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A Fast Randomized Incremental Gradient
Method for Decentralized
Nonconvex Optimization
Ran Xin , Usman A. Khan , and Soummya Kar

Abstract—In this article, we study decentralized noncon-
vex finite-sum minimization problems described over a net-
work of nodes, where each node possesses a local batch of
data samples. In this context, we analyze a single-timescale
randomized incremental gradient method, called GT-SAGA.
GT-SAGA is computationally efficient as it evaluates one
component gradient per node per iteration and achieves
provably fast and robust performance by leveraging node-
level variance reduction and network-level gradient track-
ing. For general smooth nonconvex problems, we show the
almost sure and mean-squared convergence of GT-SAGA to
a first-order stationary point and further describe regimes
of practical significance, where it outperforms the existing
approaches and achieves a network topology-independent
iteration complexity, respectively. When the global func-
tion satisfies the Polyak–Łojaciewisz condition, we show
that GT-SAGA exhibits linear convergence to an optimal
solution in expectation and describe regimes of practi-
cal interest where the performance is network topology
independent and improves upon the existing methods. Nu-
merical experiments are included to highlight the main con-
vergence aspects of GT-SAGA in nonconvex settings.

Index Terms—Decentralized nonconvex optimization, in-
cremental gradient methods, variance reduction.

I. INTRODUCTION

I
N THIS article, we consider decentralized optimization prob-

lems that arise in many control and modern learning appli-

cations, where very large scale and geographically distributed

nature of data precludes centralized storage and processing.

The problem setup is based on n nodes communicating over

a network modeled as a directed graph G := {V, E}, where

Manuscript received 19 May 2021; accepted 24 September 2021.
Date of publication 26 October 2021; date of current version 27 Septem-
ber 2022. The work of Ran Xin and Soummya Kar was supported in
part by the National Science Foundation under Grant 1513936. The
work of Usman A. Khan was supported in part by the National Science
Foundation under Grant 1903972 and Grant 1935555. Recommended
by Associate Editor Javad Lavaei. (Corresponding author: Ran Xin.)

Ran Xin and Soummya Kar are with the Department of
Electrical and Computer Engineering, Carnegie Mellon University,
Pittsburgh, PA 15232 USA (e-mail: ranx@andrew.cmu.edu; soum-
myak@ece.cmu.edu).

Usman A. Khan is with the Department of Electrical and Com-
puter Engineering, Tufts University, Medford, MA 02155 USA (e-mail:
khan@ece.tufts.edu).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TAC.2021.3122586.

Digital Object Identifier 10.1109/TAC.2021.3122586

V := {1, . . . , n} is the set of node indices and E is the col-

lection of ordered pairs (i, r), i, r ∈ V , such that node r sends

information to node i. Each node i has access to a local,

possibly private, collection of m smooth component func-

tions {fi,j : R
p → R}mj=1 that are nonconvex. Each fi,j can be

viewed as a cost incurred by the jth data sample at the ith node.

The goal of the networked nodes is to agree on a first-order

stationary point of the average of all component functions via

local computation and communication at each node, i.e.,

min
x∈Rp

F (x) :=
1

n

n∑

i=1

fi(x), fi(x) :=
1

m

m∑

j=1

fi,j(x). (1)

Decentralized optimization dates back to the seminal contribu-

tion of Tsitsiklis in 1980s [1], where the primary focus was

on control and signal estimation problems, and has received a

resurgence of interest recently due to its promise in large-scale

control and machine learning applications [2], [3].

A. Related Work

First-order methods [4], [5] that rely mainly on gradient infor-

mation are commonly used to approach large-scale optimization

formulations like Problem (1). The works on decentralized

first-order methods include several well-known papers on decen-

tralized gradient descent (DGD) [6]–[9]. Although DGD-type

methods are effective in homogeneous environments like data

centers, its performance degrades significantly when data distri-

butions across the nodes become heterogeneous [10]. Decentral-

ized first-order methods that improve the performance of DGD

include, e.g., EXTRA [11], Exact Diffusion/NIDS [12]–[14],

DLM [15], and methods based on gradient tracking [16]–[23];

see also general primal-dual frameworks [24]–[27] that unify

the aforementioned methods under certain conditions. Some

structured formulations have also been considered recently, such

as weak convexity [28], coupled constraints [29], and coordinate

updates [30].

In decentralized batch gradient methods such as in [9], [11],

and [18], each node i computes a full batch gradient
∑

j ∇fi,j
at each iteration. Clearly, batch gradient computation becomes

expensive when the local batch size m is large and nodes have

limited computational capabilities. Efficient stochastic methods,

e.g., [12], [14], [21], [31]–[33], thus, use randomly sampled

component gradients from each local batch; however, the con-

vergence of these methods is typically slower compared with
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their batch gradient counterparts due to the persistent noise

incurred by the stochastic gradients. Toward fast convergence

with stochastic gradients, popular variance reduction techniques,

e.g., [34]–[38], have been adapted to the decentralized settings.

For instance, algorithms in [10] and [39]–[43], including GT-

SAGA [10], [41] considered in this article, are shown to achieve

linear rate to the optimal solution for strongly convex prob-

lems; however, the applicability of these methods to nonconvex

problems remains open. Recent works [44], [45] propose de-

centralized variance-reduced methods for nonconvex problems.

These two methods, however, require periodic batch gradient

evaluations across the nodes in addition to component gradient

computations at each iteration; this two-timescale hybrid scheme

imposes practical implementation challenges, such as periodic

network synchronizations, especially over large-scale ad hoc

networks.

B. Our Contributions

In this article, we analyze GT-SAGA, a single-timescale

randomized incremental gradient method, originally proposed

in [41] for strongly convex problems, and show that it achieves

fast convergence in nonconvex settings. At the node level, GT-

SAGA adopts a local SAGA-type [34], [46]–[49] randomized

incremental approach to obtain variance-reduced estimates of lo-

cal batch gradients, by leveraging historical component gradient

information. At the network level,GT-SAGA employs a gradient

tracking mechanism [16], [17] to fuse the local batch gradient

estimates, obtained from the local SAGA procedures, to track

the global batch gradient. These are the two building blocks that

amount to the fast convergence and robustness to heterogeneous

data in GT-SAGA for nonconvex problems. Compared with

the existing two-timescale variance reduced methods [44], [45]

for decentralized nonconvex optimization, GT-SAGA is single

timescale and completely eliminates the need of batch gradient

computations and periodic network synchronizations and is,

hence, much easier to implement especially in ad hoc settings;

see Remarks 1 and 2 for further discussion. The main technical

contributions in this article are summarized as follows.

1) General Smooth Nonconvex Problems: For this prob-

lem class, we show the asymptotic convergence ofGT-SAGA to a

first-order stationary point in the almost sure and mean-squared

sense. In a big-data regime, where the local batch size m is

very large, GT-SAGA achieves a network topology-independent

convergence rate, leading to a nonasymptotic linear speedup

compared with the centralized SAGA [46] at a single node.

In large-scale network regimes, i.e., when the number of the

nodes and the network spectral gap inverse are relatively large

compared to the local batch size m, we show that GT-SAGA

outperforms the existing best known convergence rate [45]. We

also introduce a measure of function heterogeneity across the

nodes. Based on this measure, we show that the effect of function

heterogeneity on the convergence rate of GT-SAGA appears in

a fashion that is separable from the effects of local batch size

and the network spectral gap. As a consequence, the effect of

function heterogeneity often diminishes when the local batch

size is large and/or the connectivity of the network is weak,

demonstrating the robustness of GT-SAGA to function hetero-

geneity. In contrast, the state-of-the-art decentralized nonconvex

variance-reduced method [45] does not achieve such separation

and, hence, has worse convergence rate than GT-SAGA when

the function heterogeneity is large and the network is weakly

connected. These improvements are achieved by leveraging

the conditional unbiasedness of SAGA estimators to obtain

tighter bounds in the stochastic gradient tracking analysis. See

Remarks 3–5 for details.

2) Smooth Nonconvex Problems Under the Global

Polyak–Łojasiewicz (PL) Condition: For this problem class,

we show that GT-SAGA achieves linear convergence to an

optimal solution in expectation. To the best of our knowledge,

this is the first linear rate result for decentralized variance-

reduced methods under the PL condition, while the existing

ones require strong convexity [39]–[43]. This generalization is

nontrivial since the existing analysis essentially uses the unique

optimal solution under strong convexity as a reference point

to bound-related error terms, while the PL condition allows

for the existence of multiple optimal solutions. In comparison

with the existing linearly convergent decentralized deterministic

batch gradient methods under the PL condition [21], [50], [51],

GT-SAGA provably achieves faster linear rate, in terms of the

component gradient computation complexity at each node, when

the local batch size m is large, demonstrating the advantage of

the employed variance reduction technique. In a big-data regime

where m is large enough, we show that the linear rate of GT-

SAGA becomes network topology independent. See Remarks 6

and 7 for details.

3) Convergence Analysis: We note that our analysis of

SAGA-type variance reduction procedures is different from the

existing ones [46], [52], which require careful constructions

of Lyapunov functions. We avoid such delicate constructions

by adopting a direct analysis approach, based on linear time-

invariant (LTI) dynamics, which may be of independent inter-

est and perhaps more readily extendable to other nonconvex

problems. We note that the LTI dynamics-based analysis has

mainly been used in convex problems in the existing literature

of gradient tracking methods, e.g., [18], [20]. Somewhat surpris-

ingly, a special case of our analysis, i.e., when the network is

complete, provides the first linear rate result of the original cen-

tralized SAGA algorithm [34] under the PL condition. Indeed,

the existing analysis [46], [52] is only applicable to a modified

SAGA, which periodically restarts and samples its iterates; see

Remark 8 for details. Finally, our analysis is also substantially

different from that of the existing decentralized nonconvex

variance-reduced methods [44], [45], where the variances of the

stochastic gradients are bounded recursively, due to their hybrid

nature. In contrast, we introduce a proper auxiliary sequence to

bound the variance of GT-SAGA; see Sections IV-B and IV-D

for details.

C. Outline of This Article and Notation

1) Outline of This Article: Section II presents the GT-

SAGA algorithm and the main convergence results. Section III
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illustrates the main theoretical results with the help of numeri-

cal simulations. Section IV presents the convergence analysis.

Finally, Section V concludes this article.

2) Notation: The set of positive real numbers is denoted

by R
+. We use lowercase bold letters to denote vectors and

uppercase bold letters to denote matrices. The matrix, Id (respec-

tively, Od), represents the d× d identity (respectively, zero ma-

trix). The vector, 1d (respectively, 0d), is the d-dimensional ones

(respectively, zeros). The Kronecker product of two matrices is

denoted by ⊗. We use ‖ · ‖ to denote the 2-norm of a vector or a

matrix. For a matrixX, we use ρ(X) to denote its spectral radius

and diag(X) as the diagonal matrix with the diagonal entries

ofX. Matrix/vector inequalities are stated in the entrywise sense.

We fix a proper probability space (Ω,F ,P ) for all random

variables in question and E[·] denotes the expectation; for an

event A ∈ F , its indicator is denoted as 1A. We use σ(·) to

denote the σ-algebra generated by the random variables and/or

events. For two quantitiesA,B ∈ R
+, we denoteA � B if there

exists a universal c such that A ≤ cB.

II. GT-SAGA ALGORITHM AND MAIN RESULTS

GT-SAGA [41], built upon local SAGA estimators [34] and

global gradient tracking [16], [17], is formally presented in

Algorithm 1. We refer the readers to [10] and [41] for detailed

discussion on the development of GT-SAGA. In this article, we

require for conciseness that all nodes start at the same point,

i.e., x0
i = x0, ∀i ∈ V . We emphasize that the complexity results

of GT-SAGA established in this article hold, up to factors of

universal constants, for the case where the nodes are initialized

differently. We comment on the practical implementation as-

pects of GT-SAGA in comparison with the existing approaches

in the following remarks.

Remark 1 (Single-timescale implementation): The existing

decentralized variance-reduced methods for nonconvex opti-

mization [44], [45] are based on a two-timescale double-loop

implementation. Specifically, these methods, within each inner

loop, run a fixed number of stochastic-gradient-type iterations,

while, at each outer-loop iteration, a local batch gradient is com-

puted at each node. This double-loop nature imposes challenges

on the practical implementation of the two methods in [44]

and [45]. First, periodic batch gradient computation incurs a

synchronization overhead on the communication network and

jeopardizes the actual wall-clock time when the networked

nodes have largely heterogeneous computational capabilities.

Second, these two methods have an additional parameter to

tune, i.e., the length of each inner loop, other than the step size.

Although this parameter may be chosen as m [45], this partic-

ular choice may not lead to the best performance in practice.

In sharp contrast, GT-SAGA admits a simple single-timescale

implementation since it only evaluates one randomly selected

component gradient at each iteration. Furthermore, it only has

one parameter to tune, i.e., the step size α. Therefore, GT-

SAGA leads to significantly simpler implementation and tuning

compared with the existing decentralized nonconvex variance-

reduced methods [44], [45], especially over large-scale ad hoc

networks. Finally, we note that GT-SAGA takes two successive

Algorithm 1:GT-SAGA at Each Node i.

Require: x0
i = x0 ∈ R

p; α ∈ R
+; {wir}nr=1; z0i,j =

x0
i , ∀j ∈ {1, . . . ,m}; y0

i = 0p; g−1
i = 0p.

for k = 0, 1, 2, . . . do

Select τki uniformly at random from {1, . . . ,m};

Update the local stochastic gradient estimator:

gk
i = ∇fi,τk

i

(
xk
i

)
−∇fi,τk

i

(
zki,τk

i

)
+

1

m

m∑

j=1

∇fi,j
(
zki,j
)
;

Update the local gradient tracker:

yk+1
i =

n∑

r=1

wir

(
yk
r + gk

r − gk−1
r

)
;

Update the local estimate of the solution:

xk+1
i =

n∑

r=1

wir

(
xk
r − αyk+1

r

)
;

Select ski uniformly at random from {1, . . . ,m};

Set zk+1
i,j = xk

i for j = ski ; zk+1
i,j = zki,j for j 	= ski ;

end for

communication rounds per iteration to transmit the state and

gradient tracker, respectively, as in other gradient tracking-based

methods, e.g., [20], [21], [44], [45].

Remark 2 (Storage requirement): To practically implement

GT-SAGA, each node i needs to retain a gradient table

{∇fi,j(z
k
i,j)}mj=1 of size m× p in general, which may be ex-

pensive. However, for certain structured problems, the size of

the gradient table can be largely reduced [34]. For instance,

in nonconvex generalized linear models [53], each component

function takes the form fi,j(x) = �(x

θi,j), where � : R → R

is a nonconvex loss and θi,j is the jth data at the ith node.

Clearly, ∇fi,j(x) = �′(x

θi,j)θi,j , and thus, each node i only

needs to retain {�′(z
i,jθi,j)}mj=1, a gradient table of size m× 1,

since the data samples {θi,j}mj=1 are already stored locally.

See Section III-A for numerical experiments based on one such

example.

We now enlist the assumptions of interest in this article.

Assumption 1: The family {τki , ski : i ∈ V , k ≥ 0} of random

variables in Algorithm 1 is independent.

Assumption 1 is standard in stochastic gradient methods.

Specifically, the index ski used for updating the gradient table

{∇fi,j(z
k
i,j)}mj=1 is sampled independently from the index τki

used for updating the local SAGA estimator gk
i per node per

iteration. This independence requirement is straightforward to

implement and is often posed to simplify the analysis of SAGA-

type estimators for nonconvex problems [46], [52]; see Sec-

tion IV-D for analysis based on this assumption.

Assumption 2: Each component function fi,j : R
p → R is

differentiable and L-smooth, i.e., there exists L > 0, such that

‖∇fi,j(x)−∇fi,j(y)‖ ≤ L‖x− y‖ ∀x,y ∈ R
p∀i ∈ V ∀j ∈

{1, . . . ,m}. Moreover, the global function F is bounded below,

i.e., F ∗ := inf
x∈Rp F (x) > −∞.
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Under Assumption 2, the local batch functions {fi}ni=1 and

the global function F are L-smooth. We note that L stated in

Assumption 2 is essentially the maximum of the smoothness

parameters of all component functions. We further consider the

case when the global F additionally satisfies the PL condition

described as follows.

Assumption 3: The global function F : R
p → R satisfies

2μ(F (x)− F ∗) ≤ ‖∇F (x)‖2 ∀x ∈ R
p, for some μ > 0.

The PL condition, originally introduced in [54], general-

izes the notion of strong convexity to nonconvex functions;

see [55] for more discussion. When Assumption 3 holds, we

denote κ := L
μ ≥ 1, which may be interpreted as the condition

number of F . Note that the PL condition implies that every

stationary point x∗ of F , such that ∇F (x∗) = 0p, is a global

minimizer of F , while F is not necessarily convex.

Assumption 4: The weight matrix W = {wir} ∈ R
n×n of

the network is primitive and doubly stochastic, i.e.,W1n = 1n,

1

nW = 1


n , and λ := λ2(W) ∈ [0, 1), where λ2(W) is the

second largest singular value of W.

Weight matrices that satisfy Assumption 4 may be designed

for strongly connected, weight-balanced, directed networks or

for connected undirected networks. We next discuss the perfor-

mance metrics of GT-SAGA for different problem classes. For

general smooth nonconvex problems, we define the iteration

complexity of GT-SAGA as the minimum number of iterations

required to achieve an ε-accurate stationary point of the global

function F , i.e.,

inf

{
K :

1

n

n∑

i=1

1

K

K−1∑

k=0

E
[
‖∇F (xk

i )‖2
]
≤ ε

}
.

When the global function F further satisfies the PL condition,

we define the iteration complexity of GT-SAGA as

inf

{
k : E

[
1

n

n∑

i=1

(
F (xk

i )− F ∗)
]
≤ ε

}
.

These are standard metrics for decentralized stochastic noncon-

vex optimization methods [2], [21], [44], [45]. We refer the iter-

ation complexity as the convergence rate metric of GT-SAGA,

since it is the same as the communication and component gradi-

ent computation complexity at each node. We are now ready to

state the main results of GT-SAGA in the next subsections and

discuss their implications.

A. General Smooth Nonconvex Functions

In this subsection, we present the main convergence results

of GT-SAGA for general smooth nonconvex functions.

Theorem 1: Let Assumptions 1, 2, and 4 hold. If the step

size α of GT-SAGA satisfies 0 < α ≤ α1, where

α1 := min

{
(1− λ

2)2

48λ
,
2n1/3

13m2/3
,
1

2
,
(1− λ

2)3/4

18λ1/2m1/2

}
1

L

then all nodes asymptotically agree on a stationary point in both

mean-squared and almost sure sense, i.e., ∀i, r ∈ V

P

(
lim
k→∞

‖xk
i − xk

r‖ = 0

)
= 1, lim

k→∞
E
[
‖xk

i − xk
r‖2
]
= 0

P

(
lim
k→∞

‖∇F (xk
i )‖ = 0

)
= 1, lim

k→∞
E
[
‖∇F (xk

i )‖2
]
= 0.

Moreover, if α = α1, GT-SAGA achieves an ε-accurate station-

ary point in

O
(
EL(F (x0)− F ∗)

ε
+

λ
2(1− λ

2)‖∇f(x0)‖2
nε

)
(2)

iterations, where E is given by

E := max

{
m2/3

n1/3
, 1,

λ

(1− λ)2
,

λ
1/2m1/2

(1− λ)3/4

}

and ‖∇f(x0)‖2 =
∑n

i=1 ‖∇fi(x
0)‖2.

Theorem 1 is formally proved in Section IV-F. We discuss its

implications in the following remarks.

Remark 3 (Effect of the function heterogeneity): We note

that ‖∇f(x0)‖2/n in the second term of (2) can be viewed

as a measure of heterogeneity among the local functions. In

particular, when all local functions are identical such that

fi = fr = F , ∀i, r ∈ V , this term diminishes, i.e., it can be

shown that ‖∇f(x0)‖2/n = ‖∇F (x0)‖2 ≤ 2L(F (x0)− F ∗).
On the other hand, when the local functions are significantly

different, ‖∇f(x0)‖2/n can be fairly large compared with

L(F (x0)− F ∗). Based on Theorem 1, it is important to note

that the effect of the function heterogeneity ‖∇f(x0)‖2/n on

the convergence rate of GT-SAGA is decoupled from E, the

effect of the local batch size m and the network spectral gap

1− λ. It is further interesting to observe that the heterogeneity

effect diminishes when the network is sufficiently either well

connected or weakly connected. In other words, the function

heterogeneity effect is dominated by the network effect in these

two extreme cases of interest.

We next view Theorem 1 in two different regimes.

Remark 4 (Big-data regime): We first consider a big-data

regime that is often applicable in data centers, where the local

batch size m is relatively large compared with the network

spectral gap inverse (1− λ)−1 and the number of the nodes n.

In particular, if m large enough such that

max

{
1,

λ

(1− λ)2
,

λ
1/2m1/2

(1− λ)3/4

}
�

m2/3

n1/3
(3)

Theorem 1 results into an iteration complexity of

O
(
m2/3L(F (x0)− F ∗)

n1/3ε
+

λ
2(1− λ

2)‖∇f(x0)‖2
nε

)
. (4)

We emphasize that the first term in (4) matches the it-

eration complexity of the centralized SAGA with a mini-

batch size n [46], as GT-SAGA computes n component gra-

dients across the nodes in parallel at each iteration. We note

that under the big-data condition (3), it typically holds that

‖∇f(x0)‖2/n � m2/3L(F (x0)− F ∗)/n1/3, i.e., the first term

dominates the second term in (4). Therefore, GT-SAGA in this

regime achieves a nonasymptotic linear speedup, i.e., the total

number of component gradient computations required at each

node to achieve an ε-accurate stationary point is reduced by a

factor of 1/n, compared with the centralized minibatch SAGA

that operates on a single machine.
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Remark 5 (Large-scale network regime): We now consider

the case where a large number of nodes are weakly connected,

a scenario that commonly appears in sensor networks, robotic

swarms, and ad hoc Internet of Things networks. In this case,

the number of the nodes n and the network spectral gap in-

verse (1− λ)−1 are relatively large in comparison with the local

batch size m. In particular, if

max

{
1,

m2/3

n1/3
,

λ
1/2m1/2

(1− λ)3/4

}
�

λ

(1− λ)2
(5)

then the component gradient computation complexity at each

node of GT-SAGA, according to Theorem 1, becomes

O
(

λL(F (x0)− F ∗)

(1− λ)2ε
+

λ
2(1− λ

2)‖∇f(x0)‖2
nε

)
. (6)

We note that the component gradient complexity at each node

of GT-SARAH [45], the state-of-the-art decentralized noncon-

vex variance-reduced method, in this regime is

O
(

λ

(1− λ)2ε

(
L(F (x0)− F ∗) +

‖∇f(x0)‖2
n

))
. (7)

Comparing (7) to (6), we observe that GT-SARAH, unlike GT-

SAGA, does not achieve a separation between the dependence of

the network spectral gap 1− λ and the function heterogeneity

measure ‖∇f(x0)‖2/n on the convergence rate. We, hence,

conclude that GT-SAGA outperforms GT-SARAH if the net-

work is weakly connected and the local functions are largely

heterogeneous, i.e., when 1− λ is small and ‖∇f(x0)‖2/n is

large. Moreover, we recall from Remark 1 that GT-SAGA is

single timescale and, thus, is much easier to implement than

the two-timescale GT-SARAH over large-scale networks. We

also emphasize that the storage requirement of GT-SAGA in

this regime is significantly relaxed since the data samples are

distributed across a large network, leading to a small local batch

size m at each node.

B. Global PL Condition

Theorem 2: Let Assumptions 1–4 hold. If the step size α of

GT-SAGA satisfies 0 < α ≤ α2, where

α2 := min

{
(1− λ

2)2

55λL
,

1− λ
2

13λκ1/4L
,
(1− λ

2)3

388λ2nL
,

n1/3

10.5m2/3κ1/3L
,

1

36L
,
1− λ

2

2μ
,

1

4mμ

}

then all nodes converge linearly at the rate O((1− μα)k) to a

global minimizer of F . In particular, if α = α2, then all nodes

agree on an ε-accurate global minimizer in

O
(
max {Qopt, Qnet} log

1

ε

)

iterations, where Qopt and Qnet are given, respectively, by

Qopt := max

{
m2/3κ4/3

n1/3
, κ,m

}

Qnet := max

{
λκ

(1− λ)2
,
λκ5/4

1− λ
,

λ
2nκ

(1− λ)3
,

1

1− λ

}
.

Theorem 2 is formally proved in Section IV-G. The following

remarks discuss a few key aspects of it.

Remark 6 (Linear rate under the global PL condition): The-

orem 2 shows that GT-SAGA linearly converges to an opti-

mal solution when the global F additionally satisfies the PL

condition. This is the first linear rate result for decentralized

variance-reduced methods under the PL condition, while the

existing ones require strong convexity, e.g., [39]–[43]. A notable

feature of the linear rate in Theorem 2 is that the effects of

the local batch size m and the network spectral gap 1− λ are

decoupled. Hence, in a big-data regime where the local batch

size m is sufficiently large such that Qnet � Qopt, GT-SAGA

achieves a network topology-independent rate ofO(Qopt log
1
ε ).

In addition, we note that Theorem 2 implies the linear rate of

GT-SAGA in the almost sure sense under the PL condition, by

Chebyshev’s inequality and the Borel–Cantelli lemma; see [41,

Lemma 7] for details.

Remark 7 (Comparison with other decentralized gradient

methods): When the local batch size m is relatively large,

the linear rate of GT-SAGA improves that of the existing de-

centralized batch gradient methods [21], [50], [51] under the

PL condition in terms of the component gradient computation

complexity. Moreover, decentralized online stochastic gradient

methods, e.g., [21], [56], only exhibit sublinear rate under the

PL condition due to the persistent variances of the stochastic

gradients. Therefore, GT-SAGA achieves faster convergence

under the PL condition compared with the existing decentralized

methods, demonstrating the advantage of the employed SAGA

variance reduction scheme that is able to exploit the finite-sum

structure of local functions.

Remark 8 (Improved convergence results for the centralized

minibatch SAGA): When λ = 0, i.e., when the underlying net-

work is a complete graph whose weight matrix can be easily

chosen as W = 1
n1n1



n , GT-SAGA reduces to the centralized

minibatch SAGA and achieves the linear rate of O(Qopt log
1
ε ).

Hence, a special case of Theorem 2, i.e, λ = 0, provides the

first linear rate result under the PL condition for the centralized

SAGA. Indeed, the existing linear rate results [46], [52] under

the PL condition are only applicable to a modified SAGA that

periodically restarts O(log 1
ε ) times with the output of each

cycle being selected randomly from the past iterates in this

cycle. This procedure is not feasible particularly in decentralized

settings. In contrast, the linear rate shown Theorem 2 is on the

last iterate of the original SAGA without periodic restarting and

sampling.

III. NUMERICAL EXPERIMENTS

In this section, we present numerical simulations to illustrate

our main theoretical results. The network topologies of interest

are undirected ring, undirected 2D-grid, directed exponential,

undirected geometric, and complete graphs; see [3], [41], and

[57] for details of these graphs. The doubly stochastic weights

are set to be equal for the ring and exponential graphs and are

generated by the lazy Metropolis rule for the grid and geometric

graphs. We manually optimize the parameters of all algorithms

in all experiments for their best performance.
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Fig. 1. Big-data regime: the network topology-independent convergence rate of GT-SAGA on the KDD98, covertype, MiniBooNE, and BNG (sonar)
datasets.

TABLE I
DATASETS USED IN NUMERICAL EXPERIMENTS

[Online]. Available: https://www.openml.org/

A. Nonconvex Binary Classification

In this subsection, we consider a decentralized nonconvex

generalized linear model for binary classification. In view of

Problem (1), each component cost fi,j is defined as [53]

fi,j(x) := �
(
ξi,jx



θi,j

)
, �(u) :=

(
1− 1

1 + exp(−u)

)2

where θi,j ∈ R
p is the jth data vector at the ith node, ξi,j ∈

{−1,+1} is the label of θi,j , and � : R → R is a 4
3 -smooth

nonconvex loss. We normalize each data to be ‖θi,j‖ = 1, ∀i, j.

Since∇2fi,j(x) = �′′(ξi,jx

θi,j)θi,jθ



i,j , it can be verified that

‖∇2fi,j(x)‖ = |�′′(ξi,jx

θi,j)| ≤ 4

3 . Hence, each component

cost fi,j is nonconvex and 4
3 -smooth. We measure the perfor-

mance of the algorithms in question in terms of the decrease

of the stationary gap ‖∇F (x)‖ versus epochs, where x :=
1
n

∑n
i=1 xi for xi being the model at node i and each epoch

represents m component gradient evaluations at each node. All

nodes start from a vector randomly generated from the standard

Gaussian distribution. The statistics of the datasets used in the

experiments are provided in Table I.

1) Big-Data Regime: We first test the convergence behavior

of GT-SAGA in the big-data regime by uniformly distributing

the KDD98, covertype, MiniBooNE, and BNG (sonar) datasets

over a network of n = 20 nodes. We consider four different

network topologies with decreasing sparsity, i.e., the undirected

ring, undirected 2D-grid, directed exponential, and complete

graph; their corresponding second largest singular values of the

weight matrices are λ = 0.98, 0.97, 0.6, 0, respectively. It can be

verified that the big-data condition (3) holds. The experimental

results are shown in Fig. 1, where we observe that the conver-

gence rate of GT-SAGA is independent of the network topology

in this big-data regime; see Remark 4.

2) Large-Scale Network Regime: We next compare the

performance ofGT-SAGAwith DSGD [2] and GT-SARAH [45]

in the large-scale network regime. To this aim, we generate a

sparse geometric graph of n = 200 nodes with λ ≈ 0.99 and

uniformly distribute the nomao, a9a, w8a, and BNG (sonar)

datasets over the nodes. It can be verified that the large-scale

network condition (5) holds. The numerical results are presented

in Fig. 2: the first three plots show that GT-SAGA achieves the

best performance among the algorithms in comparison, while

the last plot shows that the convergence rate of GT-SAGA is

dependent on the network topology in this large-scale network

regime; see Remark 5.

3) Robustness to Heterogeneous Data: We now make the

data distributions across the nodes significantly heterogeneous

by letting each node only have data samples of one label, so that

no node can train a valid classification model only from its local

data. We compare the performance of GT-SAGA under hetero-

geneous and homogeneous distribution of the nomao dataset.

We consider a well-connected graph, i.e., the 20-node exponen-

tial graph, and a weakly connected graph, i.e., the 200-node

geometric graph. The numerical results are shown in Fig. 3,

where we observe that the convergence rate of GT-SAGA is

not affected by the data heterogeneity over both graphs; see

Remark 3.

B. Synthetic Functions That Satisfy the PL Condition

Finally, we verify the linear rate ofGT-SAGAwhen the global

function F satisfies the PL condition. Specifically, we choose

each component function fi,j : R → R as

fi,j(x) = x2 + 3 sin2(x) + ai,j cos(x) + bi,jx

where
∑n

i=1

∑m
j=1 ai,j = 0 and

∑n
i=1

∑m
j=1 bi,j = 0 such that

ai,j 	= 0, bi,j 	= 0, ∀i, j. This formulation, hence, leads to

the global function F (x) = x2 + 3 sin2(x). It can be veri-

fied that F is nonconvex and satisfies the PL condition [55].

Note that each fi,j is nonlinear and highly deviated from F ;

see the last three plots in Fig. 4 for a comparison of lo-

cal and global geometries. We use the 20-node exponential

graph and set m = 5. It can be observed from the first plot

in Fig. 4 that GT-SAGA achieves linear rate to the opti-

mal solution, while DSGD converges to an inexact solution;

see Remark 7.

IV. CONVERGENCE ANALYSIS

In this section, we present the convergence analysis of GT-

SAGA, i.e., the sublinear convergence for general smooth non-

convex functions and the linear convergence when the global
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Fig. 2. Large-scale network regime: the first three plots present the performance comparison between GT-SAGA, DSGD, and GT-SARAH on the
nomao, a9a, and KDD98 datasets; the last plot presents the performance of GT-SAGA over different graph topologies in this regime on the BNG
(sonar) dataset.

Fig. 3. Robustness of GT-SAGA to heterogeneous data over well con-
nected and weakly connected graphs on the nomao dataset.

function F additionally satisfies the PL condition. Throughout

this section, we assume that Assumptions 1, 2, and 4 hold without

explicitly stating them; we only assume that Assumption 3 hold

in Section IV-G. In Sections IV-B–IV-E, we establish key rela-

tionships between several important quantities, based on which

the proofs of Theorems 1 and 2 are derived in Sections IV-F

and IV-G, respectively. We start by presenting some preliminary

facts.

A. Preliminaries

GT-SAGA can be written in the following form: ∀k ≥ 0

yk+1 = W
(
yk + gk − gk−1

)
(8a)

xk+1 = W
(
xk − αyk+1

)
(8b)

where xk,yk, and gk are random vectors in R
np that concate-

nate all local states {xk
i }ni=1, gradient trackers {yk

i }ni=1, and lo-

cal SAGA estimators {gk
i }ni=1, respectively, andW = W ⊗ Ip.

We denote Fk as the filtration of GT-SAGA, i.e., ∀k ≥ 1

Fk := σ
({

τ ti , s
t
i : i ∈ V , t ≤ k − 1

})
, F0 := {φ,Ω}

where φ is the empty set. It can be verified that xk, yk, and

zki,j , ∀i, j, are Fk-measurable and gk is Fk+1-measurable for

all k ≥ 0. We use E[·|Fk] to denote the conditional expectation

with respect to Fk. For the ease of exposition, we introduce the

following quantities:

J :=
(
1n1



n/n

)
⊗ Ip

∇f(xk) =
[
∇f1(x

k
1)


, . . . ,∇fn(x
k
n)


]


∇f(xk) =
(
1

n ⊗ Ip/n

)
∇f(xk), xk =

(
1

n ⊗ Ip/n

)
xk

yk =
(
1

n ⊗ Ip/n

)
yk, gk =

(
1

n ⊗ Ip/n

)
gk.

We assume that x0 ∈ R
p is constant, and hence, all random

variables generated by GT-SAGA have bounded second mo-

ment. The following lemma lists several well-known facts in the

context of gradient tracking and SAGA estimators, which may

be found in [17], [18], [34], [41], and [54].

Lemma 1: The following relationships hold.

a) ∀x ∈ R
np, ‖Wx− Jx‖ ≤ λ‖x− Jx‖.

b) yk+1 = gk, ∀k ≥ 0.

c) ‖∇f(xk)−∇F (xk)‖2 ≤ L2

n ‖xk − Jxk‖2, ∀k ≥ 0.

d) E[gk
i |Fk] = ∇fi(x

k
i ), ∀i ∈ V, ∀k ≥ 0.

e) ‖∇F (x)‖2 ≤ 2L(F (x)− F ∗).
Note that Lemma 1(e) is a consequence of the L-smoothness

of the global function F and is only used in Section IV-G, while

other statements in Lemma 1 are frequently utilized throughout

the analysis. The next lemma states some standard inequalities

on the network consensus error [21], [41].

Lemma 2: The following inequality holds: k ≥ 0

‖xk+1 − Jxk+1‖2 ≤ 1+λ
2

2 ‖xk − Jxk‖2

+ 2α2
λ
2

1−λ2 ‖yk+1 − Jyk+1‖2 (9)

‖xk+1 − Jxk+1‖2 ≤ 2λ2‖xk − Jxk‖2

+ 2α2
λ
2‖yk+1 − Jyk+1‖2 (10)

‖xk+1 − Jxk+1‖ ≤ λ‖xk − Jxk‖+ αλ‖yk+1 − Jyk+1‖.
(11)

B. Bounds on the Variance of Local SAGA Estimators

In this subsection, we bound the variance of the local SAGA

gradient estimatorsgk
i s. For analysis purposes, we construct two

auxiliary Fk-adapted sequences: ∀i ∈ V , ∀k ≥ 0

tki :=
1

m

m∑

j=1

‖xk − zki,j‖2, tk :=
1

n

n∑

i=1

tki .

These two sequences are essential in the convergence analysis.

We note that tk measures the average distance between the mean

state xk of the networked nodes and the latest iterates zki,js,

where the component gradients were computed at iteration k in

the gradient tables. Intuitively, tk goes to 0 as all nodes in GT-

SAGA reach consensus on a stationary point. We will establish

a contraction argument in tk in Section IV-D. In the following

lemma, we show that the variance of gk
i may be bounded by the

network consensus error and tk.
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Fig. 4. PL condition: the first plot presents the performance comparison between GT-SAGA and DSGD when the global function satisfies the PL
condition; the last three plots present the geometry comparison of the global and local component functions.

Lemma 3: The following inequality holds: ∀k ≥ 0

E
[
‖gk −∇f(xk)‖2|Fk

]
≤ 2L2‖xk − Jxk‖2 + 2nL2tk

(12)

E
[
‖gk‖2|Fk

]
≤ 2L2

n2
‖xk − Jxk‖2 + 2L2

n
tk + ‖∇f(xk)‖2.

(13)

Proof: We denote ∇̂k
i := ∇fi,τk

i
(xk

i )−∇fi,τk
i
(zk

i,τk
i
), ∀i ∈

V , ∀k ≥ 0, for the ease of exposition. We first observe from

Algorithm 1 that ∀k ≥ 0,∀i ∈ V

E

[
∇̂k

i |Fk
]
= ∇fi(x

k
i )−

1

m

m∑

j=1

∇fi,j
(
zki,j
)
. (14)

In light of (14), we bound the variance of gk
i in the follow-

ing: ∀k ≥ 0,∀i ∈ V

E
[
‖gk

i −∇fi(x
k
i )‖2|Fk

]

= E

[
‖∇̂k

i − E

[
∇̂k

i |Fk
]
‖2|Fk

]

(i)

≤ E

[
‖∇̂k

i ‖2
∣∣Fk

]

= E

[ m∑

j=1

1{τk
i =j}

∥∥∇fi,j
(
xk
i

)
−∇fi,j

(
zki,j
)∥∥2 ∣∣Fk

]

(ii)
=

1

m

m∑

j=1

∥∥∇fi,j
(
xk
i

)
−∇fi,j

(
zki,j
)∥∥2

(iii)

≤ L2

m

m∑

j=1

∥∥xk
i − zki,j

∥∥2

≤ 2L2
∥∥xk

i − xk
∥∥2 + 2L2tki . (15)

where (i) is the conditional variance decomposition, (ii) uses

that ‖∇fi,j(x
k
i )−∇fi,j(z

k
i,j)‖2 is Fk-measurable and that τki

is independent of Fk, and (iii) uses the L-smoothness of

each fi,j . Summing up (15) over i from 1 to n gives (12).

Toward (13), we have: ∀k ≥ 0

E
[
‖gk‖2|Fk

] (i)
= E

[
‖gk −∇f(xk)‖2|Fk

]
+ ‖∇f(xk)‖2

(ii)
=

1

n2
E
[
‖gk −∇f(xk)‖2|Fk

]
+ ‖∇f(xk)‖2

(16)

where (i) uses that E[gk|Fk] = ∇f(xk) and that∇f(xk) isFk-

measurable, while (ii) uses that, whenever i 	= j, E[〈gk
i −

∇fi(x
k
i ),g

k
j −∇fj(x

k
j )〉|Fk] = 0, since τki is independent

of σ(σ(τkj ),Fk) and E[gk|Fk] = ∇f(xk). The proof follows

by applying (12) to (16). �

C. Descent Inequality

In this subsection, we provide a key descent inequality that

characterizes the expected decrease of the global function value

at each iteration of GT-SAGA.

Lemma 4: If 0 < α ≤ 1
2L , then ∀k ≥ 0

E
[
F (xk+1)|Fk

]
≤ F (xk)− α

2
‖∇F (xk)‖2 − α

4
‖∇f(xk)‖2

+
αL2

n
‖xk − Jxk‖2 + α2L3

n
tk.

Proof: Since F is L-smooth, we have [4]: ∀x,y ∈ R
p

F (y) ≤ F (x) + 〈∇F (x),y − x〉+ L

2
‖y − x‖2 . (17)

We multiply (8b) by 1
n (1



n ⊗ Ip) and use Lemma 1(b) to obtain

xk+1 = xk − αyk+1 = xk − αgk, ∀k ≥ 0. Setting y = xk+1

and x = xk in (17) obtains: ∀k ≥ 0

F (xk+1) ≤ F (xk)− α〈∇F (xk),gk〉+ α2L

2
‖gk‖2. (18)

Conditioning (18) with respect to Fk, since ∇F (xk) is Fk-

measurable, we have

E
[
F (xk+1)|Fk

]
≤ F (xk)− α

〈
∇F (xk),∇f(xk)

〉

+
α2L

2
E
[
‖gk‖2|Fk

]
. (19)

Using 2〈a,b〉 = ‖a‖2 + ‖b‖2 − ‖a− b‖2, ∀a,b ∈ R
p, in

(19), we obtain: ∀k ≥ 0

E
[
F (xk+1)|Fk

]
≤ F (xk)− α

2
‖∇F (xk)‖2 − α

2
‖∇f(xk)‖2

+
α

2
‖∇F (xk)−∇f(xk)‖2 + α2L

2
E
[
‖gk‖2|Fk

]
. (20)

Applying Lemma 1(c) and (13) to (20), we have: ∀k ≥ 0

E[F (xk+1)|Fk]

≤ F (xk)− α

2
‖∇F (xk)‖2 − α(1− αL)

2
‖∇f(xk)‖2
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+

(
αL2

2n
+

α2L3

n2

)
‖xk − Jxk‖2 + α2L3

n
tk. (21)

The proof follows by the fact that if 0 < α ≤ 1
2L , we

have −α(1−αL)
2 ≤ −α

4 and αL2

2n + α2L3

n2 ≤ αL2

n . �

Compared with the corresponding descent inequality for

centralized batch gradient descent [4], Lemma 4 exhibits two

additional bias terms, i.e., ‖xk − Jxk‖ and tk, which are due

to the decentralized nature of the problem and sampling. To

establish the convergence of GT-SAGA, we, therefore, bound

these bias terms by ‖∇f(xk)‖ and show that they are dominated

by the descent effect −‖∇f(xk)‖.

D. Bounds on the Auxiliary Sequence tk

In this subsection, we analyze the evolution of the auxiliary

sequence tk and establish useful bounds.

Lemma 5: The following inequality holds: ∀k ≥ 0

E
[
tk+1|Fk

]
≤ θtk +

(
2α2 +

α

β

)
‖∇f(xk)‖2

+

(
2α2L2

n
+

2

m

)
1

n
‖xk − Jxk‖2

where the parameter θ ∈ R is given by

θ := 1− 1

m
+ αβ +

2α2L2

n
(22)

and β > 0 is an arbitrary positive constant.

Proof: We define Ak := σ(∪n
i=1σ(τ

k
i ),Fk) and clearly

Fk ⊆ Ak. By the tower property of the conditional expectation,

we have: ∀i ∈ V, ∀k ≥ 0

E
[
tk+1
i |Fk

]
=

1

m

m∑

j=1

E
[
E
[
‖xk+1 − zk+1

i,j ‖2|Ak
]
|Fk

]
.

(23)

Since ski is independent of Ak under Assumption 1, we

have: ∀i ∈ V , ∀j ∈ {1, . . . ,m}, k ≥ 0

E

[
1{ski =j}|Ak

]
=

1

m
andE

[
1{ski 	=j}|Ak

]
= 1− 1

m
. (24)

In light of (24), we have: ∀i ∈ V , ∀j ∈ {1, . . . ,m}, k ≥ 0

E
[
‖xk+1 − zk+1

i,j ‖2|Ak
]

= E

[∥∥∥xk+1 −
(

1{ski =j}x
k
i + 1{ski 	=j}z

k
i,j

)∥∥∥
2 ∣∣∣Ak

]

= E
[
‖xk+1‖2|Ak

]
+ E

[∥∥∥1{ski =j}x
k
i + 1{ski 	=j}z

k
i,j

∥∥∥
2 ∣∣∣Ak

]

− 2E

[〈
xk+1, 1{ski =j}x

k
i + 1{ski 	=j}z

k
i,j

〉 ∣∣∣Ak
]

(i)
= ‖xk+1‖2 − 2

〈
xk+1,

1

m
xk
i +

(
1− 1

m

)
zki,j

〉

+
1

m
‖xk

i ‖2 +
(
1− 1

m

)
‖zki,j‖2

=
1

m
‖xk+1 − xk

i ‖2 +
(
1− 1

m

)
‖xk+1 − zki,j‖2 (25)

where (i) uses (24) and that xk+1,xk
i , and zki,j are Ak-

measurable. Using (25) in (23), we obtain: ∀i ∈ V , ∀k ≥ 0

E
[
tk+1
i |Fk

]
=

1

m
E

[∥∥xk+1 − xk
i

∥∥2
∣∣∣Fk

]

+

(
1− 1

m

)
1

m

m∑

j=1

E

[∥∥xk+1 − zki,j
∥∥2
∣∣∣Fk

]
.

(26)

We next bound the two terms on the right-hand side (RHS)

of (26) separately. For the first term, we have: ∀i ∈ V , k ≥ 0

E
[
‖xk+1 − xk

i ‖2|Fk
]

= E
[
‖xk+1 − xk + xk − xk

i ‖2|Fk
]

= α2
E
[
‖gk‖2|Fk

]
− 2
〈
α∇f(xk),xk − xk

i

〉
+ ‖xk − xk

i ‖2

≤ α2
E
[
‖gk‖2|Fk

]
+ α2‖∇f(xk)‖2 + 2‖xk

i − xk‖2 (27)

where the last line uses the Cauchy–Schwarz inequality. Toward

the second term on the RHS of (26), we have: ∀i ∈ V , j ∈
{1, . . . ,m}, ∀k ≥ 0, ∀β > 0

E
[
‖xk+1 − zki,j‖2|Fk

]

= E
[
‖xk+1 − xk + xk − zki,j‖2

∣∣Fk
]

= α2
E
[
‖gk‖2|Fk

]
− 2α

〈
∇f(xk),xk − zki,j

〉
+ ‖xk − zki,j‖2

≤ α2
E
[
‖gk‖2|Fk

]
+ (1 + αβ)‖xk − zki,j‖2 +

α

β
‖∇f(xk)‖2

(28)

where the last line uses Young’s inequality. Now, we apply (27)

and (28) to (26) to obtain: ∀i ∈ V , ∀k ≥ 0

E
[
tk+1
i |Fk

]
≤
(
1− 1

m

)
(1 + αβ)tki + α2

E
[
‖gk‖2|Fk

]

+
2

m
‖xk

i − xk‖2 +
(
α2

m
+

(
1− 1

m

)
α

β

)
‖∇f(xk)‖2.

(29)

We average (29) over i from 1 to n and use (13) in the resulting

inequality to obtain: ∀k ≥ 0

E
[
tk+1|Fk

]
≤
(
2α2L2

n
+

2

m

)
1

n
‖xk − Jxk‖2

+

(
α2 +

α2

m
+

(
1− 1

m

)
α

β

)∥∥∇f(xk)
∥∥2

+

(
2α2L2

n
+

(
1− 1

m

)
(1 + αβ)

)
tk. (30)

We conclude by using 1
m + 1 ≤ 2 and 1− 1

m ≤ 1 in (30). �

Next, we specify some particular choices of β and the range

of α in Lemma 5 to obtain useful bounds on the auxiliary

sequence tk. The following corollary shows that tk has an

intrinsic contraction property.
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Corollary 1: If 0 < α ≤
√
n√

8mL
, then ∀k ≥ 0

E
[
tk+1|Fk

]
≤
(
1− 1

4m

)
tk + 4mα2‖∇f(xk)‖2

+
9

4mn
‖xk − Jxk‖2.

Proof: We choose β = 1
2mα in Lemma 5 to obtain: if 0 <

α ≤
√
n√

8mL
, i.e., 2α2L2

n ≤ 1
4m , then

θ = 1− 1

m
+ αβ +

2α2L2

n
≤ 1− 1

4m
(31)

2α2 +
α

β
= 2α2 + 2mα2 ≤ 4mα2 (32)

2α2L2

n
+

2

m
≤ 1

4m
+

2

m
=

9

4m
. (33)

We conclude by applying (31)–(33) to Lemma 5. �

The following corollary of Lemma 5 will be only used to

bound E[‖gk+1 −∇f(xk+1)‖2|Fk].

Corollary 2: If 0 < α ≤
√
n√

8mL
, then ∀k ≥ 0

E
[
tk+1|Fk

]
≤ 2tk + 3α2‖∇f(xk)‖2 + 9

4mn
‖xk − Jxk‖2.

Proof: Setting β = 1/α in Lemma 5, we have: if 0 < α ≤√
n√

8mL
, i.e., 2α2L2

n ≤ 1
4m , then

θ = 1− 1

m
+ αβ +

2L2α2

n
≤ 2 (34)

2α2 +
α

β
= 3α2 (35)

2α2L2

n
+

2

m
≤ 1

4m
+

2

m
=

9

4m
. (36)

We conclude by applying (34)–(36) to Lemma 5. �

With the help of (10), (12), and Corollary 2, we provide an

upper bound on E[‖gk+1 −∇f(xk+1)‖2|Fk].

Lemma 6: If 0 < α ≤
√
n√

8mL
, then ∀k ≥ 0

E[‖gk+1 −∇f(xk+1)‖2|Fk] ≤ 8.5L2‖xk − Jxk‖2+ 4nL2tk

+ 6nα2L2‖∇f(xk)‖2 + 4α2L2
E
[
‖yk+1 − Jyk+1‖2|Fk

]
.

Proof: By the tower property of the conditional expectation,

we have: ∀k ≥ 0

E
[
‖gk+1 −∇f(xk+1)‖2|Fk

]

= E
[
E
[
‖gk+1 −∇f(xk+1)‖2|Fk+1

]
|Fk

]

≤ 2L2
E
[
‖xk+1 − Jxk+1‖2|Fk

]
+ 2nL2

E
[
tk+1|Fk

]

≤ 2L2
(
2‖xk − Jxk‖2 + 2α2

E
[
‖yk+1 − Jyk+1‖2|Fk

])

+ 2nL2

(
2tk + 3α2‖∇f(xk)‖2 + 9

4mn
‖xk − Jxk‖2

)

where the second line uses (12) and the third line uses (10) and

Corollary 2. The desired inequality then follows. �

E. Bounds on Stochastic Gradient Tracking Process

In this subsection, we analyze the variance-reduced stochastic

gradient tracking process (8a).

Lemma 7: The following inequality holds: ∀k ≥ 0

E
[
‖yk+2 − Jyk+2‖2

]

≤ λ
2
E
[
‖yk+1 − Jyk+1‖2

]
+ λ

2
E
[
‖gk+1 − gk‖2

]

+2E
[〈
(W − J)yk+1, (W − J)

(
∇f(xk+1)−∇f(xk)

)〉]

+2E
[〈
(W − J)yk+1, (W − J)

(
∇f(xk)− gk

)〉]
.

Proof: Using (8a) and JW = J, we have: ∀k ≥ 0

‖yk+2 − Jyk+2‖2

= ‖Wyk+1 − Jyk+1 + (W − J)
(
gk+1 − gk

)
‖2

= ‖Wyk+1 − Jyk+1‖2 + ‖ (W − J)
(
gk+1 − gk

)
‖2

+ 2
〈
Wyk+1 − Jyk+1, (W − J)

(
gk+1 − gk

)〉

≤ λ
2‖yk+1 − Jyk+1‖2 + λ

2‖gk+1 − gk‖2

+ 2
〈
Wyk+1 − Jyk+1, (W − J)

(
gk+1 − gk

)〉
(37)

where the last line uses Lemma 1(a) and ‖W − J‖ = λ. To

proceed, we observe that ∀k ≥ 0

E
[〈
Wyk+1 − Jyk+1, (W − J)

(
gk+1 − gk

)〉
|Fk+1

]

=
〈
Wyk+1 − Jyk+1, (W − J)

(
∇f(xk+1)− gk

)〉

=
〈
Wyk+1 − Jyk+1, (W − J)

(
∇f(xk+1)−∇f(xk)

)〉

+
〈
Wyk+1 − Jyk+1, (W − J)

(
∇f(xk)− gk

)〉
(38)

where the first line uses that E[gk+1|Fk+1] = ∇f(xk+1) and

that yk+1 and gk are Fk+1-measurable for all k ≥ 0. We

conclude by using (38) in (37) and taking the expectation. �

We next bound the third term in Lemma 7.

Lemma 8: The following inequality holds: ∀k ≥ 0
〈
Wyk+1 − Jyk+1, (W − J)

(
∇f(xk+1)−∇f(xk)

)〉

≤ (λαL+ 0.5η1 + η2) λ
2‖yk+1 − Jyk+1‖2

+ 0.5η−1
1 λ

2α2L2n‖gk‖2 + η−1
2 λ

2L2‖xk − Jxk‖2

where η1 > 0 and η2 > 0 are arbitrary.

Proof: Using Lemma 1(a) and ‖W − J‖ = λ, we have

〈
Wyk+1 − Jyk+1, (W − J)

(
∇f(xk+1)−∇f(xk)

)〉

≤ λ
2L‖yk+1 − Jyk+1‖‖xk+1 − xk‖ ∀k ≥ 0. (39)

Observe that ∀k ≥ 0

‖xk+1 − xk‖

= ‖xk+1 − Jxk+1 + Jxk+1 − Jxk + Jxk − xk‖

≤ ‖xk+1 − Jxk+1‖+
√
nα‖gk‖+ ‖xk − Jxk‖

≤ 2‖xk − Jxk‖+
√
nα‖gk‖+ αλ‖yk+1 − Jyk+1‖ (40)
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where the last line is due to (11). We use (40) in (39) to obtain
〈
Wyk+1 − Jyk+1, (W − J)

(
∇f(xk+1)−∇f(xk)

)〉

≤ λ
3αL‖yk+1 − Jyk+1‖2 + λ

2‖yk+1 − Jyk+1‖
√
nαL‖gk‖

+ 2λ2‖yk+1 − Jyk+1‖L‖xk − Jxk‖ ∀k ≥ 0. (41)

By Young’s inequality, we have: ∀k ≥ 0, for some η1 > 0

λ
2‖yk+1 − Jyk+1‖

√
nαL‖gk‖

≤ 0.5λ2
(
η1‖yk+1 − Jyk+1‖2 + η−1

1 nα2L2‖gk‖2
)

(42)

and, ∀k ≥ 0, for some η2 > 0

2λ2‖yk+1 − Jyk+1‖L‖xk − Jxk‖

≤ λ
2η2‖yk+1 − Jyk+1‖2 + λ

2η−1
2 L2‖xk − Jxk‖2. (43)

The proof follows by applying (42) and (43) to (41). �

We next bound the fourth term in Lemma 7.

Lemma 9: The following inequality holds: ∀k ≥ 0

E
[〈
Wyk+1 − Jyk+1, (W − J)

(
∇f(xk)− gk

)〉]

≤ E
[
‖gk −∇f(xk)‖2

]
/n.

Proof: In the following, we denote ∇fk := ∇f(xk) to sim-

plify the notation. Observe that ∀k ≥ 0

E
[〈
Wyk+1 − Jyk+1, (W − J)

(
∇fk − gk

)〉
|Fk

]

(i)
= E

[〈
W2(yk + gk − gk−1), (W − J)(∇fk − gk)

〉
|Fk

]

(ii)
= E

[〈
W2gk, (W − J)

(
∇fk − gk

)〉
|Fk

]

(iii)
= E

[〈
W2

(
gk −∇fk

)
, (W − J)

(
∇fk − gk

)〉
|Fk

]

(iv)
= E

[
(gk −∇fk)
(J−W
W2)(gk −∇fk)|Fk

]
(44)

where (i) uses (8a) and JW = J, (ii) and (iii) use that yk,

gk−1, and ∇fk are Fk-measurable and that E[gk|Fk] = ∇fk

for all k ≥ 0, and (iv) uses JW = J. Since, whenever i 	= j ∈
V , E[

〈
gk
i −∇fi(x

k
i ),g

k
j −∇fj(x

k
j )
〉
|Fk] = 0, andW
W2 is

nonnegative, we have: ∀k ≥ 0

E
[
(gk −∇fk)


(
J−W
W2

) (
gk −∇fk

)
|Fk

]

= E
[
(gk −∇fk)
diag

(
J−W
W2

) (
gk −∇fk

)
|Fk

]

≤ E
[
(gk −∇fk)
diag(J)

(
gk −∇fk

)
|Fk

]
. (45)

The proof follows by taking the expectation of (45). �

We finally bound the second term in Lemma 7.

Lemma 10: The following inequality holds: ∀k ≥ 0

E
[
‖gk+1 − gk‖2

]
≤ 12λ2α2L2

E
[
‖yk+1 − Jyk+1‖2

]

+2E
[
‖gk −∇f(xk)‖2

]
+ E

[
‖gk+1 −∇f(xk+1)‖2

]

+18L2
E
[
‖xk − Jxk‖2

]
+ 6nα2L2

E
[
‖gk‖2

]
.

Proof: Since gk and ∇f(xk+1) are Fk+1-measurable, and

E[gk+1|Fk+1] = ∇f(xk+1), we have: ∀k ≥ 0

E
[
‖gk+1 − gk‖2|Fk+1

]

= E
[
‖gk+1 −∇f(xk+1)‖2|Fk+1

]
+ ‖∇f(xk+1)− gk‖2

≤ E
[
‖gk+1 −∇f(xk+1)‖2|Fk+1

]

+ 2‖∇f(xk+1)−∇f(xk)‖2 + 2‖∇f(xk)− gk‖2

≤ E
[
‖gk+1 −∇f(xk+1)‖2|Fk+1

]

+ 2L2‖xk+1 − xk‖2 + 2‖∇f(xk)− gk‖2. (46)

Similar to the derivation of (40), we have: ∀k ≥ 0

‖xk+1 − xk‖2

≤ 3‖xk+1 − Jxk+1‖2 + 3nα2‖gk‖2 + 3‖xk − Jxk‖2

≤ 9‖xk − Jxk‖2 + 3nα2‖gk‖2 + 6α2
λ
2‖yk+1 − Jyk+1‖2

where the last line is due to (10). We conclude by applying the

last line above to (46) and taking the expectation. �

Now, we apply Lemmas 8–10 to Lemma 7.

Lemma 11: The following inequality holds: ∀k ≥ 0

E
[
‖yk+2 − Jyk+2‖2

]

≤
(
1 + 2λαL+ η1 + 2η2 + 12λ2α2L2

)
λ
2

× E
[
‖yk+1 − Jyk+1‖2

]

+
(
2η−1

2 + 18
)
λ
2L2

E
[
‖xk − Jxk‖2

]

+
(
η−1
1 + 6

)
λ
2α2L2nE

[
‖gk‖2

]

+
(
2λ2 + 2/n

)
E
[
‖gk −∇f(xk)‖2

]

+ λ
2
E
[
‖gk+1 −∇f(xk+1)‖2

]
.

Proof: Apply Lemmas 8–10 to Lemma 7. �

Finally, we use Lemmas 3 and 6 to refine Lemma 11 and

establish a contraction in the gradient tracking process.

Lemma 12: If 0 < α ≤ min{1−λ
2

16λ
,

√
n√
8m

} 1
L , then we

have: ∀k ≥ 0

E
[
‖yk+2 − Jyk+2‖2

]

≤ 1 + λ
2

2
E
[
‖yk+1 − Jyk+1‖2

]
+

30.5L2

1− λ2
E
[
‖xk − Jxk‖2

]

+
97L2n

8
E
[
tk
]
+

16λ2α2L2n

1− λ2
E
[
‖∇f(xk)‖2

]
.

Proof: We apply Lemmas 3 and 6 to Lemma 11 to obtain:

if 0 < α ≤
√
n√

8mL
, then ∀k ≥ 0

E
[
‖yk+2 − Jyk+2‖2

]

≤
(
1 + 2λαL+ η1 + 2η2 +

(
12λ2 + 4

)
α2L2

)
λ
2

× E
[
‖yk+1 − Jyk+1‖2

]

+

(
(2η−1

2 + 18)λ2 + (η−1
1 + 6)

2λ2α2L2

n
+

4

n
+ 12.5λ2

)

× L2
E
[
‖xk − Jxk‖2

]

+
(
2(η−1

1 + 6)λ2α2L2 +
(
2λ2 + 1/n

)
4n
)
L2

E
[
tk
]

+(η−1
1 + 12)λ2α2L2nE

[
‖∇f(xk)‖2

]
. (47)
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We fix η1 = 1−λ
2

16λ2 and η2 = 1−λ
2

8λ2 . It can then be verified that

1 + 2λαL+ η1 + 2η2 + (12λ2 + 4)α2L2 ≤ 1+λ
2

2λ2 , if 0 < α ≤
1−λ

2

16λL . The proof then follows by applying this inequality and the

values of η1 and η2 to (47). �

F. Proof of Theorem 1

In this subsection, we prove the convergence of GT-SAGA for

general smooth nonconvex functions. To this aim, we write the

contraction inequalities in (9), Corollary 1, and Lemma 12 as

an LTI dynamics that jointly characterizes the evolution of the

consensus, gradient tracking, and the auxiliary sequence tk.

Proposition 1: If 0 < α ≤ min{1−λ
2

16λ
,

√
n√
8m

} 1
L , then

uk+1 ≤ Gαu
k + bk ∀k ≥ 0

where uk ∈ R
3, Gα ∈ R

3×3, and bk ∈ R
3 are given by

uk :=

⎡
⎢⎣

E
[
1
n‖xk − Jxk‖2

]

E
[
tk
]

E
[

1
nL2 ‖yk+1 − Jyk+1‖2

]

⎤
⎥⎦ , b :=

⎡
⎢⎣

0

4mα2

16λ
2α2

1−λ2

⎤
⎥⎦

Gα :=

⎡
⎢⎣

1+λ
2

2 0 2λ
2α2L2

1−λ2

9
4m 1− 1

4m 0
30.5
1−λ2

97
8

1+λ
2

2

⎤
⎥⎦

and bk := bE[‖∇f(xk)‖2].
We first derive the range of the step size α under which the

spectral radius of Gα defined in Proposition 1 is less than 1,

with the help of the following Lemma from [58].

Lemma 13: Let X ∈ R
d×d be a nonnegative matrix and x ∈

R
d be a positive vector. If Xx < x, then ρ(X) < 1. Moreover,

if Xx ≤ βx, for some β ∈ R, then ρ(X) ≤ β.

Lemma 14: If 0 < α ≤ min{ (1−λ
2)2

35λ
,

√
n√
8m

} 1
L , then we

have ρ(Gα) < 1, and thus,
∑∞

k=0 G
k
α = (I3 −Gα)

−1.

Proof: In light of Lemma 13, we find a positive vector ε =
[ε1, ε2, ε3]


 and the range of α s.t. Gαε < ε, i.e.,

α2 <
(1− λ

2)2

4λ2L2

ε1
ε3

(48)

9ε1 < ε2 (49)

61

(1− λ2)2
ε1 +

97

4 (1− λ2)
ε2 < ε3. (50)

Based on (49), we set ε1 = 1 and ε2 = 10. Then, based on (50),

we set ε3 = 303.5
(1−λ2)2 . The proof follows by using the values of ε1

and ε3 in (48). �

Based on the LTI dynamics in Proposition 1, we derive the

following lemma that is the key to establish the convergence

of GT-SAGA for general smooth nonconvex functions.

Lemma 15: If 0 < α ≤ min{ (1−λ
2)2

35λ
,

√
n√
8m

} 1
L , then we

have: ∀K ≥ 1

K∑

k=0

uk ≤ (I−Gα)
−1

(
u0 + b

K−1∑

k=0

E
[
‖∇f(xk)‖2

])
.

Proof: We recursively apply the dynamics in Proposition 1 to

obtain: uk ≤ Gk
αu

0 +
∑k−1

r=0 G
r
αb

k−1−r, ∀k ≥ 1. We sum this

inequality over k to obtain: ∀K ≥ 1

K∑

k=0

uk ≤
K∑

k=0

Gk
αu

0 +

K∑

k=1

k−1∑

r=0

Gr
αb

k−1−r

≤
( ∞∑

k=0

Gk
α

)
u0 +

K−1∑

k=0

( ∞∑

k=0

Gk
α

)
bk.

The proof follows by
∑∞

k=0 G
k
α = (I−Gα)

−1 and the defini-

tion of bk in Proposition 1. �

Lemma 16: If 0 < α ≤ min{ (1−λ
2)2

48λ
,

√
n√
8m

} 1
L , then

(I3 −Gα)
−1 ≤

⎡
⎢⎣
� 776λ

2mα2L2

(1−λ2)3
16λ

2α2L2

(1−λ2)3

� 8m 114λ
2α2L2

(1−λ2)3

� � �

⎤
⎥⎦

(I3 −Gα)
−1b ≤

⎡
⎢⎢⎣

(
3104m2 + 256λ

2

1−λ2

)
λ
2α4L2

(1−λ2)3

33m2α2

�

⎤
⎥⎥⎦

where the � entries are not needed for further derivations.

Proof: In the following, for a matrix X, we denote X∗ as

its adjugate and [X]i,j as its (i, j)th entry. We first note that

if 0 < α ≤ (1−λ
2)2

48λL , det(I3 −Gα) ≥ (1−λ
2)2

32m . We next derive

upper bounds for entries of (I3 −Gα)
∗

[(I−Gα)
∗]1,2 =

97λ2α2L2

4 (1− λ2)
, [(I−Gα)

∗]1,3 =
λ
2α2L2

2m(1− λ2)

[(I−Gα)
∗]2,2 ≤ (1− λ

2)2

4
, [(I−Gα)

∗]2,3 =
9λ2α2L2

2m(1− λ2)
.

The upper bound on (I3 −Gα)
−1 then follows by using the

above relations. Finally, we have

(I3 −Gα)
−1b ≤

⎡
⎢⎣

3104λ
2m2α4L2

(1−λ2)3 + 256λ
4α4L2

(1−λ2)4

32m2α2 + 2304λ
4α4L2

(1−λ2)4

�

⎤
⎥⎦ .

If 0 < α ≤ (1−λ
2)2

48λL , then 32m2α2 + 2304λ
4α4L2

(1−λ2)4 ≤ 33m2α2

and the bound on (I3 −Gα)
−1b follows. �

We now bound two important quantities as follows.

Lemma 17: If 0 < α ≤ min{ (1−λ
2)2

48λ
,

√
n√
8m

} 1
L , then we

have: ∀K ≥ 1

K∑

k=0

E

[
1

n
‖xk − Jxk‖2

]
≤ 16λ4α2

(1− λ2)3
‖∇f(x0)‖2

n

+

(
97m2 +

8λ2

1− λ2

)
32λ2α4L2

(1− λ2)3

K−1∑

k=0

E
[
‖∇f(xk)‖2

]
(51)

and ∀K ≥ 1

K∑

k=0

E
[
tk
]
≤ 114λ4α2

(1− λ2)3
‖∇f(x0)‖2

n
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+ 33m2α2
K−1∑

k=0

E
[
‖∇f(xk)‖2

]
. (52)

Proof: By (8a), we have ‖y1 − Jy1‖2 = ‖(W − J)(y0 +
g0 − g−1)‖2 ≤ λ

2‖∇f(x0)‖2. The proof then follows by ap-

plying this inequality and Lemma 16 to Lemma 15. �

Now, we are ready to prove Theorem 1.

Proof of Theorem 1: We sum up the inequality in Lemma 4

over k to obtain: if 0 < α ≤ 1
2L , then ∀K ≥ 1

E
[
F (xK)

]
≤ F (x0)− α

2

K−1∑

k=0

E
[
‖∇F (xk)‖2

]

− α

4

K−1∑

k=0

E
[
‖∇f(xk)‖2

]
+

α2L3

n

K−1∑

k=0

E
[
tk
]

+ αL2
K−1∑

k=0

E

[
1

n
‖xk − Jxk‖2

]
. (53)

By the L-smoothness of F , we have 1
2n

∑n
i=1 ‖∇F (xk

i )‖2 ≤
‖∇F (xk)‖2 + L2

n ‖xk − Jxk‖2, ∀k ≥ 0. Using this inequality

in (53), we obtain: if 0 < α ≤ 1
2L , then ∀K ≥ 1

E
[
F (xK)

]
≤ F (x0)− α

4n

n∑

i=1

K−1∑

k=0

E
[
‖∇F (xk

i )‖2
]

− α

4

K−1∑

k=0

E
[
‖∇f(xk)‖2

]
+

α2L3

n

K−1∑

k=0

E
[
tk
]

+
3αL2

2

K−1∑

k=0

E

[
1

n
‖xk − Jxk‖2

]
. (54)

Applying (52) to (54), we obtain the following inequality: if 0 <

α ≤ min{ (1−λ
2)2

48λ
,

√
n√
8m

, 1
2} 1

L , then ∀K ≥ 1

E
[
F (xK)

]
≤ F (x0)− α

4n

n∑

i=1

K−1∑

k=0

E
[
‖∇F (xk

i )‖2
]

− α

8

K−1∑

k=0

E
[
‖∇f(xk)‖2

]
+

114λ4α4L3

n(1− λ2)3
‖∇f(x0)‖2

n

+
3αL2

2

K−1∑

k=0

E

[
1

n
‖xk − Jxk‖2

]

− α

8

(
1− 264m2α3L3

n

)K−1∑

k=0

E
[
‖∇f(xk)‖2

]
. (55)

If 0 < α ≤ 2n1/3

13m2/3L
, 1− 264m2α3L3

n ≥ 0, and thus, the last term

in (55) may be dropped. We then use (51) in (55) to obtain: if

0 < α ≤ min{(1−λ
2)2

48λ
, 2n1/3

13m2/3 ,
1
2} 1

L , then ∀K ≥ 1

E
[
F (xK)

]
≤ F (x0)− α

4n

n∑

i=1

K−1∑

k=0

E
[
‖∇F (xk

i )‖2
]

−αL2

4

K−1∑

k=0

E

[
1

n
‖xk − Jxk‖2

]

+

(
114αL

28n
+ 1

)
28λ4α3L2

(1− λ2)3
‖∇f(x0)‖2

n

−α

8

(
1−max

{
97m2,

8λ2

1− λ2

}
896λ2α4L4

(1− λ2)3

)

×
K−1∑

k=0

E
[
‖∇f(xk)‖2

]
. (56)

We note that if 0 < α ≤ min{ (1−λ
2)3/4

18λ1/2m1/2 ,
1−λ

2

12λ
} 1
L , then

max{97m2, 8λ
2

1−λ2 } 896λ
2α4L4

(1−λ2)3 ≤ 1 and the last term in (56) may

be dropped. Therefore, if 0 < α ≤ α1 for α1 defined in Theo-

rem 1, we obtain from (56) that ∀K ≥ 1

E
[
F (xK)

]
≤ F (x0)− α

4n

n∑

i=1

K−1∑

k=0

E
[
‖∇F (xk

i )‖2
]

− αL2

4

K−1∑

k=0

E

[
1

n
‖xk − Jxk‖2

]
+

112λ4α3L2

(1− λ2)3
‖∇f(x0)‖2

n
.

(57)

Since F is bounded below by F ∗, (57) leads to ∀K ≥ 1

K−1∑

k=0

1

n

n∑

i=1

E
[
‖∇F (xk

i )‖2 + L2‖xk
i − xk‖2

]

≤ 4(F (x0)− F ∗)

α
+

448λ4α2L2

(1− λ2)3
‖∇f(x0)‖2

n
. (58)

Since the RHS of (58) is finite and independent ofK, we letK →
∞ in (58) to obtain

∞∑

k=0

n∑

i=1

E
[
‖∇F (xk

i )‖2 + ‖xk
i − xk‖2

]
< ∞ (59)

which shows that all nodes in GT-SAGA asymptotically agree

on a stationary point of F in the mean-squared sense. Moreover,

since the series on the left-hand side (LHS) of (59) is nonneg-

ative, we may exchange the order of the series and expectation

to obtain [59]: E[
∑∞

k=0

∑n
i=1(‖∇F (xk

i )‖2 + ‖xk
i − xk‖2)] <

∞, which implies that

P

( ∞∑

k=0

n∑

i=1

(
‖∇F (xk

i )‖2 + ‖xk
i − xk‖2

)
< ∞

)
= 1 (60)

i.e., all nodes in GT-SAGA asymptotically agree on a stationary

point of F in the almost sure sense. Finally, toward the iteration

complexity of GT-SAGA, we set α = α1 in (58) and divide the

resulting inequality by K to obtain: ∀K ≥ 1

1

n

n∑

i=1

1

K

K−1∑

k=0

E
[
‖∇F (xk

i )‖2
]

≤ 4(F (x0)− F ∗)

α1K
+

448λ4α2
1L

2

(1− λ2)3K

‖∇f(x0)‖2
n

. (61)

Authorized licensed use limited to: TUFTS UNIV. Downloaded on August 07,2023 at 15:52:20 UTC from IEEE Xplore.  Restrictions apply. 



XIN et al.: FAST RANDOMIZED INCREMENTAL GRADIENT METHOD FOR DECENTRALIZED NONCONVEX OPTIMIZATION 5163

Based on (61), the iteration complexity of GT-SAGA then

follows by recalling the definition of α1 in Theorem 1 and

that
448λ

4α2

1
L2

(1−λ2)3 ≤ λ
2(1−λ

2)
4 since 0 < α1 ≤ (1−λ

2)2

48λL . �

G. Proof of Theorem 2

In this subsection, we prove the linear rate of GT-SAGAwhen

the global function F additionally satisfies the PL condition. In

particular, we use the PL condition and Lemma 1(e) to refine

the descent inequality in Lemma 4 and the previously obtained

LTI system in Proposition 1.

Lemma 18: If 0 < α ≤ 1
2L , then ∀k ≥ 0

E
[
F (xk+1)− F ∗|Fk

]

≤ (1− μα)(F (xk)− F ∗) +
αL2

n
‖xk − Jxk‖2 + α2L3

n
tk.

Proof: Apply the PL condition to Lemma 4 and then sub-

tract F ∗ from the resulting inequality. �

Next, we refine Corollary 1 as follows.

Lemma 19: If 0 < α ≤
√
n√

8mL
, then ∀k ≥ 0

E
[
tk+1|Fk

]
≤
(
1− 1

4m

)
tk + 16mα2L

(
F (xk)− F ∗)

+

(
8mα2L2 +

9

4m

)
1

n
‖xk − Jxk‖2.

Proof: By Lemmas 1(c) and 1(e), we have: ∀k ≥ 0

‖∇f(xk)‖2 ≤ 2‖∇F (xk)‖2 + 2‖∇F (xk)−∇f(xk)‖2

≤ 4L
(
F (xk)− F ∗)+ 2L2

n
‖xk − Jxk‖2. (62)

The proof follows by applying (62) to Corollary 1. �

We finally refine Lemma 12 as follows.

Lemma 20: If 0 < α ≤ min{1−λ
2

16λ
,

√
n√
8m

} 1
L , then ∀k ≥ 0

E
[
‖yk+2 − Jyk+2‖2

]

≤ 1 + λ
2

2
E
[
‖yk+1 − Jyk+1‖2

]
+

31L2

1− λ2
E
[
‖xk − Jxk‖2

]

+
97L2n

8
E
[
tk
]
+

64λ2α2L3n

1− λ2
E
[
F (xk)− F ∗] .

Proof: Applying (62) to Lemma 12, we have: if 0 < α ≤
min{1−λ

2

16λ
,

√
n√
8m

} 1
L , then ∀k ≥ 0

E
[
‖yk+2 − Jyk+2‖2

]
≤ 1 + λ

2

2
E
[
‖yk+1 − Jyk+1‖2

]

+
(
30.5 + 32λ2α2L2

) L2

1− λ2
E
[
‖xk − Jxk‖2

]

+
97L2n

8
E
[
tk
]
+

64λ2α2L3n

1− λ2
E
[
F (xk)− F ∗] .

We conclude by 30.5 + 32λ2α2L2 ≤ 31 if 0 < α ≤ 1−λ
2

16λL . �

Now, we write (9) and Lemmas 18–20 in an LTI system.

Proposition 2: If 0 < α ≤ min{1−λ
2

16λ
,

√
n√
8m

, 1
2} 1

L , then

vk+1 ≤ Hαv
k ∀k ≥ 0

where vk ∈ R
4 and Hα ∈ R

4×4 are given by

vk :=

⎡
⎢⎢⎢⎣

E
[
1
n‖xk − Jxk‖2

]
1
LE

[
F (xk)− F ∗]

E
[
tk
]

E
[

1
nL2 ‖yk+1 − Jyk+1‖2

]

⎤
⎥⎥⎥⎦

Hα :=

⎡
⎢⎢⎢⎣

1+λ
2

2 0 0 2λ
2α2L2

1−λ2

αL 1− μα α2L2

n 0

8mα2L2 + 9
4m 16mα2L2 1− 1

4m 0
31

1−λ2

64λ
2α2L2

1−λ2

97
8

1+λ
2

2

⎤
⎥⎥⎥⎦ .

We are ready to prove Theorem 2, i.e., to establish an upper

bound on ρ(Hα) that characterizes the explicit linear rate of

GT-SAGA under the PL condition.

Proof of Theorem 2: In light of Lemma 13, we solve for

the range of α under which there exists a positive vector sα =
[s1, s2, s3, s4]


 s.t. Hαsα ≤ (1− μα
2 )sα, i.e.,

2λ2α2L2

1− λ2
s4 ≤

(
1− λ

2

2
− μα

2

)
s1 (63)

αLs1 +
α2L2

n
s3 ≤ μα

2
s2 (64)

(
8mα2L2 +

9

4m

)
s1 + 16mα2L2s2 ≤ 1− 2mμα

4m
s3 (65)

31

1− λ2
s1 +

64λ2α2L2

1− λ2
s2 +

97

8
s3 ≤ 1− λ

2 − μα

2
s4. (66)

We first note that (64) is equivalent to αL2

n s3 ≤ μ
2 s2 − Ls1,

based on which we set the values of s1, s2, and s3 as

s1 = 1/(4κ), s2 = 1, s3 = n/(4ακL) (67)

where κ = L/μ. Next, we write (65) equivalently as

8mα2L2 (s1 + 2s2) ≤
1− 2mμα

4m
s3 −

9

4m
s1. (68)

According to (68), we enforce 0 < α ≤ 1
4mμ , i.e., 1−2mμα

4m ≥
1

8m ; therefore, to make (68) hold, with the help of the values

of s1, s2, and s3 in (67), it suffices to further choose α such that

18mα2L2 ≤ 1

16mκ

( n

2αL
− 9
)
. (69)

According to (69), we enforce 0 < α ≤ n
36L , i.e., n

2αL − 9 ≥
n

4αL , and therefore, to make (69) hold, it suffices to further

choose α such that 0 < α ≤ n1/3

10.5m2/3κ1/3L
. Next, according

to (66), we further enforce 0 < α ≤ 1−λ
2

2μ , i.e., 1−λ
2−μα
2 ≥ 1−λ

2

4 ,

and therefore, to make (66) hold, we set s4 as

s4 =
124

(1− λ2)2
s1 +

256λ2α2L2

(1− λ2)2
s2 +

97

2(1− λ2)
s3. (70)

Finally, since 0 < α ≤ 1−λ
2

2μ , to make (63) hold, it suffices to

further choose α such that 8λ
2α2L2

(1−λ2)2
s4
s1

≤ 1, which, using the

values of s1 and s4, becomes

992λ2α2L2

(1− λ2)4
+

8192κλ
4α4L4

(1− λ2)4
+

388λ2nαL

(1− λ2)3
≤ 1. (71)
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If 0 < α ≤ min{ (1−λ
2)2

55λ
, 1−λ

2

13λκ1/4 ,
(1−λ

2)3

388λ2n } 1
L , then the terms on

the LHS of (71) are, respectively, less than 1
3 , and thus, (71)

holds. Based on the above derivations and Lemma 13, we have:

if 0 < α ≤ α2 for α2 defined in Theorem 2, then ρ(Hα) ≤ 1−
μα
2 , which concludes the proof. �

V. CONCLUSION

In this article, we analyze GT-SAGA, a decentralized ran-

domized incremental gradient method that combines node-level

variance reduction and network-level gradient tracking. For both

general smooth nonconvex problems and problems, where the

global function additionally satisfies the PL condition, we prove

that GT-SAGA achieves fast convergence rate. We further iden-

tify practical regimes, whereGT-SAGA outperforms the existing

approaches. We also present numerical simulations to verify the

theoretical results in this article. Future research includes gen-

eralization of GT-SAGA to the setting of time-varying directed

networks [60] and of zeroth-order gradient computation [50],

[61], [62]. It is also of interest to incorporate weighted sampling

techniques [63] in GT-SAGA to improve the dependence of

the smoothness parameters of the component functions on the

convergence rate.
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[38] J. Konevcnỳ and P. Richtárik, “Semi-stochastic gradient descent methods,”

Front. Appl. Math. Statist., vol. 3, p. 9, 2017.
[39] A. Mokhtari and A. Ribeiro, “DSA: Decentralized double stochastic

averaging gradient algorithm,” J. Mach. Learn. Res., vol. 17, no. 1,
pp. 2165–2199, 2016.

Authorized licensed use limited to: TUFTS UNIV. Downloaded on August 07,2023 at 15:52:20 UTC from IEEE Xplore.  Restrictions apply. 

https://dx.doi.org/10.1109/TAC.2021.3056535


XIN et al.: FAST RANDOMIZED INCREMENTAL GRADIENT METHOD FOR DECENTRALIZED NONCONVEX OPTIMIZATION 5165

[40] K. Yuan, B. Ying, J. Liu, and A. H. Sayed, “Variance-reduced stochastic
learning by networked agents under random reshuffling,” IEEE Trans.

Signal Process., no. 2, pp. 351–366, Jan. 2019.
[41] R. Xin, U. A. Khan, and S. Kar, “Variance-reduced decentralized stochastic

optimization with accelerated convergence,” IEEE Trans. Signal Process.,
vol. 68, pp. 6255–6271, 2020.

[42] B. Li, S. Cen, Y. Chen, and Y. Chi, “Communication-efficient distributed
optimization in networks with gradient tracking and variance reduction,”
J. Mach. Learn. Res., vol. 21, no. 180, pp. 1–51, 2020.

[43] H. Li, Z. Lin, and Y. Fang, “Optimal accelerated variance reduced EXTRA
and DIGing for strongly convex and smooth decentralized optimization,”
2020, arXiv:2009.04373.

[44] H. Sun, S. Lu, and M. Hong, “Improving the sample and communica-
tion complexity for decentralized non-convex optimization: Joint gradient
estimation and tracking,” in Proc. Int. Conf. Mach. Learn., 2020, pp. 9217–
9228.

[45] R. Xin, U. A. Khan, and S. Kar, “Fast decentralized non-convex finite-sum
optimization with recursive variance reduction,” SIAM J. Optim., 2021.

[46] S. J. Reddi, S. Sra, B. Póczos, and A. Smola, “Fast incremental method
for smooth nonconvex optimization,” in Proc. IEEE Conf. Decis. Control,
2016, pp. 1971–1977.

[47] M. Gurbuzbalaban, A. Ozdaglar, and P. A. Parrilo, “On the convergence
rate of incremental aggregated gradient algorithms,” SIAM J. Optim.,
vol. 27, no. 2, pp. 1035–1048, 2017.

[48] H. Wai, W. Shi, C. A. Uribe, A. Nedić, and A. Scaglione, “Accelerating
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