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Abstract

Selective laser melting (SLM) is a widely used powder-bed fusion additive manufacturing (AM) process for the fabrication of parts from metal
powders in a variety of industries such as aerospace, medical, automotive, etc. Despite significant improvements in the design flexibility and
mechanical performance, the poor predictability in surface finish, and yet oftentimes with large variability, remains a major challenge in the
SLM use. Numerous factors affect the surface roughness of SLM-manufactured parts, which have been reported in the literature, but mostly for
bulk samples composed of several layers. In this work, single-layer raster scanning of Ti6Al4V samples are designed and fabricated. The
influence of the four most dominant SLM process parameters, i.e., laser power, scanning speed, hatch spacing, and layer thickness on sample
surface roughness is thoroughly investigated using a fractional factorial design. Surface roughness data, acquired by white-light interferometry,
from 216 data sets are then used to train a machine learning model with the back-propagation method and predict the surface roughness based
on the input process parameters. The results show that the laser power is the most significant parameter in determining the top surface
roughness of samples. Interestingly, although the investigated samples are single layer raster scanning areas on a solid SLM-built sample with
the same parameter set, the layer thickness has a contribution of 10% to 15% in the variations of the surface roughness of the single layers.
Furthermore, the machine learning algorithm achieves reasonable predictability, showing a coefficient of determination of 98.8% for a separate
32 testing data set.
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1. Introduction turbine blades [2], engine manifolds [3], and lattice structures

[4]. The popularity of this manufacturing technique in such

Selective laser melting (SLM), also known as laser-based
powder bed fusion (L-PBF) or direct metal laser sintering
(DMLYS), is one of the most popular types of metal additive
manufacturing (AM) that employs metal powders selectively
melted in a layer-wise manner by a high-intensity laser beam
according to a sliced computer-aided design (CAD) model.
SLM is widely used in various industries including medical,
automotive, and aerospace. Some examples of these
applications include patient-specific metal implants [1],

industries is due to many advantages that this method offers:
design freedom, reduced manufacturing time, minimized
material waste, sustainability benefits, etc. [5]. However,
SLM-fabricated parts present several defects in terms of
internal pores and surface roughness, which deteriorate the
mechanical performance of the components.

Some of the mechanical properties of the SLM parts, such
as fracture toughness, can be improved by high-temperature
heat treatments, such as hot isostatic pressing (HIP) [6]. While
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the HIP treatment significantly reduces internal porosity, its
effect on the fatigue resistance of the parts is negligible since
fatigue resistance is largely determined by surface defects,
which are the potential crack initiation sites, rather than
internal porosities [7]. Manipulating surface roughness is also
important in medical implants as they need to mimic human
bone surface roughness to get the desired interaction between
the implant and surrounding tissues. It is imperative,
therefore, to be able to manipulate and control the surface
roughness of the fabricated parts without requiring additional
post-processing processes. Many parameters are involved in
the SLM process, e.g., laser beam power and speed, scanning
pattern, layer thickness, metal powder size distribution, etc.,
choice of which significantly affects the process stability and
the quality of the parts, including their surface roughness [8—
10].

Choosing the appropriate process parameters and their
range to manipulate the surface roughness of SLM parts can
be utilized through a design of experiment (DoE) technique.
A full factorial DoE consists of all the possible combinations
of all the values of the parameters. Although knowing the
exact behavior of the model for every possible case is an
advantage, using a full factorial DoE is sometimes impractical
due to the high cost and time associated with samples
manufacturing, characterization, and analysis. This is where
there is a need for the fractional factorial design of
experiments, in which utilizing known properties selectively
reduces the number of experiments [11]. An example of
employing this statistical method in the SLM process can be
seen in a work by Read et al. [12] where the effects of laser
power and scan speed on the porosity development in
AlSil0Mg alloy samples are investigated. Sing et al. [13]
fabricated titanium-tantalum (TiTa) alloy using the SLM
process by exploring the influence of different levels of laser
power and scanning speed on the relative density and
microhardness of fabricated parts. Bang et al. [14] obtained
the process conditions to achieve a relative planar density of
over 99.5% =+ 0.1% for stainless steel 316L samples along
with the mechanism of tunable mechanical properties by
understanding the correlations between the microstructure,
chemical composition, and energy density. Also, the impacts
of post-processing conditions can be taken into consideration,
such that the effects of heat-treatment parameters, e.g.,
temperature and time, were investigated alongside the SLM
process parameters for Ti6Al4V parts in the literature [15—
17].

The combination of DoE approaches with machine
learning (ML) methods provides more flexible and powerful
techniques for the characterization and optimization of
parameters involved in the process. Machine learning
methods allow complex pattern recognition and regression
analysis to be performed without constructing and solving
physical models. A wide range of industries, such as
manufacturing, aerospace, and biomedicine, rely on this
method to model, predict, and analyze parameter interactions
[18-20]. Due to their high processing power and sophisticated
architectures, artificial neural networks (ANNs) are the most
widely used ML algorithms. An ANN is simply a
mathematical model that maps an input space to an output

space, and its architecture is composed of an input layer, one
or more hidden layers, and an output layer. Properly trained
ANNSs can model the correlations between the given input and
output data and accordingly predict the responses based on
unseen input values.

ANNs have been employed in the SLM process in various
ways; some of the applications are the design for AM,
including topology and material design [21], in-situ process
monitoring, including melt pool or powder bed monitoring
using optical or acoustic techniques [22-25], and process-
property correlation [26,27]. Recently, the process-property
correlation application of the ANN models has been extended
to the optimization of this process for different materials. An
example is the optimization of four SLM process parameters,
i.e., laser power, laser scanning speed, layer thickness, and
hatch spacing, to achieve a relative density of 99.8% for Ti-
6AI-4V parts [28], and that was also extended to include the
optimization of the top surface roughness of cubic samples for
the same four parameters [29].

Most of the discussed research studies have improved the
SLM process parameters and optimized the properties of bulk
samples. But to further improve these properties, one may
need to dig more into the details of the fabrication and
characterization of each layer during the SLM process. One of
the main contributions of this work is to investigate the
correlations between surface roughness and SLM process
parameters and provide predictive models for “single-layer”
raster scanning samples, on which there is very limited work
in the literature. Single-layer evaluation of samples has a
significant value in layer-wise manufacturing processes, e.g.,
SLM, as the whole part is formed by adding all these single
layers. An application of such a predictive model is when it is
integrated with an in-situ monitoring system to evaluate the
surface of parts, layer by layer, during the manufacturing
process and suggests fine-tuning the process parameter to get
the desired properties, e.g., to avoid/minimize internal
porosity of parts while there are being manufactured.

This paper aims to thoroughly investigate the influence of
laser power, scanning speed, hatch spacing, and layer
thickness on surface characteristics of single-layer raster
scanning of Ti6Al4V samples. A fractional factorial design of
experiments (DoE) is employed to cover more factors with
wider ranges and more levels to capture the nonlinearities of
the responses. To construct a statistically reliable data set,
measurements were done on nine areas with different
dimensions to have nine replicates for each parameter set and
eliminate any possible effect of measurement area size. The
surface roughness data collected from the experiments is then
used to train a deep learning model to successfully predict the
surface roughness of single layer raster scanning based on the
input process parameters. The intent is to obtain meaningful
correlations between the SLM process parameters and single-
layer surface characteristics that can be extended to the
interactions between single layers of SLM parts fabricated
with different parameter sets, which can play a significant role
in realizing the part quality improvement criterion when
additional layers are added for fabrication of parts with
complex geometries.
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2. Experimental Details
2.1. Design of experiments (DoE)

Five levels of power (60 W, 90 W, 120 W, 150 W, and 180
W), five levels of scan speed (500 mm/s, 750 mm/s, 1000
mm/s, 1250 mm/s, and 1500 mm/s), five levels of hatch
spacing (50 pm, 75 um, 100 um, 125 pm, and 150 pm), and
three levels of layer thickness (20 pum, 30 pm, and 40 pm)
were used to design the experiment. The ranges for the
process parameters were chosen so to revolve around the
manufacturer-recommended values to account for the
manufacturability of parts. Also, the volumetric energy
density absorbed by the metal powders during the SLM
process was considered to choose the lowest and highest
levels of each parameter. The absorbed volumetric energy
density can be estimated by E = P/(v-h-t), where P is laser
power, v is scan speed, 4 is hatch spacing, and ¢ is layer
thickness. In general, in an experiment with & factors, having /
levels, an /7 design results in /? runs, where p is the
reduction factor to reduce the number of experiments. A
similar concept can be utilized in a mixture design, where one
or some of the factors have different numbers of levels.

Table 1. Fractional factorial DoE of parameter sets used in this study.

Run#  Laser Scan Hatch Layer Volumetric
power speed spacing thickness  Energy Density
W) (mmfs)  (um) (hm) (J/mm3)

1 60 500 50 20 120.0

2 60 750 75 40 26.7

3 60 1000 100 30 20.0

4 60 1250 125 20 19.2

5 60 1500 150 40 6.7

6 90 500 75 30 80.0

7 90 750 100 20 60.0

8 90 1000 125 40 18.0

9 90 1250 150 30 16.0

10 90 1500 50 20 60.0

11 120 500 100 40 60.0

12 120 750 125 30 42.7

13 120 1000 150 20 40.0

14 120 1250 50 40 48.0

15 120 1500 75 30 35.6

16 150 500 125 20 120.0

17 150 750 150 40 333

18 150 1000 50 30 100.0

19 150 1250 75 20 80.0

20 150 1500 100 40 25.0

21 180 500 150 30 80.0

22 180 750 50 20 240.0

23 180 1000 75 40 60.0

24 180 1250 100 30 48.0

25 180 1500 125 20 48.0

A fractional factorial design with 25 runs was used for this
research (Table 1). This design has only 1/15" of the number
of experiments in the full factorial design, which requires 53 x
3 = 375 observations for these numbers of factors and levels.
The samples are designed as three 5 mm by 5 mm raster
scanning areas for each parameter set on semi-cylinder bases,
which were fabricated using default process parameters (laser
power: 170 W, scan speed: 1250 mm/s, hatch spacing:100
pm) and were attached to the build plate by support
structures. Fig. 1 shows some examples.

2.2. Sample fabrication

An EOS M270 is used to fabricate the designed specimens
using Ti-6Al1-4V  powders from Carpenter Technology

Corporation (Philadelphia, PA, USA). The powder particle
size distribution was measured using a Microtrac S3500 laser
diffraction particle size analyzer (Microtrac MRB, Osaka,
Japan) and the results are shown in Fig. 2.

Fig. 1. Examples of fabricated samples on an EOS M270 build plate.
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Fig. 2. Ti-6Al-4V powder particle size distribution measured before the first
build.

The design of the experiment consisted of three levels of
layer thickness. Therefore, three different builds with different
layer thicknesses were carried out. Fig. 1 shows some of the
samples fabricated with 30 pum layer thickness. After the
completion of the build, the specimens were separated from
the build plate by cutting the support area with a band saw.
Materialise Magics v. 25.0 was used for STL preparation and
support generation.
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2.3. Surface roughness measurement

A non-contact optical profiler, WYKO NT1100 from
Veeco Metrology was used to acquire the surface data of top
surfaces based on white light interferometry (WLI). The
instrument was calibrated using a 10 um step-height standard.
Vertical scanning interferometry (VSI) measurement mode
was chosen with an objective lens of 50X and a 0.5X field of
view lens. This gives an effective field of view of 0.25 mm by
0.19 mm. For each parameter set, top surface roughness
measurements were done using stitching on nine areas,
including six 0.5 mm by 0.5 mm areas and three 1 mm by 1
mm areas to have nine replicates with different area sizes for
each sample, resulting in 4.5 mm? in total area. Approximate
locations of the measured areas of samples are illustrated in
Fig. 3. The dark blue arrows in the figure show a schematic of
the laser scan directions. The number of scan lines varies in
different samples depending on the hatch spacing. Top surface
roughness metrics, including S, and S,, were measured for
each sample. The statistical analysis of this research was
carried out using Minitab 20.3 (Minitab Inc., State College,
PA, USA).

X Measurement areas

Fig. 3. (Top) actual and (bottom) schematic top views of a sample with three
5 mm by 5 mm raster scans of one parameter set. Nine measurement surface
areas (replicates) for each parameter set are shown by green rectangles.

3. Results and discussion

Fig. 4 shows some typical morphologies of top surfaces of
samples with different volumetric energy densities (E)
resulting in different surface roughness values, on roughness
vs. energy density plot, where the correlation of top surface
roughness metrics, including S, and S, and volumetric energy
density is illustrated. The S, parameter, which is the depth of
the deepest valley in the surface profile, indicates the local
extreme situation for crack initiation and is taken into
consideration in the literature due to its significance in fatigue
life predictions [30,31]. The horizontal and vertical axes in the
subfigures (a-d) represent x and y coordinates in mm. The
decreasing trend of the surface roughness metrics, i.e., S, and
S., with increasing the volumetric surface energy can be

observed in Fig. 4. Although the highest energy density, i.e.,
240 J/mm?, (Fig. 4(d)) leads to the lowest top surface
roughness, it is not recommended for part manufacturing,
because of gas pores and micro-cracks formed due to
overheating at these energy densities. These pores decrease
the fractional density of the part and cause the optimum
energy density to be at the local extrema in the profiles of the
surface roughness and fractional densities at 40-60 J/mm? for
this material [32]. Also, microcracks can act as crack initiators
under dynamic loading. Examples are shown in Fig. 4(d).

As it is discussed earlier, the volumetric energy density is a
function of the SLM process parameters, i.e., laser power,
scan speed, hatch spacing, and layer thickness. So, to
investigate the contribution of each factor to the total
variations in the surface roughness values, an analysis of
variance (ANOVA) is performed with 95% confidence, for S,
and S,, and the results are presented in Table 2 and Table 3,
respectively. Moreover, to investigate the correlations
between the top surface roughness and the process
parameters, main effect plots are presented in Fig. 5.

The significance of parameters can be comprehended by
comparing the P-values in ANOVA. Generally, smaller p-
values indicate greater statistical incompatibility with the null
hypothesis, implying a greater significance of the parameter.
According to Table 2 and Table 3, all the parameters show
great significance in determining the response parameters, i.e.,
S. and S,. So, to compare the level of contribution of each
factor, the percent contribution of them was calculated by
dividing the sum of squares for each factor by the total sum of
squares of all factors and multiplying the result by 100 [33].

The ANOVA results show that the laser power and layer
thickness are the most and the least significant factors,
respectively, among the other parameters; however, it should
be noted that the chosen value range for the layer thickness is
smaller than the other parameters. All the parameter ranges
are designed, from the lowest to the highest level, to have a
similar effect on the energy density, i.e., increasing it to the
order of three, except for the layer thickness that changes the
energy density in the order of two; and that is due to the
limitations of the number of experiments and avoiding levels
far from the recommended values. So, considering this
limitation for the layer thickness, it might have a similar level
of significance to the laser power if the parameter range could
be extended to 60 um, as it is reported elsewhere for the same
material [34].

Table 2. ANOVA for main effects of parameters on S..

Source DoF  Adjusted Adjusted F- P- Contribution
sum of mean value value %
squares square

Laser 4 4910.2 1227.6 148.33  0.000 45.1

power

Scan 4 2212.2 553.1 66.83 0.000 20.3

speed

Hatch 4 2564.0 641.0 77.45 0.000 23.6

spacing

Layer 2 1198.0 599.0 72.38 0.000 11.0

thickness
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Table 3. ANOVA for main effects of parameters on S..

Source DoF  Adjusted Adjusted F- P- Contribution
sum of mean value value %
squares square

Laser 4 26621 6655.3 78.94 0.000 345

power

Scan 4 21243 5310.8 62.99 0.000 275

speed

Hatch 4 18310 457175 5430 0.000 23.7

spacing

Layer 2 11010 5505.1 65.30 0.000 14.3

thickness

The results presented in Fig. 5 suggest using the highest
energy density, which is obtained by the combination of the
highest level of laser power and the lowest levels of scan
speed, hatch spacing, and layer thickness, leads to obtaining
the smallest roughness values for the top surface roughness of
SLM parts, which is in line with the results presented in Fig.
4; Nevertheless, when choosing the desired layer thickness
value for manufacturing a part using the SLM process, other
factors, such as manufacturing time, the powder size
distributions, and powder bed distortion due to the inert gas
flow, must be taken into consideration, as well.

A possible interpretation for this behavior at higher energy
densities may be the gravitational force that smoothens the
melt tracks on the top surfaces. It was observed that
increasing the energy density increases the top surface quality
in terms of roughness. Still, it cannot be concluded that any
changes in any of the process parameters that increase the
energy density, will play a role in decreasing the surface
roughness. The two parameters that did not show a sustained
increment/decrement within their ranges were scanning speed
and hatch spacing. As it is depicted in Fig. 5(a), the maximum
Sa values happen at a scan speed of 1000 mm/s and hatch
spacing of 125 um. Top surface roughness increases with
increasing hatch spacing up to 125 pum because, at low hatch
spacing values, the overlaps of adjacent melt tracks flatten the
melt beads and create a smooth surface. Increasing the hatch
spacing and moving melt tracks apart from each other, forms
deep valleys between the tracks that significantly increases
the surface roughness; however, since single layer scanning is
being investigated in this research, and the previous layer
belongs to a base fabricated using the manufacturer-
recommended process parameters, which is not optimized
solely for the top surface roughness, when the melt tracks
move apart, after some point, 125 um in this case, the
previous layer incorporates more in surface roughness
measurement of these samples, as it is illustrated in Fig. 6.
Therefore, in the study of single-layer raster scanning,
increasing hatch spacing after some point highlights the role
of the previous layer in surface roughness determination of
the top surface. So, a high-energy parameter set, e.g., P = 180
W, v =750 mm/s, h =50 pm, t = 20 um, which results in the
lowest surface roughness (see Figure 4) may be used as the
top surface of the bases before depositing the single-layer
samples.

Fig. 5 also suggests that decreasing layer thickness
increases the top surface quality, for both S, and S, metrics.

Debroy et al. [35] reported the same behavior for surface
roughness of SLM parts, regardless of the material. Therefore,
the smallest possible layer thickness is recommended in the
SLM process to minimize the surface roughness; however, to
determine a lower limit for the layer thickness, other above-
mentioned factors need to be taken into account.

In addition to the ANOVA for the main effects of the
parameters, an ANOVA for the parameters and their two-way
interactions was performed to evaluate the interactions of the
parameters in determining the top surface response. Table 4
presents the results of the ANOVA for main effects and
interactions of parameters on S,. Also, Fig. 7 shows the
process parameters’ interaction for top surface roughness
assessment S,.

The last column of Table 4 shows that even by considering
the parameters’ interactions, laser power is still the most
dominant factor among all the other parameters and their
interactions. The contribution of all the two-way interactions
of the parameters, except for laser power and layer thickness
interaction, turned out to be negligible compared to the main
effects of the parameters. The dependence of laser power and
layer thickness can be also observed at the top right corner
grid of Fig. 7, where the row of laser power intersects with the
column of layer thickness.

Fig. 7 shows how the relationship between one categorical
factor and a continuous response depends on the value of the
second categorical factor. This plot shows the means for the
levels of one factor on the x-axis and a separate line for each
level of another factor. In this Fig., each row/column is
assigned to one parameter. In other words, laser power (W),
scan speed (mm/s), hatch spacing (um), and layer thickness
(um) are assigned to the first, second, third, and fourth
row/column, respectively. The interaction of each two
parameters is presented in the intersection block of the row
and column of those two parameters. For instance, the top
right corner of Fig. shows the interaction of laser power (row)
and layer thickness (column). It can be seen in this Fig. that at
lower levels of power, i.e., 60 W and 90 W, increasing the
layer thickness increases the surface roughness significantly;
however, at higher laser power values, changing layer
thickness does not have any significant effects on the
roughness. In other words, at high powers, surface roughness
is not a function of layer thickness. A possible reason might
be that the laser beam at lower powers can melt the entire
layer when it is thin, but it has limited penetration depth at
thicker layers; Nonetheless, high-power laser beams have full
penetration regardless of the layer thickness.

Generally, on an interaction plot, parallel lines indicate no
interaction between the two parameters, however, nonparallel
lines show an interaction between the two parameters. The
more nonparallel the lines are, the greater the strength of the
interaction.



706 B. Fotovvati and K. Chou / Manufacturing Letters 33 (2022) 701-711

80
30
(e) 70
5
- 60
20 50
g €
= 4032
[ 15 >
wv (V2]
30
10
; - 20
o
5 i
s o ¥ - y 10
® °
% 50 100 150 200 250
Energy Density (J/mm?)
| {9 E=120.0 Jmum’, $,= 524 ym _(d)E =2400 Jimm*, S,
08+ 00 an
e bV

Fig. 4. Typical morphology of top surfaces for different parameter sets (a-d) showed on the top surface roughness (Sa) vs. energy density plot (¢). The parameters
are (a) P=90 W, v=1250 mm/s, h =150 pm, t = 30 pm, (b) P =120 W, v = 1500 mm/s, h =75 pm, t =30 pm, (c) P =150 W, v =500 mm/s, h = 125 um, t = 20
um, (d) P =180 W, v =750 mm/s, h =50 pum, t =20 um.
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Power Speed Hatch Layer Table 4. ANOVA for main effects and interactions of parameters on S. P is
i laser power, v is scan speed, 4 is hatch spacing, and 7 is layer thickness.
Source DoF  Adjusted Adjusted F- P- Contribution
10 sum of mean value value %
squares square
e P I 49102 12276 14833 0000 45.1
L3
2 00 v 1 2212.2 553.1 66.83 0.000 20.3
h 1 2564.0 641.0 77.45 0.000 23.6
5 t 1 171.9 171.94 19.94 0.000 1.7
P.v 1 36.8 36.84 427 0.040 04
* P.h 1 12067 120672 13995 0000 117
AR S O AR A S S S Pt 1 373.7 373.66 4333 0.000 3.6
g [ Speed ' Hetch [ Layer ' v.h 1 164.3 16430 19.06 0000 1.6
V.t 1 107.2 107.16 12.43 0.001 1.0
h.t 1 171.9 171.94 19.94 0.000 1.7

Mean

4. Artificial neural network (ANN)

In this research, the input layer of the ANN is designed
with four neurons corresponding to the four SLM process
parameters, i.e., P, v, h, and ¢, and the output layer has one
Seeee s v S 9 neuron to predict the top surface S, value. A total of 216 data

sets were split into 85% training and 15% testing data. K-fold
cross-validation with K = 6 was used to again break the
training set into ~85% training and ~15% cross-validation
sets. Since the input parameters have different ranges, a
normalization preprocessing was performed on the input data.
The back-propagation method was employed for training the
model. In this method, gradients are computed iteratively for
each layer by applying the mathematical chain rule [36]. The
objective of the training process is to optimize the
hyperparameters, e.g., weights and bias values, of the model
by minimizing the loss function. An Adam optimizer is used
for this purpose. In the beginning, the weights are distributed
randomly to the nodes. Based on the known inputs and
outputs of the training data, the model calculates and
compares its resulting outputs against the desired outputs and
then adjusts its weights based on errors propagated back into
it. This process is repeated until the loss is minimized. The
learning rate, which is the amount that the weights are
updated each time during training, was set to 0.0005.

I I I

Fig. 5. Main effects plots for surface parameters: (Top) Sa, and (Bottom) S..

Fig. 6. A sample with a large hatch spacing (h = 150 pm) showing the
contribution of the previous layer in the surface roughness measurement of
the top layer. Other process parameters for this sample are P =90 W, v =1250
mm/s, and t = 30 um. Examples of the regions with the exposed previous
layer are shown in orange ellipses.
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Fig. 7. Parameters’ interaction plots for S.. All vertical axes show S, values in pm.

After testing several networks with different numbers of
hidden layers and nodes, the architecture with two hidden
layers with 200 and 150 neurons in the first and second layers,
respectively, showed the best performance in terms of
prediction accuracy. To avoid overfitting, where the model
has high accuracy on the training data but is not likely to
perform well on the testing data, the weight regularization
(weight decay) [37] and the dropout methods [38] are used.
Weight regularization penalizes the model during training
based on the magnitude of the weights and prevents the
weights from growing too large by adding a term to the loss
function. A Ridge regression (L2) regularization was used for
this model:

Loxs=% i:l(?i_ Yi) 24 AZN

i=

where N is the number of datasets, ¥ and ¥ are the
predicted and actual responses, respectively, and 6 is the
weight vector. A is a regularization parameter determining the
extent of the penalization of large weights in the model and
was set to be 0.02 in this research. In addition to weight
regularization, the dropout method, in which units are
randomly dropped from the layers during training, was
employed to avoid overfitting. By treating the layers as layers
with fewer nodes and connections to prior layers, this
approach breaks up situations where the layers co-adapt to
correct mistakes from prior layers, thus making the model

more robust. In this research, the probabilities of retaining a
unit in the first and second hidden layers were 0.45 and 0.5,
respectively.

Rectified Linear Unit (ReLU) activation functions were
used for the hidden layers and a linear activation function was
utilized for the output layer. The ANN training, testing, and
evaluations are performed using Python 3.8.8 in the PyCharm
2021.1.2 environment and the TensorFlow library. Mean
square error (MSE) and r-squared (the coefficient of
determination) were used to assess the prediction accuracy
and performance of the model. MSE=1 /,12 ( Yi—7i) 2 The
ANN results and performance is summarized'in Table 5 and
Fig. 8.

This model now can predict the surface roughness of any
combinations of the process parameters. To predict the
extreme cases according to the main effect plots (Fig. 5), they
were fed into the trained network to see what the maximum
and minimum S, values are obtainable in this range of
processing parameters. Fig. 5 suggests that the following
parameter set P = 180 W, v = 500 mm/s, h = 50 pm, and t =
20 pum leads to the highest surface quality, and using P = 60
W, v =1000 mm/s, h = 125 pm, and t = 40 pm, results in the
maximum surface roughness value. These extreme cases were
predicted by the trained model as S, = 1.08 um and S, = 38.33
um, respectively. Note that these values may not be
achievable due to the limitations of the manufacturability of
some parameter combinations as discussed earlier in section
2.1.



B. Fotovvati and K. Chou / Manufacturing Letters 33 (2022) 701-711 709

A linear regression model was used for comparison
purposes of the ANN results. The linear regression equation
was obtained as:

Sa = —2.08 = 0.10918 P + 0.008097 v + 0.09178 h + 0.2833 ¢

where P is the laser power, v is the scanning speed, / is the
hatch spacing, and ¢ is the layer thickness. The mean square
error and the coefficient of determination of the predicted
values by this linear regression model were 18.6874
(compared to 0.6718 for the ANN) and 65.26% (compared to
98.79% for the ANN), respectively.

Table 5. The ANN performance in terms of MSE and r-squared for testing
and training data.

Mean square error  Coefficient of determination

0.6718
0.5264

98.79 %
98.82 %

Training data

Testing data

5. Conclusions

To gain a deeper understanding of how single layer formation
is influenced by the SLM process parameters, this paper
thoroughly investigates the effects of laser power, scanning
speed, hatch spacing, and layer thickness on surface
characteristics of single-layer raster scanning of Ti6Al4V
samples fabricated by SLM. A fractional factorial design of
experiments (DoE) is employed to cover more factors with
wider ranges and more levels so as to capture the
nonlinearities of the responses. Measurements were done on
nine areas of varying sizes for each parameter set to construct
a statistically reliable data set and to eliminate any possible
effect of the size of the measurement area. The single-layer
raster scanning surface roughness data is then used to train a
machine learning model to successfully predict the responses
based on the input process parameters. Such an ML model can
be integrated with an in-situ monitoring system to evaluate the
surface of parts, layer by layer, during the manufacturing
process and suggests fine-tuning the process parameter to get
the desired properties, e.g., to avoid/minimize internal
porosity of parts while there are being manufactured. The
analyses and results show that:

e Both S, and S, metrics of the top surface decrease with
increasing the volumetric energy density.

e Among the investigated parameters, laser power and layer
thickness have the most and least significant effects on the
top surface roughness, respectively.

e The combination of the highest level of laser power and
the lowest levels of scan speed, hatch spacing, and layer
thickness, e.g., the highest energy density (240 J/mm3),
results in the smallest roughness values for the top surface
roughness of SLM parts. However, too high energy
densities lead to the formation of other types of defects,
such as surface cracks.
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Fig. 8. ANN performance on the testing data in terms of actual vs predicted
values.

e Decreasing the layer thickness increases the top surface
quality, for both S, and S, metrics; however, other factors,
such as manufacturing time, powder size distributions, and
powder-bed distortion caused by inert gas flow, are
recommended to be taken into account, when determining
a lower limit for the layer thickness.

e Higher laser power values diminish the effects of layer
thickness on the top surface roughness.

e Top surface roughness increases with increasing hatch
spacing up to 125 pum. Increasing the hatch spacing more
to 150 um forms deep valleys between the tracks that
should significantly increase the surface roughness;
however, when the melt tracks move apart, the previous
layer, which is smoother, incorporates more in surface
roughness measurement of these samples and results in
lower values for both S, and S,.

e Except for the laser power and layer thickness interaction,
the two-way interactions of all the other parameters are
negligible in determining the top surface roughness values.

e An artificial neural network was trained using some of the
experimental data collected throughout this research and
was tested successfully with a separate data set, showing a
coefficient of determination of 98.8% for the testing data
set.
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