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Abstract—A traditional array (TA) multiple-input multiple-
output (MIMO) architecture in mmWave with hybrid beam-
forming suffers from high power consumption and hardware
overhead. Therefore, a lens antenna subarray (LAS)-MIMO
architecture has been recently proposed as a promising tech-
nology for a power-efficient system and reducing hardware cost
and complexity. Additionally, the LAS-MIMO can offer spectral
efficiency (SE) performance close to TA-MIMO and higher
than single-lens antenna array (SLA)-MIMO. In this paper, we
propose a hybrid precoding algorithm for the LAS-MIMO in
mmWave to efficiently control the LAS design. The precoding
problem is formulated as a sparse reconstruction problem due to
the sparse behavior of mmWave channel. The proposed algorithm
is an iterative process developed jointly using artificial bee colony
(ABC) optimization with orthogonal matching pursuit (OMP)
algorithms. In each iteration, the algorithm first selects the
switches for each lens randomly using ABC and then uses OMP
to approximate optimal unconstrained precoders. This process
continues until achieving maximum SE. The simulation results
show that LAS has around a 30% increase in SE compared
to SLA while providing a significant gain in energy efficiency
(EE) for single radio-frequency (RF) chain and multi RF chain
scenarios.

Index Terms—Artificial bee colony optimization, basis pursuit,
lens antenna subarray, precoding, MIMO.

I. INTRODUCTION

Next-generation wireless communications are presumed to
meet the demand for higher spectral efficiency (SE) (bits/s/Hz)
and handle exponentially growing traffic volume [1]. To this
end, less-congested millimeter-wave (mmWave) spectrum uti-
lization is considered a promising solution to meet higher
SE requirements and deal with enormous traffic demand [2].
A forte of mmWave frequencies is the ability to pack a
large number of antenna elements into small physical areas
due to smaller wavelengths. Hence, mmWave facilitates the
use of massive multiple-input multiple-output (MIMO) which
can overcome the severe free-space path loss due to high
directional beamforming gain [3]. In addition, it is possible
to enhance SE with massive MIMO by allowing multiple
data streams with proper precoding techniques [4]. Typi-
cally, precoding in traditional-array (TA)-MIMO is performed
digitally where each antenna element requires a dedicated
radio-frequency (RF) chain resulting in huge cost and power
consumption [5]. Therefore, the use of mmWave in MIMO
systems makes hybrid analog and digital precoding preferable
[6]–[8] which is performed by cascading a digital precoder in
the baseband and an analog network between the RF chains

and antenna elements. Hence, beam gain and interference
management can be achieved simultaneously.

The analog network typically consists of phase shifters with
combiners [9] or switches [10]. In massive MIMO systems,
the use of an enormous number of phase shifters causes
considerable hardware complexity along with signal process-
ing complexity and power consumption, while the use of
switches results in a significant performance loss. Accordingly,
a promising research line is introduced by utilizing advanced
antenna designs, such as single-lens antenna array (SLA) [11]
and lens antenna subarray (LAS) [12], [13] to reduce signal
processing complexity and RF chain cost without notable
performance degradation. Due to the SLA-MIMO architec-
ture’s limitation including beamforming precoding/combining
in a multipath channel and the large lens size that leads
to high insertion loss and lack of scalability, the work in
[13] presents an energy and spectral-efficient LAS-MIMO
architecture. In the LAS-MIMO architecture shown in Fig. 1,
each M antennas out of N antennas are connected to L small-
sized lenses while the lenses are associated with a phase shifter
network to control all the lenses together. For a specific lens, a
simple switching network consisting of a single-pole multiple-
throw (SPMT) switch controls the antenna elements. When the
number of lenses is L = 1, the system falls to SLA-MIMO.
On the other hand, the system performance is similar to the
TA-MIMO when L = N . The LAS-MIMO provides better
energy efficiency (EE) than the TA-MIMO with the expense
of reducing the SE as L decreases. Hence, an appropriate
precoding design is essential to enhance the SE.

Despite the attractive design of lens-aided MIMO systems,
precoding design and beam selection problems remain an
open issue, especially in LAS-MIMO, and they are not yet
investigated, to the best of our knowledge. Therefore, in this
paper, we take into account this problem. The contributions of
this paper are summarized as follows:
• We propose a hybrid precoding algorithm for the LAS-

MIMO based on artificial bee colony (ABC) and orthog-
onal matching pursuit (OMP) algorithms. It solves a non-
convex optimization problem iteratively by exploiting the
sparse characteristics of the mmWave channel.

• The SE and EE of the LAS architecture are investigated
for a single user scenario with a single RF chain and
multiple RF chains. As well, the EE performance is
evaluated when different switch types (SP2T or SP4T)



are utilized.
Notation: A, a, a denote a matrix, a vector, and a scalar

variable, respectively. ‖A‖F denotes A’s Frobenius norm. A∗,
AT , A−1 are A’s conjugate, transpose, and inverse respec-
tively. diag(a) is a diagonal matrix with a on its diagonal.
I is the identity matrix, and CM×N denotes the space of
M × N complex-valued matrices. CN (µ, σ2) is a complex
Gaussian random vector with mean µ and covariance σ2. j is
the imaginary unit of complex numbers with j2 = −1.

II. SYSTEM MODEL

This section introduces the radio environment, SE, and
power consumption model of the LAS-MIMO architecture.

Fig. 1: Hybrid precoding for LAS-MIMO architecture

A. Radio Environment and Parameters
We consider a single-user LAS-MIMO operating at

mmWave frequencies where the transmitter employs Nt an-
tennas connected to Lt lenses to transmit Ns data streams to a
receiver equipped with Nr phased antenna array. Multi-stream
communication is enabled by employing the transmitter with
NRF
t RF chains where Ns ≤ NRF

t ≤ Nt. According to hybrid
precoding presented in Fig. 1, the received signal is given as

r =
√
ρHFs + n, (1)

where r ∈ CNr×1 is the received signal, ρ is the average
received signal power, H ∈ CNr×Nt is the channel matrix,
and F ∈ CNt×Ns is the precoder matrix. The transmitted
data s ∈ CNs×1 has the normalized power of E[ss∗] = INs .
Additionally, the additive white Gaussian noise (AWGN) with
zero mean and variance σ2 is modeled as n ∼ CN (0, σ2).
The precoding matrix is expressed as F = Fm

LensFRFFBB
where Fm

Lens ∈ CNt×Lt is the lens antenna effect for a given
m ∈ C1×Lt vector containing the selected antenna indexes
[13], FRF ∈ CLt×NRF

t is the analog beamformer obtained
by the phase shifters, and FBB ∈ CNRF

t ×Ns is the digital
baseband precoder where the total transmit power constraint is
normalized such that ||Fm

LensFRFFBB||2F = Ns [5]. Due to the
subarray structure of the LAS-MIMO, no contribution among
subarrays is obtained [13]. Therefore, each column of the Fm

Lens
matrix contains zeros and vm vector representing the selected
beam from each lens [13], and is given as

Fm
Lens =


vm(1) 0M×1 . . . 0M×1

0M×1 vm(2) 0M×1

...
. . .

0M×1 . . . 0M×1 vm(Lt)


Nt×Lt

, (2)

where M denotes the number of antennas placed under each
lens and vm = [e−jkdsin(θm)Ω]Ω∈I(M), where I(M) = {q −
(M − 1)/2, q = 0, 1, . . . ,M − 1}, k = 2π

λ , d is the antenna
element spacing, λ is signal wavelength and θm = π

4−
π(m−1)
2(M−1)

is the metric showing the direction of the radiating beam from
LAS for a given antenna element m = 1, 2, ...,M chosen by
the switch network [13].

We adopt a narrowband clustered channel model for the
channel matrix H, based on the Saleh-Valenzuela model, in
order to capture the characteristics of the mmWave MIMO
channel precisely [5], [14]–[16] which is expressed as [17]

H =

√
NtNr
NclNray

Ncl∑
i=1

Nray∑
k=1

γi,kar(φi,k)at
∗(θi,k), (3)

where γi,k stands for the complex gain of the kth ray in
the ith scattering cluster. The angle of departure (AoD) and
angle of arrival (AoA) for the kth ray in the ith scatter-
ing cluster are defined by θi,k and φi,k, respectively. The
received and transmitted array response vectors are repre-
sented by ar(φi,k) and at(θi,k), respectively. Considering an
N -element uniform linear array (ULA), the array response
vector for a given ψ ∈ {θ, φ} can be stated as a(ψ) =

1√
N

[
1, ejkd sin(ψ), . . . , ej(N−1)kd sin(ψ)

]T
[18].

B. Spectral Efficiency and Power Consumption of LAS Hybrid
MIMO Architecture

In this work, we assume that the transmitter is equipped with
LAS and the receiver is equipped with no LAS. Considering
the ULA, the combiner can be stated as W = WRFWBB
[19] where WRF ∈ CNr×NRF

r is the analog combiner obtained
by the phase shifters, and WBB ∈ CNRF

r ×Ns is the digital
baseband combiner. Additionally, the number of RF chains at
the receiver is defined by NRF

r .
Assuming that the base station can obtain perfect channel

state information (CSI), the average SE for the LAS-MIMO
can be deriven from [5] and [13] and given as

R = log2

(
INs +

ρ

Ns
Rn
−1W∗HFF∗H∗W

)
, (4)

where Rn = σ2W∗W stands for the noise variance matrix.
The LAS-MIMO architecture aims to reduce power con-

sumption and hardware complexity by connecting each RF
chain to each lens through one phase shifter and one switch.
In contrast, the hybrid TA-MIMO requires all the RF chains to
be connected to each antenna element through a phase shifter.
Therefore, an accurate power consumption model for the LAS-
MIMO transmitter is derived in [13] as PLASt =

PLAS
Tx

(ηPAηSW ) +

NRF
t (LPPS+LNSWPSW +PRF ), where PLASTx

, PPS , PSW ,
and PRF stand for the transmit power consumption in the
LAS system, the power consumption of a phase shifter, a
switch, and an RF chain, respectively. Additionally, ηPA and
ηSW = 10−ζILSW/10 stand for the efficiency of the transmitted
amplifiers, and the efficiency of the switches, respectively. ζ
is the number of series switches needed to be placed under
each lens and ILSW is the insertion loss for a switch.



Another performance metric that needs to be defined is EE
which is defined as the number of bits that can be transmitted
per unit of energy [20] and expressed as EE = R/PLASt

(bps/Hz/W) for the LAS architecture.

III. PROBLEM FORMULATION

For simplicity and tractability of the optimization problem,
we consider only designing hybrid precoders Fm

LensFRFFBB
since joint optimization of hybrid precoders and combiners
WRFWBB are unlikely due to the non-convex constraints
caused by phase shifters and switches [5]. Note that, the hybrid
combiner design will be investigated as future work. Since our
goal is designing only the hybrid precoders, the equation (4)
needs to be rewritten as

R = log2

(
INs

+
ρ

Nsσ2
HFF∗H∗

)
, (5)

Given equation (5), the optimization problem is formulated as

(Fopt
Lens,F

opt
RF ,F

opt
BB) = argmax

Fm
Lens,FRF,FBB

R, (6a)

s.t. Fm
Lens ∈ FLens, (6b)

FRF ∈ FRF, (6c)

||Fm
LensFRFFBB||2F = Ns, (6d)

where FLens and FRF stand for the set containing all the fea-
sible lens antenna effects and the set of feasible RF precoders,
respectively.

The problem given in (6) is a challenging optimization
problem due to its non-convex amplitude constraints in (6b)
and (6c). Although no optimal solution methodology exists for
the problem (6) [5], an approximation is proposed in [5] to
provide a near-optimal solution and proved that the maximiza-
tion problem (6) is equivalent to the minimization problem
of the distance between optimal unconstrained singular value
decomposition (SVD) based precoder Fopt and practical hybrid
precoder. Thus, the problem (6) can be rewritten as

(Fopt
Lens,F

opt
RF ,F

opt
BB) = argmin

Fm
Lens,FRF,FBB

||Fopt − FAFBB||F , (7a)

s.t. (6b) to (6d), (7b)

where FA = Fm
LensFRF stands for the total analog precoder

which is the matrix multiplication of lens antenna effect and
RF precoder. There is a relationship between the analog part of
the precoder FA and the transmit antenna array response vector
at(θi,k) where the sparse-scattering structure of mmWave can
be exploited to represent FA as a function of at(θi,k) [5].
Considering that, equation (7) can be modified as

(Fopt
Lens,F

opt
RF ,F

opt
BB) = argmin

Fm
Lens,FRF,FBB

||Fopt − FAFBB||F , (8a)

s.t. FA
(i) ∈ {at(θi,k), ∀i, k}, (8b)

FA = Fm
LensFRF, (8c)

||FAFBB||2F = Ns. (8d)

The precoding design for the LAS-MIMO requires a switch
selection step to find the best beam selected from each lens

since the lens antenna effect Fm
Lens depends on the position

of the activated switches. Therefore, the proposed precoding
design first selects the m vector containing the selected beam
indexes then find the FRF and FBB accordingly. This iterative
process continues until finding the optimum precoders. Hence,
Fm

Lens can be omitted for a given m in each iteration, while
FA

(i) in (8b) can be embedded into the optimization problem
due to the direct relationship between FA

(i) and at(θi,k) [5].
Hence, the optimization problem becomes

(F̃opt
RF , F̃

opt
BB) =argmin

F̃RF,F̃BB

||Fopt −AtF̃BB||F , (9a)

s.t. ||diag(F̃BBF̃
∗
BB)||0 = NRF

t , (9b)

Fm
LensF̃RF = At, (9c)

||AtF̃BB||2F = Ns, (9d)

where At = [at(θ1,1), . . . , at(θNcl,Nray
)] ∈ CNt×NclNray

stands for the array response vector which is also the auxiliary
variable obtained from FA while the auxiliary variables for
FBB and FRF are given as F̃BB and F̃RF, respectively [5].

IV. SOLUTION OF THE PROBLEM

This section proposes a hybrid beamforming algorithm to
solve the NP-hard and non-convex problem (9). Consequently,
we propose a swarm-based heuristic algorithm, namely ABC
aided spatially sparse precoding. It deploys both ABC and
OMP by exploiting the sparse scattering characteristics of
the mmWave channel. It is also possible to consider other
existing swarm-based optimization tools (i.e., particle swarm
optimization (PSO) [21] and ant colony optimization (ACO)
[22]). However, they are likely to fall into a local minimum or
optimum solution region and be stuck there [23] if a problem
has non-convexity properties. Therefore, ABC is more suitable
since finding the global optimum solution rather than the local
optimum solution is its strength [23], [24]. Another reason for
selecting ABC is that it can be easily implemented in real-time
applications due to its minimum parameter requirements for
tuning and its fast convergence ability [25].

ABC is inspired by the food search behavior of the honey
bees and proposed by Karaboga [26] in 2005. In a bee swarm,
food sources define the possible solutions the nectar amount
of a food source represents the quality (fitness) of the food
source. The number of food sources is equal to half of the
population. The algorithm consists of four phases: initializa-
tion phase, employed bees phase, onlooker bees phase, and
scout bees phase. The proposed solution of problem (9) is
presented in Algorithm 1.

1) Initialization Phase: We randomly initialize the food
sources (selected antenna indexes) mi’s such that i ∈
{1, . . . , S} where S is the population size. Since the antenna
selection is an integer programming problem, the initial solu-
tions have to be integer values where 1 ≤ mi ≤ M and can
be produced by

mij = round(mmax
j + rand(0, 1)× (mmax

j −mmin
j )), (10)

where j ∈ {1, 2, . . . , Lt}, mmin
j = 1, and mmax

j = M .
Then, the corresponding Fmi

Lens is found using (2). Fmi
Lens, and



randomly generated FRF and FBB are used to calculate the SE
using (5) to find the best solution mbest providing the highest
SE at this time.

2) Employed Bee Phase: The bees look for new possible
solutions providing better results than the results kept in their
memory. The possible solutions in the neighborhood are given
as

vij = round(mij + αij × (mij −mkj)), (11)

where i and k ∈ {1, . . . , S} are randomly chosen indexes and
k 6= i. αij ∈ [−1, 1] is a control parameter and responsible of
keeping the newly produced solutions around mij . After the
search procedure is completed, Fmi

Lens is calculated using (2).
Then, Fmi

Lens is sent to Algorithm 2 to calculate FRF and FBB
guaranteeing the objective function given in (9). Accordingly,
a greedy selection is applied between vi and mi using (5) to
find the better solutions. After the selection, mi is updated
and the fitness function of using mi are calculated as

Fi =

{
1

1+g(mi)
, g (mi) ≥ 0

1 + abs (g(mi)) , otherwise
, (12)

where g(mi) is the objective function of the updated solution
vector.

3) Onlooker Bee Phase: According to the solution vector
and their fitness values shared by the employed bees, onlooker
bees select their solution based on a probabilistic model which
uses the fitness function given as pi = Fi/

∑S
i Fi. After new

solutions are selected, the onlooker bees update their position
using (11) and fitness function using (12) accordingly.

4) Scout Bee Phase: The bees replace the abandoned
solutions, not improved for a particular number of trials, with
new randomly generated possible solutions using (10). Bees
memorize all these steps and share them, and the algorithm
runs until it reaches the maximum number of iterations.

V. SIMULATION RESULTS

This section illustrates the SE and EE performance of the
proposed algorithm for the hybrid LAS-MIMO in mmWave.
The TA-MIMO and SLA-MIMO are chosen as the baseline
architectures for fair performance comparison. The power
consumption model is evaluated utilizing switch types of SP2T
and SP4T to compare the EE performance. In the simulation,
the channel parameters are set to Ncl = 6, Nray = 8,
fc = 38 GHz, and 500 MHz bandwidth. Furthermore, AoAs
and AoDs are uniformly distributed over [−π4 ,

π
4 ] and [−π2 ,

π
2 ],

respectively [27]. It is assumed that we have a downlink
MIMO scenario where the precoding is designed using the
proposed algorithm and the combiner is designed using the
algorithm in [28], while the CSI is assumed to be perfectly
known. The results are averaged over 500 channel realizations.
The rest of simulation parameters are listed in Table 1.

Fig. 2a shows the SE of 64 × 16 LAS-MIMO and TA-
MIMO architectures with a single RF chain. The proposed
algorithm provides better performance in the LAS-MIMO
(L = 4, 8, 16) than in the SLA-MIMO (L = 1) as the number
of lenses increases in the array. More precisely, the SE is

Algorithm 1: ABC Aided Hybrid Sparse Precoding
Input: Fopt, and At.
ABC parameters: S = 100, imax = 500.
Output: Fm

Lens, FRF, FBB.
1 Randomly generate S solutions mi using (10),
2 Calculate Fmi

Lens using (2),
3 Randomly generate FRF and FBB,
4 Evaluate the function using (5), and select mbest,
5 while i < imax do
6 (Phase-1: Employed Bee Phase)
7 for s = 1 : S do
8 Produce a new solutions vi using (11) and

calculate corresponding Fvi
Lens as in (2),

9 Calculate FRF and FBB using Algorithm 2,
10 Evaluate the function using (5), and apply

greedy selection between vi and mi,
11 Update mi and find fitness function using (12),

end
12 (Phase-2: Onlooker Bee Phase)
13 for s = 1 : S do
14 Find the selection probabilities pi,
15 Use pi to generate new solutions vi from mi

16 Select a food source vector mcurr according to
ps value,

17 Follow same steps from step-9 to step-11.
end

18 (Phase-3: Scout Bee Phase)
19 for s = 1 : S do
20 Identify the abandoned solutions not improved

after a predetermined number of trials,
21 Replace them with new randomly generated

solutions using (10),
22 Store the best solution ever found,

end
end

23 return Fm
Lens, FRF, FBB.

almost enhanced by 16%, 24% and 35% for L = 4, L = 8 and
L = 16, respectively at SNR = 5 dB. In the simulation, we
inspired and modified the spatially sparse precoding algorithm
in [5], which performs very close to the optimal unconstrained
SVD precoding, to present the simulation results for the TA-
MIMO. The results show that TA-MIMO outperforms all LAS-
MIMO scenarios due to its high precoding capability.

For the same system configurations, the EE analysis is
shown in Fig. 2b where the proposed algorithm provides
better performance in the LAS-MIMO than the TA-MIMO and
SLA-MIMO as the number of lenses increases. Using SP4T
switches in the switching network shows some enhancement in
the performance rather than using SP2T switches. In particular,
L = 16 outperforms all others while SLA (L = 1) has the
worst performance among others when SP2T switch type is
used to implement LAS-MIMO. On the other hand, L = 4
becomes the winner in EE due to the reduced number of
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Fig. 2: Performance comparison of TA-MIMO and LAS-MIMO with various algorithms. (a) and (c) Spectral efficiency vs SNR for NRF = 1 and NRF = 8,
respectively, (b) and (d) Energy efficiency vs SNR for NRF = 1 and NRF = 8, respectively.

switches and switch insertion loss when SP4T switch type
is utilized. Although we obtain a high precoding gain with
the ABC-OMP algorithm, it is essential to note that the LAS
requires a careful design to make a fair decision between SE
and EE trade-off.
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Fig. 3: Convergence rate of ABC-OMP algorithm

TABLE I: SIMULATION PARAMETERS
Parameters Value

Power consumption of a phase shifter (PPS ) 30 mW [10]
Power consumption of an SP2T switch (PSP2T ) 10 mW [13]
Power consumption of an SP4T switch (PSP4T ) 20 mW [13]

PRF 220 mW [13]
ηPA 0.2 [13]

ILSW 1 dB [13]

Multi RF chain scenarios are evaluated in Fig. 2c and Fig.
2d showing SE and EE, respectively. The proposed algorithm
provides satisfactory results even with Nt = 64, Nr = 16, and
NRF
t = 8 scenario. Since the precoding capability increases

when the number of lenses increases, L = 16 still outperforms
all the other LAS architectures with 32% more SE at SNR =
5 dB than SLA. On the other hand, Fig. 2d shows that LAS-

MIMO with L = 4 provides the best performance in EE when
SP2T switches are utilized. However, the performance can
further be enhanced with SP4T switches. Specifically, using
SP4T switch instead of SP2T switch provides 9% more EE at
SNR = 5 dB. For L = 16 and L = 8 architectures, the reason
for having worse performance than the SLA architecture is that
the number of required phase shifters and switches increases
as NRF

t increases, causing higher power consumption.
The SE and EE analysis of the proposed algorithm indicates

that the LAS-MIMO with L = 16 and SP2T switches provides
the optimum performance compared to other systems (SLA
and TA-MIMO) when NtRF = 1. In multi RF scenarios, LAS-
MIMO offers the best EE and SE when L = 4, and L = 16,
respectively. Thus, one can design the system depending on the
EE and SE trade-off to provide optimum performance based
on the system requirements.

Finally, the convergence property of the proposed algorithm
is presented in Fig. 3 when SNR = 5 dB. The algorithm is
run for 100 iterations for the same channel configuration, and
the convergence rate is averaged. We can see that it quickly
converges after almost 21 iterations when L = 16 and 27
iterations when L = 8.

VI. CONCLUSION

In this paper, we propose a hybrid precoding algorithm
for mmWave LAS-MIMO architectures that uses the heuristic
ABC and OMP algorithms. Thus, it is called ABC-aided
spatially sparse precoding. The proposed precoding algorithm
first selects the antennas that need to be activated for each
lens and calculates the corresponding lens antenna effect. This
information is then used in OMP to find the analog and digital
precoders where the precoding problem is formulated as a
sparse reconstruction problem due to the sparse behavior of the



Algorithm 2: Spatially Sparse Precoding
Input: At, Fopt, and Fm

Lens.
Output: FRF, and FBB.

1 FA = Empty Matrix, and Fres = Fopt,
2 for i = 1 : NRF

t do
3 Ψ = At

∗Fres,
4 k = argmaxl=1,...,NclNray

(ΨΨ∗)l,l,
5 FA = [FA|A(k)

t ],
6 FRF = (Fm

Lens
∗Fm

Lens)
−1Fm

Lens
∗FA,

7 FBB = (FA
∗FA)

−1FA
∗Fopt,

8 Fres =
Fopt−Fm

LensFRFFBB

||Fopt−Fm
LensFRFFBB||F ,

end
9 FBB =

√
Ns

FBB
||Fm

LensFRFFBB||F ,
10 return FRF, FBB

mmWave channel. ABC runs until it finds the best precoding
components providing the highest SE. The simulation results
show that it can achieve near-optimal performance in terms of
SE as the number of lenses increases in the LAS system while
outperforming the TA-MIMO in terms of EE for single and
multiple RF chains. Additionally, using different switch types
may further improve the EE while maintaining the same SE.
The future scope of this work can be proposing an algorithm
that can handle joint precoding and combining for a multi-user
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