
aged for numerically updating the PDFs over discrete time
with a small step-size τ . To illustrate Theorem (2), we fixed
a linear control policy u = 〈k, x〉 with gain k := (8.5 ×
10−3,−1 × 10−2)�, and solved (24) with τ = 0.1 via [26,
Algorithm 1] for n = 400 uniformly spaced grid samples in
the domain [−4 mm, 4 mm]2 starting from an initial bivari-
ate Gaussian ρ0 = N ((0.5, 0.5)�, 0.1I2). Fig. 1 shows the
corresponding decay of the energy functional � in (17)-(18),
computed using these PDFs obtained from the Wasserstein
proximal updates. As in [6, Sec. III], our simulation used

1In words, the gradient and the negative divergence are adjoint maps.
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Fig. 1. The energy functional � given by (17)-(18) versus time for the
simulation set up summarized in Remark 4.

capacitances Ccc(‖x − y‖2),Cce(‖x − y‖2) in (5b)-(5c) of the
form

∑n
i=1 ai[erf((‖x − y‖2 + δ)/ci)− erf((‖x − y‖2 − δ)/ci)]

where erf (·) denotes the error function, the parameters ai, ci
are sampled uniformly random in [0, 1], and δ (half of the
electrode pitch) = 10 micrometer.

V. CONCLUSION

We presented a controlled mean filed model for the pop-
ulation dynamics of chiplets, which are tiny (micron sized
or smaller) particles immersed in a dielectric liquid, and are
amenable to reshape into desired concentrations for micro-
assembly applications. In such applications, an array of
electrodes generate a space-time varying electric potential
landscape, thereby strategically inducing the collective motion
of the chiplet ensemble. Our derived model quantifies how
exactly the two types of nonlocal nonlinear interactions (viz.
chiplet-to-chiplet and chiplet-to-electrode) jointly induce a
macroscopic dynamics in terms of the joint PDF evolution of
the chiplet ensemble. Our results establish consistency of the
model in a limiting sense, and demonstrate that the resulting
PDF evolution can be seen as an infinite dimensional gra-
dient descent of a Lyapunov-like energy functional w.r.t. the
Wasserstein metric. Our future work will investigate the syn-
thesis of optimal control of the chiplet joint PDF w.r.t. suitable
performance objective that allows steering an initial joint PDF
to a desired terminal joint PDF. We note that the feedback
synthesis for density steering subject to a controlled mean
field nonlocal PDE is relatively less explored but has started
appearing in recent works; see e.g., [32], [33], [34].
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