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Abstract— We formulate and solve the problem of finite
horizon minimum control effort steering of the state prob-
ability distribution between prescribed endpoint joints for a
finite population of networked noisy nonuniform Kuramoto
oscillators. We consider both the first and second order
stochastic Kuramoto models. For numerical solution of the
associated stochastic optimal control, we propose combining
certain measure-valued proximal recursions and the Feynman-
Kac path integral computation. We illustrate the proposed
framework via numerical examples.

I. INTRODUCTION

We consider the controlled sample path dynamics for a

population of n first order Kuramoto oscillators, given by

the Itô stochastic differential equations (SDEs)

dθi =

(
−∂V

∂θi
+ vi

)
dt+
√
2σidwi, i ∈ [n] := {1, 2, . . . , n},

where V (θ1, . . . , θn) is a given smooth potential, the angular

variable θi ∈ [0, 2π) is the state, vi is the control input,

σi > 0 is the noise strength, and wi is the standard (scalar)

Wiener process noise for the ith oscillator. Defining re-scaled

input ui := vi/σi, we write this dynamics in vector form:

dθ = (−∇θV (θ) + Su) dt+
√
2S dw (1)

where S := diag (σ1, . . . , σn) ≻ 0, θ := (θ1, . . . , θn)
⊤,

u := (u1, . . . , un)
⊤, and w := (w1, . . . , wn)

⊤ is the

standard Wiener process in n dimensions. For the first order

Kuramoto model (1), the state space is the n-torus T
n ≡

[0, 2π)n, and the potential

V (θ) :=
∑

i<j

i,j∈[n]

kij(1− cos(θi − θj − ϕij))−
n∑

i=1

Piθi, (2)

wherein the parameters Pi > 0. For i 6= j, the coupling

coefficients kij = kji ≥ 0 (and not all kij = 0), kii ≡ 0.

Likewise, for i 6= j, the phase shift ϕij = ϕji ∈ [0, π
2 ), and

ϕii ≡ 0.

We also consider the controlled sample path dynamics for

a population of n second order Kuramoto oscillators, given

by the second order Langevin equations

miθ̈i + γiθ̇i =−
∂V

∂θi
+ vi +

√
2σi × SGWN,
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where i ∈ [n], SGWN denotes standard Gaussian white

noise, and V (·) is given by (2). Letting ui := vi/σi as before,

we rewrite this second order dynamics as the vector Itô SDE

(
dθ
dω

)
=

(
ω

−M−1∇θV (θ)−M−1
Γω +M−1Su

)
dt

+

(
0n×1√

2M−1S dw

)
(3)

where ω := (θ̇1, . . . , θ̇n)
⊤, M := diag (m1, . . . ,mn) ≻ 0,

Γ := diag (γ1, . . . , γn) ≻ 0, and 0n×1 denotes the n × 1
vector of zeros. For the second order Kuramoto model, the

state space is the product of cylinders T
n × R

n.

In this paper, we address the following problem:

synthesize minimum effort control policy u that transfers

the stochastic state of (1) or (3) from a prescribed initial to a

prescribed terminal joint probability distribution over a given

finite time horizon, say t ∈ [0, T ].

This fits in the research theme of designing state feedback

for dynamically reshaping (as opposed to simply mitigating)

uncertainties [1], [2] subject to networked Kuramoto oscilla-

tor dynamics. As such, both first and second order Kuramoto

oscillator models are ubiquitous across physical, biological

and engineering systems, see e.g., [3], [4].

Notice that while the uncontrolled dynamics in (1) has gra-

dient drift, the same in (3) has mixed conservative-dissipative

drift. A consequence is that unlike (1), the stochastic process

induced by (3), is not reversible and its infinitesimal genera-

tor is hypoelliptic [5]. This makes the analysis and feedback

synthesis for (3) even more challenging than (1).

Related literature and novelty of this work: While there

exists a significant literature on the dynamics and control

of Kuramoto oscillators in general [6]–[12], the stochastic

control of Kuramoto oscillators remains under-investigated.

Ref. [13] considered global asymptotic phase agreement and

frequency synchronization in almost sure sense.

In the physics literature, several studies [14]–[16] analyze

the distributional dynamics associated with the Kuramoto

oscillators. However, these studies consider the univariate

distributional dynamics arising from the mean-field limit,

i.e., by abstracting the dynamical interaction in the infinite

population (n→∞) regime. In comparison, the perspective

and approach taken in this paper are significantly different

because we focus on the dynamics of joint probability

distribution supported over the states of a finite population

of oscillators. This is particularly relevant for engineering

applications such as power systems, where a network of

finitely many generators (often modeled as second order
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nonuniform Kuramoto oscillators) and loads (often modeled

as first order nonuniform Kuramoto oscillators) interact to-

gether with their controlled stochastic dynamics, see e.g.,

[10]. Well-known techniques such as the Kron reduction

[17] allow transcribing such networked system in the form

(3) with all-to-all connection topology. Despite the engi-

neering relevance, research on the multivariate distributional

dynamics for a finite population of nonuniform Kuramoto

oscillators is scant.

From a methodological standpoint, we recast the problem

of minimum effort feedback steering of distributions subject

to (1) or (3), as an instance of generalized Schrödinger bridge

problem – a topic undergoing rapid development [18], [19] in

the systems-control community. In [20], a similar approach

was taken to realize feedback steering toward the invariant

distribution of an uncontrolled oscillator dynamics. Building

on our prior work [21], here we focus on finite horizon

steering between two arbitrary compactly supported joint

state probability distributions subject to (1) or (3). However,

for our controlled Kuramoto dynamics, it will turn out that

the algorithmic approach proposed in [21] will no longer

apply and we will introduce new ideas for the same.

Notations: We use boldfaced capital letters for matrices,

and boldfaced small letters for vectors. The symbol Eµu [·]
denotes the mathematical expectation w.r.t. the controlled

joint state probability measure µu, that is, Eµu [·] :=∫
(·) dµu. The superscript u in µu indicates that the joint

measure depends on the choice of control u. For the con-

trolled dynamics (1), the measure µu is supported over

the state space T
n. Likewise, for (3), the measure µu is

supported over T
n × R

n. The symbol ∼ is used as a

shorthand for “follows the probability distribution”. The

notations ∇, ∆, Hess(·), 〈·, ·〉, ⊗, In respectively denote the

Euclidean gradient, Laplacian, Hessian, the Euclidean inner

product (Frobenius inner product for matricial arguments),

the Kronecker product, and the n× n identity matrix.

Organization: The outline of this paper is as follows.

Sec. II details the problem formulation. The existence and

uniqueness of its solution are discussed in Sec. III. In Sec. IV,

we detail how the optimal solutions can be recovered from

the so-called Schrödinger factors which in turn, solve a non-

linearly boundary-coupled system of linear PDEs. We derive

these systems for both the first and second order Kuramoto

oscillators. Sec. V summarizes the proposed combination

of proximal and Feynman-Kac algorithms for solving the

respective boundary-coupled systems, followed by numerical

simulations in Sec. VI. Concluding remarks are provided in

Sec. VII.

II. THE OPTIMAL DISTRIBUTION STEERING PROBLEM

1) Formulation: We consider a stochastic optimal control

problem over prescribed time horizon [0, T ], given by

inf
u∈U

Eµu

[∫ T

0

‖u‖22 dt
]

(4)

subject to either

(1), θ(t = 0) ∼ µ0 (given), θ(t = T ) ∼ µT (given),

or

(3),

(
θ(t = 0)
ω(t = 0)

)
∼ µ0 (given),

(
θ(t = T )
ω(t = T )

)
∼ µT (given),

where µ0, µT denote the joint state probability measures

at t = 0 and t = T , respectively. In (4), the feasible set

U comprises of the finite energy Markovian state and time

dependent input policies over the time horizon [0, T ].

Assuming the absolute continuity of the joint probability

measure µu for all times, we write dµu(x, t) = ρu(x, t)dx
and hereafter consider the associated joint PDF ρu(x, t).
Problem (4) can then be recast as

inf
(ρu,u)

∫ T

0

∫

X

‖u(x, t)‖22 ρu(x, t) dx dt (5)

subject to either

∂ρu

∂t
= −∇θ · (ρu(Su−∇θV )) + 〈D,Hess(ρu)〉, (6a)

or
∂ρu

∂t
= ∇ω · (ρu

(
M−1∇θV (θ) +M−1

Γω −M−1Su

+M−1DM−1∇ω log ρu
)
− 〈ω,∇θρ

u〉,
(6b)

where the diffusion matrix D := SS⊤, and ρu(x, t = 0) =
ρ0 (given), ρu(x, t = T ) = ρT (given).

For the first order Kuramoto oscillators, we have x := θ,

X := T
n, and for the second order Kuramoto oscillators, we

have x := (θ,ω)⊤, X := T
n×R

n. The constraints (6a) and

(6b) are the controlled Fokker-Planck-Kolmogorov (FPK)

forward PDEs corresponding to (1) and (3), respectively.

2) Endpoint PDFs: In this work, we suppose that the

endpoint joint PDFs ρ0, ρT are supported on compact subsets

of X . For instance, when X = T
n, one may model ρ0, ρT

as multivariate von Mises PDFs [22], [23] supported on T
n:

ρk(θ) =
1

Zk
exp
(
〈κk, cos(θ −mk)〉

+
1

2
〈sin(θ −mk),Λksin(θ −mk)〉

)
, k ∈ {0, T}, (7)

where the parameters are the mean vectors m0,mT ∈ T
n,

the concentration vectors κ0,κT ∈ R
n
≥0, and Λ0,ΛT ∈ S

n

(n×n real symmetric matrices) having zero diagonal entries.

In (7), sin(·) and cos(·) denote the elementwise sines and

cosines, respectively. The normalization constants Z0, ZT

in (7) depend on the respective concentration vector and

symmetric matrix parameters.

The nonnegative entries of the concentration vectors

κ0,κT admit a natural interpretation: zero concentration vec-

tors represent uniform distribution over T
n. Large positive

entries promote a higher concentration around the corre-

sponding mean components. When Λ is a zero matrix, then

multivariate von Mises PDF can be written as the product of

univariate von Mises PDFs, see e.g., [24, Ch. 3].

When X = T
n × R

n, we suppose that for k ∈ {0, T},
the ω marginals of ρk have compact supports Ωk ⊂ R

n, and

thus the joints ρk are supported on compact subsets of X .
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III. EXISTENCE AND UNIQUENESS OF SOLUTION

1) First order case: From (2), we observe that V ∈
C2(Tn), which allows us [25, Ch. 1.2] to conclude that

the transition probability kernels associated with (1) remain

continuous for all t ≥ 0. Furthermore, the endpoint PDFs

having compact supports imply ρ0, ρT are positive over their

respective supports. Thus, following [21, Appendix E], the

transition probability kernels associated with (1) also remain

positive for all t ∈ [0, T ].
The continuity and positivity of the transition probability

kernels associated with (1), together guarantee [26, Sec. 10],

[27, Thm. 3.2] the existence-uniqueness for the solution of

the variational problem (5) subject to (6a) and the endpoint

PDF constraints.

2) Second order case: That the transition probability

kernels remain positive, is ensured per the compactness

assumption of the endpoint joint PDFs’ supports together

with the maximum principle for parabolic PDEs.

Showing that the transition probability kernels also remain

continuous for all times, in this case, reduces to showing

three conditions: (i) V ∈ C2 (Tn), (ii) inf V > −∞, and (iii)

uniform boundedness of the Hessian: ‖Hess(V )‖2 ≤ c for

some c > 0 that does not depend on θ; see e.g., [28, Theorem

7], [29, Theorem 5]. The satisfaction of the conditions (i)-

(ii) are immediate. For condition (iii), notice that the induced

2-norm of Hess(V ) is upper bounded by
∑

i<j

kij cos (θi − θj − ϕij) ≤
∑

i<j

kij .

Since kij ≥ 0 for all i, j ∈ [n], and there exists i, j ∈ [n]
such that kij > 0, therefore, (iii) also holds.

As in the first order case, the continuity and positivity

of the transition probability kernels, together guarantee the

existence-uniqueness of the solution of (5) subject to (6b)

and the endpoint PDF constraints.

In the following Section, we express the solutions of (5)

in terms of the so-called Schrödinger factors for both first

and second order controlled Kuramoto dynamics.

IV. OPTIMAL SOLUTIONS AND SCHRÖDINGER FACTORS

A. First Order Case

Since S is not identity, the strengths of the process noise

acting along the components of (1) are nonuniform. To

account this anisotropic noise, we consider an invertible

linear map θ 7→ ξ := S−1θ, which by Itô’s Lemma [30,

Ch.4.2], results in the following SDE for the transformed

state vector ξ:

dξ =
(
u−Υ∇ξṼ (ξ)

)
dt+

√
2 dw (8)

where the matrix Υ :=
(∏n

i=1 σ
2
i

)
S−2=diag

(∏
j 6=i σ

2
j

)
≻0,

and the potential

Ṽ (ξ) :=

(
∑

i<j

kij (1− cos(σiξi − σjξj − ϕij))−

n∑

i=1

σiPiξi

)/(
n∏

i=1

σ
2

i

)
.

In this new state coordinate, the problem (5) subject to

(6a) and the endpoint PDF constraints, takes the form

inf
(ρ̃u,u)

∫ T

0

∫

X

‖u(ξ, t)‖22 ρ̃u(ξ, t) dξ dt (9a)

∂ρ̃u

∂t
= −∇ξ · (ρ̃u(u−Υ∇ξṼ )) + ∆ξρ̃

u, (9b)

ρ̃u(ξ, 0) = ρ0(Sξ)

(
n∏

i=1

σi

)
, ρ̃u(ξ, T ) = ρT (Sξ)

(
n∏

i=1

σi

)
.

(9c)

Applying Proposition 1 and Theorem 2 of [21] to (9), we

derive a boundary-coupled system of linear PDEs for the

function pair (ϕ(t, ξ), ϕ̂(t, ξ)), given by

∂ϕ̂

∂t
= ∇ξ · (ϕ̂Υ∇ξṼ ) + ∆ξϕ̂, (10a)

∂ϕ

∂t
= 〈∇ξϕ,Υ∇ξṼ 〉 −∆ξϕ, (10b)

ϕ̂0(ξ)ϕ0(ξ) = ρ̃u(ξ, 0) = ρ0(Sξ)

(
n∏

i=1

σi

)
, (10c)

ϕ̂T (ξ)ϕT (ξ) = ρ̃u(ξ, T ) = ρT (Sξ)

(
n∏

i=1

σi

)
, (10d)

whose solution recovers the optimal decision variables

(ρ̃opt,uopt) for problem (9) via the mapping

ρ̃opt(ξ, t)= ϕ̂(ξ, t)ϕ(ξ, t), uopt(ξ, t)=∇ξ logϕ(ξ, t). (11)

We refer to the function pair (ϕ, ϕ̂) as the Schrödinger

factors, so named since their product gives ρ̃opt at all times,

i.e., (ϕ, ϕ̂) comprise a factorization of ρ̃opt. The optimally

controlled joint state PDF ρopt for (5) is then obtained as

ρopt(θ, t) = ρ̃opt
(
S−1θ, t

)
/ (
∏n

i=1 σi). The optimal control

in original coordinates is S∇θ logϕ(S
−1θ, t).

Now the matter boils down to solving (10). For notational

ease, let ϕ̂0 := ϕ̂(ξ, 0), ϕ̂T := ϕ̂(ξ, T ), ϕ0 := ϕ(ξ, 0),
and ϕT := ϕ(ξ, T ). Notice that (10a)-(10b) are the uncon-

trolled forward and backward Kolmogorov PDEs, respec-

tively, associated with (8). Since (10a)-(10b) are equation-

level-decoupled, the system (10) can be seen as a nonlinear

fixed point map for the pair (ϕ̂0, ϕT ) that is known [31] to

be contractive w.r.t. Hilbert’s projective metric [32].

It is tempting to apply further change of variables t 7→
s := T − t, ϕ(ξ, t) 7→ p(ξ, s) proposed in [21, Theorem 3]

to (10), for transforming (10a)-(10b) into forward-forward

PDEs as in [21, equation (33)]. When possible, this strategy

allows using a single FPK initial value problem (IVP) solver

to set up a provably contractive fixed point recursion for

computing the pair (ϕ̂0, ϕT ). In our case, the aforesaid

mappings transform (10b) to

∂p

∂s
= ∇ξ ·

(
p∇ξṼ

)
+∆ξp

+p
〈
∇ξṼ , (In −Υ)∇ξṼ

〉
+
〈
∇ξp, (In −Υ)∇ξṼ

〉

︸ ︷︷ ︸
extra terms compared to [21, equation (33b)]

, (12)
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which has additional terms compared to [21, equation (33b)].

An interesting observation follows: (12) becomes the same

forward FPK operator as in (10a) only if Υ equals identity.

Consequently, the Algorithm COMPUTEFACTORSSBP pro-

posed in [21, Sec. V.D] that uses a single FPK IVP solver,

cannot be applied to our case. We need two different solvers

for (10a) and (10b).

To solve (10a), we implement a modified form of the

PROXRECUR algorithm given in [33, Sec. III.B] with the

following distance functional, which is a weighted version

of the squared 2-Wasserstein distance between a pair of joint

PDFs ˜̺, ˜̺k−1, given by

W 2
Υ
(˜̺, ˜̺k−1) := inf

π∈Π(˜̺, ˜̺k−1)

∫

(
∏

n
i=1

[0,2π/σi))
2

〈
θ − θ̄,Υ−1(θ − θ̄)

〉
dπ(θ, θ̄), (13)

where Π(˜̺, ˜̺k−1) is the set of joint probability measures

supported on (
∏n

i=1[0, 2π/σi))
2
, having finite second mo-

ments, with given marginal PDFs ˜̺, ˜̺k−1.

To solve (10b), we employ the Feynman-Kac formula [34]

as detailed in Sec. V-B.

B. Second Order Case

In the second order Kuramoto model (3), the anisotropy

in process noise directly affects the last n components.

Motivated by our treatment in the first order case, we now

consider the invertible linear map
(
θ

ω

)
7→
(
ξ

η

)
:=
(
I2 ⊗ (MS−1)

)(θ
ω

)
(14)

which by Itô’s Lemma [30, Ch.4.2], results in the following
SDE for the transformed state vector (ξ,η)⊤:
(
dξ
dη

)
=

(
η

u− Υ̃∇ξU(ξ)−∇ηF (η)

)
dt+

(
0n×n

In

)
dw (15)

where Υ̃ :=
(∏n

i=1 σ
2
im

−2
i

)
MS−2, and the potentials

U(ξ) :=

(
∑

i<j

kij

(
1− cos

(
σi

mi

ξi −
σj

mj

ξj − ϕij

))
−

n∑

i=1

σi

mi

Piξi

)(
n∏

i=1

(
mi

σi

)
2
)
,

F (η) :=
1

2
〈η,S−1

Γη〉.

In this new state coordinate, the problem (5) subject to (6b)

and the endpoint PDF constraints, takes the form

inf
(ρ̃u,u)

∫ T

0

∫

X

‖u(ξ,η, t)‖22 ρ̃u(ξ,η, t) dξ dη dt (16a)

∂ρ̃u

∂t
=∇η ·

(
ρ̃u
(
−u+ Υ̃∇ξU(ξ) +∇ηF (η

))

− 〈η,∇ξρ̃
u〉+∆ηρ̃

u,
(16b)

ρ̃
u(ξ,η, 0) = ρ0

((
I2 ⊗ SM

−1
)(ξ

η

))( n∏

i=1

σ2

i

m2

i

)
,

ρ̃
u(ξ,η, T ) = ρT

((
I2 ⊗ SM

−1
)(ξ

η

))( n∏

i=1

σ2

i

m2

i

)
.

(16c)

Applying Proposition 1 and Theorem 2 of [21] to (16), we
next derive a boundary-coupled system of linear PDEs akin
to (10), for the Schrödinger factors (ϕ, ϕ̂), given by

∂ϕ̂

∂t
= −〈η,∇ξϕ̂〉+∇η ·

(
ϕ̂(Υ̃∇ξU(ξ) +∇ηF (η))

)
+∆ηϕ̂,

(17a)

∂ϕ

∂t
= −〈η,∇ξϕ〉+〈Υ̃∇ξU(ξ)+∇ηF (η),∇ηϕ〉−∆ηϕ,

(17b)

ϕ̂0(ξ,η)ϕ0(ξ,η)=ρ0

((
I2 ⊗ SM

−1
)(ξ

η

))( n∏

i=1

σ2

i

m2

i

)
, (17c)

ϕ̂T (ξ,η)ϕT (ξ,η)=ρT

((
I2 ⊗ SM

−1
)(ξ

η

))( n∏

i=1

σ2

i

m2

i

)
. (17d)

The optimal decision variables (ρ̃opt,uopt) for problem

(16) are obtained from the solution of (17) as

ρ̃opt(ξ,η, t) = ϕ̂(ξ,η, t)ϕ(ξ,η, t),

uopt(ξ,η, t) = ∇(ξ

η

)logϕ(ξ,η, t). (18)

The optimally controlled joint state PDF ρopt for (5) in the

second order case, is then obtained as

ρopt(θ,ω, t) = ρ̃opt

((
I2 ⊗MS−1

)(θ
ω

)
, t

)( n∏

i=1

m2
i

σ2
i

)
.

The optimal control in the original coordinates is
(
I2 ⊗ SM−1

)
∇(θ

ω

)logϕ

((
I2 ⊗MS−1

)(θ
ω

)
, t

)
.

As in the first order case, our algorithmic approach (to

be detailed in Sec. V-C) is to solve (17) via fixed point

recursion over the pair (ϕ̂0, ϕT ) that is provably contractive

w.r.t. the Hilbert’s projective metric. In particular, to solve the

backward Kolmogorov PDE (17b), we use the Feynman-Kac

formula detailed in Sec. V-B. The PDE (17a) is the so-called

kinetic Fokker-Planck equation [28, p. 40], and to solve the

same, we propose a modified version of the proximal recur-

sion proposed in [33, Sec. V.B]. Our modification concerns

with the distance functional in the proximal recursion, i.e.,

we consider the following analogue of (13):

W̃ 2
h,Υ̃

(˜̺, ˜̺k−1) := inf
π∈Π(˜̺, ˜̺k−1)

∫

(
∏

n
i=1

[0,2πmi/σi))
2

×R2n

sh,Υ̃
(
ξ,η, ξ̄, η̄

)
dπ
(
ξ,η, ξ̄, η̄

)
, (19)

where h > 0 is the step-size in proximal recursion,
Π(˜̺, ˜̺k−1) is the set of joint probability measures over the

product space (
∏n

i=1[0, 2πmi/σi))
2 × R

2n that have finite
second moments and marginal PDFs ˜̺, ˜̺k−1. The “ground
cost” in (19) is

s
h,Υ̃

(
ξ,η, ξ̄, η̄

)
:=

〈(
η̄ − η + hΥ̃∇U(ξ)

)
, Υ̃

−1

(
η̄ − η + hΥ̃∇U(ξ)

)〉

+ 12

〈(
ξ̄ − ξ

h
−

η̄ − η

h

)
, Υ̃

−1

(
ξ̄ − ξ

h
−

η̄ − η

h

)〉
. (20)

In the next Section, we bring these ideas together to detail

the algorithms for computing the optimal solutions in both

the first and second order cases.
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V. ALGORITHMS

In Sec. V-A, we first outline the proximal algorithm for

solving the forward Kolmogorov PDEs (10a) and (17a). Then

Sec. V-B presents the Feynman–Kac algorithm for solving

the backward Kolmogorov PDEs (10b) and (17b). Sec. V-C

summarizes the overall algorithm for solving (10) and (17).

A. Proximal Algorithm

For solving IVPs involving the forward Kolmogorov PDEs

(10a) and (17a), we employ proximal recursions over the

space of measurable positive functions over discrete time

tk−1 := (k − 1)h where the index k ∈ N, and h > 0 is

(here constant) time step-size. These recursions are of the

form

φ̂k=proxdhΨ

(
φ̂k−1

)
:=arg inf

φ̂

1

2

(
d
(
φ̂, φ̂k−1

))2
+hΨ

(
φ̂
)

(21)

where φ̂k−1(·) := φ̂ (·, tk−1), d(·, ·) is a distance-like func-

tional, Ψ is an energy-like functional, and φ̂0 is suitable

initial condition. The recursion (21) reads as “the proximal

operator of the functional hΨ w.r.t. the distance d”. The pair

(d,Ψ) is constructed in a way that the sequence of functions

{φ̂k−1}k∈N generated by (21) satisfies φ̂k−1(·)→ ϕ̂(·, t) in

L1 (X ) as h ↓ 0.

For (10a), we set d ≡ WΥ given by (13), and

Ψ(φ̂) ≡
∫
∏

n
i=1

[0,2π/σi)

(
Ṽ + log φ̂

)
φ̂ dξ. For (17a),

we set d ≡ Wh,Υ̃ given by (19), and Ψ(φ̂) ≡
∫
(
∏

n
i=1

[0,2πmi/σi))×Rn

(
F + log φ̂

)
φ̂dξdη. For a discussion

on the convergence guarantees and on implementation of

these proximal updates via fixed point recursions, we refer

the readers to [33]; see also [21, Sec. V-B,C].

B. Feynman-Kac Algorithm

For solving IVPs involving the backward Kolmogorov

PDEs (10b) and (17b), we employ the Feynman-Kac path

integral formulation [30, Ch. 8.2], [35], [36, Ch. 3.3]. The

main idea is to solve the IVPs associated with (10b) and

(17b) using the sample path simulations of the corresponding

uncontrolled forward SDEs. We mention here that several

works in stochastic control and learning [37]–[40] have

leveraged the computational benefits of the Feynman-Kac

approach. Specifically, the Feynman-Kac formula allows

expressing the solution of backward PDE IVP

∂ϕ

∂t
= 〈∇x̃ϕ,f(x̃, t)〉+ trace

(
G(x̃, t)G(x̃, t)⊤Hess(ϕ)

)
,

ϕ(x̃, t = T ) = ϕT (x̃),

as the conditional expectation

ϕ(x̃, t) = E [ϕT (x(T )) | x(t) = x̃] (22)

where x(t) follows the Itô diffusion dx(t) = f(x, t)dt +
G(x, t)dw.

We use Algorithm 1 to compute the Schrödinger fac-

tor ϕ as the conditional expectation (22) estimated from

the forward SDE sample path simulations via the Euler-

Maruyama scheme. The respective f ,G for these sample

path simulations correspond to those in the uncontrolled

PDEs (10b) and (17b).

Algorithm 1 Feynman-Kac Algorithm for solving the back-

ward PDE IVP at t = τ

1: procedure FEYNMANKAC(ϕT (x̃T ), x̃T , T, x̃τ , τ,f ,G,
Nr, nSample, dim, h,λ)

2: x̃r ← [0nSample×dim×Nr
] ⊲ initialize

3: ϕr ← [0nSample×Nr
]

4: numSteps ← (T − τ)/h
5: for i ← 1 to Nr do

6: x̃temp ← [xτ ,0nSample×dim×numSteps]
7: for k ← 1 to numSteps do

8: x̃temp(:, :, k + 1) ← x̃temp(:, :, k)+hf(x̃(:, :
, k), k)+G(x̃k, k)(wk+1−wk) ⊲ Euler-Maruyama update

9: end for

10: x̃r(:, :, i)← x̃temp(:, :, numSteps + 1)
11: ϕr(:, i)←ElasticNet(ϕT (x̃T ), x̃T , x̃r(:, :, i),λ)
12: end for

13: return ϕ(x̃τ , τ)← 1
Nr

Nr∑
i=1

ϕr(:, i)

14: end procedure

In Algorithm 1, λ := (λ1, λ2) ∈ R
2
>0 is a regularizing

parameter vector. In line 11 of Algorithm 1, we implement an

elastic net regression [41], referred to as “ElasticNet”, with

λ1, λ2 being the regularizing weights for the ℓ1 and ℓ2 norms,

respectively. ElasticNet approximates the value of ϕT at

x̃r(:, :, i) from the known boundary values ϕT (x̃T ) and the

propagated samples x̃T . For the simulation results reported in

Sec. VI, the ElasticNet computes a degree three polynomial

approximant in the transformed state co-ordinates. We use

the ADMM algorithm [42, Ch. 6] to implement the elastic

net regression. We estimate (22) as an empirical average (line

13 of Algorithm 1) of the approximated ϕ at time t = T
over Nr sample paths. The parameters nSample and dim in

Algorithm 1 denote the number of samples and the state

dimension (n for first order Kuramoto, 2n for second order

Kuramoto case), respectively.

C. Overall Algorithm

Bringing together the ideas from Sec. V-A and V-B, we

now outline the overall algorithm to solve (10) or (17).

To keep notations succinct, let us use x̃ as the appropriate

transformed state, i.e., x̃ ≡ ξ for the first order case, and

x̃ ≡ (ξ,η) for the second order case. We perform a fixed

point recursion over the pair (ϕ̂0(x̃), ϕT (x̃)) as follows.

Step 1. Initialize arbitrary ϕ0(x̃) everywhere positive.

Step 2. Compute ϕ̂0(x̃) = ρ̃u(x̃, 0)/ϕ0(x̃).

Step 3. Using (21), solve IVP (10a) or (17a) till t = T to

obtain ϕ̂T (x̃).

Step 4. Compute ϕT (x̃) = ρ̃u(x̃)/ϕ̂T (x̃).

Step 5. Use Algorithm 1 to calculate ϕ0(x̃) := ϕ(x̃, 0)
for (10b) or (17b).

Step 6. Repeat until the pair (ϕ̂0(x̃), ϕT (x̃)) has con-

verged w.r.t. the Hilbert’s projective metric [32].
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Step 7. Compute the Schrödinger factors (ϕ̂(x̃, t), ϕ(x̃, t))
using the IVPs (10) and (17).

Step 8. Use (ϕ̂(x̃, t), ϕ(x̃, t)) from Step 7 to compute the

pair (ρ̃opt,uopt) from (11) or (18).

Step 9. Bring back the optimal joint state PDF and the

optimal control to the original coordinates, i.e., to θ for the

first order, and to (θ,ω) for the second order case.

Since the fixed point recursion over the function pair

(ϕ̂0, ϕT ) is contractive [31] in Hilbert’s projective metric,

the above nine step algorithm is guaranteed to converge to

a unique solution.

VI. NUMERICAL SIMULATIONS

1) First order case: We consider an instance of (1) with

n = 2 oscillators, i.e., θ ∈ X = T
2. We generated the

following parameters uniformly random from the respective

intervals: Pi ∈ [0, 10], σi ∈ [1, 5] for i = 1, 2, and k12 ∈
[0.7, 1.2], ϕ12 ∈ [0, π

2 ).
We set the final time T = 1, and ρ0, ρT as in (7) (see Fig.

1) with κ0 = (1, 1)
⊤

, κT = (0.01, 0.01)
⊤

, m0 = (π, π)
⊤

,

mT = (0, 0)
⊤

, Λ0 =

[
0 1
1 0

]
, ΛT = 0.1Λ0. We solve (10)

following the steps in Section V-C. Specifically, we solve

the backward PDE (10b) via Algorithm 1 with parameters

Nr = 100, h = 0.1, nSample = 441, λ1 = λ2 = 0.01. To

solve the forward PDE (10a), we used the PROXRECUR

algorithm from [33, Sec. III-B.1] with algorithmic parameters

ε = 1, β = 0.1, δ = 0.1, L = 300 together with the

modifications mentioned in Sec. V-A.

Fig. 2(a) shows the snapshots of the optimally controlled

joint ρopt(θ, t) steering ρ0 to ρT over time horizon [0, 1]. Fig.

2(b) shows the snapshots of the uncontrolled joint ρunc(θ, t)
from the same ρ0. The snapshots of the magnitude of optimal

control are depicted in Fig. 2(c).

(a) t = 0 (b) t = 1

Fig. 1: Endpoint von Mises θ PDFs over T2.

2) Second order case: We next consider an instance of

(3) with n = 2 oscillators, i.e., (θ,ω) ∈ X = T
2 × R

2.

We set T = 1, and use {Pi, σi}i=1,2, k12, ϕ12 as in the

first order case above. We consider the initial joint PDF

ρ0(θ,ω) ≡ ρ0(θ) × Unif
(
[0, 0.2]2

)
, and the terminal joint

PDF ρT (θ,ω) ≡ ρT (θ) × Unif
(
[0, 0.2]2

)
where the θ

marginals ρ0, ρT are identical to ρ0, ρT in the first order

case, and Unif(·) denotes the uniform PDF. In other words,

the endpoint joint PDFs ρ0, ρT are supported on the compact

set T2 × [0, 0.2]2.

We solve (17) using the same computational set up as in

the subsection above except that the PROXRECUR algorithm

[33, Sec. III-B.1] for solving the forward PDE (17a) is

suitably modified as mentioned in Sec. V-A.

Fig. 3(a) shows the snapshots of the θ marginals of the

optimally controlled joints ρopt(θ,ω, t). Fig. 3(b) shows the θ

marginal snapshots of the uncontrolled joints. The snapshots

of the magnitude of optimal control are depicted in Fig. 3(c).

A comparison of Figs. 2(c) and 3(c) reveals that in the second

order case, the prior dynamics being mixed conservative-

dissipative, the optimal control entails forcing that is about

two orders of magnitude above the same for the first order

case. Fig. 4 shows four optimally controlled sample paths on

T
2 for the first order case (in red) and another four for the

second order case (in blue).

3) Order parameter: In the coupled oscillator context,

a measure of synchronization, or lack thereof, is the order

parameter r := 1
n |
∑n

j=1 exp(ιθj)| ∈ [0, 1] where ι :=
√
−1;

see e.g., [6, Sec. 3.2]. For instance, r = 0 implies lack of

synchrony, and r = 1 implies synchronized motion in the

state space. Fig. 5 shows the snaphsots of the order parameter

PDFs under optimal control for the aforesaid numerical

simulation. As the optimal control steers the stochastic state

θ from unimodal to bimodal, the r PDFs in Fig. 5 slightly

flatten over this transfer horizon and develop a secondary

peak around r = 0.5.

VII. CONCLUSIONS

This paper proposes an algorithmic framework to solve the

problem of minimum effort steering of the joint state PDF for

a finite population of coupled noisy nonuniform Kuramoto

oscillators subject to hard deadline and endpoint PDF con-

straints. This is an atypical stochastic control problem that

is relevant to engineering applications such as active uncer-

tainty management in a network of synchronous machines

and loads. The problem differs from the infinite population

a.k.a. the mean-field limit more commonly studied in the

physics literature. The present work points out technical

difficulties in applying some change-of-variables proposed

in related literature for a class of dynamical nonlinearities,

and alleviates the same by combining certain measure-valued

proximal recursions with the Feynman-Kac path integral

computation. Illustrative numerical simulations are given to

highlight the results. The formulations and results presented

herein, should be of broad interest to the researchers in

systems, control and mathematical physics.
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(c) Contour plots of the 2-norm magnitude of the optimal control over T2. Each subplot is a snapshot in time t ∈ [0, 1].
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value of the plotted variable; see colorbar (dark hue = high, light hue = low).

Fig. 4: The optimally controlled first order (in red) and second

order (in blue) Kuramoto sample paths on T
2 for the numerical

simulation in Sec. VI. The circled and diamond markers denote the

initial and terminal angular coordinates, respectively.

Fig. 5: PDFs of r for the numerical simulation in Sec. VI.
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