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Abstract

We formulate a kinetic theory of quantum information scrambling in the context of a
paradigmatic model of interacting electrons in the vicinity of a superconducting phase
transition. We carefully derive a set of coupled partial differential equations that ef-
fectively govern the dynamics of information spreading in generic dimensions. Their
solutions show that scrambling propagates at the maximal speed set by the Fermi veloc-
ity. At early times, we find exponential growth at a rate set by the inelastic scattering.
At late times, we find that scrambling is governed by shock-wave dynamics with travel-
ing waves exhibiting a discontinuity at the boundary of the light cone. Notably, we find
perfectly causal dynamics where the solutions do not spill outside of the light cone.
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1 Introduction

Quantum information scrambling is the mechanism by which localized information in an
extended closed quantum many-body system with local interactions flows to non-local de-
grees of freedom, becoming practically irretrievable. In practice, these information dy-
namics can be conveniently probed by means of out-of-time-ordered correlators (OTOCs)
such as squared commutators of operators inserted at different space-time points, e.g.
C(t, x ) := 〈[O(t, x ),O(0,0)]2〉. The effective loss of information is characterized by (i) a
ballistic spread of information, often dubbed as the “quantum butterfly effect”, (ii) a growth
regime, reminiscent of the exponential separation between nearby trajectories in classical
chaotic systems, (iii) a purely quantum saturation regime beyond a scrambling time t∗.

The ballistic spread of quantum information has been firmly established on the basis of
the Lieb-Robinson bound [1]. The causal light-cone structure, with a wavefront traveling at a
model-dependent butterfly velocity vB, was confirmed in a wide variety of models, from non-
interacting 1d systems to holographic models. Inside the light cone, the existence of a clearly
delineated exponential growth regime is only expected for semiclassical or large-N models:
C(t, x ) ∼ exp [λL(t − t∗ − |x |/vB)] where λL is the Lyapunov exponent. For truly quantum
systems, the rapid growth concentrated near the light cone boundary is understood to be set
by model-dependent microscopic scales, and significant efforts were made to compute the
particular shape of the butterfly front in a variety of models.

Wavefronts described by power laws, sometimes oscillatory, were found in free and in-
tegrable models [2, 3]. Sharp wavefronts were found in interacting spin chains [4], non-
integrable systems with diffusive transport [5, 6], as well as large-N or semiclassical mod-
els [7, 8] and holographic models [9, 10]. Interestingly, random unitary circuits without con-
served quantities, i.e. in the absence of diffusive transport, were found to develop broad fronts
controlled by a diffusively growing length scale [11–14]. Notably, several works [15–18] have
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Figure 1: Butterfly effect in the clean interacting metal defined in Eqs. (5) and (22):
after a small and localized perturbation at time τ= 0, the space-time dynamics of the
inter-world distribution function Fdu defined in Eq. (15) follows a causal light-cone
structure with a front traveling at the maximal butterfly velocity vB = vF/

p
d where

vF is the Fermi velocity and d the spatial dimensions. Here, we sketch φ(τ, X), the
component of Fdu averaged over the Fermi surface, to be introduced in Eq. (31). At
early times, the exponential growth regime is governed by the inelastic scattering
rate. In the late-time limit, scrambling is governed by shock-wave dynamics with the
traveling front developing a distinct discontinuity followed by an exponential decay
on the scale of the mean free path ℓ set by the electronic interaction.

pointed towards an effective description of the front in terms of partial differential equations
belonging to the class of the Fisher Kolmogorov-Petrovsky–Piskunov (FKPP) equation [19,20]
which is known to exhibit traveling wave solutions (see Ref. [21] and references therein).

In this manuscript, we address the dynamics and the geometry of the wavefront for a locally
interacting system in the vicinity of a continuous classical phase transition corresponding to
the spontaneous breaking of the symmetry associated with a conserved quantity. Practically,
we consider a paradigmatic model of interacting electrons where the interactions are due
to strong superconducting fluctuations. The long wavelength fluctuations close to criticality
produce a separation of scales which we leverage to derive analytic results. How the results
get modified on moving away from criticality is transparent in our derivation and our approach
can be systematized to address other near-critical quantum many-body systems.

We compute the OTOCs by means of an augmented Keldysh formalism, the so-called many-
world formalism, which was originally proposed in Ref. [22] and recently used to derive ki-
netic equations for the spreading of quantum information in fermionic interacting systems in-
cluding electron-phonon scattering, electrons-impurity scattering, as well as electron-electron
scattering [15]. The augmented Keldysh formalism has been used in other recent works as
well [23–26]. This formalism can be conveniently harnessed to the standard field-theoretic
concepts, tools, and approximation schemes that have been developed over the years in con-
densed matter theory. Here, we treat the interaction between the electrons and the super-
conducting fluctuations by means of the random-phase approximation (RPA) in the particle-
particle channel.

We carefully derive an effective description of the spreading of quantum information in
terms of a set of coupled partial differential equations which do not belong to the FKPP class.
Notably, we find wavefronts that are discontinuous at the light cone boundary and that do not
feature exponentially small tails ahead of the front. This strictly causal structure is unlike what
is found in evolutions of the FKPP class, and more generally of equations with diffusive terms.
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Summary and main results

The paper is organized as follows. In Sect. 2, we quickly review the many-world formalism
which is used to compute OTOCs and access quantum chaotic features of many-body systems.
It generalizes the standard Keldysh formalism by studying two replicas of the theory, the so-
called worlds, which are only correlated through their initial conditions. In particular, we
introduce the inter-world distribution function Fαβ (ω, k; t, x ), where α ̸= β are the world
indices, which quantifies the amount of correlation between the two worlds.

In Sect. 3, we introduce a paradigmatic model describing interacting electrons close to a
superconducting transition. We avoid the technical challenges of approaching the critical point
from within the superconducting phase and work in the normal phase where no long-range
order develops. We derive the corresponding kinetic equation for the inter-world distribution
which is shown to be of the form

∂t Fαβ + vk ·∇x Fαβ = Iαβ[Fαβ , Fβα] ,

with the non-linear collision integral Iαβ given in Eq. (30).
In Sect. 4, we propose and numerically validate an ansatz for Fαβ leading to a simplified set

of non-linear partial differential equations (PDEs) involving two fields φ(t, x ) and φ1(t, x ).
These are the first terms of the partial-wave expansion in momentum space of Fαβ (ω, k; t, x )
evaluated on-shell and at the Fermi surface, i.e. atω= εk and k→ kF. In terms of dimension-
less quantities X for space and τ for time, the PDEs read

¨

∂τφ +∇X ·φ1 = φ(φ
2 − 1) ,

∂τφ1 +∇Xφ = φ1(γφ
2 − 1) ,

where the parameter γ effectively encodes the distance from the superconducting phase tran-
sition: γ = 1 corresponds to criticality and 0 < γ < 1 corresponds to the off-critical regime in
the normal phase.

In Sect. 5, starting from a generic localized initial perturbation, we analytically solve for the
dynamics of φ and φ1, in any dimension d, at criticality as well as away from criticality. The
results are sketched in Fig. 1. The relaxation of the inter-world distribution is found to strictly
occur within a light cone growing from the initial perturbation at a constant butterfly velocity
vB = vF/

p
d where vF is the Fermi velocity. We work out the early-time dynamics with an expo-

nential growth of scrambling which is controlled by the inelastic scattering rate. Importantly,
in the late-time regime, we find that scrambling is governed by shock-wave dynamics, with a

traveling wave that develops a discontinuous radial front of the form Fαβ ∼ f+
�

|x |−vB t
ℓ/
p

d

�

which

extends over a length scale set by the mean free path ℓ related to the scattering of the electrons
by superconducting fluctuations. Inside the light cone, f+ dies off exponentially away from its
boundary (|x | − vB t < 0), and f+ = 1 outside the light cone (|x | − vB t > 0). Notably, we find
that f+ is discontinuous precisely at the boundary (|x | − vB t = 0). We also work out explicitly
the exponential falloff governing the approach to the saturation regime within the bulk of the
light cone.

We conclude in Sect. 6 by discussing the relations of our results to previous works and by
giving future directions.

2 Many-world formalism

2.1 Motivations and general idea

Let us first motivate the use of the so-called many-world formalism and review its basic func-
tioning. Dynamical signature of quantum chaos can be found in OTOCs of the type (we set
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Figure 2: Two-world Keldysh contour C: the theory is replicated into an “up” world
dynamics, marked by the index u, and the “down” world dynamics marked by d. The
location of the operators ψ and ψ† correspond to the OTOC in Eq. (1).

ħh= 1)

Tr
�

ψ(0) eiHtψ(x )e−iHt ψ†(0) eiHt ′ψ†(x ′) e−iHt ′ρ0

�

, (1)

where ρ0 is the initial density matrix at time t = 0 which is normalized as Trρ0 = 1, H is the
Hamiltonian generating the dynamics, and ψ(x ) is a local operator at position x . We have in
mind fermionic annihilation/creation operators, but the discussion can be easily adapted to
the bosonic case. Here, the four operators ψ(0), ψ(x ), ψ†(0), and ψ†(x ′) are computed in a
non-ordered time sequence. Like many of the diagnostics of quantum chaos, the convoluted
time structure of OTOCs makes them computable objects which do not, however, directly
correspond to physical observables. This is in contrast to standard retarded correlators which
correspond to response functions to physical perturbations. Consequently, the computation of
OTOCs requires modifying the standard non-equilibrium Green’s function approach to cope
with the out-of-time ordering.

Here, we quickly review the many-world formalism which generalizes the standard
Schwinger-Keldysh formalism defined on the two-fold Baym-Kadanoff contour to a formalism
on a four-fold contour, suitable to compute four-point OTOCs. This was originally introduced
in Ref. [22] and we refer the reader to Ref. [15] for a detailed presentation which we simply
follow. The OTOC in Eq. (1) involves two forward and two backward time-evolution opera-
tors. Therefore, following the standard Schwinger-Keldysh construction [27], this yields the
four-fold time-ordered contour C depicted in Fig. 2. The forward (backward) branches are
labeled by an index a = + (a = −). The first two branches are said to belong to the “up world”
and are labeled by the index α = u. The two other branches, posterior on the contour, cor-
respond to the so-called “down world”, and are labeled by α = d. Notably, the up and down
worlds are identical replicas of the same theory, involving the same Hamiltonian.

In that language, the OTOC in Eq. (1) can be rewritten as



TCψ
−
d (0, 0)ψ+d (t, x )ψ−†

u (0, 0)ψ+†
u (t

′, x ′)
�

, (2)

where TC is the time-ordering operator on the contour C, the operators ψ and ψ† are now
written in the Heisenberg picture, and 〈. . .〉 := Tr [. . .ρ0].

In our subsequent study of the quantum butterfly effect, we shall assume equilibrium con-
ditions: the system is initially prepared in thermal equilibrium at temperature T , i.e. with
the Gibbs state ρ0 ∼ e−H/T where we set kB = 1, and the subsequent evolution is unitarily
generated by the same Hamiltonian H as the one used in the initial preparation.

It is useful to introduce the following quantities:

iGab
αβ (t, x ; t ′, x ′) :=

¬

TCψ
a
α(t, x )ψb†

β
(t ′, x ′)Ŝ0

¶

, (3)
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with the Keldysh indices a, b = +,−, the world indices α,β = u, d, and where the mixed
operator Ŝ0 := ψ−†

u (0, 0)ψ−d (0,0) results from clubbing of the two operators in Eq. (2) that
are both evaluated at time t = 0 but at disconnected locations on the time contour C. The
OTOC in Eq. (1) is recovered by taking α = d and β = u, while a = ± and b = ± can be
chosen arbitrarily. If one is to interpret iGab

αβ
(t, x ; t ′, x ′) as a two-point function rather than

a four-point function, Ŝ0 has to be understood as a local modification of the initial condition
which, a priori, acts differently on each world: one particle is added to the up world at po-
sition x = 0 while one particle is removed from the down world. Other choices of operator
content are possible for Ŝ0 and we shall see that the late-time inter-world dynamics depend
very little on this choice. Later, we shall consider local perturbations around the identity:
Ŝ0 = 1+δφ0ψ

−†
u (0,0)ψ−d (0,0) with the infinitesimal parameter |δφ0| ≪ 1.

Importantly, an inspection of Eq. (3) for Ŝ0 = 1 shows that the intra-world Green’s functions
(i.e. α = β) correspond to the standard (i.e. single-world) Schwinger-Keldysh two-point
correlators:

Gab
uu = Gab

dd = Gab . (4)

From now on, given that the intra-world quantities are identical in bothα= u, d worlds, we
simply drop the repeated world indices, e.g. Gαα → G, except when this obscures the mean-
ing. Furthermore, when using the indices αβ , we specifically mean α ̸= β unless specified
otherwise.

2.2 Interacting fermions

For concreteness, and to set the stage for the ensuing developments, we work in the context of
interacting fermions on a d-dimensional lattice. Naturally, this can be easily adapted to other
quantum systems. We consider the generic Hamiltonian

H = H0 +Hint , (5)

H0 =
∑

k∈BZ

∑

σ

εk c†
kσckσ , (6)

where H0 is the non-interacting part and the interaction in Hint depends on the specific problem
at hand, see Eq. (22). The fermionic operator c†

kσ creates a electrons with spin σ =↑ or ↓
(σ̄ =↓, ↑) and momentum k in the Brillouin zone (BZ). εk is the dispersion relation. The
generalization to multi-band cases is straightforward. For simplicity, we measure electronic
energies relative to the chemical potential, but a finite chemical potential µ can be included
via the substitution εk 7→ εk − µ. For simplicity, we shall assume that the Fermi surface is
spherical, i.e. εk = 0 when k→ kF. Whenever this does not harm the understanding, we shall
simply drop the spin indices.

2.3 Green’s functions in the Keldysh basis

The 16 Green’s functions Gab
αβ

are not independent of each other and one may considerably
reduce the redundancies of the formalism. On the one hand, the causal structure of the contour
C is such that the inter-world Green’s functions (i.e. α ̸= β) do not depend on the ± basis:

G++αβ = G−−αβ = G+−αβ = G−+αβ , for α ̸= β . (7)

On the other hand, the intra-world Green’s functions (i.e. α= β) are related via [27]

G+−αβ + G−+αβ = G++αβ + G−−αβ , for α= β . (8)

6
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It is therefore customary to perform a rotation from the a = ± basis to the so-called Keldysh
basis and work with retarded, advanced, and Keldysh Green’s functions:

GR
αβ
= G++

αβ
− G+−

αβ
, GA

αβ
= G++

αβ
− G−+

αβ
,

GK
αβ
= G++

αβ
+ G−−

αβ
,

(9)

where GA is simply the Hermitian conjugate of GR.
The intra-world Green’s functions are the standard Schwinger-Keldysh correlators, solu-

tions of the Schwinger-Dyson equations which, in thermal equilibrium and in Fourier space,
read

GR(ω, k) =
�

ω− εk −ΣR(ω, k)
�−1

,

GK(ω, k) = 2i F(ω) Im GR(ω, k) .
(10)

ΣR is the retarded component of the self-energy. It is due to the interaction in Hint
and can be computed diagrammatically within the standard Schwinger-Keldysh formalism.
The last equality is the expression of the fermionic fluctuation-dissipation theorem with
F(ω) := tanh (ω/2T ).

Concerning inter-world Green’s functions, the relation in Eq. (7) together with Eq. (9)
immediately implies

GR
ud = GR

du = 0 . (11)

This expresses the fact that while intra-world physics contributes to inter-world quantities,
the opposite, namely that inter-world physics contributes to intra-world quantities, is strictly
forbidden.

To summarize, given that we restrict ourselves to equilibrium physics, we are to deal with
only three independent Greens’ functions: the standard (intra-world) retarded Green’s func-
tion GR which is uniquely specified by the Hamiltonian H and the temperature T , and the two
inter-world Keldysh Green’s functions GK

ud and GK
du which also depend on the choice of the

operator Ŝ0. For the choice Ŝ0 = 1, the two worlds have the same thermal initial conditions,
and one may check that GK

αβ
are space- and time-translational invariant and

GK
ud(ω, k) = 2i[−1+ F(ω)] Im GR(ω, k) ,

GK
du(ω, k) = 2i[+1+ F(ω)] Im GR(ω, k) .

(12)

However, for a generic choice of Ŝ0, GK
αβ

is not guaranteed to be space- and time-translational
invariant and it can be determined via the Schwinger-Dyson equation reading

GK
αβ
(t, x ; t ′, x ′) =

∫

dx 1

∫

dx 2

∫

dt1

∫

dt2

GR(t − t1, x − x 1)Σ
K
αβ (t1, x 1; t2, x 2, )GA(t2 − t ′, x 2 − x ′) , (13)

where ΣK
αβ

is the Keldysh component of the inter-world self-energy which can be computed
diagrammatically in the many-world formalism.

2.4 Inter-world kinetic equation

It is useful to work in the Wigner representation

GK
αβ (ω, k; t, x ) :=

∫

dx ′
∫

dt ′ ei(ωt ′−k·x ′) GK
αβ

�

t +
t ′

2
, x +

x ′

2
; t −

t ′

2
, x −

x ′

2

�

, (14)
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and parameterize GK
αβ

in terms of the real function Fαβ :

GK
αβ (ω, k; t, x ) = GR(ω, k) ⋆ Fαβ (ω, k; t, x )− Fαβ (ω, k; t, x ) ⋆ GA(ω, k) , (15)

where we introduced the Moyal product ⋆ := exp
h

i
2(
←−
∂ω
−→
∂t −
←−
∇k ·

−→
∇x−

←−
∂t
−→
∂ω+
←−
∇x
−→
∇k)

i

where

the left (right) arrow designates a derivative operator acting on the left (right) of the star sym-
bol. In analogy to the standard (intra-world) electronic distribution function F , Fαβ is dubbed
the inter-world distribution function. One has Fud(ω, k; t, x ) ∈ [−2, 0] and Fdu ∈ [0, 2]. As-
suming that the variations of Fαβ occur on scales much larger than the microscopic scales
involved in GR, we may work in the so-called quasi-classical or gradient approximation which
consists in truncating the derivative expansion to its leading terms.

The interworld distribution Fαβ gives access to the information scrambling as it is related
to the original OTOC in Eq. (2). Let us briefly outline this connection. At late times, we expect
the decoupling




TCψ
−
d (0,0)ψ+d (t, x )ψ−†

u (0,0)ψ+†
u (t

′, x ′)
�

≃ (1− n0) iG
++
du (t, x ; t ′, x ′)∝ GK

du(t, x ; t ′, x ′)∝ Fdu(t, x ; t ′, x ′) , (16)

with n0 := Tr
�

ψ†(0)ψ(0)ρ0

�

and where the interworld quantities are computed from the in-
terworld Schwinger-Dyson equations in the presence of a local perturbation to the correlated-
world solution at x = 0 and time t = 0.

Massaging Eq. (15) by acting on both sides with the inverse of GR and GA, and using the
Dyson equations (10) and (13), one derives the kinetic equation on Fαβ which is analogous to
the standard (intra-world) kinetic equation:

[∂t + vk ·∇x ] Fαβ (ω, k) = Iαβ (ω, k) , (17)

where the LHS corresponds to the non-interacting physics set by H0, with the velocity v k:=∇kεk ,
and the right-hand side (RHS) is the so-called collision integral which stems from Hint and reads

Iαβ (ω, k) = 2 ImΣR(ω, k) Fαβ (ω, k) + iΣK
αβ (ω, k) . (18)

Let us recall that Keldysh components and collision integrals depend on space and time, namely
x and t, through the inter-world distribution functions. However, here and from now on, we
simplify the notation by dropping the explicit dependence on these objects.

As discussed above, the intra-world quantity ΣR cannot depend on Fαβ , however ΣK
αβ

is
expected to be a non-linear functional of Fαβ . The inter-world kinetic equation in Eq. (17) is
therefore a non-linear partial integrodifferential equation. It has a trivial steady-state solution

Funcorr
ud (ω, k) = Funcorr

du (ω, k) = 0 , (19)

which reflects a total loss of coherence between the two replicated worlds, and which is dubbed
the “uncorrelated-world” solution. Additionally, one can easily check that the case of Ŝ0 = 1
in Eq. (12), where both worlds evolve coherently, corresponds to another steady state charac-
terized by

F corr
ud (ω, k) = −1+ tanh (ω/2T ) ,

F corr
du (ω, k) = +1+ tanh (ω/2T ) ,

(20)

and which is dubbed the “correlated-world” solution. As we shall see explicitly later, the
correlated-world solution at Ŝ0 = 1 is expected to be unstable against small perturbations
of Ŝ0 and the only stable steady-state is the uncorrelated-world solution.
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Σ = Π =

D

G

Figure 3: Superconducting self-energy Σ and polarization bubble Π of the model in
Eq. (22) treated in the RPA scheme in the particle-particle channel. The expressions
in the Keldysh formalism are given in Eqs. (25) and (24), respectively.

The aim of this manuscript is to derive and analyze the dynamics of the inter-world distri-
bution function of a near-critical system of interacting electrons when the initial condition is
of the form

Fαβ (ω, k; t = 0, x ) = [1−δφ0(x )]F
corr
αβ (ω, k) , (21)

where 0≤ δφ0(x )≪ 1 is an initial perturbation to the correlated-world solution localized on
a compact support around x = 0. For simplicity, we consider a perturbation that is the same
for both Fud and Fdu.

3 Superconducting fluctuations

3.1 Model

Concretely, we consider the standard Hubbard-like electron-electron interaction restricted to
the particle-particle (Cooper) channel. The interacting piece of the Hamiltonian in Eq. (5)
reads

Hint = U
∑

kk ′k ′′

∑

σ

c†
kσc†

−k+k ′σ̄
ck ′′+k ′σ̄c−k ′′σ , (22)

where U < 0 is an attractive interaction facilitating superconductivity. In dimensions d ≥ 2,
this model exhibits a finite-temperature phase transition towards a superconducting phase
associated with the spontaneous breaking of the U(1) symmetry. Here, we consider the near-
critical regime, above the critical temperature where the U(1) symmetry is not broken but the
superconducting fluctuations are sizable.

The (intra-world) physics of this model is well understood, and we rely on standard and
well-tested methods which we extend to the many-world formalism. In practice, we decou-
ple the Hubbard interaction in the Cooper channel and obtain a theory of fermions coupled
to bosonic fluctuations. The Cooperon Green’s functions within RPA in the particle-particle
channel, are given by [28–31]

DR(ω, k) =
�

U−1 −ΠR(ω, k)
�−1

,

DK(ω, k) = 2i P(ω) Im DR(ω, k) ,
(23)

where ΠR is the retarded Cooper bubble and the last equality is the bosonic fluctuation-
dissipation theorem with P(ω) := coth (ω/2T ). The retarded Cooper bubble and the elec-
tronic self-energies within RPA, i.e. limiting ourselves to the one-loop diagrams depicted in
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Fig. 3 are:

ImΠR(ω, k) =
∑

k ′

∫

dω′

2π
iGK(ω′, k ′) Im GR(ω−ω′, k − k ′) ,

ΠK(ω, k) = 2i P(ω) ImΠR(ω, k) ,
(24)

and

ImΣR(ω, k) = −
1
2

∑

k ′

∫

dω′

2π

§

Im DR(ω′, k ′)iGK(ω′ −ω, k ′ − k)

−iDK(ω′, k ′) Im GR(ω′ −ω, k ′ − k)
ª

,

ΣK(ω, k) = 2i F(ω) ImΣR(ω, k) .

(25)

The real parts of the retarded components can be recovered via the Kramers–Kronig relation.
A self-consistent treatment of Green’s functions, self-energies, and bubbles ensures that the
RPA scheme is a conserving approximation. It is known to be exact in the large N -limit, where
N is the number of electronic orbitals [28–31].

Close to criticality, the Cooperon propagator reads [28–32]

DR(ω, k)≈
−1/ρF

r − iaω/T + ξ2k2 + . . .
, (26)

where ρF is the density of states at the Fermi energy, and the parameter r ∝ (T − Tc)/Tc is
the detuning from the critical point. In addition, the remaining parameters are all positive
with a ∼O(1), ξ2 ∼ v2

F/T
2, where vF is the Fermi velocity. At criticality r → 0, the Cooperon

becomes soft with diverging length scale l ∼ 1/rν and timescale ∼ lz (here ν = 1/2, z = 2),
and the propagator is singular at ω= k = 0.

3.2 Inter-world collision integral

Let us now discuss the expressions of inter-world quantities which are necessary to compute the
inter-world collision integral in Eq. (18). As we already noted, the inter-world retarded com-
ponents of the Green’s functions (fermionic and Cooperon), the bubbles and the self-energies
simply vanish as a consequence of the fact that intra-world physics can be expressed indepen-
dently of inter-world quantities: GR

αβ
= DR

αβ
= ΠR

αβ
= ΣR

αβ
= 0 for α ̸= β . Within the RPA

scheme, the inter-world Keldysh components read

DK
αβ (ω, k) =

�

�DR(ω, k)
�

�

2
ΠK
αβ (ω, k) , (27)

ΠK
αβ (ω, k) =

i
2

∑

k ′

∫

dω′

2π
GK
αβ (ω

′, k ′)GK
αβ (ω−ω

′, k − k ′) , (28)

ΣK
αβ (ω, k) = −

i
2

∑

k ′

∫

dω′

2π
DK
αβ (ω

′, k ′)GK
βα(ω

′ −ω, k ′ − k) . (29)

Altogether, this yields the inter-world kinetic equation (17) with the collision integral

Iαβ (ω, k) = 2
∑

k ′k ′′

∫

dω′

2π
dω′′

2π
|DR(ω′, k ′)|2

× Im GR(ω′′, k ′′) Im GR(ω′ −ω′′, k ′ − k ′′) Im GR(ω′ −ω, k ′ − k)

×
§�

tanh
�

ω′′

2T

�

+ tanh
�

ω′ −ω′′

2T

���

coth
�

ω′

2T

�

+ tanh
�

ω−ω′

2T

��

Fαβ (ω, k)

+ Fαβ (ω
′′, k ′′)Fαβ (ω

′ −ω′′, k ′ − k ′′)Fβα(ω
′ −ω, k ′ − k)

ª

. (30)
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We recall that we omitted the local space and time dependence of Iαβ and Fαβ to shorten the
notations. As a sanity check, one may verify that the collision integral, and more precisely the
term inside the curly brackets, vanishes at both the uncorrelated-world solution in Eq. (19)
and the correlated-world solution in Eq. (20).

It is worthwhile noting that, contrary to standard intra-world collision integrals, there
are no underlying conservation laws associated with the inter-world electronic distribution
Fαβ(such as number, energy, momentum conservation) that guarantee sum rules such as
∫

dω
∑

k I(ω, k) = 0. In turn, this lack of underlying conserved quantities has important
consequences on the relaxation dynamics of the inter-world distribution function. Indeed, the
presence of conservation laws implies a separation of timescales and is typically synonymous
with diffusive dynamics for perturbations that vary slowly enough.

4 Inter-world kinetics in the near-critical regime

In this Section, we propose and numerically validate an ansatz to the inter-world distribution
Fαβ which allows us to derive a much simpler version of the kinetic equation (17) with its col-
lision integral in Eq. (30). This is done in the vicinity of the superconducting transition where
a clear separation of energy scales can be made. The resulting effective description of the
information scrambling dynamics consists of a set of coupled PDEs that we solve analytically
in Sect. 5.

4.1 Partial-wave ansatz

We start by making the quasi-particle approximation: In all practical instances, Fαβ (ω, k) ap-
pears multiplied by the density of states Im GR(ω, k), see e.g. Eq. (30). When quasi-particles
are well defined, with a dispersion relation εk , the density of states is sharply peaked around
ω= εk and one may seamlessly exchange Fαβ (ω, k) with the on-shell quasi-particle distribu-
tion function F̃αβ (k) := Fαβ (ω = εk , k). From now on, we use the tilde notation to denote
the on-shell prescription ω= εk .

Furthermore, given that relaxation is dominated by the electronic states around the Fermi
level, at energy scales (e.g. temperature) that are much smaller than the Fermi energy, one may
focus on the distribution function close to the Fermi surface by subsequently setting k→ kF.

We now propose to simplify drastically the partial integrodifferential kinetic equation in
Eq. (17) with the following ansatz:

F̃ansatz
αβ (t, x ; k) =

�

φ(t, x ) + uk ·φ1(t, x )
�

F̃ corr
αβ (k) , (31)

where the unit vector uk := k/k. The two fields φ and φ1 can be understood as the first
terms of a partial-wave expansion [27] of F̃αβ , accounting for its isotropic and anisotropic
contributions in momentum space:















φ(t, x ) =
1

Sd−1

∫

dΩk F̃αβ (t, x ; k)/F̃ corr
αβ (k)

�

�

�

k→kF

,

φ1(t, x ) =
d

Sd−1

∫

dΩk uk F̃αβ (t, x ; k)/F̃ corr
αβ (k)

�

�

�

k→kF

,
(32)

where Sd−1 :=
∫

dΩk is the surface area of the d − 1-sphere with unit radius and dΩk is the
elementary solid angle in the direction of k. We did not include higher-order terms in the
ansatz, e.g. of the form ui

ku j
kφ

i j
2 .

Let us give the rationale behind the ansatz proposed in Eq. (31). Firstly, let us note that
standard (intra-world) approaches consist in perturbing the distribution function around its

11

https://scipost.org
https://scipost.org/SciPostPhys.15.2.042


SciPost Phys. 15, 042 (2023)

equilibrium value, F = Feq + δF , and linearizing the collision integral accordingly. This ap-
proach relies on the fact that the equilibrium distribution Feq(ω, k) = tanh(ω/2T ) is a stable
steady state of the (intra-world) kinetic equation, guaranteed by the H-theorem. The inter-
world case is much different as the initial condition set by F corr

αβ
is unstable and one cannot

propose a perturbative ansatz. This explains why F̃ corr
αβ

appears multiplicatively in Eq. (31)
and why the collision integral cannot be, a priori, linearized. In that regard, it is similar to the
ansatz used in Ref. [15].

Secondly, close to the Fermi surface which is assumed to be spherical, the solutions F̃ corr
αβ
(k)

and F̃uncorr
αβ

(k) do not depend on the direction of the momentum k, but only on its norm k ≈ kF.

This means that we aim at describing the dynamics of F̃αβ from a momentum-space isotropic
and real-space homogeneous (unstable) solution

F̃ corr(k; t = 0, x )←→
�

φ(t = 0, x ) = 1 ,
φ1(t = 0, x ) = 0 ,

(33)

to another momentum-space isotropic and real-space homogeneous (stable) solution

F̃uncorr(k; t →∞, x )←→
�

φ(t →∞, x ) = 0 ,
φ1(t →∞, x ) = 0 .

(34)

However, as will become clear below, these dynamics can only proceed by allowing anisotropy
in momentum space to develop in the transient regime towards the stable steady state. This
explains why we included the anisotropic term in φ1 which can be seen as the minimal ingre-
dient to allow for spatial relaxation.

Thirdly, let us note that F̃ansatz
αβ

(t, x ; k) depends on k only through F̃ corr
αβ
(k). If this is trivially

true at the correlated- and uncorrelated-world solutions, we shall see later that this is also
compatible with the dynamics which does not generate extra dependence on k.

Finally, let us note that the fields φ and φ1 are common to both F̃ud and F̃du. This stems
from our choice of initial perturbation in Eq. (21).

4.2 Simplified kinetic equation: coupled PDEs

We proceed by injecting the ansatz (31) in the inter-world collision integral in Eq. (30) and
consistently truncating its partial-wave expansion to the two lowest orders. Because this brings
further simplifications, we work in the near-critical regime of the symmetric (normal) phase
where the Cooperon becomes soft. In Eq. (30), this means that the term |DR(ω′, k ′)|2 diverges
as ω′ ≈ 0 and k′ ≈ 0. The details of the computation are given in Appendix A. We obtain

Ĩαβ (k) = 2(1−φ2)
�

φ + (φ1 · uk)
�

F̃ corr
αβ (k) ImΣ̃

R(k) . (35)

Injecting the ansatz in the kinetic equation (17), dividing by F̃ corr
αβ
(k), we get

∂tφ + vk (uk ·∇x )φ + uk · ∂tφ1 + vk (uk ·∇x ) (uk ·φ1)

= 2(1−φ2)
�

φ + (φ1 · uk)
�

Im Σ̃R(k) . (36)

We now project on the momentum-space isotropic and first partial-wave contributions by act-
ing with 1

Sd−1

∫

dΩk and d
Sd−1

∫

dΩk uk on both sides of the above equation. We use
∫

dΩkui
ku j

k = δi j Sd−1/d. At the Fermi surface, i.e. eventually setting k → kF, we obtain
the following set of coupled partial differential equations (PDEs)

¨

∂tφ +
vF
d ∇x ·φ1 = φ(φ

2 − 1)/τF ,

∂tφ1 + vF∇xφ = φ1(γφ
2 − 1)/τF ,

(37)
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where vF is the Fermi velocity and we defined the timescale which sets the fermionic lifetime
as (recalling that the self-energy only depends on the norm of k)

1
τF

:= −2 Im Σ̃R(kF) . (38)

Note that the temperature dependence of the original problem enters through τF and γ.
γ is a dimensionless parameter that generalizes the computation performed at criticality,

for which γ = 1, to near critical regimes for which γ < 1 (see Appendix A.2). After an appro-
priate rescaling of space and time,

τ := t/τF and X := x
p

d/(vFτF) , (39)

together with φ1 7→
p

dφ1, the coupled PDEs now only involve dimensionless quantities

¨

∂τφ +∇X ·φ1 = φ(φ
2 − 1) ,

∂τφ1 +∇Xφ = φ1(γφ
2 − 1) .

(40)

Importantly, the generic d-dimensional case can be reduced to an effective one-dimensional
case. Indeed, assuming spherically-symmetric initial conditions, we may work with the radial
coordinate r: φ(τ, r) and φ1 = φ1(τ, r)u r at all times. The coupled PDEs now read

¨

∂τφ + ∂rφ1 = −
d−1

r φ1 +φ(φ2 − 1) ,

∂τφ1 + ∂rφ = φ1(γφ2 − 1) .
(41)

The set of PDEs in (37) and the following expressions in Eqs. (40), (41) are one of the
main results of this manuscript. Overall, this represents a considerable simplification from
the original partial integrodifferential kinetic equation (17) governing the dynamics of the
inter-world distribution function Fαβ (ω, k; t, x ) with the collision integral in Eq. (30).

To provide a first intuitive understanding of the previous set of PDEs, let us briefly neglect
spatial inhomogeneities of φ and φ1, and work in d = 1. The equation on φ(t) becomes an
autonomous first-order ODE, reading

∂τφ = φ(φ
2 − 1) = −V ′(φ) . (42)

This is a gradient descent in the potential V (φ) = 1
2φ

2 − 1
4φ

4. Reinstating the original units,
the rate of escape from the correlated-world solution at the unstable extremum φ = 1, to
the uncorrelated-world solution at the global minimum φ = 0 is t∗ := −1

2τF logδφ0 where
δφ0 := 1−φ(0)≪ 1. At early times, the growth of the perturbation is exponential,

1−φ(t ≪ t∗)≃ exp [2(t − t∗)/τF] , (43)

while it saturates at late times,

φ(t ≫ t∗)≃
1
p

2
exp [−(t − t∗)/τF]→ 0 . (44)

Again, the decoupling of φ1 in such a spatially homogeneous setting is evidence that the
momentum anisotropy captured by φ1 is a minimal ingredient necessary to allow for spatial
propagation of the relaxation from the correlated-world solution to the uncorrelated-world
solution. This will be the topic of Sect. 5.

In the general case, i.e. in the presence of spatial inhomogeneities, it is instructive to
compare the inter-world situation to the (standard) intra-world kinetic equations. When an
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intra-world distribution function F is associated with a conserved quantity (e.g. number of
particles or energy), the corresponding hydrodynamic equation is typically expected to dis-
play diffusive behavior. Indeed, the timescale associated with the conserved quantity is much
slower than the other modes: those can be effectively replaced by their local-equilibrium value
in a fixed background of F , typically resulting in a diffusive term of the type ∇2

X F . Here, in
the inter-world case, the distribution function Fαβ is not associated with a conserved quan-
tity (until proven otherwise) and there is no clear separation of timescales in the PDEs (37)
governing the dynamics of φ and φ1. Consequently, one cannot a priori apply the standard
hydrodynamic approach, and one must solve for the dynamics φ and φ1 on an equal footing.

4.3 Validating the ansatz numerically

We perform two independent checks of the ansatz proposed in Eq. (31) by comparing, on the
one hand, the solutions of the inter-world kinetic equation in (17) computed with the full-
fledged collision integral in Eq. (30) with, on the other hand, the solutions of the coupled
PDEs in (37). The first check is performed at early times in a near-critical regime while the
second check is performed at later times and at a finite distance from criticality.

Numerically solving the kinetic equation is a formidable task which we simplify as much
as possible by working in one dimension, d = 1, with a regular lattice dispersion εk = − cos(k)
for k ∈ [−π,π), and a point-like Fermi surface located at the wave-vector kF = π/2. We
measure energies in units of the half-bandwidth. Note that superconductivity in d = 1 is
known to be quite different from dimensions d ≥ 2, with the RPA treatment that we have set
up in Section 3 not suited for d = 1. However, the objective here is to put to test the ansatz
in conditions that are qualitatively similar to d ≥ 2, and not to correctly capture the peculiar
one-dimensional physics. This is the reason why we can afford to work in d = 1. We further
simplify the computation by working in a non-self-consistent scheme, with the quasi-particle
retarded Green’s function reading

GR(ω, k) =
1

ω− εk + iΓ
, (45)

and where the Cooperon Green’s function DR(ω, k) is computed following Eq. (23). Γ > 0
sets a bare fermionic inverse lifetime. In practice, Γ helps the numerical convergence of our
algorithms and we set it as the smallest energy scale in the problem. Finally, we further reduce
the difficulty by working with on-shell quantities: F̃αβ (k) := Fαβ (ω= εk, k).

4.3.1 Early times

The first test consists in numerically solving the kinetic equation (17) with the full-fledged
collision integral in Eq. (30) for as long as we can ensure numerical convergence of the solu-
tions. In practice, this is challenging and we can only access early times, i.e. on the order of
fractions of τF. Therefore, in order to benchmark the ansatz in both regimes φ ∼ 1 and φ ∼ 0,
we work with an initial condition that simultaneously spans those two regimes. We choose
an initial condition with a perturbation of F̃ corr

αβ
(k) in the shape of a Gaussian droplet of large

amplitude δφ0 ≲ 1 and width R0, and localized around X = 0. Explicitly, rescaling time and
space according to Eq. (39), we take the following symmetric initial condition

F̃αβ (τ= 0, X ; k) = [1−δφ0(X )] F̃ corr
αβ (k)←→

�

φ(τ= 0, X ) = 1−δφ0(X ) ,
φ1(τ= 0, X ) = 0 ,

(46a)

with δφ0(X ) = δφ0 exp
�

−X 2/
�

2R2
0

��

Θ(3R0 − |X |) , (46b)

and where Θ(X ) is the Heaviside step function. We found such a Gaussian-shaped droplet, de-
fined on the support [−3R0, 3R0], to be easier to time-evolve numerically than a semi-circular
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Figure 4: (a) φ(τ, X ) extracted from the solution F̃du(τ, X ; kF) to the full-fledged 1D
kinetic equation and plotted at different times τ = 0,0.02, 0.04, . . . , 0.3. The initial
condition is given in Eq. (46) with R0 = 0.05 and δφ0 = 0.98. (b) Solutionφ(τ, X ) to
the coupled PDEs in (37) at γ= 1 and with the corresponding initial condition. The
parameters are U = −1, T = 0.1, and Γ = 0.01 (in units of the half-bandwidth), cor-
responding to a small detuning from criticality r = −1/(ρFDR(ω = 0, k = 0)) ≈ 0.1
defined in Eq. (26). Time and space have been rescaled according to Eq. (39). No
adjustable parameters were used.

droplet with sharp edges. The physical parameters are chosen such as to be close to criticality
(on the disordered side) and to obey the hierarchy |U |,εF ≫ T ≫ Γ , where εF is the Fermi
energy.

In Fig. 4, we compare the solutionsφ(τ, X ) of the corresponding coupled PDEs with the so-
lutions F̃du(τ, X ; k) of the full-fledged kinetic equation. The comparison is made by extracting
the first partial-wave contributions according to Eq. (32) which, in 1D, simply reads

¨

φ(τ, X ) = 1
2

�

F̃du(τ, X ; kF) + F̃du(τ, X ;−kF)
�

,

φ1(τ, X ) = 1
2

�

F̃du(τ, X ; kF)− F̃du(τ, X ;−kF)
�

,
(47)

up to the time τ = 0.3. The qualitative agreement is excellent. Notice the splitting of the
initial central perturbation into both a left-moving and a right-moving front. We repeated
this analysis in a wide range of near-critical parameters and initial conditions and consistently
found excellent agreement, even at a finite distance from criticality, in the presence of fast
bosonic fluctuations. This validates the ansatz in Eq. (31) at early times.

4.3.2 Late times and partial-wave truncation

Because of the difficulty to produce converged numerical solutions of the kinetic equation at
larger times, we resort to a simpler, yet non-trivial, benchmark for the ansatz. Let us consider
the case of a spatially homogeneous initial condition but with non-zero anisotropic components
in momentum space. Explicitly, we take the initial condition

F̃ab(τ= 0; k) =
�

φ0 +φ10sign(k)
�

F̃ corr
ab (k) , (48)

on the kinetic equation side and, correspondingly,

φ(τ= 0) = φ0 and φ1(τ= 0) = φ10 , (49)
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Figure 5: (a) φ(τ) extracted from the solution F̃du(τ; kF) to the kinetic equation
with the spatially homogeneous and momentum anisotropic initial condition given
by Eq. (48) with φ0 = 0.85 and φ10 = 0.1, and compared with the solution φ(τ)
to the coupled PDEs in Eq. (50). (b) Same for the anisotropic component φ1(τ)
where γ = 0.5 is the only adjustable parameter. The physical parameters are
U = −2, T = 0.6, and Γ = 0.2, corresponding to a sizable detuning from criticality
r = −1/(ρFDR(ω= 0, k = 0))≈ 3.9. Time has been rescaled according to Eq. (39).

on the side of the coupled PDEs which now read
�

∂τφ = φ(φ2 − 1) ,
∂τφ1 = φ1(γφ2 − 1) . (50)

Note that these coupled ordinary-differential equations correspond to the discussion around
Eq. (42). Notably, Eq. (50) predicts that the relaxation dynamics of φ (but not those of φ1)
are independent of the distance to criticality, parameterized by γ. Therefore, complementary
to the previous benchmark in Sect. 4.3.1, we test the ansatz at a finite distance from criticality
(on the disordered side) by choosing an off-critical set of physical parameters U , T , and Γ .

In Fig. 5, we compare the solutions φ(τ) and φ1(τ) to the corresponding coupled PDEs
with the solutions F̃du(τ, k) to the kinetic equation. The comparison is made by extracting the
first partial-wave contributions according to Eq. (47). The qualitative agreement is very good
from early times down to late times when the dynamics have converged to the uncorrelated
world solution. The agreement for the dynamics ofφ1(τ)was made by manually adjusting the
off-critical value for γ given in the caption. This validates the partial-wave truncation which
is made in the ansatz.

5 Dynamics of information scrambling

In this Section, we solve the set of coupled PDEs (40) that effectively govern the dynamics of
information scrambling. We first discuss the early times, when a regime of exponential growth
takes place. Later, we solve the geometry for the late-time traveling front. Finally, we address
the saturation regime in the bulk of the information light cone.

5.1 Early-time exponential growth

At early times, the solutions to the inter-world kinetic equation and to the simplified coupled
PDEs are expected to be strongly dependent on the system parameters and the initial condi-
tions.
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Here, we solve the coupled PDEs in the linear regime around the correlated-world solu-
tion, φ ≈ 1 and φ1 ≈ 0. We expect this linear regime to be all the more valid as the initial
perturbation will be small, hence taking a longer time to reach the non-linear regime. To that
end, we consider the droplet-shaped initial condition

�

φ(τ= 0, X) = 1−δφ0(X) ,
φ1(τ= 0, X) = 0 ,

(51)

where the perturbation 0< δφ0(X)≪ 1 is non-vanishing on a small compact ball of radius R0
around X = 0. Note that this is a different regime from the numerics presented in Sect. 4.3.1
where the initial condition was probing the non-linear regime. To simplify, we consider the
case d = 1. The linearized coupled PDEs on δφ := 1−φ and φ1 read

�

∂τδφ − ∂Xφ1 = 2δφ ,
∂τφ1 − ∂Xδφ = (γ− 1)φ1 .

(52)

This yields the following linearized PDE on δφ(τ, X )

∂ 2
τδφ − (γ+ 1)∂τδφ − ∂ 2

X δφ = 2(1− γ)δφ , (53)

with δφ(τ= 0, X ) = δφ0(X ) and ∂τδφ(τ= 0, X ) = 2δφ0(X ). Integrating the above equation
over the whole space, or equivalently the first equation in (52), and introducing the integrated
perturbation δM(τ) :=

∫

dXδφ(τ, X ), we find an exponential growth of the perturbation,
echoing the onset of chaos:

δM(τ≪ τ∗) = exp [2(τ−τ∗)] , (54)

with the typical timescale to escape from the unstable solution given by τ∗ := −1
2 logδM0

where δM0 :=
∫

dXδφ0(X ). The corresponding growth rate, λL = 2/τF in the original units,
can be interpreted as a Lyapunov exponent. Note that the dependence on γ, the parameter
quantifying the distance to criticality, has dropped. A more sophisticated calculation restricted
to 1≪ τ≪ τ∗ and |X | ≪ τ3/4 yields the following solution to Eq. (53)

δφ(τ, X )≈ e2(τ−τ∗) e−(3−γ)X
2/4τ

p

4πτ/(3− γ)
. (55)

See Appendix B for the details of the computation. The above expression involves an expo-
nential growth and a diffusion kernel. It is similar to the solution obtained in the context of
the O(N) model in Ref. [8] (see Eq. 1.13 therein). Let us provide a quick way to justify this
solution. We first absorb the exponential growth of δφ that was found in the solution (54) by
working in terms of g(τ, X ) := e−2τδφ(τ, X ). Using Eq. (53), it obeys

∂ 2
τ g + (3− γ)∂τg − ∂ 2

X g = 0 , (56)

with g(τ= 0, X ) = δφ0(X ) and ∂τg(τ= 0, X ) = 0. Next, given that the solution of the above
PDE is expected to vary slowly with time, especially at large times, we may neglect the ∂ 2

τ g
term. This yields a simple diffusion equation which, once we switch back to working with
δφ, is solved by the expression in (55). Note that the solution in (55) can also be seen as the
solution to the diffusion+growth equation:

∂τδφ −
1

3− γ
∂ 2

X δφ = 2δφ , (57)

that appears, notably, in the context of branching Brownian motion where it describes the
evolution of the expected density of particles [33].
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5.2 Late-time solutions and discontinuous front

Here, we access the late-time inter-world distribution by analytically solving the coupled PDEs
(40) in generic spatial dimensions d, simply assuming a spherically-symmetric initial condi-
tion. In particular, we shall show that a wavefront propagates at a constant butterfly velocity
controlled by the Fermi velocity. The wavefront acts as a light cone that separates two causally
disjoint regions: ahead of the front, the inter-world distribution is the correlated-world solu-
tion, while behind the front the two worlds rapidly decohere to the uncorrelated-world solu-
tion. Notably, at the front, the distribution function develops a discontinuity.

5.2.1 Traveling front

The solution develops a traveling front located on a sphere of increasing radius. Our goal is
to compute its velocity and shape.

The first step is to notice that the late-time position of the front is, by definition, far from
the origin and we may neglect the 1/r term in the RHS of Eq. (41). By doing so, we simply
recover the d = 1 equations. Indeed, given the large radius of the sphere where the front is
located, the problem is locally flat in the non-radial directions. Therefore, we only need to
work out the d = 1 case. To simplify the presentation of the computation, we work out the
critical case where γ = 1. However, the generic case for γ ̸= 1 can also be solved by similar
techniques and we refer the reader to Appendix C for the corresponding detailed computation.
Introducing the fields

ϕ :=
φ +φ1

2
and ψ := φ −φ1 , (58)

the coupled PDEs can be cast as
�

∂τϕ + ∂Xϕ = ϕ (φ2 − 1) ,
∂τψ− ∂Xψ=ψ (φ2 − 1) , (59)

with the initial conditions,
�

ϕ(τ= 0, X ) = φ0(X )/2 ,
ψ(τ= 0, X ) = φ0(X ) .

(60)

The method of characteristics gives the implicit solutions
¨

ϕ(τ, X ) = 1
2φ0(X −τ)e−

∫ τ

0 ds[1−φ2(s,X−τ+s)] ,

ψ(τ, X ) = φ0(X +τ)e
−
∫ τ

0 ds[1−φ2(s,X+τ−s)] ,
(61)

which yield

φ(τ, X ) =
1
2
φ0(X −τ)e−

∫ τ

0 ds[1−φ2(s,X−τ+s)] +
1
2
φ0(X +τ)e

−
∫ τ

0 ds[1−φ2(s,X+τ−s)] . (62)

Let us now assume that a right-moving front, traveling at velocity 1 (in units of vF/
p

d), de-
velops at late times, i.e.

φ+(τ, X ) := φ(τ, X +τ)
τ→∞
→ f+(X ) , (63)

pointwise. Naturally, there is also a symmetrical left-moving front. We start from

φ+(τ, X ) =
1
2
φ0(X )e

−
∫ τ

0 ds[1−φ2
+(s,X )] +

1
2
φ0(X + 2τ)e−

∫ τ

0 ds[1−φ2
+(s,X+2τ−2s)] (64)

=
1
2
φ0(X )e

−
∫ τ

0 ds[1−φ2
+(s,X )] +

1
2
φ0(X + 2τ)e−

∫ τ

0 ds[1−φ2
+(τ−s,X+2s)] , (65)
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where in the second line we performed a change of dummy variable s→ τ−s. In the long-time
limit τ→∞, we get

f+(X ) =
1
2
φ0(X )e

−
∫∞

0 ds[1−φ2
+(s,X )] +

1
2

e−
∫∞

0 ds[1− f 2
+ (X+2s)] , (66)

where we used the property φ0(X + 2τ)→ 1. Consistently with the Eq. (62), we postulate1

that the front is such that

f+(X < R0)< 1 and f+(X > R0) = 1 . (67)

Let us now work with X < R0. Hence, lim
s→∞

1−φ2
+(s, X < R0) = 1− f 2

+ (X ) > 0, which implies

that the first term in Eq. (66) is zero. After the change of variables X + 2s → u, we are left
with

f+(X < R0) =
1
2

e−
1
2

∫ R0
X du[1− f 2

+ (u)] . (68)

At X
X<R0−→ R0, this yields f+(R0) = 1/2. Given that we assume f+(X > R0) = 1, this signals a

discontinuity in f+(X ) at X = R0. Moreover, Eq. (68) implies that f+(X ) obeys

f ′+(X ) =
1
2

�

1− f 2
+ (X )

�

f+(X ) , (69)

which can be solved by separation of variables, yielding the discontinuous right-moving front
with the shape

f+(X < R0) =
1

p
1+ 3eR0−X

X→R−07→
1
2

and f+(X > R0) = 1 . (70)

Note that, here, the information on the precise shape of the initial perturbation is lost. Except
for a trivial spatial offset in the shape of the front, R0 drops out of the problem. This is expected
for generic initial conditions defined on a compact support |X |< R0. Indeed, one can show that
the first non-vanishing derivative ∂ (n)X φ0(X = R−0 ) > 0 is responsible for the generation of a
first-order derivative f+(X = R−0 )> 0 which grows exponentially with time, therefore creating
a discontinuity at large times. This independence of the steady-state solution with respect to
the initial condition is the hallmark of a universal solution. Notably, as previously discussed
in Sec. 5.1, R0 and the precise shape of the initial perturbation are however controlling the
timescale for the traveling front to form. Barring this point, the universal features of the steady
state may be safely accessed by sending R0 → 0+ after τ→∞. We obtain the right-moving
traveling front

¨

lim
τ→∞

φ(τ, X +τ) = f+(X ) ,

lim
τ→∞

φ1(τ, X +τ) = f1+(X ) ,
(71)

with






f+(X < 0) = 1p
1+3e−X

X→0−
7→ 1

2 and f+(X > 0) = 1 ,

f1+(X < 0) = − 1p
1+3e−X

X→0−
7→ −1

2 and f1+(X > 0) = 0 .
(72)

The last equation above follows from φ1 = ϕ − ψ/2. As we discussed above, the velocity
and the precise shape of the late-time traveling front, f+(X ), and notably its discontinuity,

1This assumption can be rigorously proven to be true in d = 1.
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Figure 6: (a) Solution φ(τ, X ) to the d = 1 coupled PDEs in Eq. (40) at γ = 1 for
the droplet initial perturbation in Eq. (75) with amplitude δφ0 = 0.02 and radius
R0 = 0.1. Different times τ = 0,2, . . . , 26, 28 are plotted with different colors. (b)
Location of the front extracted from the data in (a) marked by crosses. The line is
the analytical prediction, with a constant butterfly velocity, X front(τ) = τ + R0. No
adjustable parameter was used.

generalize to the radial front f+(r) in generic dimension d (assuming spherically-symmetric
initial conditions). In terms of the original inter-world distribution function, reinstating the
original units of time and space, the traveling front reads

lim
t→∞

F̃du(k; t, r + vB t)
�

�

k→kF
=

¨

f+
�

r
p

d
ℓ

�

[1− uk · u r ] if r < 0 ,

1 if r > 0 ,
(73)

with the butterfly velocity given by vB := vF/
p

d and the radial front shape f+ given by Eq. (72)
that spans over a length scale controlled by the mean free path ℓ := vFτF. We recall that vF is
the Fermi velocity and the scattering time τF was defined in Eq. (38).

This solution can also be generalized to cases away from criticality, i.e. for a generic γ ̸= 1.
The qualitative features are found to be very similar to the critical case γ = 1. In the Ap-
pendix C, we show that the discontinuity of the front is now from f+(X = 0−) = L(γ) to
f+(X > 0) = 1 with

L(γ) =

p

5+ 4γ− 1

2(1+ γ)
. (74)

This quantity monotonically interpolates from L = 1/2 for γ = 1 to L = 1/(golden ratio) for
γ= 0.

The discontinuous traveling wavefronts in Eqs. (72), (73), and their generalization to non-
critical regimes in Eq. (74) are one of the main results of this manuscript. To illustrate the
analytical solution, we compare its predictions to the numerical solution of the coupled PDEs
at γ = 1 (critical regime). In Fig. 6, we display the numerical solution starting from the
following droplet-shaped initial perturbation of the correlated-world solution

�

φ(τ= 0, X ) = 1−δφ0(X ) with δφ0(X ) = δφ0

p

1− (X/R0)2Θ (R0 − |X |) ,
φ1(τ= 0, X ) = 0 ,

(75)

where δφ0 sets the amplitude of the droplet, and R0 sets its radius. This illustrates unam-
biguously the spatial growth of the loss of quantum coherence as time goes on. The light cone
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Figure 7: Discontinuous late-time front: the solution φ(τ, X − X front(τ)) is extracted
from the data of Fig. 6 (a) for τ = 28 (solid line), and compared to the analytical
prediction f+(X ) t in Eq. (72) for the traveling front, with a discontinuity at X = 0
from 0.5 to 1 (dashed line). No adjustable parameter was used.

structure of this growth, with a front traveling at a constant velocity, is demonstrated by simply
extracting the location of the front as a function of time. In Fig. 7, we illustrate the discon-
tinuous shape of the traveling front by superimposing the front extracted from the numerical
solution of φ(τ, X ) at the late-time τ= 28 to the exact result given by f+(X ) in Eq. (72).

5.2.2 Saturation inside the light cone

Inside the light cone and far enough from its boundaries, we have φ≪ 1 and we can neglect
the non-linearities in the RHS of the coupled PDEs (59). Working in the d = 1 case, the
linearized PDEs read

�

∂τφ + ∂Xφ1 = −φ ,
∂τφ1 + ∂Xφ = −φ1 .

(76)

Assuming symmetric initial conditions, i.e.,

φ(τ= 0, X ) = φ(τ= 0,−X ) and φ1(τ= 0, X ) = −φ1(τ= 0,−X ) ,

one can simply show that this symmetry is preserved by the entire time evolution (even in the
presence of the non-linear terms that were at play in the earlier regime). The solutions are of
the form

�

φ(τ, X ) = e−X fϕ(X −τ) + eX fϕ(−X −τ) ,
φ1(τ, X ) = e−X fϕ(X −τ)− eX fϕ(−X −τ) , (77)

where the function fϕ(X ) should in principle be determined by solving the early-to-
intermediate time problem. In practice, we can determine the asymptotic behavior of the
function fϕ(X ) at large X by requiring a matching to the left side of the late-time front com-
puted previously:
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lim
τ→∞

φ(τ, X +τ)∼ f+(X ) , for X < 0 , |X | ≫ 1 , (78)

where f+(X ) was computed in Eq. (72). Using the late-time solution in Eq. (77), we have

lim
τ→∞

e−X−τ fϕ(X ) + eX+τ fϕ(−X − 2τ)∼ f+(X ) . (79)

The first term vanishes and we are left with

lim
τ→∞

eX+τ fϕ(−X − 2τ)∼ f+(X ) , (80)

which is solved as

fϕ(X )∼ eX/2 . (81)

This yields, at large times and far inside the boundary of the light cone, i.e. for τ− |X | ≫ 1,
�

φ(τ, X ) ≃ 2e−τ/2 cosh (X/2) ,
φ1(τ, X ) ≃ −2e−τ/2 sinh (X/2) .

(82)

These solutions can also be obtained directly from injecting the expression (72) for the travel-
ing front in Eq. (61), using the spatial symmetry lim

τ→∞
φ(τ,τ+X ) = lim

τ→∞
φ(τ,−τ−X ) = f+(X ).

Note that these asymptotic solutions have already lost the information about the initial con-
dition. Moreover, they imply the relation φ1(τ, X ) = −2∂Xφ(τ, X ) for τ − |X | ≫ 1. Once
re-injected in the linearized PDEs, this yields the following linearly-driven diffusion equation
for φ(τ, X ) only

∂τφ − 2∂ 2
Xφ = −φ , (83)

where the diffusive constant in front of the ∂ 2
Xφ term is D := 2v2

FτF once the original units
of time and space are reinstated. We note that the diffusive LHS of Eq. (83) is similar to the
one of the FKPP-like equation that was derived in a similar context in Ref. [15], see Eq. (76)
therein.

6 Discussion and conclusion

Starting from the microscopic Hamiltonian of a d-dimensional quantum many-body system
of interacting electrons close to a superconducting phase transition, we carefully derived the
corresponding dynamics of quantum information scrambling.

Quite expectedly, we found a ballistic spread of information governed by a non-universal
butterfly velocity vB. We presented analytical solutions in the different regimes relevant to
quantum chaotic dynamics: the early exponential growth, the geometry of the late-time front,
and the saturation within the light cone.

Perhaps the most striking result of our work is the fact that the scrambling of quantum
information at late times is governed by shock-wave dynamics. Scrambling propagates at the
maximum velocity allowed by causality and develops a distinct discontinuity exactly at the
boundary of the light cone. Notably, these dynamics scrupulously respect causality: scram-
bling does not leak outside of the light cone. This is different from the findings of previous
works in similar settings, which often exhibited sharp but continuous fronts preceded by expo-
nential tails. At a formal level, this difference arises from the fact that our effective dynamics
are governed by a set of coupled PDEs that does not belong to the reaction-diffusion class.
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While our full solution does share strong similarities with the diffusive FKPP solutions in the
linearized regimes (at early times or deep in the bulk of the light cone), we attribute this ex-
plicit absence of a diffusive term to the fact that information dynamics is not directly associated
with a conserved quantity, unlike usual transport which is associated with, say, charge, energy,
or momentum conservation.

Addressing the robustness of the finite spacetime discontinuity in the traveling front is
perhaps one of the most pressing questions raised by our results. Let us first note that the
discontinuity has to be understood on the scale of the mean free path set by the inelastic
scattering, ℓ := vFτF, and not on the microscopic scale 1/kF where the kinetic equation breaks
down. The discontinuity is unlikely an artifact of the one-loop RPA scheme (exact in the limit
where the number of electronic orbitals is sent to infinity), nor of our truncated partial-wave
expansion in momentum space (key to the ensuing strict causal structure, and likely to be
a very good approximation in some geometries). However, higher-order terms in the Moyal
product expansion that were neglected in the quasi-classical approximation, or any source of
noise or disorder [34], e.g. caused by elastic scattering on random impurities, could smoothen
the front at the light-cone boundary and possibly decrease the butterfly velocity. Numerical
confirmation of the shock-wave dynamics starting from a microscopic Hamiltonian is expected
to be difficult as the scrambling front propagates fast and the discontinuity only develops at
late times. This means that one should simulate large systems of linear size L ∼ 10ℓ until long
times tmax ∼ 10τF. Tensor network approaches in 1d may be suited to meet the challenge [4].
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A Inter-world collision integral

In this Appendix, we carefully derive the contributions of the interworld collision integral to
the coupled PDEs (37). We recall the collision integral, onshell:

Ĩαβ (k) = 2 Im Σ̃R(k) F̃αβ (k) + iΣ̃K
αβ (k) , (A.1)

where

2 Im Σ̃R(k) = 2
∑

k ′k ′′

∫

dω′

2π
dω′′

2π
|DR(ω′, k ′)|2

× Im GR(ω′′, k ′′) Im GR(ω′ −ω′′, k ′ − k ′′) Im GR(ω′ − εk , k ′ − k)

×
�

tanh
�

ω′′

2T

�

+ tanh
�

ω′ −ω′′

2T

���

coth
�

ω′

2T

�

+ tanh
�

εk −ω′

2T

��

, (A.2)
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and

iΣ̃K
αβ (k) = 2

∑

k ′k ′′

∫

dω′

2π
dω′′

2π
|DR(ω′, k ′)|2 Im GR(ω′′, k ′′) Im GR

�

ω′ −ω′′, k ′ − k ′′
�

× Im GR
�

ω′ − εk , k ′ − k
�

F̃αβ (k
′′)F̃αβ (k

′ − k ′′)F̃βα(k
′ − k) . (A.3)

Now let us inject the following ansatz in Eq. (A.1),

F̃ansatz
αβ (k) =

�

φ + uk ·φ1

�

F̃ corr
αβ (k) . (A.4)

The term in ImΣ̃R(k) is straight-forward:

2 ImΣ̃R(k)
�

φ + uk ·φ1

�

F̃ corr
αβ (k) . (A.5)

Let us treat the term iΣ̃K
αβ
(k) in Eq. (A.3). It produces terms in φ3, φ2φ1, φφ2

1 , and φ3
1 . In

practice, consistently with our choice of ansatz which consists of tracking only the two first
multipolar contributions to F̃(k), we discard the terms of order φ2

1 and φ3
1 which yield higher-

order multipolar contributions to the collision integral. The term in φ3 reads

2φ3
∑

k ′k ′′

∫

dω′

2π
dω′′

2π
|DR(ω′, k ′)|2 Im GR(ω′′, k ′′) Im GR(ω′ −ω′′, k ′ − k ′′)

× Im GR(ω′ − εk , k ′ − k)F̃ corr
αβ (k

′′)F̃ corr
αβ (k

′ − k ′′)F̃ corr
βα (k

′ − k)

= 2φ3 ImΣ̃R(k) , (A.6)

where we used the trigonometric relation

F corr
αβ (ω

′′)F corr
αβ (ω

′ −ω′′)F corr
βα (ω

′ −ω)

+
�

tanh
�

ω′′

2T

�

+ tanh
�

ω′ −ω′′

2T

���

coth
�

ω′

2T

�

+ tanh
�

ω−ω′

2T

��

︸ ︷︷ ︸

≥0

F corr
αβ (ω) = 0 . (A.7)

Let us now evaluate the term of order φ2φ1. We have

iΣ̃K
αβ (k) = −2φ3 ImΣ̃R(k)F corr

αβ (k)

+ 2φ2
∑

k ′k ′′

∫

dω′

2π
dω′′

2π
|DR(ω′, k ′)|2 Im GR(ω′′, k ′′) Im GR(ω′ −ω′′, k ′ − k ′′) (A.8)

× Im GR(ω′ − εk , k ′ − k)
§

φ1 ·
�

uk ′′ + uk ′−k ′′ + uk ′−k

�

ª

F corr
αβ (ω

′′)F corr
αβ (ω

′ −ω′′)F corr
βα (ω

′ −ω) .

The expression can be simplified by use of Eq. (A.7), yielding

iΣ̃K
αβ (k) = −2φ3 ImΣ̃R(k)F̃ corr

αβ (k)

− 2φ2 F̃ corr
αβ (k)

∑

k ′k ′′

∫

dω′

2π
dω′′

2π
|DR(ω′, k ′)|2 Im GR(ω′′, k ′′) Im GR(ω′ −ω′′, k ′ − k ′′)

× Im GR(ω′ − εk , k ′ − k)
�

tanh
�

ω′′

2T

�

+ tanh
�

ω′ −ω′′

2T

���

coth
�

ω′

2T

�

+ tanh
�

εk −ω′

2T

��

×
§

φ1 · (uk ′′ + uk ′−k ′′ + uk ′−k)
ª

. (A.9)
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A.1 Critical case

Close to criticality, the Cooperon propagator reads

DR(ω, k)≈
−1/ρF

r − iaω/T + ξ2k2 + . . .
, (A.10)

with the positive parameters r ∝ (T − Tc)/Tc, a ∼ O(1), ξ2 ∼ v2
F/T

2. At criticality r → 0,
the Cooperon becomes soft with a diverging length scale l ∼ 1/rν (here ν = 1/2), and the
propagator is singular at ω= k = 0. In this case, we can approximate the term
uk ′′ + uk ′−k ′′ + uk ′−k ≈ −uk . Thus we have

iΣ̃K
αβ (k) = −2φ3 ImΣ̃R(k)F corr

αβ (k) (A.11)

+ 2φ2(φ1 · uk)F̃
corr
αβ (k)

∑

k ′k ′′

∫

dω′

2π
dω′′

2π
|DR(ω′, k ′)|2 Im GR

�

ω′′, k ′′
�

Im GR
�

ω′ −ω′′, k ′ − k ′′
�

× Im GR(ω′ − εk , k ′ − k)
�

tanh
�

ω′′

2T

�

+ tanh
�

ω′ −ω′′

2T

���

coth
�

ω′

2T

�

+ tanh
�

εk −ω′

2T

��

.

Performing the sums on ω′′ and k ′′, we get

iΣ̃K
αβ (k) = −2φ3 ImΣ̃R(k)F corr

αβ (k)

+ 4φ2(φ1 · uk)
∑

k ′

∫

dω′

2π
|DR(ω′, k ′)|2ImΠR(ω′, k ′)

�

coth
�

ω′

2T

�

+ tanh
�

εk −ω′

2T

��

× Im GR(ω′ − εk , k ′ − k)F̃ corr
αβ (k) . (A.12)

The above can now be written as

iΣ̃K
αβ (k) = −2φ2

�

φ + (φ1 · uk)
�

F̃ corr
αβ (k)ImΣ̃

R(k) . (A.13)

Altogether, we obtain

Ĩαβ (k) = 2(1−φ2)
�

φ + (φ1 · uk)
�

F̃ corr
αβ (k)

︸ ︷︷ ︸

F̃ansatz
αβ

(k)

ImΣ̃R(k) . (A.14)

A.2 Away from criticality

In the Subsection A.1 above, we have treated the critical case which yields the following cou-
pled PDEs

¨

∂tφ +
vF
d ∇x ·φ1 = φ(φ

2 − 1)/τF ,

∂tφ1 + vF∇xφ = φ1(φ
2 − 1)/τF ,

(A.15)

where vF is the Fermi velocity and we defined the timescale τF as 1/τF := −2 Im Σ̃R(kF).
Away from criticality, assuming 1/τF > 0, we separate the expression of iΣ̃K

αβ
(k) in

Eq. (A.9) into the critical expression computed in Eq. (A.13) and the rest by simply writing

uk ′′ + uk ′−k ′′ + uk = −uk +
�

uk ′′ + uk ′−k ′′ + uk + uk ′−k

�

. (A.16)
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Explicitly, we have

iΣ̃K
αβ (k) = −2φ2

�

φ + (φ1 · uk)
�

F̃ corr
αβ (k)ImΣ̃

R(k)

− 2φ2 F̃ corr
αβ (k)

∑

k ′k ′′

∫

dω′

2π
dω′′

2π
|DR(ω′, k ′)|2 Im GR

�

ω′′, k ′′
�

Im GR
�

ω′ −ω′′, k ′ − k ′′
�

× Im GR(ω′ − εk , k ′ − k)
�

tanh
�

ω′′

2T

�

+ tanh
�

ω′ −ω′′

2T

���

coth
�

ω′

2T

�

+ tanh
�

εk −ω′

2T

��

︸ ︷︷ ︸

≥0

×
§

φ1 ·
�

uk ′′ + uk ′−k ′′ + uk + uk ′−k

�

ª

, (A.17)

where the first term is the critical expression while the second term collects the rest. Assuming
that εk = ε−k , one may check that this second term is odd under k →−k and therefore cannot
contribute to the projection on the momentum-space isotropic contribution

∫

dΩk last term of Eq. (A.17)= 0 . (A.18)

This guarantees that the RHS of the first equation in the coupled PDE in (A.15) is also valid
away from criticality. However, in the absence of a similar symmetry argument, we expect the
projection to the first partial wave to be non-vanishing, i.e.

∫

dΩk uk last term of Eq. (A.17) ̸= 0 , (A.19)

and therefore to give an extra contribution to the term in φ2φ1 in the RHS of the second
equation in (A.15). Now working at the Fermi surface, we can parameterize, without loss of
generality, the amplitude of this contribution relative to the critical case by use of the dimen-
sionless quantity γ > 0:

d
Sd−1

∫

dΩk uk iΣ̃K
αβ (kFuk) = γφ1φ

2 F̃ corr
αβ (kF)/τF . (A.20)

This justifies the RHS in the second line of the coupled PDEs in (37). γ= 1 corresponds to the
critical case and we expect the near-critical regime to be described by γ < 1.

B Early-time exponential growth

In this Appendix, we solve the early-time regime of the coupled PDEs (40) in d = 1,
¨

∂τφ + ∂Xφ1 = φ(φ2 − 1) ,
∂τφ1 + ∂Xφ = φ1(γφ2 − 1) ,

(B.1)

with 0< γ≤ 1 and the initial conditions assumed to be C1 at least,
¨

φ(τ= 0, X ) = 1−δφ0(X ) , with δφ0(|X |> R0) = 0 ,

φ1(τ= 0, X ) = 0 .
(B.2)

Let us first introduce
¨

h := 1−φ −φ1 = δφ −φ1 ,

k := 1−φ +φ1 = δφ +φ1 ,
(B.3)
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to obtain the linearized equations







∂τh+ ∂X h=
1+ γ

2
h+

3− γ
2

k ,

∂τk− ∂X k =
1+ γ

2
k+

3− γ
2

h ,
(B.4)

with initial condition h(τ= 0, X ) = k(τ= 0, X ) = δφ0(X ). Writing






h(τ, X ) = e
1+γ

2 τ
�

δφ0(X −τ) +
3−γ

4

∫ τ

−τ dsδφ0(X + s)a(s,τ)
�

,

k(τ, X ) = e
1+γ

2 τ
�

δφ0(X +τ) +
3−γ

4

∫ τ

−τ dsδφ0(X + s)b(s,τ)
�

,
(B.5)

we obtain by direct substitution






∂τh+ ∂X h− 1+γ
2 h = 3−γ

2 e
1+γ

2 τ
�

a(τ,τ)δφ0(X +τ) +
1
2

∫ τ

−τ dsδφ0(X + s)(∂τ − ∂s)a(s,τ)
�

,

∂τk− ∂X k− 1+γ
2 k = 3−γ

2 e
1+γ

2 τ
�

b(−τ,τ)δφ0(X −τ) +
1
2

∫ τ

−τ dsδφ0(X + s)(∂τ + ∂s)b(s,τ)
�

,
(B.6)

so that the solution to Eq. (B.4) is obtained if







a(τ,τ) = 1 , (∂τ − ∂s)a(s,τ) =
3− γ

2
b(s,τ) ,

b(−τ,τ) = 1 , (∂τ + ∂s)b(s,τ) =
3− γ

2
a(s,τ) .

(B.7)

In turn, the solution to Eq. (B.7) is










a(s,τ) = I0

�3− γ
2

p

τ2 − s2
�

+ I1

�3− γ
2

p

τ2 − s2
�

s

τ− s
τ+ s

,

b(s,τ) = I0

�3− γ
2

p

τ2 − s2
�

+ I1

�3− γ
2

p

τ2 − s2
�

s

τ+ s
τ− s

,
(B.8)

with I0 and I1 the modified Bessel functions of the first kind. Indeed, a(τ,τ) = b(−τ,τ) = 1
since I0(0) = 1, and we check the differential equations in Eq. (B.7) hold. For the first one:

(∂τ − ∂s)a(s,τ) =
3− γ

2

�
s

τ+ s
τ− s

I ′0
�3− γ

2

p

τ2 − s2
�

+ I ′1
�3− γ

2

p

τ2 − s2
�

�

(B.9)

+
I1

�

3−γ
2

p
τ2 − s2

�

p
τ2 − s2

=
3− γ

2
b(s,τ) , (B.10)

where we used

I ′0(z) = I1(z) and I ′1(z) = I0(z)−
1
z

I1(z) . (B.11)

Similarly,

(∂τ + ∂s)b(s,τ) =
3− γ

2

�
s

τ− s
τ+ s

I ′0
�3− γ

2

p

τ2 − s2
�

+ I ′1
�3− γ

2

p

τ2 − s2
�

�

(B.12)

+
I1

�

3−γ
2

p
τ2 − s2

�

p
τ2 − s2

=
3− γ

2
a(s,τ) . (B.13)
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Back in terms of δφ, the exact solution of the linearized equations is

δφ(τ, X ) =
h(τ, X ) + k(τ, X )

2

= e
1+γ

2 τ

�

δφ0(X −τ) +δφ0(X +τ)
2

(B.14)

+
3− γ

4

∫ τ

−τ
dsδφ0(X + s)

�

I0

�3− γ
2

p

τ2 − s2
�

+ I1

�3− γ
2

p

τ2 − s2
� τ
p
τ2 − s2

��

.

We now use that δφ0 is 0 except on a ball of radius R0 around 0 (with R0 of order 1, at most),
and we call δM0 :=

∫

dXδφ0(X ). The first terms in Eq. (B.14) vanish except around X = ±τ.
The integrand is non-zero only around s = −X . Hence, for τ− |X | ≫ 1, we obtain

δφ(τ, X )≃ δM0
3− γ

4
e

1+γ
2 τ

�

I0

�3− γ
2

p

τ2 − X 2
�

+ I1

�3− γ
2

p

τ2 − X 2
� τ
p
τ2 − X 2

�

. (B.15)

Using

I0(z≫ 1)≃ I1(z≫ 1)≃
ez

p
2πz

, (B.16)

gives, for τ− |X | ≫ 1,

δφ(τ, X )≃ δM0

p

3− γ
2
p

4π(τ2 − X 2)3/4
e

1+γ
2 τ+

3−γ
2

p
τ2−X 2

�

τ+
p

τ2 − X 2

�

. (B.17)

Recalling that
p
τ2 − X 2 = τ− X 2/(2τ) +O(X 4/τ3), we see in particular that for τ≫ 1 and

|X | ≪ τ3/4, this yields the following form for the solution of the linear regime

δφ(τ, X )≃ δM0 e2τ e−(3−γ)
X2
4τ

p

4πτ/(3− γ)
, (B.18)

which is valid as long as δφ(τ, X )≪ 1, i.e. for τ≪ τ∗ := −1
2 logδM0.

C Discontinuous front away from criticality (γ ̸= 1)

In this Appendix, we compute the late-time solution of the following coupled PDEs
�

∂τφ + ∂Xφ1 = φ(φ2 − 1) ,
∂τφ1 + ∂Xφ = φ1(γφ2 − 1) , (C.1)

for a generic value of the parameter γ. Let us assume that two symmetrical fronts, traveling at
velocity ±1, develop at late times. We work in the reference frame of the right-moving front
by using

¨

φ+(τ, X ) := φ(τ, X +τ)
τ→∞
→ f+(X ) ,

φ1+(τ, X ) := φ1(τ, X +τ)
τ→∞
→ f1+(X ) .

(C.2)

They obey the equations
�

∂τφ+ + ∂X (φ1+ −φ+) = φ+(φ2
+ − 1) ,

∂τφ1+ − ∂X (φ1+ −φ+) = φ1+(γφ2
+ − 1) . (C.3)
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As τ→∞, this leads to

∂X ( f1+ − f+) = − f+(1− f 2
+ ) = f1+

�

1− γ f 2
+

�

. (C.4)

Hence

f1+ = − f+
1− f 2

+

1− γ f 2
+

, (C.5)

and

∂X

�

f+
1− f 2

+

1− γ f 2
+
+ f+

�

= f+
�

1− f 2
+

�

. (C.6)

This is a first-order ODE that can be integrated by means of decomposition into simple frac-
tions. Implicitly:

−
2

γ f 2
+ − 1

−
(γ+ 1) log(1− f 2

+ )

γ− 1
−
(γ− 3) log(1− γ f 2

+ )

γ− 1
+ 4 log f+ = 2X + C . (C.7)

The constant C can be determined by solving f+(R−0 ) (i.e. the discontinuity). We may extract
the missing information from “the other side”, i.e. on the left-moving front. Introduce

φ−(τ, X ) = φ(τ, X −τ) , φ1−(τ, X ) = φ1(τ, X −τ) . (C.8)

Using ∂τφ− = ∂τφ − ∂Xφ, we have
�

∂τφ− + ∂X (φ1− +φ−) = −φ−(1−φ2
−) ,

∂τφ1− + ∂X (φ1− +φ−) = −φ1−(1− γφ2
−) .

(C.9)

Then, integrating the first equation:

φ−(τ, X ) = e−
∫ τ

0 ds (1−φ−(s,X )2)
�

φ0(X )−
∫ τ

0

du e
∫ u

0 ds (1−φ−(s,X )2)(∂Xφ1− + ∂Xφ−)(u, X )

�

(C.10)

= e−
∫ τ

0 ds (1−φ−(s,X )2)φ0(X )−
∫ τ

0

du e−
∫ τ

u ds (1−φ−(s,X )2)(∂Xφ1− + ∂Xφ−)(u, X ) (C.11)

= e−
∫ τ

0 ds (1−φ−(τ−s,X )2)φ0(X )

−
∫ τ

0

du e−
∫ u

0 ds (1−φ−(τ−s,X )2)(∂Xφ1− + ∂Xφ−)(τ− u, X ) . (C.12)

Add 2τ to X , and use φ−(τ, X + 2τ) = φ+(τ, X ):

φ+(τ, X ) = e−
∫ τ

0 ds (1−φ+(τ−s,X+2s)2)φ0(X + 2τ)

−
∫ τ

0

du e−
∫ u

0 ds (1−φ+(τ−s,X+2s)2)(∂Xφ1+ + ∂Xφ+)(τ− u, X + 2u) . (C.13)

When X > R0, recalling that we postulate a solution such that φ+(τ, X > R0) = 1, the above
equation trivially simplifies to 1 = 1 − 0. When X < R0, we take τ > R0−X

2 . Then, since
φ+(τ, X > R0) = 1, we have:

φ+(τ, X ) = e−
∫

R0−X
2

0 ds (1−φ+(τ−s,X+2s)2)

−
∫

R0−X
2

0

du e−
∫ u

0 ds (1−φ+(τ−s,X+2s)2)(∂Xφ+1 + ∂Xφ+)(τ− u, X + 2u) . (C.14)
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Before taking the limit τ → ∞, one is to be careful because the spatial derivatives in the
integrand above are unbounded as we expect the discontinuity to develop: one cannot blindly
replace φ+ by f+. Instead, write:

(∂Xφ1+ + ∂Xφ+)(τ− u, X + 2u) =
1
2

d
du

�

(φ1+ +φ+)(τ− u, X + 2u)
�

+
1
2
(∂τφ1+ + ∂τφ+)(τ− u, X + 2u)

=
1
2

d
du

�

(φ1+ +φ+)(τ− u, X + 2u)
�

−
1
2

�

φ+(1−φ2
+) +φ1+(1− γφ2

+)
�

(τ− u, X + 2u) ,

(C.15)

using Eq. (C.3). Inserting Eq. (C.15) into Eq. (C.14) and integrate by parts:

φ+(τ, X ) = e−
∫

R0−X
2

0 ds (··· ) −
1
2
(φ1+ +φ+)

�

τ−
R0 − X

2
, R0

�

e−
∫

R0−X
2

0 ds(··· )

+
1
2
(φ1+ +φ+)(τ, X ) +

∫

R0−X
2

0

du (· · · ) . (C.16)

Crucially, the terms collected in (· · · ) are bounded. Moreover, φ1+ and φ+ are continuous and
(φ1++φ+)(τ, R0) = 1 for any finite time τ. Therefore, we can replace (φ1++φ+)(τ−

R0−X
2 , R0)

by 1 all times. Later sending τ→∞, we obtain

f+(X ) = e−
∫

R0−X
2

0 ds (··· ) −
1
2

e−
∫

R0−X
2

0 ds(··· ) +
1
2
( f1+ + f+)(X ) +

∫

R0−X
2

0

du (· · · ) , (C.17)

and send X → R−0

f+(R
−
0 ) =

1
2
+

1
2
( f1+ + f+)(R

−
0 ) i.e. f1+(R

−
0 ) = f+(R

−
0 )− 1 . (C.18)

Let us call L := f+(R−0 ). Using Eq. (C.5), we have

−L
1− L2

1− γL2
= L − 1 . (C.19)

Simplifying by L − 1

(1+ γ)L2 + L − 1= 0 . (C.20)

The positive solution is

L(γ) =

p

5+ 4γ− 1

2(1+ γ)
. (C.21)

This quantity monotonically interpolates from L = 1/2 for γ = 1 to L = 1/(golden ratio)
for γ= 0.
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