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ct 

ve laser melting (SLM) is a widely used powder-bed fusion additive manufacturing (AM) process for the fabrication of parts from metal 
rs in a variety of industries such as aerospace, medical, automotive, etc. Despite significant improvements in the design flexibility and 
nical performance, the poor predictability in surface finish, and yet oftentimes with large variability, remains a major challenge in the 
se. Numerous factors affect the surface roughness of SLM-manufactured parts, which have been reported in the literature, but mostly for 
amples composed of several layers. In this work, single-layer raster scanning of Ti6Al4V samples are designed and fabricated. The 
ce of the four most dominant SLM process parameters, i.e., laser power, scanning speed, hatch spacing, and layer thickness on sample 
 roughness is thoroughly investigated using a fractional factorial design. Surface roughness data, acquired by white-light interferometry, 
16 data sets are then used to train a machine learning model with the back-propagation method and predict the surface roughness based 
 input process parameters. The results show that the laser power is the most significant parameter in determining the top surface 
ess of samples. Interestingly, although the investigated samples are single layer raster scanning areas on a solid SLM-built sample with 
e parameter set, the layer thickness has a contribution of 10% to 15% in the variations of the surface roughness of the single layers. 

rmore, the machine learning algorithm achieves reasonable predictability, showing a coefficient of determination of 98.8% for a separate 
ing data set. 
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roduction 

ective laser melting (SLM), also known as laser-based 
r bed fusion (L-PBF) or direct metal laser sintering 
S), is one of the most popular types of metal additive 

facturing (AM) that employs metal powders selectively 
d in a layer-wise manner by a high-intensity laser beam 
ing to a sliced computer-aided design (CAD) model. 
is widely used in various industries including medical, 
otive, and aerospace. Some examples of these 
ations include patient-specific metal implants [1], 

turbine blades [2], engine manifolds [3], and lattice structures 
[4]. The popularity of this manufacturing technique in such 
industries is due to many advantages that this method offers: 
design freedom, reduced manufacturing time, minimized 
material waste, sustainability benefits, etc. [5]. However, 
SLM-fabricated parts present several defects in terms of 
internal pores and surface roughness, which deteriorate the 
mechanical performance of the components.  

Some of the mechanical properties of the SLM parts, such 
as fracture toughness, can be improved by high-temperature 
heat treatments, such as hot isostatic pressing (HIP) [6]. While 



702 B. Fotovvati and K. Chou / Manufacturing Letters 33 (2022) 701–711 

the HIP treatment significantly reduces internal porosity, its 
effect on the fatigue resistance of the parts is negligible since 
fatigue resistance is largely determined by surface defects, 
which are the potential crack initiation sites, rather than 
internal porosities [7]. Manipulating surface roughness is also 
important in medical implants as they need to mimic human 
bone surface roughness to get the desired interaction between 
the implant and surrounding tissues. It is imperative, 
therefore, to be able to manipulate and control the surface 
roughness of the fabricated parts without requiring additional 
post-processing processes. Many parameters are involved in 
the SLM process, e.g., laser beam power and speed, scanning 
pattern, layer thickness, metal powder size distribution, etc., 
choice of which significantly affects the process stability and 
the quality of the parts, including their surface roughness [8–
10].  

Choosing the appropriate process parameters and their 
range to manipulate the surface roughness of SLM parts can 
be utilized through a design of experiment (DoE) technique. 
A full factorial DoE consists of all the possible combinations 
of all the values of the parameters. Although knowing the 
exact behavior of the model for every possible case is an 
advantage, using a full factorial DoE is sometimes impractical 
due to the high cost and time associated with samples 
manufacturing, characterization, and analysis. This is where 
there is a need for the fractional factorial design of 
experiments, in which utilizing known properties selectively 
reduces the number of experiments [11]. An example of 
employing this statistical method in the SLM process can be 
seen in a work by Read et al. [12] where the effects of laser 
power and scan speed on the porosity development in 
AlSi10Mg alloy samples are investigated. Sing et al. [13] 
fabricated titanium-tantalum (TiTa) alloy using the SLM 
process by exploring the influence of different levels of laser 
power and scanning speed on the relative density and 
microhardness of fabricated parts. Bang et al. [14] obtained 
the process conditions to achieve a relative planar density of 
over 99.5% ± 0.1% for stainless steel 316L samples along 
with the mechanism of tunable mechanical properties by 
understanding the correlations between the microstructure, 
chemical composition, and energy density. Also, the impacts 
of post-processing conditions can be taken into consideration, 
such that the effects of heat-treatment parameters, e.g., 
temperature and time, were investigated alongside the SLM 
process parameters for Ti6Al4V parts in the literature [15–
17].  

The combination of DoE approaches with machine 
learning (ML) methods provides more flexible and powerful 
techniques for the characterization and optimization of 
parameters involved in the process. Machine learning 
methods allow complex pattern recognition and regression 
analysis to be performed without constructing and solving 
physical models. A wide range of industries, such as 
manufacturing, aerospace, and biomedicine, rely on this 
method to model, predict, and analyze parameter interactions 
[18–20]. Due to their high processing power and sophisticated 
architectures, artificial neural networks (ANNs) are the most 
widely used ML algorithms. An ANN is simply a 
mathematical model that maps an input space to an output 

space, and its architecture is composed of an input layer, one 
or more hidden layers, and an output layer. Properly trained 
ANNs can model the correlations between the given input and 
output data and accordingly predict the responses based on 
unseen input values.  

ANNs have been employed in the SLM process in various 
ways; some of the applications are the design for AM, 
including topology and material design [21], in-situ process 
monitoring, including melt pool or powder bed monitoring 
using optical or acoustic techniques [22–25], and process-
property correlation [26,27]. Recently, the process-property 
correlation application of the ANN models has been extended 
to the optimization of this process for different materials. An 
example is the optimization of four SLM process parameters, 
i.e., laser power, laser scanning speed, layer thickness, and 
hatch spacing, to achieve a relative density of 99.8% for Ti-
6Al-4V parts [28], and that was also extended to include the 
optimization of the top surface roughness of cubic samples for 
the same four parameters [29].  

Most of the discussed research studies have improved the 
SLM process parameters and optimized the properties of bulk 
samples. But to further improve these properties, one may 
need to dig more into the details of the fabrication and 
characterization of each layer during the SLM process. One of 
the main contributions of this work is to investigate the 
correlations between surface roughness and SLM process 
parameters and provide predictive models for “single-layer” 
raster scanning samples, on which there is very limited work 
in the literature. Single-layer evaluation of samples has a 
significant value in layer-wise manufacturing processes, e.g., 
SLM, as the whole part is formed by adding all these single 
layers. An application of such a predictive model is when it is 
integrated with an in-situ monitoring system to evaluate the 
surface of parts, layer by layer, during the manufacturing 
process and suggests fine-tuning the process parameter to get 
the desired properties, e.g., to avoid/minimize internal 
porosity of parts while there are being manufactured.  

This paper aims to thoroughly investigate the influence of 
laser power, scanning speed, hatch spacing, and layer 
thickness on surface characteristics of single-layer raster 
scanning of Ti6Al4V samples. A fractional factorial design of 
experiments (DoE) is employed to cover more factors with 
wider ranges and more levels to capture the nonlinearities of 
the responses. To construct a statistically reliable data set, 
measurements were done on nine areas with different 
dimensions to have nine replicates for each parameter set and 
eliminate any possible effect of measurement area size. The 
surface roughness data collected from the experiments is then 
used to train a deep learning model to successfully predict the 
surface roughness of single layer raster scanning based on the 
input process parameters. The intent is to obtain meaningful 
correlations between the SLM process parameters and single-
layer surface characteristics that can be extended to the 
interactions between single layers of SLM parts fabricated 
with different parameter sets, which can play a significant role 
in realizing the part quality improvement criterion when 
additional layers are added for fabrication of parts with 
complex geometries. 
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2. Experimental Details 

2.1. Design of experiments (DoE) 

Five levels of power (60 W, 90 W, 120 W, 150 W, and 180 
W), five levels of scan speed (500 mm/s, 750 mm/s, 1000 
mm/s, 1250 mm/s, and 1500 mm/s), five levels of hatch 
spacing (50 µm, 75 µm, 100 µm, 125 µm, and 150 µm), and 
three levels of layer thickness (20 µm, 30 µm, and 40 µm) 
were used to design the experiment. The ranges for the 
process parameters were chosen so to revolve around the 
manufacturer-recommended values to account for the 
manufacturability of parts. Also, the volumetric energy 
density absorbed by the metal powders during the SLM 
process was considered to choose the lowest and highest 
levels of each parameter. The absorbed volumetric energy 
density can be estimated by E = P/(v·h·t), where P is laser 
power, v is scan speed, h is hatch spacing, and t is layer 
thickness. In general, in an experiment with k factors, having l 
levels, an lk-p design results in lk-p runs, where p is the 
reduction factor to reduce the number of experiments. A 
similar concept can be utilized in a mixture design, where one 
or some of the factors have different numbers of levels.  

Table 1. Fractional factorial DoE of parameter sets used in this study. 

Run # Laser 
power 
(W) 

Scan 
speed 
(mm/s) 

Hatch 
spacing 
(µm) 

Layer 
thickness 
(µm) 

Volumetric 
Energy Density 
(J/mm3) 

1 60 500 50 20 120.0 

2 60 750 75 40 26.7 

3 60 1000 100 30 20.0 

4 60 1250 125 20 19.2 

5 60 1500 150 40 6.7 

6 90 500 75 30 80.0 

7 90 750 100 20 60.0 

8 90 1000 125 40 18.0 

9 90 1250 150 30 16.0 

10 90 1500 50 20 60.0 

11 120 500 100 40 60.0 

12 120 750 125 30 42.7 

13 120 1000 150 20 40.0 

14 120 1250 50 40 48.0 

15 120 1500 75 30 35.6 

16 150 500 125 20 120.0 

17 150 750 150 40 33.3 

18 150 1000 50 30 100.0 

19 150 1250 75 20 80.0 

20 150 1500 100 40 25.0 

21 180 500 150 30 80.0 

22 180 750 50 20 240.0 

23 180 1000 75 40 60.0 

24 180 1250 100 30 48.0 

25 180 1500 125 20 48.0 

 

A fractional factorial design with 25 runs was used for this 
research (Table 1). This design has only 1/15th of the number 
of experiments in the full factorial design, which requires 53 × 
3 = 375 observations for these numbers of factors and levels. 
The samples are designed as three 5 mm by 5 mm raster 
scanning areas for each parameter set on semi-cylinder bases, 
which were fabricated using default process parameters (laser 
power: 170 W, scan speed: 1250 mm/s, hatch spacing:100 
µm) and were attached to the build plate by support 
structures. Fig. 1 shows some examples. 

2.2. Sample fabrication 

An EOS M270 is used to fabricate the designed specimens 
using Ti-6Al-4V powders from Carpenter Technology 
Corporation (Philadelphia, PA, USA). The powder particle 
size distribution was measured using a Microtrac S3500 laser 
diffraction particle size analyzer (Microtrac MRB, Osaka, 
Japan) and the results are shown in Fig. 2.  

 

 

Fig. 1. Examples of fabricated samples on an EOS M270 build plate. 

 

Fig. 2. Ti-6Al-4V powder particle size distribution measured before the first 
build. 

The design of the experiment consisted of three levels of 
layer thickness. Therefore, three different builds with different 
layer thicknesses were carried out. Fig. 1 shows some of the 
samples fabricated with 30 µm layer thickness. After the 
completion of the build, the specimens were separated from 
the build plate by cutting the support area with a band saw. 
Materialise Magics v. 25.0 was used for STL preparation and 
support generation. 
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2.3. Surface roughness measurement 

A non-contact optical profiler, WYKO NT1100 from 
Veeco Metrology was used to acquire the surface data of top 
surfaces based on white light interferometry (WLI). The 
instrument was calibrated using a 10 µm step-height standard. 
Vertical scanning interferometry (VSI) measurement mode 
was chosen with an objective lens of 50X and a 0.5X field of 
view lens. This gives an effective field of view of 0.25 mm by 
0.19 mm. For each parameter set, top surface roughness 
measurements were done using stitching on nine areas, 
including six 0.5 mm by 0.5 mm areas and three 1 mm by 1 
mm areas to have nine replicates with different area sizes for 
each sample, resulting in 4.5 mm2 in total area. Approximate 
locations of the measured areas of samples are illustrated in 
Fig. 3. The dark blue arrows in the figure show a schematic of 
the laser scan directions. The number of scan lines varies in 
different samples depending on the hatch spacing. Top surface 
roughness metrics, including Sa and Sv, were measured for 
each sample. The statistical analysis of this research was 
carried out using Minitab 20.3 (Minitab Inc., State College, 
PA, USA). 

 

 

 

Fig. 3. (Top) actual and (bottom) schematic top views of a sample with three 
5 mm by 5 mm raster scans of one parameter set. Nine measurement surface 
areas (replicates) for each parameter set are shown by green rectangles. 

3. Results and discussion 

Fig. 4 shows some typical morphologies of top surfaces of 
samples with different volumetric energy densities (E) 
resulting in different surface roughness values, on roughness 
vs. energy density plot, where the correlation of top surface 
roughness metrics, including Sa and Sv, and volumetric energy 
density is illustrated. The Sv parameter, which is the depth of 
the deepest valley in the surface profile, indicates the local 
extreme situation for crack initiation and is taken into 
consideration in the literature due to its significance in fatigue 
life predictions [30,31]. The horizontal and vertical axes in the 
subfigures (a-d) represent x and y coordinates in mm. The 
decreasing trend of the surface roughness metrics, i.e., Sa and 
Sv, with increasing the volumetric surface energy can be 

observed in Fig. 4. Although the highest energy density, i.e., 
240 J/mm3, (Fig. 4(d)) leads to the lowest top surface 
roughness, it is not recommended for part manufacturing, 
because of gas pores and micro-cracks formed due to 
overheating at these energy densities. These pores decrease 
the fractional density of the part and cause the optimum 
energy density to be at the local extrema in the profiles of the 
surface roughness and fractional densities at 40–60 J/mm3 for 
this material [32]. Also, microcracks can act as crack initiators 
under dynamic loading. Examples are shown in Fig. 4(d).  

As it is discussed earlier, the volumetric energy density is a 
function of the SLM process parameters, i.e., laser power, 
scan speed, hatch spacing, and layer thickness. So, to 
investigate the contribution of each factor to the total 
variations in the surface roughness values, an analysis of 
variance (ANOVA) is performed with 95% confidence, for Sa 
and Sv, and the results are presented in Table 2 and Table 3, 
respectively. Moreover, to investigate the correlations 
between the top surface roughness and the process 
parameters, main effect plots are presented in Fig. 5. 

The significance of parameters can be comprehended by 
comparing the P-values in ANOVA. Generally, smaller p-
values indicate greater statistical incompatibility with the null 
hypothesis, implying a greater significance of the parameter. 
According to Table 2 and Table 3, all the parameters show 
great significance in determining the response parameters, i.e., 
Sa and Sv. So, to compare the level of contribution of each 
factor, the percent contribution of them was calculated by 
dividing the sum of squares for each factor by the total sum of 
squares of all factors and multiplying the result by 100 [33].  

The ANOVA results show that the laser power and layer 
thickness are the most and the least significant factors, 
respectively, among the other parameters; however, it should 
be noted that the chosen value range for the layer thickness is 
smaller than the other parameters. All the parameter ranges 
are designed, from the lowest to the highest level, to have a 
similar effect on the energy density, i.e., increasing it to the 
order of three, except for the layer thickness that changes the 
energy density in the order of two; and that is due to the 
limitations of the number of experiments and avoiding levels 
far from the recommended values. So, considering this 
limitation for the layer thickness, it might have a similar level 
of significance to the laser power if the parameter range could 
be extended to 60 µm, as it is reported elsewhere for the same 
material [34]. 

 

Table 2. ANOVA for main effects of parameters on Sa. 

Source DoF Adjusted 
sum of 
squares 

Adjusted 
mean 
square 

F-
value 

P-
value 

Contribution 
% 

Laser 
power 

4 4910.2 1227.6 148.33 0.000 45.1 

Scan 
speed 

4 2212.2 553.1 66.83 0.000 20.3 

Hatch 
spacing 

4 2564.0 641.0 77.45 0.000 23.6 

Layer 
thickness 

2 1198.0 599.0 72.38 0.000 11.0 
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Table 3. ANOVA for main effects of parameters on Sv. 

Source DoF Adjusted 
sum of 
squares 

Adjusted 
mean 
square 

F-
value 

P-
value 

Contribution 
% 

Laser 
power 

4 26621 6655.3 78.94 0.000 34.5 

Scan 
speed 

4 21243 5310.8 62.99 0.000 27.5 

Hatch 
spacing 

4 18310 4577.5 54.30 0.000 23.7 

Layer 
thickness 

2 11010 5505.1 65.30 0.000 14.3 

 
The results presented in Fig. 5 suggest using the highest 

energy density, which is obtained by the combination of the 
highest level of laser power and the lowest levels of scan 
speed, hatch spacing, and layer thickness, leads to obtaining 
the smallest roughness values for the top surface roughness of 
SLM parts, which is in line with the results presented in Fig. 
4; Nevertheless, when choosing the desired layer thickness 
value for manufacturing a part using the SLM process, other 
factors, such as manufacturing time, the powder size 
distributions, and powder bed distortion due to the inert gas 
flow, must be taken into consideration, as well. 

A possible interpretation for this behavior at higher energy 
densities may be the gravitational force that smoothens the 
melt tracks on the top surfaces. It was observed that 
increasing the energy density increases the top surface quality 
in terms of roughness. Still, it cannot be concluded that any 
changes in any of the process parameters that increase the 
energy density, will play a role in decreasing the surface 
roughness. The two parameters that did not show a sustained 
increment/decrement within their ranges were scanning speed 
and hatch spacing. As it is depicted in Fig. 5(a), the maximum 
Sa values happen at a scan speed of 1000 mm/s and hatch 
spacing of 125 µm. Top surface roughness increases with 
increasing hatch spacing up to 125 µm because, at low hatch 
spacing values, the overlaps of adjacent melt tracks flatten the 
melt beads and create a smooth surface. Increasing the hatch 
spacing and moving melt tracks apart from each other, forms 
deep valleys between the tracks that significantly increases 
the surface roughness; however, since single layer scanning is 
being investigated in this research, and the previous layer 
belongs to a base fabricated using the manufacturer-
recommended process parameters, which is not optimized 
solely for the top surface roughness, when the melt tracks 
move apart, after some point, 125 µm in this case, the 
previous layer incorporates more in surface roughness 
measurement of these samples, as it is illustrated in Fig. 6. 
Therefore, in the study of single-layer raster scanning, 
increasing hatch spacing after some point highlights the role 
of the previous layer in surface roughness determination of 
the top surface. So, a high-energy parameter set, e.g., P = 180 
W, v = 750 mm/s, h = 50 µm, t = 20 µm, which results in the 
lowest surface roughness (see Figure 4) may be used as the 
top surface of the bases before depositing the single-layer 
samples. 

Fig. 5 also suggests that decreasing layer thickness 
increases the top surface quality, for both Sa and Sv metrics. 

Debroy et al. [35] reported the same behavior for surface 
roughness of SLM parts, regardless of the material. Therefore, 
the smallest possible layer thickness is recommended in the 
SLM process to minimize the surface roughness; however, to 
determine a lower limit for the layer thickness, other above-
mentioned factors need to be taken into account. 

  In addition to the ANOVA for the main effects of the 
parameters, an ANOVA for the parameters and their two-way 
interactions was performed to evaluate the interactions of the 
parameters in determining the top surface response. Table 4 
presents the results of the ANOVA for main effects and 
interactions of parameters on Sa. Also, Fig. 7 shows the 
process parameters’ interaction for top surface roughness 
assessment Sa. 

The last column of Table 4 shows that even by considering 
the parameters’ interactions, laser power is still the most 
dominant factor among all the other parameters and their 
interactions. The contribution of all the two-way interactions 
of the parameters, except for laser power and layer thickness 
interaction, turned out to be negligible compared to the main 
effects of the parameters. The dependence of laser power and 
layer thickness can be also observed at the top right corner 
grid of Fig. 7, where the row of laser power intersects with the 
column of layer thickness. 

Fig. 7 shows how the relationship between one categorical 
factor and a continuous response depends on the value of the 
second categorical factor. This plot shows the means for the 
levels of one factor on the x-axis and a separate line for each 
level of another factor. In this Fig., each row/column is 
assigned to one parameter. In other words, laser power (W), 
scan speed (mm/s), hatch spacing (μm), and layer thickness 
(μm) are assigned to the first, second, third, and fourth 
row/column, respectively. The interaction of each two 
parameters is presented in the intersection block of the row 
and column of those two parameters. For instance, the top 
right corner of Fig. shows the interaction of laser power (row) 
and layer thickness (column). It can be seen in this Fig. that at 
lower levels of power, i.e., 60 W and 90 W, increasing the 
layer thickness increases the surface roughness significantly; 
however, at higher laser power values, changing layer 
thickness does not have any significant effects on the 
roughness. In other words, at high powers, surface roughness 
is not a function of layer thickness. A possible reason might 
be that the laser beam at lower powers can melt the entire 
layer when it is thin, but it has limited penetration depth at 
thicker layers; Nonetheless, high-power laser beams have full 
penetration regardless of the layer thickness. 

Generally, on an interaction plot, parallel lines indicate no 
interaction between the two parameters, however, nonparallel 
lines show an interaction between the two parameters. The 
more nonparallel the lines are, the greater the strength of the 
interaction. 
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Fig. 4. Typical morphology of top surfaces for different parameter sets (a-d) showed on the top surface roughness (Sa) vs. energy density plot (e). The parameters 
are (a) P = 90 W, v = 1250 mm/s, h = 150 µm, t = 30 µm, (b) P = 120 W, v = 1500 mm/s, h = 75 µm, t = 30 µm, (c) P = 150 W, v = 500 mm/s, h = 125 µm, t = 20 
µm, (d) P = 180 W, v = 750 mm/s, h = 50 µm, t = 20 µm.
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Fig. 5. Main effects plots for surface parameters: (Top) Sa, and (Bottom) Sv. 

 

Fig. 6. A sample with a large hatch spacing (h = 150 µm) showing the 
contribution of the previous layer in the surface roughness measurement of 
the top layer. Other process parameters for this sample are P = 90 W, v =1250 
mm/s, and t = 30 µm. Examples of the regions with the exposed previous 
layer are shown in orange ellipses. 

Table 4. ANOVA for main effects and interactions of parameters on Sv. P is 
laser power, v is scan speed, h is hatch spacing, and t is layer thickness. 

Source DoF Adjusted 
sum of 
squares 

Adjusted 
mean 
square 

F-
value 

P-
value 

Contribution 
% 

P 1 4910.2 1227.6 148.33 0.000 45.1 

v 1 2212.2 553.1 66.83 0.000 20.3 

h 1 2564.0 641.0 77.45 0.000 23.6 

t 1 171.9 171.94 19.94 0.000 1.7 

P . v 1 36.8 36.84 4.27 0.040 0.4 

P . h 1 1206.7 1206.72 139.95 0.000 11.7 

P . t 1 373.7 373.66 43.33 0.000 3.6 

v . h 1 164.3 164.30 19.06 0.000 1.6 

v . t 1 107.2 107.16 12.43 0.001 1.0 

h . t 1 171.9 171.94 19.94 0.000 1.7 

 

4. Artificial neural network (ANN) 

In this research, the input layer of the ANN is designed 
with four neurons corresponding to the four SLM process 
parameters, i.e., P, v, h, and t, and the output layer has one 
neuron to predict the top surface Sa value. A total of 216 data 
sets were split into 85% training and 15% testing data. K-fold 
cross-validation with K = 6 was used to again break the 
training set into ~85% training and ~15% cross-validation 
sets. Since the input parameters have different ranges, a 
normalization preprocessing was performed on the input data. 
The back-propagation method was employed for training the 
model. In this method, gradients are computed iteratively for 
each layer by applying the mathematical chain rule [36]. The 
objective of the training process is to optimize the 
hyperparameters, e.g., weights and bias values, of the model 
by minimizing the loss function. An Adam optimizer is used 
for this purpose. In the beginning, the weights are distributed 
randomly to the nodes. Based on the known inputs and 
outputs of the training data, the model calculates and 
compares its resulting outputs against the desired outputs and 
then adjusts its weights based on errors propagated back into 
it. This process is repeated until the loss is minimized. The 
learning rate, which is the amount that the weights are 
updated each time during training, was set to 0.0005. 
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After testing several networks with different numbers of 

hidden layers and nodes, the architecture with two hidden 
layers with 200 and 150 neurons in the first and second layers, 
respectively, showed the best performance in terms of 
prediction accuracy. To avoid overfitting, where the model 
has high accuracy on the training data but is not likely to 
perform well on the testing data, the weight regularization 
(weight decay) [37] and the dropout methods [38] are used. 
Weight regularization penalizes the model during training 
based on the magnitude of the weights and prevents the 
weights from growing too large by adding a term to the loss 
function. A Ridge regression (L2) regularization was used for 
this model: 

 
 

  
where N is the number of datasets,  and  are the 

predicted and actual responses, respectively, and θ is the 
weight vector. λ is a regularization parameter determining the 
extent of the penalization of large weights in the model and 
was set to be 0.02 in this research. In addition to weight 
regularization, the dropout method, in which units are 
randomly dropped from the layers during training, was 
employed to avoid overfitting. By treating the layers as layers 
with fewer nodes and connections to prior layers, this 
approach breaks up situations where the layers co-adapt to 
correct mistakes from prior layers, thus making the model 

more robust. In this research, the probabilities of retaining a 
unit in the first and second hidden layers were 0.45 and 0.5, 
respectively. 

Rectified Linear Unit (ReLU) activation functions were 
used for the hidden layers and a linear activation function was 
utilized for the output layer. The ANN training, testing, and 
evaluations are performed using Python 3.8.8 in the PyCharm 
2021.1.2 environment and the TensorFlow library. Mean 
square error (MSE) and r-squared (the coefficient of 
determination) were used to assess the prediction accuracy 
and performance of the model. The 
ANN results and performance is summarized in Table 5 and 
Fig. 8. 

This model now can predict the surface roughness of any 
combinations of the process parameters. To predict the 
extreme cases according to the main effect plots (Fig. 5), they 
were fed into the trained network to see what the maximum 
and minimum Sa values are obtainable in this range of 
processing parameters. Fig. 5 suggests that the following 
parameter set P = 180 W, v = 500 mm/s, h = 50 µm, and t = 
20 µm leads to the highest surface quality, and using P = 60 
W, v = 1000 mm/s, h = 125 µm, and t = 40 µm, results in the 
maximum surface roughness value. These extreme cases were 
predicted by the trained model as Sa = 1.08 µm and Sa = 38.33 
µm, respectively. Note that these values may not be 
achievable due to the limitations of the manufacturability of 
some parameter combinations as discussed earlier in section 
2.1. 

 

Fig. 7. Parameters’ interaction plots for Sa. All vertical axes show Sa values in µm. 
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Fig. 8. ANN performance on the testing data in terms of actual vs predicted 
values. 

  
A linear regression model was used for comparison 

purposes of the ANN results. The linear regression equation 
was obtained as: 

 
 

 
where P is the laser power, v is the scanning speed, h is the 
hatch spacing, and t is the layer thickness. The mean square 
error and the coefficient of determination of the predicted 
values by this linear regression model were 18.6874 
(compared to 0.6718 for the ANN) and 65.26% (compared to 
98.79% for the ANN), respectively.  

Table 5. The ANN performance in terms of MSE and r-squared for testing 
and training data. 

 Mean square error Coefficient of determination 

Training data 0.6718 98.79 % 

Testing data 0.5264 98.82 % 

 

5. Conclusions 

To gain a deeper understanding of how single layer formation 
is influenced by the SLM process parameters, this paper 
thoroughly investigates the effects of laser power, scanning 
speed, hatch spacing, and layer thickness on surface 
characteristics of single-layer raster scanning of Ti6Al4V 
samples fabricated by SLM. A fractional factorial design of 
experiments (DoE) is employed to cover more factors with 
wider ranges and more levels so as to capture the 
nonlinearities of the responses. Measurements were done on 
nine areas of varying sizes for each parameter set to construct 
a statistically reliable data set and to eliminate any possible 
effect of the size of the measurement area. The single-layer 
raster scanning surface roughness data is then used to train a 
machine learning model to successfully predict the responses 
based on the input process parameters. Such an ML model can 
be integrated with an in-situ monitoring system to evaluate the 
surface of parts, layer by layer, during the manufacturing 
process and suggests fine-tuning the process parameter to get 
the desired properties, e.g., to avoid/minimize internal 
porosity of parts while there are being manufactured. The 
analyses and results show that: 

•  Both Sa and Sv metrics of the top surface decrease with 
increasing the volumetric energy density.  

•  Among the investigated parameters, laser power and layer 
thickness have the most and least significant effects on the 
top surface roughness, respectively. 

•  The combination of the highest level of laser power and 
the lowest levels of scan speed, hatch spacing, and layer 
thickness, e.g., the highest energy density (240 J/mm3), 
results in the smallest roughness values for the top surface 
roughness of SLM parts. However, too high energy 
densities lead to the formation of other types of defects, 
such as surface cracks. 

•  Decreasing the layer thickness increases the top surface 
quality, for both Sa and Sv metrics; however, other factors, 
such as manufacturing time, powder size distributions, and 
powder-bed distortion caused by inert gas flow, are 
recommended to be taken into account, when determining 
a lower limit for the layer thickness. 

•  Higher laser power values diminish the effects of layer 
thickness on the top surface roughness. 

• Top surface roughness increases with increasing hatch 
spacing up to 125 µm. Increasing the hatch spacing more 
to 150 µm forms deep valleys between the tracks that 
should significantly increase the surface roughness; 
however, when the melt tracks move apart, the previous 
layer, which is smoother, incorporates more in surface 
roughness measurement of these samples and results in 
lower values for both Sa and Sv. 

•  Except for the laser power and layer thickness interaction, 
the two-way interactions of all the other parameters are 
negligible in determining the top surface roughness values. 

• An artificial neural network was trained using some of the 
experimental data collected throughout this research and 
was tested successfully with a separate data set, showing a 
coefficient of determination of 98.8% for the testing data 
set. 
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