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Abstract— This work proposes the use of machine learning (ML)
as a candidate for the detection of various types of message injection
attacks against automatic dependent surveillance-broadcast (ADS-
B) messaging systems. Authentic ADS-B messages from a high-
traffic area are collected from an open-source platform. These
messages are combined with others imposing path modification,
ghost aircraft injection, and velocity drift obtained from
simulations. Then, ADS-B-related features are extracted from such
messages and used to train different ML models for binary
classification. For this purpose, authentic ADS-B data is considered
as Class 1 (i.e., no attack), while the injection attacks are considered
as Class 2 (i.e., presence of attack). The performance of the models
is analyzed with metrics, including detection, misdetection, and false
alarm rates, as well as validation accuracy, precision, recall, and F1-
score. The resulting models enable identifying the presence of
injection attacks with a detection rate of 99.05%, and false alarm
and misdetection rates of 0.76% and 1.10%, respectively.

Index Terms— Automatic dependent surveillance-broadcast
(ADS-B), federal aviation administration (FAA), machine learning
(ML), message injection, national airspace system (NAS).

I. INTRODUCTION

CCORDING to the federal aviation administration (FAA),

air traffic organization services approximately 45,000

flights and 2.9 million passengers daily, making the
United States national airspace system (NAS) one of the most
complex worldwide [1]. To modernize NAS for accommodating
such a high demand in traffic, the FAA has launched the next
generation air transportation system, NextGen, which seeks to
implement new technologies for improving aviation navigation
and communication capabilities [2]. One such technology is the
automatic dependent surveillance-broadcast (ADS-B) messaging
system, which allows aircraft to broadcast their position to other
aircraft and ground stations more frequently than radar systems
[3,4]. The FAA has mandated that as of January 2020, all aircraft
operating in open airspace must be equipped with this system [5].
Australia, Canada, Europe, and Mexico, among other locations,
also enforce mandates that require aircraft to be equipped with
ADS-B capabilities to a lesser extent [6]. Considering that ADS-
B messaging is utilized on such a scale, vulnerabilities to the
associated cyberattacks pose a significant threat since ADS-B
communications are broadcast openly and unencrypted by design
[7]. Common vulnerabilities include jamming, eavesdropping,
message modification, and message injection [8].

Message injection attacks are particularly hazardous, where
attackers construct and transmit falsifying ADS-B messages to
alter the flight path of the target aircraft, change its speed, or
impose fake aircraft in proximity to the targeted aircraft. In
addition, such attacks are relatively easy to launch, as the attack
data must simply adhere to the ADS-B format to be picked up by
receivers. Therefore, multiple ADS-B message injection detection
approaches were investigated and proposed in literature, such as
multilateration, Kalman filtering, and data fusion. Multilateration
entails the deployment of sensors at the ADS-B receiver sites to
approximate the adversary location by tracing an attack back to its
point of transmission [9-11]. However, this approach requires
sensor networks be installed at the various ADS-B receivers and
is only reliable if the targeted aircraft can be located by at least
four receivers [10]. Moreover, it may also be challenging to
achieve optimum sensor placement in the intended deployment
area. Kalman filtering can be used as a standalone method or in
conjunction with other methods (e.g., multilateration) to detect
message injection attacks, localize the attack source, track the
position and velocity of a target aircraft, and even estimate the
target’s intended course [12, 13]. Nevertheless, the performance
of Kalman filtering in attack detection greatly decreases in the
attack scenarios that closely mirror authentic ADS-B data [11].
Data fusion uses data from both ADS-B and secondary
surveillance radar (SSR) systems to approximate the location of
an aircraft [14]. This approach, however, suffers from the
differences in sampling rates and location accuracy between the
two systems, leading to challenges in obtaining clear paths for the
target aircraft in an attack event [11]. Machine learning (ML)
offers solutions (i.e., trained models) that generally avoid many
of these issues. Once such models are trained to detect certain
types of attacks, constant access to live authentic data is no
longer needed as opposed to data fusion. Furthermore, these
models can be realized with minimal to no additional hardware
implementations, unlike multilateration techniques.

In this work, ML models for binary classification are
developed and evaluated. Authentic samples are considered as
Class 1, and three types of message injection attacks; namely,
path modification, ghost injection, and velocity drift are
considered as Class 2. Binary classification is beneficial in the
case of detecting ADS-B message injection attacks since a
specific attack class does not need to be known to raise alarm.
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Algorithm: Path Modification (PM) and Velocity Drift (VD) Sample Generation
-Dataset of ADS-B samples

R_Earth -Radius of Earth in meters

Drift -Drift angle for PM attack in degrees
NbTotalAttack -Number of attack samples to generate
minVelocity  -Minimum velocity for VD attack

maxVelocity -Maximum velocity for VD attack

Given: Dataset

1: Procedure: Attack Generation VD_PM()
2: Loop: for each target address, do:

3:  prevOrigData =list()

4:  index =0

5:  nbAttack =0 // Initialize number of attacks generated
6: attackRatio = floor((num_samples * 4) / 10)

7:  midIndex = floor(num_samples / 3)

8:  if(midIndex <=1): // Decide whether to start attack

9: attackStart = 1

10: else:

11: attackStart = rand_int(1, midIndex)

12: Loop: for each sample, do:

13: if ((index >= attackStart) or (atkRatio <nbAttack) or (class = authentic)):
14:  nbAttack +=1

15:  NbTotalAttack =1

16: locationl = (prevLat, prevLon)

17: location2 = (currenLat, currentLon)

18: if(attack == velocityDrift)  // If performing VD attack

19: time =10

20: new Velocity = (2 * prevVelocity)%maxVelocity

21: dist =newVelocity * time // Compute distance with new velocity
22: label = 3

23: else // If performing PM attack

24: dist = Haversine(location1, location2) /Find haversine distance
25: driftAngle = (currentHeading + drift) % 360 // Change target’s headng
26: currentHeading = driftAngle // Update aircraft heading
27: label =1

28: newLat = calcLat(prvAtkLat, driftAngle, R_Earth, dist)

29:  newLon= calcLon(prvAtkLon, prvAtkLat, currentLat, driftAngle, R_Earth, dist)
30: attackSample = currentSample with updated attack parameters

31: prevOrigData = currentSample.tolist()

32:  prevAttackSample = attackSample

33:  write attackSample to dataset

34:  index +=1
35:  end for
36: end for

Fig.1: Pseudocode for generating the ADS-B feature samples
for the path modification and velocity drift cyberattacks.

The remainder of this paper is organized as follows: Section
II discusses the collection of authentic ADS-B messages and the
generation of the injection attack data. It also elaborates on the
extracted signal features and suggests a qualitative analysis of
the three injection attack types. Section III presents the results
from the ML modeling. This includes the optimal hyperparameters
and the performance evaluation of each model with respect to
various metrics, such as the detection rate, recall and F1-score.
Section IV summarizes these findings and concludes this work.

II. ADS-B MESSAGE COLLECTION AND FEATURE EXTRACTION

Authentic ADS-B messages are acquired from OpenSky, an
open-source platform with records of ADS-B communications
from sensor networks [15]. Collected messages are within a
one-hour timeframe in a 50-km radius centered at the John F.
Kennedy International Airport, with one aircraft identified as
target. Python scripts are developed to generate the ADS-B
messages that correspond to the aforementioned attack types
(i.e., path modification, velocity drift, ghost injection). Each of

these types is a form of a message injection cyberattack and seeks
to disrupt the target aircraft in a different way. Path modification is
concerned with altering the angle at which the target travels,
thereby modifying the intended route. Velocity drift entails
changing the position of the target by gradually changing its
velocity. Ghost aircraft injection attack seeks to create multiple
fake or ‘ghost’ aircraft in the vicinity of the target.

The developed Python scripts import the original dataset
containing the authentic ADS-B data and defines parameters
relative to the specific attack. For example, the generation of
the path modification requires the drift angle with respect to
true north that the attack intends to induce, while the generation
of velocity drift requires the minimum and maximum velocities
to be specified relative to the target. Figure 1 shows a
pseudocode for generating the attack samples for both velocity
drift and path modification cyberattacks. Path modification
samples are generated after computing new latitude and
longitude coordinates using the desired drift angle, target
aircraft heading, and the original latitude and longitude values.
Velocity drift attack samples are generated by computing new
location coordinates using a range of velocity values specified
for the attack. It is worth noting that the velocity is varied
gradually as attack samples are generated so that the samples
appear to be legitimate. The estimated distance traveled based
on this velocity is used to determine the new location
coordinates. In both attacks, sample generation continues using
authentic data and previously generated attack samples to
derive new attack messages. These are then appended to the
dataset with the appropriate label. Finally, ghost aircraft
injection requires a range of values for each ADS-B feature that
will be used to generate samples that appear to retain proximity
to the original aircraft. This range is defined by the selected
attack radius and the features obtained from authentic ADS-B
messages. Table 1 lists the relevant parameters for the ghost
aircraft injection attack. The values of these parameters are
selected such that a ghost aircraft is injected within the
specified attack boundary (i.e., circle of 50-km in radius).
Figure 2 represents a pseudocode for generating such an attack,
which makes use of the parameters listed in Table I.

TABLE I
GHOST AIRCRAFT INJECTION ATTACK PARAMETERS
Parameter Pair Description Value Unit
Determines the start
timeAttackStart/End  and stop of the attack - -
samples generation
nbTotalAttack Total number of attack 5579 B
samples to generate ?
Minimum and maximum .
min/maxRange distances from target in 1 g(())(())(()) ((&A:;)) Meters
which attack will occur
Minimum and Maximum .
min/maxDist distances a ghost aircraft 3 388 ((11\\/[4;?()) Meters
can be from the target
. Minimum and maximum 1 (Min)
min/maxVel velocity values 300 (Max) Meters/see
. Minimum and maximum ~ -28 (Min)
min/MaxVert vertical rate 37 (Max) Meters/sec
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Algorithm: Ghost Aircraft Injection (GA) Sample Generation
Given: Dataset -Dataset of ADS-B samples

R_Earth -Radius of Earth in meters

Table 1 -Contains list of parameters used in the attack

1: Procedure: Attack Generation_GA()

2: listAttackAircraft = list()

3:n =nbTotalAttack

4: rem =199

5: Loop: for each target address, do:

6: Loop: for each attack sample, do:

7 time=data[ ‘time”] //Get time from authentic sample
8: if (time >= timeAttackStart) and (time <= timeAttackEnd):

9: nbAttackPerPoint = 20

10: if(randFloatOto1( ) < 0.5) and not (rem == 0)

11: nbAttackPerPoint += 1

12: rem — 1

13: if(randFloatOto1( ) < 0.4) and not (rem == 0)

14: nbAttackPerPoint += 1

15: rem—=2

16: if(time == timeAttackEnd):

17: nbAttackPerPoint =n

18: if(n > 0):

19: attackSampleTime = time

20: for each attack per point:

21: address = currentAddress

22: dist = minRange + (minRange-maxRange)*randFloatOto1( )
23: driftAngle = 360 * randFloatOto1( )

24: if (randFloatOto1( ) <0.5):

25: drift = —drift

26: driftAngle = (currentHeading+drift) % 360

27: newLat = calcLat(curLat, driftAngle, R_Earth, dist)
28: newLon = calcLon(curLon, driftAngle, R_Earth, dist, newLat)
29: newVelocity = minVel+(maxVel-minVel)*randFloatOto1()
30: newVertrate = minVert+(maxVert-minVert)*randFloatOto1()
31: newHeading = driftAngle

32: if(currentOnground == 1)

33: newOnground = 1

34: else

35: newOnground = 0

36: altDrift = minDist+(maxDist-minDist)*randFloatOto1( )
37: if(randFloatOto1() <0.5) :

38: altDrift = —altDrift

39: newBalt = currentBalt+altDrift

40: label =2

41: attackSample = vector of the newly calculated features

42: write attackSample to dataset

43: listAttack Aircraft.append(attackSample)

44: end for

45:  end for

46: end for

Fig. 2: Pseudocode for generating the ADS-B feature samples
for the ghost injection cyberattack.

Multiple points within the desired attack radius are selected,
and a specified number of samples are generated for each point.
The attack samples are written to the dataset, and sample
generation continues until the desired number of attack samples
are met or the defined attack timeframe has expired. Each of the
three attack types differ further in complexity and severity, with
complexity referring to the difficulty with which the attack is
launched and the severity representing the overall impact on the
target. Ghost aircraft injection is the simplest to launch, as the
main requirement to be addressed is to transmit ADS-B
messages of legitimate flight data. This attack confuses both
pilots and ground stations, leading to potentially dangerous
course corrections and altitude or speed adjustments [16].

TABLE II
MESSAGE INJECTION QUALITATIVE ANALYSIS: LAUNCH COMPLEXITY AND
ATTACK SEVERITY
Severity
1 2 3
Ghost Injection

Path Modification

Complexity
—

2 Velocity Drift

Both path modification and velocity drift attacks have a
similar launch complexity and require precise timing to impact
the target. Finally, velocity drift has the lowest severity since it
alters only the velocity and leaves other information intact.
Considering the relative ease with which a ghost aircraft attack
is launched and the greater impact a successful attack has, it is
more likely to be encountered by an ADS-B receiver. Table II
summarizes these differences in complexity and severity, with
scores of 1 and 3 being the lowest and highest, respectively.

Once authentic and unauthentic ADS-B messages are
collected, features are extracted into a dataset. These features
include the latitude, longitude, barometric altitude, velocity,
heading, vertical rate, and on-ground. The latitude and
longitude are in degrees, the barometric altitude is in meters, and
the velocity is in meters per second. The heading presents the
clockwise direction, in degrees, the aircraft is facing with
respect to true north; whereas the vertical rate of the aircraft, in
meters per second, represents its decline and recline rates.
Finally, the on-ground indicates if the aircraft is grounded or
not. Two extra features are obtained by calculating the received
signal strength (RSS) and the Doppler shift as follows [18]:

Doppler = fp-fr (1.a)
P;G,G 2’

RSS= ———— (1.b)
(47)2d*

where frand fz in (1.a) are the transmitted and received signal
frequencies, respectively. Here, fr = fr(ctvr)/(c+vr) where c is
the speed of light, vz is the receiver velocity, and vr is the
transmitter velocity. The transmitted frequency is 1090 MHz
(i.e., ADS-B standard) and the received frequency is in the range
of 1090 MHz + 1150 Hz. The parameters Pr, Gr, Gg, A, and d in
(1.D) represent the transmitted signal power, transmitter antenna
gain, receiver antenna gain, the wavelength, and the transmitter-
receiver separation distance, respectively. The transmitted signal
power is set to 200 Watts, whereas the transmitter and receiver
gains are set to10 dBi each. As a result, the final dataset contains a
total of ten features: seven obtained from the ADS-B messages,
the calculated RSS, the calculated Doppler shift, and the ‘label’
of each sample with respect to its signal class (i.e., Class 1 for
authentic transmission, Class 2 for unauthentic transmission).

The resulting dataset is preprocessed by eliminating the feature
samples with a null value for any of their features and by
removing the duplications, which are attributed to the multipath
effect and the errors in the ADS-B transponders, causing them to
transmit multiple instances of the same message [17]. In addition,
the samples in all features are standardized to avoid divergence in
the process of ML training.
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TABLE I
PERFORMANCE METRICS FOR BINARY CLASSIFICATION

Classifier VA(%) DR(%) Precision Recall F1-score FAR(%) MDR(%) TT(ms) PT(ms)
LR 86.8748+0.9291 86.3938 0.86 0.87 0.86 10.13 16.42 10252.17 0.998
KNN 92.7118+0.7628 92.4389 0.92 0.92 0.92 7.67 747 27.92 42.89
DT 97.7187+0.4338 97.8776 0.98 0.98 0.98 233 1.95 91.14 0.99
NB 86.5508+0.8233 86.3938 0.87 0.86 0.86 9.24 17.14 4.02 0.99
RFC 99.001 + 0.2832 99.0525 0.99 0.99 0.99 0.76 1.10 1601.01 57.85
MLP 86.5104+2.6823 87.1707 0.89 0.87 0.87 441 19.64 2000.81 3.99

Finally, correlation analysis of features is carried out using the
Pearson algorithm as demonstrated in Figure 3, which suggests
that no dimensionality reduction is necessary. It is noteworthy
to point out that a correlation of |c|] > 0.7 is selected to
determine if two feature pairs are correlated. The finalized
dataset conveys 17,590 samples (i.e., 7,978 authentic samples,
9,612 attack samples). Of the attack samples, 1,911 belong to
path modification, 5,579 are for ghost aircraft injection, and the
remaining 2,122 are for velocity drift. The dataset is split into
70% and 30% in training and testing, respectively, and 10-fold
cross validation is performed during model training/validation.

III. ML MODELING AND PERFORMANCE EVALUATION

Six ML models are trained and validated for detecting the
message injection attacks mentioned earlier. These models
are logistic regression (LR), K-nearest neighbors (KNN),
decision tree (DT), Gaussian naive-Bayes (NB), random-
forest classifier (RFC), and multi-layer perceptron (MLP).
Grid search is performed with the use of the developed
dataset to obtain the optimum hyperparameters for each
model. Several metrics are used for performance evaluation,
including detection rate (DR), precision, recall, Fl-score,
false alarm rate (FAR), and misdetection rate (MDR). These
metrics are calculated as follows:

bre _ IPHIN )
~ TP+FP+TN+FN (2.0)
Precision= P 2.b
recision= TPiFP (2.0)

Recall= a 2
T TPIEN 2.0)

F1.S _ZXPrecision xRecall 5
moeore= Precision+Recall (2.d)

FAR= FP 2
“FP+TN 2.0)

MDR= FN 2
" FN+TP @)

where TP, TN, FP, and FN are the number of true positive
predictions, true negative predictions, false positive predictions,
and false negative predictions, respectively. The DR measures the
percent of samples which are classified correctly in testing stage.

ADS-B Data Feature Correlation 10
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Fig.3: Correlation heatmap for the ADS-B features Dataset.

The precision determines the overall quality of the positive and
negative predictions made by the model, while the recall
determines the ability of the classifier to correctly identify
positive samples. The F1-score metric helps to further analyze
the incorrectly classified samples and is calculated as the
harmonic mean of the precision and recall. The FAR calculates
the percentage of samples that are incorrectly classified as
positive, while the MDR calculates the percentage of positive
samples which are incorrectly classified as negative.

Table III presents the performance of the models with
respect to (2.a—f) as well as the resulting training time (TT) and
prediction time (PT). A Windows 10 PC with an Intel i7-
7700HQ CPU @ 2.80 GHz and 32 GB of DDR4-2400 MHz
memory is used for training, validating, and testing the ML
models. LR, NB, and MLP have comparable performance, with
validation accuracy (VA) and DR close to 86%. KNN achieves
better performance, characterized by VA and DR of around
92.5% each. In addition, its precision, recall, and F1l-score are
all found to be 0.92. On the other hand, it is found that the best
performing models are the RFC and DT, with the former
attaining the optimum VA and DR of approximately 99%.
Furthermore, the resulting FAR and MDR for the RFC model
are 0.76% and 1.10%, respectively, indicating low incidences of
misdetection and false alarms. It is also worth noting that the TT
and PT of the RFC model are 1,601 ms and 57.85 ms,
respectively, enabling real-time detection of the investigated
injection attacks. Finally, Table IV shows the optimal grid-
search based hyperparameters for each model. The optimization
of all these models is performed with Scikit-Learn ML library.
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TABLE IV
OPTIMIZED HYPERPARAMETERS FOR EACH CLASSIFIER

Classifier =~ Optimal Hyperparameters
Maximum number of iterations: 1000

Norm used for penalty: L2

LR S . .
Optimization algorithm: Coordinate Descent

Regularization constant: 0.1

Distance metric: Manhattan

Nearest neighbor algorithm: K-D Tree
Number of neighbors: 5

Weight function: Distance

Maximum tree depth: None
Maximum number of leaf nodes: None
Node split strategy: Best

Quality of split criterion: Entropy

DT

NB Smoothing parameter for stability: 1E-8

Number of trees: 100

Activation function: Rectified Linear Unit
Hidden layer size: 100

Learning rate: Constant

Solver for weight optimization: Adam
Strength of L2 regularization term: 0.0001

MLP

IV. CONCLUSION

To conclude, ADS-B communications are particularly
vulnerable to attacks as information is openly broadcast to
ground stations and other aircraft. Message injection attacks
allow attackers to broadcast false information, which can alter the
flight path of aircraft or falsely suggest that other aircraft are
present. A ML method is therefore proposed to predict the
presence of three ADS-B message injection attacks: path
modification, ghost aircraft injection, and velocity drift, through
binary classification. Samples obtained from a dataset containing
authentic ADS-B data and message injection attack data are used
to train and validate six ML models. Evaluation metrics such as
the VA, DR, FAR, and MDR are used to compare the
performance of the developed models. This ML approach
produces a RFC model capable of accurately predicting the
presence of any of the three attacks with 99% confidence,
associated with a FAR of 0.76% and MDR of 1.10%.
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