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Abstract—Beamspace multiple-input multiple-output (B-
MIMO) systems with proper beam selection (BS) promise
to lower the radio-frequency (RF) chains overhead with no
noticeable degradation in performance. Most of the existing
BS schemes are not practical due to the computational cost
arising from iterative search or alternating optimization. Hence,
this letter examines the complexity reduction of the existing BS
with incremental QR precoder (I-QR-P) and decremental QR
precoder (D-QR-P). The proposed two-stage and three-stage
algorithms reduce the complexity of D-QR-P and I-QR-P,
respectively. Both aim to lower complexity by decreasing
the candidate beam size by eliminating the beams with no
contribution to any user and using matrix perturbation theory
to update QR decompositions. Numerical results reveal that the
proposed algorithms considerably reduce the complexity while
maintaining a similar sum-rate with baseline algorithms.

Index Terms—Beamspace MIMO, beam selection, mmWave
communication, precoding, QR decomposition.

I. INTRODUCTION

UTILIZATION of the millimeter-wave (mmWave) spec-
trum is presumed to be a key enabler for emerging

next-generation wireless communication networks [1]. Since
mmWave frequencies offer small wavelengths, it is possible to
pack many antennas into small physical areas. This property
enables a promising marriage between mmWave frequen-
cies and massive multiple-input multiple-output (M-MIMO),
thereby overcoming the severe free-space path-loss due to high
directional beamforming gain [2]. MmWave M-MIMO also
enhances spectral efficiency by allowing multiple data streams
[3] and utilizing its larger bandwidth [4]. However, excessive
power consumption and hardware cost are its drawbacks since
each antenna entails its own RF chain. Beamspace MIMO
(B-MIMO) proposed in [5] has, therefore, received much
consideration to reduce the RF chain requirement by taking
advantage of the inherent sparsity in the mmWave channels. In
B-MIMO, the angular domain (i.e., beamspace) representation
of the spatial channel is performed by employing a discrete
lens array (DLA) at the base station to explore the channel
sparsity [5]. Hence, a reduction in radio-frequency (RF) chains
required is achieved without compromising the system perfor-
mance by performing beam selection (BS) [4], [5].

Magnitude maximization BS (MM-BS) [5] assigns a
beam proving the maximum received signal power to each
user. Nevertheless, it suffers from high multi-user interfer-
ence and RF redundancy; however, these limitations were
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handled by interference-aware BS (IA-BS) [4]. Several
signal-to-interference-plus-noise ratio (SINR) and sum-rate
maximization-based iterative BS algorithms were investigated
in [6]–[8], while zero-forcing (ZF) precoding was employed
to eliminate the multi-user interference. By enabling multiple-
beam group selection in [9], rate-loss was mitigated by cre-
ating a reliable channel cluster for each user. Recently, BS
and precoding schemes were studied for a new B-MIMO
architecture with lens antenna subarrays (LASs) [10]. Several
studies [11], [12] on BS for wideband B-MIMO were also
conducted to overcome the beam squint occurring in mmWave.

Due to the limited power at the base stations and to avoid
latency, the complexity of several BS methods has been inves-
tigated. In [13], low-complexity BS methods were proposed
based on the graph theory and heuristic greedy algorithm.
QR decomposition of the beamspace channel was inspected in
[14], and an iterative BS algorithm and a precoder for elimi-
nating multi-user interference were proposed. Along with its
outstanding system performance over the existing algorithms,
it is not practical due to its high complexity. In [15], the
complexity of the conventional ZF precoder and QR precoder
[14] were probed and reduced by updating the factorization or
decomposition results using matrix perturbation theory instead
of performing from scratch again.

This letter proposes two complexity-reduced BS algorithms.
The main contributions are summarized as follows:

• The proposed two-stage and three-stage BS algorithms re-
markably decrease the complexity of D-QR precoder (D-
QR-P) [15] and I-QR precoder (I-QR-P) [15], respectively.

• Both enjoy considerably higher sum-rate than the existing
algorithms proposed in [4]–[6].

• The sum-rate performance of D-QR-P is high; however, it
suffers from high complexity as the number of antennas in-
creases. The two-stage BS obtains the complexity reduction
with almost identical sum-rate performance.

• The three-stage BS algorithm significantly reduces complex-
ity while compensating for the sum-rate performance loss at
low signal-to-noise ratio (SNR)s that I-QR-P suffers from.

• Both utilize the matrix perturbation to update QR decompo-
sition and aim to decrease the beam size by removing the
beams with no contribution to any user from the beam set.

Notation: A, a, a, A denote a matrix, a vector, a scalar, and
a set, respectively. AH , AT , A−1 are Hermitian, transpose,
and inverse of A respectively. diag(a) is a diagonal matrix
with a on its diagonal. I is the identity matrix, and CM×N

is the space of M × N complex-valued matrices, E[·] is the
expectation operator, and Card(A) is the cardinality of A.
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II. SYSTEM MODEL

This paper considers a B-MIMO architecture in a downlink
mmWave scenario. For a conventional M-MIMO architecture
where a base station consists of N antennas modeled as a
uniform linear array (ULA) to serve K single-antenna users,
the received signal vector y ∈ CK×1 is expressed as

y = HHPs+ n, (1)
where H = [h1,h2, . . . ,hK ] ∈ CN×K stands for the channel
matrix where hk ∈ CN×1 denotes the channel vector between
k-th user and the base station. The normalized transmitted
signal vector is defined by s ∈ CK×1 fulfilling E[ssH ] = IK
and P ∈ CN×K is the precoding matrix designed to cancel
the multi-user interference. Additionally, n ∼ CN (0, σ2IK) is
additive white Gaussian noise (AWGN).

This paper considers the Saleh-Valenzuela mmWave chan-
nel model [16], which models hk as [4]

hk =
L∑

l=0

α
(l)
k a

(
φ
(l)
k

)
. (2)

In (2), the complex gain and the spatial direction of the
k-th user for the l-th path are stated by α

(l)
k and φ

(l)
k ,

respectively. Note that l = 0 refers to the line-of-sight (LoS)
component, while l = 1, 2, ..., L represents the non-line-of-
sight (NLoS) components. For the N -element typical ULA,
the array steering vector of the l-th path is stated as [4]
a(φ) = 1√

N

[
e−j2πφb

]
b∈I(N)

∈ CN×1, where I(N) =

{p − (N − 1)/2, p = 0, 1, ..., N − 1} is a symetric set of
indices centered around zero. Moreover, φ = d

λ sin(θ), where
θ, d = λ/2, and λ denote the physical direction, the antenna
spacing, and the carrier signal wavelength, respectively.

The mmWave channel is inherently sparse since the LoS
components of the channel strongly dominate the NLoS
components [5]. The use of a DLA at the base station
converts the spatial channel (2) into the beamspace chan-
nel as it behaves like a spatial discrete Fourier transformer
represented by matrix U ∈ CN×N . Specifically, U =
[a (φ̄1) ,a (φ̄2) , · · · ,a (φ̄N )]

H consists of the array steering
vectors corresponding to N predefined orthogonal directions
covering the entire angular space [4], [15], where φ̄n = 1

N (n−
N+1
2 ) for n = 1, 2, . . . , N stands for the predefined spatial

directions. Ultimately, the beamspace channel1 is Hb = UH,
and the corresponding received signal vector yb is given as

yb = Hb
HPs+ n. (3)

The beamspace channel can be represented with a consid-
erably small number of precisely chosen beams without com-
promising the system performance due to intrinsic sparsity. As
a result of the BS process, the dimension-reduced M-MIMO,
so-called B-MIMO, is obtained as [4]

yb ≈ H̃H
r Prs+ n, (4)

where the dimension-reduced beamspace channel is
H̃r = Hb(B, :), in which B denotes the set containing the
chosen beam indexes, and Pr stands for the corresponding
dimension-reduced precoding matrix.

1 We assume that channel state information (CSI) is known by the base
station where channel estimation can be performed as in [17].

Note that using DLA and performing BS reduces the
required RF chains while preserving the narrow beamwidth
[6]. As a result, the adopted B-MIMO architecture is suitable
for mmWave systems due to low hardware complexity and
high antenna gain properties, even with fewer RF chains [6].

Additionaly, the base station communicates with every user
in set K = {1, 2, . . . ,K} via only one data stream to assure
the spatial multiplexing gain. Thus, the number of data streams
and RF chains are set to Ns = K and NRF = K, respectively.
A. QR Decomposition of Dimension-Reduced B-MIMO

Let H̃r be decomposed into a unitary matrix of Q ∈ CK×K

and an upper triangular matrix of R ∈ CK×K , such that
H̃r = QR [18]. Hence, (4) becomes yb ≈ RHs + n when
the precoder is Pr = Q. Thus, the k-th user receives [14]

ỹk = r̃kksk + Ik + nk, (5)

where r̃kk equals to the k-th element of diag(R), and the
interference Ik =

∑
k>j r̃kjsj can be eliminated for all users

by diagonalizing RH . Let the precoder be Pr = QG, where
G ∈ CK×K is the Given rotations such that the diagonal
elements of RHG ∈ CK×K and RH are same. Accordingly,
the sum-rate is [14], [15]

Rsum =
∑
k

log2

(
1 +

γ

K
r̃2kk

)
bit/s/Hz, (6)

where ρ and γ = ρ/σ2 stand for the signal power and SNR,
respectively.
B. QR Decomposition Update

Matrix perturbation theory allows QR decomposition of
a matrix to be updated easily instead of recomputing from
scratch when the matrix undergone a modification. Suppose
we have the decomposition of Hb = QR, and let H(±n)

b =
Hb − uzT represent the modified matrix after inserting or
eliminating the n-th row (i.e., zT ), where u = ∓en. Note
that QR decomposition is called incremental QR (I-QR) de-
composition when a new row inserted to a matrix, while it is
called decremental QR (D-QR) decomposition when a row
is deleted from a matrix. The upper-Hessenberg matrix of
H

(±n)
b can be expressed as H

(±n)
b = Q[R + wzT ], where

w = QHu. Denoting Jm is a Given rotation acting in
planes m and m + 1, where m = 1, 2, . . . , (N − 1), the
series of rotations is obtained by JT

1 . . .JT
N−1w = ∓||w||2e1,

where e1 = (1, 0, . . . , 0) represents the unit vector. Assuming
that same rotations are applied to R, we acquire an upper-
Hessenber matrix of H0 = JT

1 . . .JT
N−1R. Ultimately, H1 =

JT
1 . . .JT

N−1[R+wzT ] = H0∓||w||2e1zT . To update R(±n),
(N −1) Gm Given rotations are applied to H1 [18] such that

R(±n) = GT
N−1G

T
N−2 . . .G

T
1 H1, (7)

is an upper triangular matrix. Then, Q can be updated as [18]

Q(±n) = QJN−1 . . .J1G1 . . .GN−1. (8)

Note that, we omit the values of rotation matrices Jm and
Gm; however, details are available in [18].

III. PROPOSED BEAM SELECTION ALGORITHMS

This section revisits the I-QR-P and D-QR-P given in [15],
and investigates the complexity of BS for further reduction.
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A. Proposed Two Stage Beam Selection with D-QR-P

Conventional QR precoder (C-QR-P) [14] for BS is an
iterative process where beams with a minimum contribution
to system performance (i.e., sum-rate) are discarded, causing
unaffordable computational complexity due to the required QR
decomposition from scratch in each iteration such that the
number of required iterations in the outer loop is (N − K)
in the i-th iteration, where i = 0, 1, . . . , (N −K − 1). How-
ever, the main complexity arises from the inner loop which
contains (N − i) QR decomposition operation to eliminate
the beam with the least contribution to the system sum-rate
from the beam set. Since the complexity to compute the
QR decomposition from scratch is O(2(N − i)K2), the total
complexity of C-QR-P is

∑N−K−1
i=0 (N− i)O(2(N− i)K2) =

O((2K2N3 − 2K5)/3) [14].
To overcome the complexity problem of C-QR-P, D-QR-

P [15] was proposed by utilizing matrix perturbation theory.
Note that D-QR-P updates R and Q using (7) and (8),
respectively while D-QR-P regenerates from scratch when a
row is deleted. The QR update process can be executed in
O(4K(N−i)+4K2) in the i-th iteration. Thus, the BS with D-
QR-P requires the complexity of

∑N−K−1
i=0 (N−i)O(4K(N−

i)+4K2) = O((4KN3+6K2N2−10K4)/3) [15]. Although
it significantly reduces the complexity while providing almost
similar sum-rate performance with [14], it is still not practical,
especially when N ≥ K is large [15]. Therefore, we propose
Algorithm 1 which consists of the following two stages.

Algorithm 1: Two Stage Beam Selection with D-QR-P
Input: Hb, D, K, G = ∅, B = ∅, M = 0
Output: H̃r

1 Stage 1: Identify M strongest beams for all users
2 while Card(G) < K do
3 M = M + 1,
4 for l = 1 : K do
5 t = sort(|Hb(:, l)|), and G = G ∪ {D(t(1 : M))},
6 end
7 end
8 Stage 2: Beam Selection with D-QR-P
9 A = Hb(G, :), and A = QR,

10 for j = 0 : Card(G) − K − 1 do
11 for k = 1 : Card(G) − j do
12 u = ek , and z = A(k, :),
13 Update R(−k), Q(−k), and obtain R(k)

sum using (6),
14 end
15 bj = argmax

k
{R(k)

sum}, G = G\{bi}, B = B ∪ bj ,

16 A = A(G, :), R = R(−bj), and Q = Q(−bj),
17 end
18 H̃r = Hb(B, :)

1) Identify M Strongest Beams for All K Users: This stage
aims to reduce the number of QR updates in the inner loop
of the D-QR-P by decreasing the number of candidate beams.
Let’s consider the following two definitions for lucidity.

Definition 1: Let bk,m represent the m-th strongest beam of
the k-th user, the strongest beam bk,1 ∈ D contains the most
of the channel power, and it is the first element of the sorted
|Hb(:, k)| in descending order. Then, G∗

k = {bk,m}Mm=1 ∈ D
includes the indices for the M strongest beams, where D =
{1, 2, . . . , N} is the set containing all beams available.

Definition 2: Users sharing identical beams are called in-
terfering user (IU)s, while a user is defined as non-interfering
user (NIU) if its beam is not selected by any other users. The

sets representing the IUs and NIUs are defined by KIU and
KNIU , respectively.

In this stage, the algorithm first identifies G∗
k for all K users.

Then, the candidate beam set is G = G∗
1 ∪G∗

2 ∪· · ·∪G∗
K , where

G ⊂ D and Card(G) ≤ MK. Note that this stage decides
the value of M to provide enough beam diversity for all K
users so that they can be served by K best-unshared beams
simultaneously. An example of how the value of M is decided
is shown in Fig. 1. In Fig. 1 (a) G = {1, 3, 8} when M = 1.
Since Card(G) < K, there are not enough beams for all K
users. Therefore, the algorithm tries the case of M = 2 in
Fig. 1 (b), where G = {1, 3, 7, 8} and still Card(G) < K.
Thence, the case of M = 3 is tried as in Fig. 1 (c), where
G = {1, 2, 3, 4, 7, 8} and Card(G) > K. There is now enough
beam diversity to provide an unshared beam for all K users.
Since beam 5 and 6 have no contribution to non of the users,
they are removed from the candidate beam set as in Fig. 1d.

User Index

B
ea

m
 I

n
d
ex

(a) (b) (c) (d)

1st Strongest Beam 2nd Strongest Beam 3rd Strongest Beam

Fig. 1: An example of showing the decision of M (a) M = 1, (b) M = 2,
(c) M = 3, (d) Candidate beam set.

If this stage decides that M = 1, there are no IUs in the
network. In this case, Algorithm 1 selects the K strongest
beams as in Definition 1, resulting in a near-optimal solution,
already proven in [4]. Additionally, multi-user interference is
eliminated by the precoder Pr = Q obtained in step 9.

2) Beam Selection with D-QR-P: If M > 1, Algorithm 1
performs the BS process summarized in stage 2. Similar to the
D-QR-P in [15], the beam that contributes the least to the sum-
rate performance is discarded in each iteration. However, the
number of Q and R updates in the inner loop is reduced from
(N − i) to (Card(G) − i). Thence, the overall complexity of
Algorithm 1 is O(2Card(G)K2)(step 9)+O((4K(Card(G))3+
6K2(Card(G))2 − 10K4)/3)(complexity of D-QR updates).

B. Proposed Three Stage Beam Selection with I-QR-P
We propose Algorithm 2 to reduce the complexity of I-QR-

P [15]. It consists of the following three stages.
1) Beam Selection for NIUs: The complexity of the I-QR-P

arises from the search process to identify the first beam that
contributes the most to the system sum-rate since it requires
complex QR decomposition for all N beams. To avoid this
process, Algorithm 2 groups users as IUs and NIUs inspired
by [4] in this stage. To do this, it first identifies the strongest
beam set B = {b1, b2, . . . , bK} for all K user as in Definition
1. Since the probability of having IUs, P = 1 − N !

NK(N−K)!
,

is considerably high in spite of N being large [4], it then
removes the repeatedly selected beams from B and defines the
non-interfering beam set as V ⊂ D. Since the beams in set V
contain the most of the channel power and cause considerably
low interference to others, the algorithm directly assigns these
beams to the NIUs. Note that no beams are yet selected for
the IUs in this stage.
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2) Identify M Strongest Beams for the IUs: After NIUs are
directly assigned with the beams in V , we have a beamspace
channel matrix A = Hb(V, :) ∈ CCard(V)×K for the NIUs and
candidate beam set for IUs are updated as D = D\V , where
Card(D) = N − Card(V). This stage aims to reduce the size
of the candidate beams for the IUs. Let B = Hb(D,KIU ) ∈
CCard(D)×Card(KIU ) represent the beamspace channel for the
IUs. Following the same process presented in Section III-A1,
Algorithm 2 decides the value of M and acquires a new beam
set for IUs as G ⊂ D, where Card(G) ≤ MCard(KIU ).
Algorithm 2: Three Stage Beam Selection with I-QR-P

Input: Hb, D, K, KIU = KNIU = G = B = ∅, M = 0
Output: H̃r

1 Stage 1: Beam Selection for NIUs
2 for k = 1 : K do
3 bk = argmaxbk |Hb(:, k)|, and B = B ∪ {bk},
4 end
5 Set V = unique(B),
6 for i = 1 : Card(V) do
7 j = find(B == V(j)),
8 if Card(j) > 1 then
9 V(V == V(j)) = ∅, and KIU = KIU ∪ {j},

10 end
11 end
12 B = V , KNIU = K\KIU , D = D\B, A = Hb(B, :), and

B = Hb(D,KIU ),
13 Stage 2: Identify M strongest beams for the IUs
14 Follow same steps (2 to 7) in Algorithm 1 to obtain G
15 Stage 3: Beam Selection with I-QR-P for IUs
16 A = QR,
17 for i = 1 : Card(KIN ) do
18 for j = 1 : Card(G) do
19 u = ej , and z = B(j, :),
20 Update R(+j), Q(+j), obtain R(j)

sum using (9),
21 end
22 bi = argmax

j
{R(j)

sum}, B = B ∪ {bi}, G = G\{bi},

23 Q = Qbi , and R = Rbi ,
24 end
25 H̃r = Hb(B, :)

3) Beam Selection for the IUs with I-QR-P: Algorithm
2 overcomes the computational complexity of I-QR-P [15]
mentioned in Section III-B1 since it does not include this
step. Instead, it first decomposes the channel matrix A = QR
obtained for the NIUs in stage 1, then keeps adding a new
row to A (i.e., a new beam) from G iteratively until all IUs
have an unshared beam, and R and Q are updated using (7)
and (8), respectively. Since the number of selected beams K ′

is less than K with I-QR-P BS, (6) is modified as [15]

Rsum =
∑
k

log2

(
1 +

γ

K ′ r̃
2
kk

)
bit/s/Hz, (9)

where r̃kk is the k-th element of diag(R(1 : K ′, 1 : K ′)).
For the IUs, this stage requires Card(KIN ) iterations and

Card(G) QR decomposition updates in the i-th iteration. Thus,
the total complexity is O(2Card(V)Card(KNIU )

2)(step 12)+
O((3Card(G)2Card(KIN )2 + 2Card(G)Card(KIN )3)/3).

IV. PERFORMANCE EVALUATION

This section presents the results for the proposed BS algo-
rithms. We have gauged their performance against benchmark
algorithms, D-QR-P, I-QR-P, IA-BS [4], MM-BS [5], and
maximizing SINR [6], for a fair comparison. Note that, we
do not include the results for C-QR-P2.

2 It was already proven in [15] that I-QR-P and D-QR-P provide almost
similar sum-rate with the C-QR-P but with considerably less complexity.

We generate a mmWave B-MIMO, where the base station
is a ULA with N antennas serving K randomly distributed
single-antenna users simultaneously. The channel has one LoS
path defined by α

(0)
k ∼ CN (0, 1) and two NLoS paths given

as α
(1,2)
k ∼ CN (0, 10−2) where the spatial direction φ is

uniformly distributed over [−π/2, π/2]. Further, all results are
produced on a computer with a 16 GB RAM and 3.4 GHz Intel
i7-6700 CPU, and averaged over 500 channel realizations.
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Fig. 2: Achievable sum-rate vs SNR, where N = 256 and K = 16.

The achievable sum-rate performance of the algorithms is
compared in Fig. 2. It is evident from the plot that the proposed
algorithms outperform IA-BS, MM-BS, and maximizing SINR
while they perform almost identically with I-QR-P and D-QR-
P at high SNRs. However, I-QR-P suffers a slight performance
loss at low SNRs, which can be compensated by Algorithm 2.
This is because I-QR-P starts with the QR decomposition of
only one row (i.e., a beam), which provides limited informa-
tion about the sparse channel, and adds new beams iteratively.
In contrast, Algorithm 2 starts with the QR decomposition
of the sparse channel matrix acquired for the NIUs, which
delivers more information than I-QR-P at the beginning.

The effect of beam diversity is evaluated in Fig. 3a. Since
Algorithm 1 and 2 choose M adaptively to provide enough
diversity, as mentioned in Fig. 1, they outperform the other
fixed cases. The case of M = 2 has poor performance,
especially for Algorithm 2, due to not having enough diversity.

The increment in beam resolution increases the sum-rate
for the proposed algorithms, as shown in Fig. 3b. However,
depending on the sparsity, we obtain a performance gap
between them. When high sparsity (i.e., K ≪ N ) exists, this
performance gap decreases, so that Algorithm-1 is superior to
Algorithm 2 in case of low sparsity.

Next, we compare the average running times in Fig. 3c and
Fig. 3d. Note that both do not provide the result for D-QR-P
since I-QR-P enjoys much less complexity than D-QR-P [15].

In Fig. 3c, both Algorithm 1 and 2 perform considerably
faster BS than I-QR-P. Note that Algorithm 2 outperforms
others and its speed-up factor gets more prominent as N
increases since it decreases the search size significantly in
stage 2 and selects beams for the IUs from the set G in stage
3. A low complexity BS for the NIUs is already performed
in stage 1. However, I-QR-P selects beams for all K users
from the beam set D, leading to increased complexity. Fig. 2
and Fig. 3c reveal that reducing the size of candidate beams
is critical in speeding up the BS while maintaining almost the
same sum-rate. In other words, if a beam contributes to no
user, there is no need to consider it in the selection process.

The effectiveness of the proposed algorithms for a sparse
environment is evaluated in Fig. 3d. In this case, Algorithm 1
and 2 still select beams faster than the benchmark. The average
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Fig. 3: (a) Effect of M on sum-rate, where N = 256 and K = 64, (b) Effect of the sparsity on sum-rate, (c) Averaged running times of the algorithms,
where K = N/16, (d) Averaged running times of the algorithms when K = 64 is fixed. (N varies from 128 to 1024 in (b), (c), and (d))

run time reduces for Algorithm 2 as the sparsity increases
since the probability of choosing the same strongest beam,
P = 1 − N !

NK(N−K)!
, in stage 1 decreases as N grows when

K = 64 is fixed. For example, P ≈ 99% when N = 256,
P ≈ 93% when N = 768, and P ≈ 82% when N = 1024.
Since the decrease in P and increase in beam diversity occur as
N grows, it is likely to have fewer IUs in stage 1. Thus, most
users directly select their strongest beams in stage 1 because
NIUs outnumber IUs. Consequently, the number of iterations
decreases to select beams with QR update for IUs in stage
3. The behavior of Algorithm 2 is different in Fig. 3c and
Fig. 3d. This is because the simulation setup in Fig. 3c, where
K = N/16), causes an increase in P . For example, P ≈ 38%
when N = 256, P ≈ 78% when N = 768, and P ≈ 87%
when N = 1024. Therefore, there will be more IUs with this
setup as N grows, increasing the complexity in stage 3.

V. CONCLUSION

This letter proposes a two-stage BS algorithm to reduce the
complexity of existing D-QR-P and a three-stage BS algorithm
for I-QR-P. The benchmark algorithms select beams from
all available beams during the BS process, although most do
not contribute to users. Nevertheless, the proposed algorithms
first identify the most contributing beams to narrow the can-
didate beam set and perform the BS afterward. Combining
this strategy with matrix perturbation theory reduces the BS
complexity significantly. The results validate that the proposed
algorithms provide almost identical sum-rate performance with
the baseline algorithms, and both can be adopted at low and
high SNRs. Note that I-QR-P is only suitable for application at
medium and high SNRs due to the loss observed in low SNRs.
Thence, the three-stage method is more attractive since it can
compensate for this loss along with its lowest complexity.

Additionally, the practical implementation of proposed
methods for wideband mmWave scenarios will be investigated
with multi-antenna users as a future study.
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