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Abstract— This work proposes the use of machine learning (ML) 
as a candidate for the detection of various types of message injection 
attacks against automatic dependent surveillance-broadcast (ADS- 
B) messaging systems. Authentic ADS-B messages from a high- 
traffic area are collected from an open-source platform. These 
messages are combined with others imposing path modification, 
ghost aircraft injection, and velocity drift obtained from 
simulations. Then, ADS-B-related features are extracted from such 
messages and used to train different ML models for binary 
classification. For this purpose, authentic ADS-B data is considered 
as Class 1 (i.e., no attack), while the injection attacks are considered 
as Class 2 (i.e., presence of attack). The performance of the models 
is analyzed with metrics, including detection, misdetection, and false 
alarm rates, as well as validation accuracy, precision, recall, and F1- 
score. The resulting models enable identifying the presence of 
injection attacks with a detection rate of 99.05%, and false alarm 
and misdetection rates of 0.76% and 1.10%, respectively. 

 
Index Terms— Automatic dependent surveillance-broadcast 

(ADS-B), federal aviation administration (FAA), machine learning 
(ML), message injection, national airspace system (NAS). 

 
I. INTRODUCTION 

CCORDING to the federal aviation administration (FAA), 
air traffic organization services approximately 45,000 
flights and 2.9 million passengers daily, making the 

United States national airspace system (NAS) one of the most 
complex worldwide [1]. To modernize NAS for accommodating 
such a high demand in traffic, the FAA has launched the next 
generation air transportation system, NextGen, which seeks to 
implement new technologies for improving aviation navigation 
and communication capabilities [2]. One such technology is the 
automatic dependent surveillance-broadcast (ADS-B) messaging 
system, which allows aircraft to broadcast their position to other 
aircraft and ground stations more frequently than radar systems 
[3, 4]. The FAA has mandated that as of January 2020, all aircraft 
operating in open airspace must be equipped with this system [5]. 
Australia, Canada, Europe, and Mexico, among other locations, 
also enforce mandates that require aircraft to be equipped with 
ADS-B capabilities to a lesser extent [6]. Considering that ADS- 
B messaging is utilized on such a scale, vulnerabilities to the 
associated cyberattacks pose a significant threat since ADS-B 
communications are broadcast openly and unencrypted by design 
[7]. Common vulnerabilities include jamming, eavesdropping, 
message modification, and message injection [8]. 

Message injection attacks are particularly hazardous, where 
attackers construct and transmit falsifying ADS-B messages to 
alter the flight path of the target aircraft, change its speed, or 
impose fake aircraft in proximity to the targeted aircraft. In 
addition, such attacks are relatively easy to launch, as the attack 
data must simply adhere to the ADS-B format to be picked up by 
receivers. Therefore, multiple ADS-B message injection detection 
approaches were investigated and proposed in literature, such as 
multilateration, Kalman filtering, and data fusion. Multilateration 
entails the deployment of sensors at the ADS-B receiver sites to 
approximate the adversary location by tracing an attack back to its 
point of transmission [9–11]. However, this approach requires 
sensor networks be installed at the various ADS-B receivers and 
is only reliable if the targeted aircraft can be located by at least 
four receivers [10]. Moreover, it may also be challenging to 
achieve optimum sensor placement in the intended deployment 
area. Kalman filtering can be used as a standalone method or in 
conjunction with other methods (e.g., multilateration) to detect 
message injection attacks, localize the attack source, track the 
position and velocity of a target aircraft, and even estimate the 
target’s intended course [12, 13]. Nevertheless, the performance 
of Kalman filtering in attack detection greatly decreases in the 
attack scenarios that closely mirror authentic ADS-B data [11]. 
Data fusion uses data from both ADS-B and secondary 
surveillance radar (SSR) systems to approximate the location of 
an aircraft [14]. This approach, however, suffers from the 
differences in sampling rates and location accuracy between the 
two systems, leading to challenges in obtaining clear paths for the 
target aircraft in an attack event [11]. Machine learning (ML) 
offers solutions (i.e., trained models) that generally avoid many 
of these issues. Once such models are trained to detect certain 
types of attacks, constant access to live authentic data is no 
longer needed as opposed to data fusion. Furthermore, these 
models can be realized with minimal to no additional hardware 
implementations, unlike multilateration techniques. 

 

In this work, ML models for binary classification are 
developed and evaluated. Authentic samples are considered as 
Class 1, and three types of message injection attacks; namely, 
path modification, ghost injection, and velocity drift are 
considered as Class 2. Binary classification is beneficial in the 
case of detecting ADS-B message injection attacks since a 
specific attack class does not need to be known to raise alarm. 
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Fig.1: Pseudocode for generating the ADS-B feature samples 
for the path modification and velocity drift cyberattacks. 

 

The remainder of this paper is organized as follows: Section 
II discusses the collection of authentic ADS-B messages and the 
generation of the injection attack data. It also elaborates on the 
extracted signal features and suggests a qualitative analysis of 
the three injection attack types. Section III presents the results 
from the ML modeling. This includes the optimal hyperparameters 
and the performance evaluation of each model with respect to 
various metrics, such as the detection rate, recall and F1-score. 
Section IV summarizes these findings and concludes this work. 

II. ADS-B MESSAGE COLLECTION AND FEATURE EXTRACTION 
Authentic ADS-B messages are acquired from OpenSky, an 

open-source platform with records of ADS-B communications 
from sensor networks [15]. Collected messages are within a 
one-hour timeframe in a 50-km radius centered at the John F. 
Kennedy International Airport, with one aircraft identified as 
target. Python scripts are developed to generate the ADS-B 
messages that correspond to the aforementioned attack types 
(i.e., path modification, velocity drift, ghost injection). Each of  

these types is a form of a message injection cyberattack and seeks 
to disrupt the target aircraft in a different way. Path modification is 
concerned with altering the angle at which the target travels, 
thereby modifying the intended route. Velocity drift entails 
changing the position of the target by gradually changing its 
velocity. Ghost aircraft injection attack seeks to create multiple 
fake or ‘ghost’ aircraft in the vicinity of the target.  

 

The developed Python scripts import the original dataset 
containing the authentic ADS-B data and defines parameters 
relative to the specific attack. For example, the generation of 
the path modification requires the drift angle with respect to 
true north that the attack intends to induce, while the generation 
of velocity drift requires the minimum and maximum velocities 
to be specified relative to the target. Figure 1 shows a 
pseudocode for generating the attack samples for both velocity 
drift and path modification cyberattacks. Path modification 
samples are generated after computing new latitude and 
longitude coordinates using the desired drift angle, target 
aircraft heading, and the original latitude and longitude values. 
Velocity drift attack samples are generated by computing new 
location coordinates using a range of velocity values specified 
for the attack. It is worth noting that the velocity is varied 
gradually as attack samples are generated so that the samples 
appear to be legitimate. The estimated distance traveled based 
on this velocity is used to determine the new location 
coordinates. In both attacks, sample generation continues using 
authentic data and previously generated attack samples to 
derive new attack messages. These are then appended to the 
dataset with the appropriate label. Finally, ghost aircraft 
injection requires a range of values for each ADS-B feature that 
will be used to generate samples that appear to retain proximity 
to the original aircraft. This range is defined by the selected 
attack radius and the features obtained from authentic ADS-B 
messages. Table 1 lists the relevant parameters for the ghost 
aircraft injection attack. The values of these parameters are 
selected such that a ghost aircraft is injected within the 
specified attack boundary (i.e., circle of 50-km in radius). 
Figure 2 represents a pseudocode for generating such an attack, 
which makes use of the parameters listed in Table I. 

 

 
 

TABLE I 
GHOST AIRCRAFT INJECTION ATTACK PARAMETERS 

Parameter Pair Description Value Unit 

timeAttackStart/End 
Determines the start 
and stop of the attack 
samples generation 

– – 

nbTotalAttack 
 

Total number of attack 
samples to generate 5,579 – 

min/maxRange 
Minimum and maximum 
distances from target in 
which attack will occur 

  6000 (Min) 
10000 (Max) Meters 

min/maxDist 
Minimum and Maximum 
distances a ghost aircraft 
can be from the target 

  500  (Min) 
3000  (Max) Meters 

min/maxVel Minimum and maximum 
velocity values 

    1    (Min) 
300    (Max) Meters/sec 

min/MaxVert Minimum and maximum 
vertical rate 

  –28       (Min) 
   37      (Max) Meters/sec 

 
 

 

Algorithm: Path Modification (PM) and Velocity Drift (VD) Sample Generation 
Given: Dataset              -Dataset of ADS-B samples 
            R_Earth             -Radius of Earth in meters 
            Drift                  -Drift angle for PM attack in degrees 
            NbTotalAttack  -Number of attack samples to generate 
            minVelocity      -Minimum velocity for VD attack 
            maxVelocity     -Maximum velocity for VD attack 
 
1: Procedure: Attack_Generation_VD_PM() 
2: Loop: for each target address, do: 
3:     prevOrigData =list() 
4:     index              = 0 
5:     nbAttack          = 0                     // Initialize number of attacks generated 
6:     attackRatio                = floor((num_samples * 4) / 10) 
7:     midIndex          = floor(num_samples / 3) 
8:     if(midIndex <= 1):                  // Decide whether to start attack 
9:          attackStart = 1 
10:   else: 
11:        attackStart = rand_int(1, midIndex) 
12:   Loop: for each sample, do: 
13:  if ((index >= attackStart) or (atkRatio < nbAttack) or (class == authentic)): 
14:       nbAttack                 += 1 
15:       NbTotalAttack –= 1  
16:       location1            = (prevLat, prevLon) 
17:       location2            = (currenLat, currentLon) 
18:       if(attack == velocityDrift)     // If performing VD attack 
19:             time              = 10 
20:             newVelocity = (2 * prevVelocity)%maxVelocity  
21:             dist    = newVelocity * time   // Compute distance with new velocity 
22:             label = 3 
23:       else                                            // If performing PM attack 
24:             dist             = Haversine(location1, location2) //Find haversine distance 
25:             driftAngle = (currentHeading + drift) % 360 // Change target’s headng 
26:             currentHeading = driftAngle                // Update aircraft heading 
27:             label =1 
28:     newLat = calcLat(prvAtkLat, driftAngle, R_Earth, dist)  
29:     newLon       =  calcLon(prvAtkLon, prvAtkLat, currentLat, driftAngle, R_Earth, dist)  
30:     attackSample      = currentSample with updated attack parameters              
31:     prevOrigData = currentSample.tolist()              
32:     prevAttackSample = attackSample 
33:     write attackSample to dataset  
34:     index += 1   
35:     end for 
36: end for 
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Fig. 2: Pseudocode for generating the ADS-B feature samples 
for the ghost injection cyberattack. 
 

Multiple points within the desired attack radius are selected, 
and a specified number of samples are generated for each point. 
The attack samples are written to the dataset, and sample 
generation continues until the desired number of attack samples 
are met or the defined attack timeframe has expired. Each of the 
three attack types differ further in complexity and severity, with 
complexity referring to the difficulty with which the attack is 
launched and the severity representing the overall impact on the 
target. Ghost aircraft injection is the simplest to launch, as the 
main requirement to be addressed is to transmit ADS-B 
messages of legitimate flight data. This attack confuses both 
pilots and ground stations, leading to potentially dangerous 
course corrections and altitude or speed adjustments [16]. 

 
 

 
 
 

TABLE II 
MESSAGE INJECTION QUALITATIVE ANALYSIS: LAUNCH COMPLEXITY AND 

ATTACK SEVERITY 
 

C
om

pl
ex

ity
  Severity 

1 2 3 
1   Ghost Injection 
2 Velocity Drift Path Modification  

 
Both path modification and velocity drift attacks have a 
similar launch complexity and require precise timing to impact 
the target. Finally, velocity drift has the lowest severity since it 
alters only the velocity and leaves other information intact. 
Considering the relative ease with which a ghost aircraft attack 
is launched and the greater impact a successful attack has, it is 
more likely to be encountered by an ADS-B receiver. Table II 
summarizes these differences in complexity and severity, with 
scores of 1 and 3 being the lowest and highest, respectively. 

 

Once authentic and unauthentic ADS-B messages are 
collected, features are extracted into a dataset. These features 
include the latitude, longitude, barometric altitude, velocity, 
heading, vertical rate, and on-ground. The latitude and 
longitude are in degrees, the barometric altitude is in meters, and 
the velocity is in meters per second. The heading presents the 
clockwise direction, in degrees, the aircraft is facing with 
respect to true north; whereas the vertical rate of the aircraft, in 
meters per second, represents its decline and recline rates. 
Finally, the on-ground indicates if the aircraft is grounded or 
not. Two extra features are obtained by calculating the received 
signal strength (RSS) and the Doppler shift as follows [18]: 

 

            Doppler = -                                  (1.a) 
                                         RSS =    PTGtGrλ

2 (4π) d
                            (1.b) 

where fT and fR in (1.a) are the transmitted and received signal 
frequencies, respectively. Here, fR = fT·(c+vR)/(c+vT) where c is 
the speed of light, vR is the receiver velocity, and vT is the 
transmitter velocity. The transmitted frequency is 1090 MHz 
(i.e., ADS-B standard) and the received frequency is in the range 
of 1090 MHz ± 1150 Hz. The parameters PT, GT, GR, λ, and d in 
(1.b) represent the transmitted signal power, transmitter antenna 
gain, receiver antenna gain, the wavelength, and the transmitter- 
receiver separation distance, respectively. The transmitted signal 
power is set to 200 Watts, whereas the transmitter and receiver 
gains are set to10 dBi each. As a result, the final dataset contains a 
total of ten features: seven obtained from the ADS-B messages, 
the calculated RSS, the calculated Doppler shift, and the ‘label’ 
of each sample with respect to its signal class (i.e., Class 1 for 
authentic transmission, Class 2 for unauthentic transmission). 

 

The resulting dataset is preprocessed by eliminating the feature 
samples with a null value for any of their features and by 
removing the duplications, which are attributed to the multipath 
effect and the errors in the ADS-B transponders, causing them to 
transmit multiple instances of the same message [17]. In addition, 
the samples in all features are standardized to avoid divergence in 
the process of ML training.  

 
 
 

Algorithm: Ghost Aircraft Injection (GA) Sample Generation 
Given: Dataset              -Dataset of ADS-B samples 
            R_Earth             -Radius of Earth in meters 
            Table 1              -Contains list of parameters used in the attack 
 
1: Procedure: Attack_Generation_GA() 
2:  listAttackAircraft = list() 
3: n                            = nbTotalAttack 
4: rem                        = 199 
5: Loop: for each target address, do: 
6:    Loop: for each attack sample, do: 
7:          time=data[‘time’]                        //Get time from authentic sample 
8:          if (time >= timeAttackStart) and (time <= timeAttackEnd): 
9:                nbAttackPerPoint = 20 
10:              if(randFloat0to1( ) < 0.5) and not (rem == 0) 
11:                nbAttackPerPoint += 1 
12:                rem –= 1 
13:              if(randFloat0to1( ) < 0.4) and not (rem == 0) 
14:                nbAttackPerPoint += 1 
15:                rem –= 2 
16:              if(time == timeAttackEnd): 
17:                nbAttackPerPoint = n 
18:              if(n > 0): 
19:                attackSampleTime = time 
20:              for each attack per point:  
21:                address = currentAddress 
22:                dist = minRange + (minRange-maxRange)*randFloat0to1( ) 
23:                driftAngle = 360 * randFloat0to1( ) 
24:                if (randFloat0to1( ) < 0.5): 
25:                    drift = –drift 
26:                driftAngle           =  (currentHeading+drift) % 360 
27:                newLat             =  calcLat(curLat, driftAngle, R_Earth, dist)  
28:                newLon                = calcLon(curLon, driftAngle, R_Earth, dist, newLat) 
29:                newVelocity = minVel+(maxVel-minVel)*randFloat0to1( ) 
30:                newVertrate      =  minVert+(maxVert-minVert)*randFloat0to1( ) 
31:                newHeading   = driftAngle 
32:                if(currentOnground == 1) 
33:                  newOnground = 1 
34:                else 
35:                  newOnground = 0 
36:                altDrift          = minDist+(maxDist-minDist)*randFloat0to1( )  
37:                if(randFloat0to1() < 0.5) : 
38:                   altDrift           = –altDrift 
39:                newBalt         = currentBalt+altDrift 
40:                label                    = 2 
41:                attackSample = vector of the newly calculated features 
42:                write attackSample to dataset 
43:                listAttackAircraft.append(attackSample) 
44:              end for                        
45:    end for 
46: end for 
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TABLE III 
PERFORMANCE METRICS FOR BINARY CLASSIFICATION 

 

 

Finally, correlation analysis of features is carried out using the 
Pearson algorithm as demonstrated in Figure 3, which suggests 
that no dimensionality reduction is necessary. It is noteworthy 
to point out that a correlation of |c| > 0.7 is selected to 
determine if two feature pairs are correlated. The finalized 
dataset conveys 17,590 samples (i.e., 7,978 authentic samples, 
9,612 attack samples). Of the attack samples, 1,911 belong to 
path modification, 5,579 are for ghost aircraft injection, and the 
remaining 2,122 are for velocity drift. The dataset is split into 
70% and 30% in training and testing, respectively, and 10-fold 
cross validation is performed during model training/validation. 

III. ML MODELING AND PERFORMANCE EVALUATION 
Six ML models are trained and validated for detecting the 

message injection attacks mentioned earlier. These models 
are logistic regression (LR), K-nearest neighbors (KNN), 
decision tree (DT), Gaussian naïve-Bayes (NB), random-
forest classifier (RFC), and multi-layer perceptron (MLP). 
Grid search is performed with the use of the developed 
dataset to obtain the optimum hyperparameters for each 
model. Several metrics are used for performance evaluation, 
including detection rate (DR), precision, recall, F1-score, 
false alarm rate (FAR), and misdetection rate (MDR). These 
metrics are calculated as follows: 

                                 DR= 
TP+TN

TP+FP+TN+FN
                         (2.a) 

                                  Precision=
TP

TP+FP
                                   (2.b) 

                                                        Recall=
TP

TP+FN
                                     (2.c) 

                             F1-Score=
2×Precision×Recall

Precision+Recall
               (2.d) 

                                      FAR=
FP

FP+TN
                                    (2.e) 

                                       MDR=
FN

FN+TP
                                  (2.f) 

 
where TP, TN, FP, and FN are the number of true positive 
predictions, true negative predictions, false positive predictions, 
and false negative predictions, respectively. The DR measures the 
percent of samples which are classified correctly in testing stage. 

Fig.3: Correlation heatmap for the ADS-B features Dataset. 
The precision determines the overall quality of the positive and 
negative predictions made by the model, while the recall 
determines the ability of the classifier to correctly identify 
positive samples. The F1-score metric helps to further analyze 
the incorrectly classified samples and is calculated as the 
harmonic mean of the precision and recall. The FAR calculates 
the percentage of samples that are incorrectly classified as 
positive, while the MDR calculates the percentage of positive 
samples which are incorrectly classified as negative.  

 

Table III presents the performance of the models with 
respect to (2.a–f) as well as the resulting training time (TT) and 
prediction time (PT). A Windows 10 PC with an Intel i7- 
7700HQ CPU @ 2.80 GHz and 32 GB of DDR4-2400 MHz 
memory is used for training, validating, and testing the ML 
models. LR, NB, and MLP have comparable performance, with 
validation accuracy (VA) and DR close to 86%. KNN achieves 
better performance, characterized by VA and DR of around 
92.5% each. In addition, its precision, recall, and F1-score are 
all found to be 0.92. On the other hand, it is found that the best 
performing models are the RFC and DT, with the former 
attaining the optimum VA and DR of approximately 99%. 
Furthermore, the resulting FAR and MDR for the RFC model 
are 0.76% and 1.10%, respectively, indicating low incidences of 
misdetection and false alarms. It is also worth noting that the TT 
and PT of the RFC model are 1,601 ms and 57.85 ms, 
respectively, enabling real-time detection of the investigated 
injection attacks. Finally, Table IV shows the optimal grid-
search based hyperparameters for each model. The optimization 
of all these models is performed with Scikit-Learn ML library. 

 

Classifier VA(%) DR(%) Precision Recall F1-score FAR(%) MDR(%) TT(ms) PT(ms) 
LR 86.8748+0.9291 86.3938 0.86 0.87 0.86 10.13 16.42 10252.17 0.998 

KNN 92.7118+0.7628 92.4389 0.92 0.92 0.92 7.67 7.47 27.92 42.89 
DT 97.7187+0.4338 97.8776 0.98 0.98 0.98 2.33 1.95 91.14 0.99 
NB 86.5508+0.8233 86.3938 0.87 0.86 0.86 9.24 17.14 4.02 0.99 

RFC 99.001 + 0.2832 99.0525 0.99 0.99 0.99 0.76 1.10 1601.01 57.85 
MLP 86.5104+2.6823 87.1707 0.89 0.87 0.87 4.41 19.64 2000.81 3.99 
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TABLE IV 
OPTIMIZED HYPERPARAMETERS FOR EACH CLASSIFIER 

 

Classifier Optimal Hyperparameters 
 

LR 

Maximum number of iterations: 1000 
Norm used for penalty: L2 
Optimization algorithm: Coordinate Descent 
Regularization constant: 0.1 

 

KNN 

Distance metric: Manhattan 
Nearest neighbor algorithm: K-D Tree 
Number of neighbors: 5 
Weight function: Distance 

 

DT 

Maximum tree depth: None 
Maximum number of leaf nodes: None 
Node split strategy: Best 
Quality of split criterion: Entropy 

NB Smoothing parameter for stability: 1E–8 

RF Number of trees: 100 
 
 

MLP 

Activation function: Rectified Linear Unit 
Hidden layer size: 100 
Learning rate: Constant 
Solver for weight optimization: Adam 
Strength of L2 regularization term: 0.0001 

 
IV. CONCLUSION 

To conclude, ADS-B communications are particularly 
vulnerable to attacks as information is openly broadcast to 
ground stations and other aircraft. Message injection attacks 
allow attackers to broadcast false information, which can alter the 
flight path of aircraft or falsely suggest that other aircraft are 
present. A ML method is therefore proposed to predict the 
presence of three ADS-B message injection attacks: path 
modification, ghost aircraft injection, and velocity drift, through 
binary classification. Samples obtained from a dataset containing 
authentic ADS-B data and message injection attack data are used 
to train and validate six ML models. Evaluation metrics such as 
the VA, DR, FAR, and MDR are used to compare the  
performance of the developed models. This ML approach 
produces a RFC model capable of accurately predicting the 
presence of any of the three attacks with 99% confidence, 
associated with a FAR of 0.76% and MDR of 1.10%. 
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