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the surrounding volume or the pores inside the domain. Solid particles, 
including the solid powder particles of the current layer, as well as the 
ones of the previous layers, were assumed to be static and no spattering 
of material was considered for the model. Also, enough dwell time was 
assumed between each layer for the previous layer to cool down and 
reach the steady initial temperature. The melt pool geometry predictions 
were validated against experiments in previously published research by 
our group [27]. The parameters used for this process include laser power 
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Fig. 6. An example of a lack-of-fusion defect during the simulation of layer three (top) transparent domain to show the defect location (bottom) A-A cross-section in 
the X-direction. 
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Fig. 7. The size decrement of a defect by increasing the number of layers. The cross-section is perpendicular to the scanning direction.  

Table 5 
The size of a pore measured after deposition and melting of different layers.  

Layer # 4 5 6 7 8 9 10 

Pore size (μm) 132.5 102.3 91.5 73.6 68.3 53.8 40.1  
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of 120 W, a scan speed of 1500 mm/s, and hatch spacing of 75 μm. Four 
parallel 0.5-mm-long laser scans were performed on each layer of 
powders. Fig. 3 shows the domain size of the first layer in Flow-3D, 
which was exported as an STL file and used as the new substrate for 
the DEM simulation of the next layer. 

Melt pool measurements were performed in Flow-3D Post software 
version 11.2.6.4 (Flow Science, Inc., Santa Fe, New Mexico, USA). Since 
for layers two and higher, it is not possible to exactly distinguish the 
melt pool depth and the bead height in the melt region, the total melt 
height, which includes melt pool depth plus bead height, was measured 
to compare different scans/layers. Fig. 4 shows an example of the 
measured total height of the four scan tracks at layer four in Flow-3D 
Post. The measurements were done at five equally spaced cross- 

sections at 50 μm, 150 μm, 250 μm, 350 μm, and 450 μm along the 
scan length in each layer and the average value of the five measurements 
was reported for each scan at each layer. 

3. Results and discussion 

Table 3 shows the computational time and details of both DEM and 
CFD simulations for each layer. It can be seen that the simulation time is 
directly influenced by the number of triangles in the STL file. As by 
adding each layer, more powder particles, thus more geometrical fea
tures were added to the STL file for the next layer and therefore the 
simulation time was increased. This effect was minimized by cutting the 
unnecessary regions of the STL file to decrease the number of imported 
triangles to the DEM simulation. Mesh processing of STL files was per
formed in MeshLab software v. 2021.10 (ISTI - CNR). The typical melted 
region for some layers is shown in Fig. 5. The surface data of each layer 
was extracted and used to calculate the surface roughness presented in 
Table 4. 

The surface roughness values range from 4 μm to 8 μm for all layers 
except for layer three, which is much higher. The high surface variations 
of layer three are visible in Fig. 5, as well. A possible reason is the for
mation of some lack-of-fusion defects in its previous layer causing dis
ruptions in the melt pool at this layer. Generally, pore formation can be 
considered a random phenomenon in the L-PBF process, while the pore 
type and the likelihood of its formation can be estimated based on the 
process parameters [57,58]. Lack-of-fusion porosity may arise from 
incomplete melting of the powder due to insufficient thermal energy 
densities, particularly when melt pools are too small to form a complete 
overlap with the adjacent melt tracks or the previously melted layers 
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Fig. 8. Temperature distribution at the same cross-section as Fig. 6 shows a temperature range of ~1200 ◦C around the lack-of-fusion defect after scanning the 
fifth layer. 

Table 6 
Total melt height measurement results for different scans at different layers 
(each value is an average of five measurements along the scan length).   

Scan 1 Scan 2 Scan 3 Scan 4 Average 

Layer 1 29.1 ± 1.0 34.0 ± 2.9 34.7 ± 2.2 33.7 ± 3.3 32.9 ± 1.3 
Layer 2 30.9 ± 3.7 39.0 ± 2.9 32.7 ± 2.8 39.7 ± 1.8 35.6 ± 1.6 
Layer 3 36.1 ± 4.2 39.6 ± 2.5 38.3 ± 3.5 37.9 ± 4.3 38.0 ± 1.7 
Layer 4 39.2 ± 5.4 44.2 ± 1.2 40.4 ± 1.6 39.3 ± 3.9 40.3 ± 1.6 
Layer 5 35.2 ± 5.0 38.2 ± 2.5 40.8 ± 2.3 39.6 ± 4.2 38.5 ± 1.8 
Layer 6 36.0 ± 1.4 37.7 ± 1.8 39.3 ± 1.8 41.0 ± 2.4 38.5 ± 1.0 
Layer 7 31.9 ± 1.4 35.9 ± 4.3 44.0 ± 4.8 42.6 ± 5.4 38.6 ± 2.2 
Layer 8 40.6 ± 2.8 42.5 ± 3.1 42.1 ± 1.6 37.5 ± 3.2 40.7 ± 1.3 
Layer 9 37.3 ± 4.4 41.8 ± 1.9 41.7 ± 4.3 45.1 ± 2.7 41.5 ± 1.7 
Layer 10 40.9 ± 2.9 40.9 ± 2.4 43.6 ± 4.0 39.6 ± 3.4 41.3 ± 1.5 
Average 35.7 ± 1.2 39.2 ± 0.9 39.8 ± 1.0 39.6 ± 1.3   
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Fig. 9. The variations of average total melt height at (a) different scans and (b) different layers.  
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[59]. Insufficient thermal energy densities can be either due to low laser 
powers, high scan speeds, high distances between the scan lines, high 
layer thicknesses, or a combination of these cases. Since the process 
parameters used for this simulation, especially the high scanning speed, 
result in a lower volumetric energy density than what is recommended 
for part fabrication using Ti6Al4V [60], shallower melt pools were 
formed leading to insufficient overlap between the melt pool and the 
previously melted layer, which increases the likelihood of these pores 
being lack-of-fusion pores. Fig. 6 shows an example of a lack-of-fusion 
defect after the laser melting of the third layer. 

The formation of these inter-layer pores can be a combined effect of a 
lack-of-sufficient heat to make the melt pool deep enough to penetrate 
the previous layers and high variations in the surface height of the 
previous layers (layer three's high surface roughness, in this case). So, to 
minimize the formation of these pores, higher laser power and/or lower 
scanning speed may be used. It was observed that the size of the pores 
decreases as more layers are deposited on the top and the number of 
layers increases. This can be attributed to receiving additional thermal 
energy resulting from scanning the next layers, which is in line with the 
results observed in the literature in simulation [36] as well as experi
ments [6,61]. Fig. 7 illustrates tracking an inter-layer lack-of-fusion 
defect, which was formed between layer three and layer four, through 
different layers. The size of this pore at its elongation direction at 
different stages of the simulation is listed in Table 5. Also, Fig. 8 shows 
the temperature distribution at the same cross-section as Fig. 7, indi
cating a temperature range of ~1200 ◦C around the lack-of-fusion defect 
after scanning the next subsequent layer (layer five). 

The results of the total melt height are presented in Table 6. Each 
value is an average of five measurements along the length of a scan 
track. Fig. 9 illustrates the variations of average total melt height at 
different scans and different layers. Fig. 9 (a) shows the total melt height 
increases drastically and plateaus out from the first to the second scan. 
This behavior can be attributed to the lower average temperature of the 
part during the first scan, as opposed to it being pre-heated for the next 
scans causing heat accumulation and increment of total melt height. 
Also, Fig. 9 (b) shows an increase in the average value of the total melt 
height in the first four layers reaching a semi-steady state after layer 
four. This behavior is consistent with the observations in the literature 
[62] and can be attributed to the increment of the conduction path by 
increasing the number of layers, as conduction is the main phenomenon 
controlling the melt pool size. 

4. Conclusions 

To demonstrate the feasibility of multi-layer simulations in building 
small features by L-PBF, a 3D thermo-fluid model has been developed to 
simulate the multi-layer L-PBF process using DEM and CFD to simulate 
the particle distribution in the powder bed, and the laser-powder 
interaction, respectively. A moving Gaussian heat source, surface ten
sion gradient, and evaporation pressure along with multiple reflections 
were included to predict the temperature distribution and history as well 
as melt pools and the top surface morphology from each layer. The 
model includes a surface tracking algorithm to account for the geometry 
of voids and lack-of-fusion pores generated during the process. Pore 
tracking during the multi-layer simulation shows the evolution of pores: 
forming, shrinking, or disappearing due to the interaction with the 
molten pool during scanning in subsequent layers. Also, the result im
plies that pore formation during laser PBF processing could be possibly 
attributed to a very rough surface from the previous layer. The findings 
suggest that the lack-of-fusion defects (1) elongate perpendicular to the 
build direction between layers and (2) may close possibly due to 
receiving more thermal energy from the laser during the scanning of the 
subsequent layers. One major limitation of the developed method is that 
the powder particles are assumed to be static during laser-powder in
teractions, thus no spattering or powder particle attraction to the melt 
pool can be observed. To extend this method to a larger-scale model, e. 

g., a higher number of layers with a larger scan area and different SLM 
process parameters (e.g., lower scan speeds), there will be a need to 
advance the computational power in terms of hardware processing ca
pabilities and memories in order to avoid the high computational time 
especially associated with the DEM simulation of a larger area. In future 
work, the feasibility of using this method to investigate the local 
morphology at up-skin and down-skin surfaces of inclined parts will be 
explored. Also, in the continued work, small-scaled laser PBF experi
ments will be conducted for comparison and to address the weakness in 
model validations, before the model can be extended to further studies. 
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