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A Fast Randomized Incremental Gradient
Method for Decentralized
Nonconvex Optimization

Ran Xin

Abstract—In this article, we study decentralized noncon-
vex finite-sum minimization problems described over a net-
work of nodes, where each node possesses a local batch of
data samples. In this context, we analyze a single-timescale
randomized incremental gradient method, called cT-saGa.
GT-SAGA is computationally efficient as it evaluates one
component gradient per node per iteration and achieves
provably fast and robust performance by leveraging node-
level variance reduction and network-level gradient track-
ing. For general smooth nonconvex problems, we show the
almost sure and mean-squared convergence of GT-SAGA to
a first-order stationary point and further describe regimes
of practical significance, where it outperforms the existing
approaches and achieves a network topology-independent
iteration complexity, respectively. When the global func-
tion satisfies the Polyak-tojaciewisz condition, we show
that cT-saca exhibits linear convergence to an optimal
solution in expectation and describe regimes of practi-
cal interest where the performance is network topology
independent and improves upon the existing methods. Nu-
merical experiments are included to highlight the main con-
vergence aspects of GT-SAGA in honconvex settings.

Index Terms—Decentralized nonconvex optimization, in-
cremental gradient methods, variance reduction.

|. INTRODUCTION

N THIS article, we consider decentralized optimization prob-
lems that arise in many control and modern learning appli-
cations, where very large scale and geographically distributed
nature of data precludes centralized storage and processing.
The problem setup is based on n nodes communicating over
a network modeled as a directed graph G := {V,E}, where
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V:={1,...,n} is the set of node indices and £ is the col-
lection of ordered pairs (i,7),4,7 € V, such that node r sends
information to node ¢. Each node 7 has access to a local,
possibly private, collection of m smooth component func-
tions { f; ; : RP — R}, that are nonconvex. Each f; ; can be
viewed as a cost 1ncurred by the jth data sample at the ith node.
The goal of the networked nodes is to agree on a first-order
stationary point of the average of all component functions via
local computation and communication at each node, i.e.,

Z Fi0 fix) = = 3 f MELANE

Decentralized optimization dates back to the seminal contribu-
tion of Tsitsiklis in 1980s [1], where the primary focus was
on control and signal estimation problems, and has received a
resurgence of interest recently due to its promise in large-scale
control and machine learning applications [2], [3].

min F(x
xeRP

A. Related Work

First-order methods [4], [5] that rely mainly on gradient infor-
mation are commonly used to approach large-scale optimization
formulations like Problem (1). The works on decentralized
first-order methods include several well-known papers on decen-
tralized gradient descent (DGD) [6]-[9]. Although DGD-type
methods are effective in homogeneous environments like data
centers, its performance degrades significantly when data distri-
butions across the nodes become heterogeneous [10]. Decentral-
ized first-order methods that improve the performance of DGD
include, e.g., EXTRA [11], Exact Diffusion/NIDS [12]-[14],
DLM [15], and methods based on gradient tracking [16]-[23];
see also general primal-dual frameworks [24]-[27] that unify
the aforementioned methods under certain conditions. Some
structured formulations have also been considered recently, such
as weak convexity [28], coupled constraints [29], and coordinate
updates [30].

In decentralized batch gradient methods such as in [9], [11],
and [18], each node 7 computes a full batch gradient j V fij
at each iteration. Clearly, batch gradient computation becomes
expensive when the local batch size m is large and nodes have
limited computational capabilities. Efficient stochastic methods,
e.g., [12], [14], [21], [31]-[33], thus, use randomly sampled
component gradients from each local batch; however, the con-
vergence of these methods is typically slower compared with
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their batch gradient counterparts due to the persistent noise
incurred by the stochastic gradients. Toward fast convergence
with stochastic gradients, popular variance reduction techniques,
e.g., [34]-[38], have been adapted to the decentralized settings.
For instance, algorithms in [10] and [39]-[43], including GT~-
SAGA [10], [41] considered in this article, are shown to achieve
linear rate to the optimal solution for strongly convex prob-
lems; however, the applicability of these methods to nonconvex
problems remains open. Recent works [44], [45] propose de-
centralized variance-reduced methods for nonconvex problems.
These two methods, however, require periodic batch gradient
evaluations across the nodes in addition to component gradient
computations at each iteration; this two-timescale hybrid scheme
imposes practical implementation challenges, such as periodic
network synchronizations, especially over large-scale ad hoc
networks.

B. Our Contributions

In this article, we analyze GT-SAGA, a single-timescale
randomized incremental gradient method, originally proposed
in [41] for strongly convex problems, and show that it achieves
fast convergence in nonconvex settings. At the node level, GT-
SAGA adopts a local SAGA-type [34], [46]-[49] randomized
incremental approach to obtain variance-reduced estimates of lo-
cal batch gradients, by leveraging historical component gradient
information. At the network level, GT-SAGA employs a gradient
tracking mechanism [16], [17] to fuse the local batch gradient
estimates, obtained from the local SAGA procedures, to track
the global batch gradient. These are the two building blocks that
amount to the fast convergence and robustness to heterogeneous
data in GT-SAGA for nonconvex problems. Compared with
the existing two-timescale variance reduced methods [44], [45]
for decentralized nonconvex optimization, GT-SAGA is single
timescale and completely eliminates the need of batch gradient
computations and periodic network synchronizations and is,
hence, much easier to implement especially in ad hoc settings;
see Remarks 1 and 2 for further discussion. The main technical
contributions in this article are summarized as follows.

1) General Smooth Nonconvex Problems: For this prob-
lem class, we show the asymptotic convergence of GT-SAGAto a
first-order stationary point in the almost sure and mean-squared
sense. In a big-data regime, where the local batch size m is
very large, GT-SAGA achieves a network topology-independent
convergence rate, leading to a nonasymptotic linear speedup
compared with the centralized SAGA [46] at a single node.
In large-scale network regimes, i.e., when the number of the
nodes and the network spectral gap inverse are relatively large
compared to the local batch size m, we show that GT-SAGA
outperforms the existing best known convergence rate [45]. We
also introduce a measure of function heterogeneity across the
nodes. Based on this measure, we show that the effect of function
heterogeneity on the convergence rate of GT-SAGA appears in
a fashion that is separable from the effects of local batch size
and the network spectral gap. As a consequence, the effect of
function heterogeneity often diminishes when the local batch
size is large and/or the connectivity of the network is weak,

demonstrating the robustness of GT-SAGA to function hetero-
geneity. In contrast, the state-of-the-art decentralized nonconvex
variance-reduced method [45] does not achieve such separation
and, hence, has worse convergence rate than GT-SAGA when
the function heterogeneity is large and the network is weakly
connected. These improvements are achieved by leveraging
the conditional unbiasedness of SAGA estimators to obtain
tighter bounds in the stochastic gradient tracking analysis. See
Remarks 3-5 for details.

2) Smooth Nonconvex Problems Under the Global
Polyak-t.ojasiewicz (PL) Condition: For this problem class,
we show that GT-SAGA achieves linear convergence to an
optimal solution in expectation. To the best of our knowledge,
this is the first linear rate result for decentralized variance-
reduced methods under the PL condition, while the existing
ones require strong convexity [39]-[43]. This generalization is
nontrivial since the existing analysis essentially uses the unique
optimal solution under strong convexity as a reference point
to bound-related error terms, while the PL condition allows
for the existence of multiple optimal solutions. In comparison
with the existing linearly convergent decentralized deterministic
batch gradient methods under the PL condition [21], [50], [51],
GT-SAGA provably achieves faster linear rate, in terms of the
component gradient computation complexity at each node, when
the local batch size m is large, demonstrating the advantage of
the employed variance reduction technique. In a big-data regime
where m is large enough, we show that the linear rate of GT-
SAGA becomes network topology independent. See Remarks 6
and 7 for details.

3) Convergence Analysis: We note that our analysis of
SAGA-type variance reduction procedures is different from the
existing ones [46], [52], which require careful constructions
of Lyapunov functions. We avoid such delicate constructions
by adopting a direct analysis approach, based on linear time-
invariant (LTI) dynamics, which may be of independent inter-
est and perhaps more readily extendable to other nonconvex
problems. We note that the LTI dynamics-based analysis has
mainly been used in convex problems in the existing literature
of gradient tracking methods, e.g., [18], [20]. Somewhat surpris-
ingly, a special case of our analysis, i.e., when the network is
complete, provides the first linear rate result of the original cen-
tralized SAGA algorithm [34] under the PL condition. Indeed,
the existing analysis [46], [52] is only applicable to a modified
SAGA, which periodically restarts and samples its iterates; see
Remark 8 for details. Finally, our analysis is also substantially
different from that of the existing decentralized nonconvex
variance-reduced methods [44], [45], where the variances of the
stochastic gradients are bounded recursively, due to their hybrid
nature. In contrast, we introduce a proper auxiliary sequence to
bound the variance of GT-SAGA; see Sections IV-B and IV-D
for details.

C. Outline of This Article and Notation

1) Outline of This Article: Section II presents the GT-
SAGA algorithm and the main convergence results. Section III
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illustrates the main theoretical results with the help of numeri-
cal simulations. Section IV presents the convergence analysis.
Finally, Section V concludes this article.

2) Notation: The set of positive real numbers is denoted
by RT. We use lowercase bold letters to denote vectors and
uppercase bold letters to denote matrices. The matrix, I; (respec-
tively, Og), represents the d x d identity (respectively, zero ma-
trix). The vector, 14 (respectively, 04), is the d-dimensional ones
(respectively, zeros). The Kronecker product of two matrices is
denoted by ®. We use || - || to denote the 2-norm of a vector or a
matrix. For a matrix X, we use p(X) to denote its spectral radius
and diag(X) as the diagonal matrix with the diagonal entries
of X. Matrix/vector inequalities are stated in the entrywise sense.
We fix a proper probability space (€2, F,P) for all random
variables in question and E[-] denotes the expectation; for an
event A € F, its indicator is denoted as 1 4. We use o(-) to
denote the o-algebra generated by the random variables and/or
events. For two quantities A, B € R™, wedenote A < Bifthere
exists a universal ¢ such that A < ¢B.

II.  GT-SAGA ALGORITHM AND MAIN RESULTS

GT-SAGA [41], built upon local SAGA estimators [34] and
global gradient tracking [16], [17], is formally presented in
Algorithm 1. We refer the readers to [10] and [41] for detailed
discussion on the development of GT-SAGA. In this article, we
require for conciseness that all nodes start at the same point,
i.e., x! =x° Vi € V. We emphasize that the complexity results
of GT-SAGA established in this article hold, up to factors of
universal constants, for the case where the nodes are initialized
differently. We comment on the practical implementation as-
pects of GT-SAGA in comparison with the existing approaches
in the following remarks.

Remark 1 (Single-timescale implementation): The existing
decentralized variance-reduced methods for nonconvex opti-
mization [44], [45] are based on a two-timescale double-loop
implementation. Specifically, these methods, within each inner
loop, run a fixed number of stochastic-gradient-type iterations,
while, at each outer-loop iteration, a local batch gradient is com-
puted at each node. This double-loop nature imposes challenges
on the practical implementation of the two methods in [44]
and [45]. First, periodic batch gradient computation incurs a
synchronization overhead on the communication network and
jeopardizes the actual wall-clock time when the networked
nodes have largely heterogeneous computational capabilities.
Second, these two methods have an additional parameter to
tune, i.e., the length of each inner loop, other than the step size.
Although this parameter may be chosen as m [45], this partic-
ular choice may not lead to the best performance in practice.
In sharp contrast, GT-SAGA admits a simple single-timescale
implementation since it only evaluates one randomly selected
component gradient at each iteration. Furthermore, it only has
one parameter to tune, i.e., the step size a. Therefore, GT-
SAGA leads to significantly simpler implementation and tuning
compared with the existing decentralized nonconvex variance-
reduced methods [44], [45], especially over large-scale ad hoc
networks. Finally, we note that GT-SAGA takes two successive

Algorithm 1:GT-SAGA at Each Node i.

Require: x) =X € R?”; v € RT; {w;, }7_ 520 =
x)Vie{l,...,m}y) =0,g;' =0,
for k=0,1,2,... do
Select 7/ uniformly at random from {1,...,m};
Update the local stochastic gradient estimator:

ngVf“f( z) sz'r ( i,k ) val,J
Update the local gradient tracker:

Zw

Update the local estimate of the solution:

wa x) — oyt

k+1 yr+gr gf 1)’

k+1

Select s¥ uniformly at random from {1,...,m};
Setz’“rl =xk forj = sk f;“l =z} for j # s
end for

communication rounds per iteration to transmit the state and
gradient tracker, respectively, as in other gradient tracking-based
methods, e.g., [20], [21], [44], [45].

Remark 2 (Storage requirement): To practically implement
GT-SAGA, each node ¢ needs to retain a gradient table
{Vfi;j(zF;)}7, of size m x p in general, which may be ex-
pensive. However, for certain structured problems, the size of
the gradient table can be largely reduced [34]. For instance,
in nonconvex generalized linear models [53], each component
function takes the form f; ;(x) = ¢(x"0; ;), where £ : R — R
is a nonconvex loss and 6; ; is the jth data at the ith node.
Clearly, V f; j(x) = ¢'(x"0; ;)0; ;, and thus, each node i only
needs to retain {¢' (z-r 0;,)}7", a gradient table of size m x 1,
since the data samples {02 J} *, are already stored locally.
See Section III-A for numerlcal experiments based on one such
example.

We now enlist the assumptions of interest in this article.

Assumption 1: The family {7F, s : i € V, k > 0} of random
variables in Algorithm 1 is independent.

Assumption 1 is standard in stochastic gradient methods.
Specifically, the index s¥ used for updating the gradient table
{Vfi;(zF;)}7, is sampled independently from the index 7"
used for updating the local SAGA estimator g¥ per node per
iteration. This independence requirement is straightforward to
implement and is often posed to simplify the analysis of SAGA-
type estimators for nonconvex problems [46], [52]; see Sec-
tion I'V-D for analysis based on this assumption.

Assumption 2: Each component function f; ; : R? — R is
differentiable and L-smooth, i.e., there exists L > 0, such that
IV 5i5(%) = Vfis ()]l < Llix — yl Vx,y € RIVi €V Vj €
{1,...,m}. Moreover, the global function F' is bounded below,
ie., F* := infycpr F(x) > —00.
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Under Assumption 2, the local batch functions { f;}7; and
the global function F' are L-smooth. We note that L stated in
Assumption 2 is essentially the maximum of the smoothness
parameters of all component functions. We further consider the
case when the global F' additionally satisfies the PL condition
described as follows.

Assumption 3: The global function F': RP — R satisfies
2u(F(x) — F*) < [[VF(x)||? Vx € RP, for some p > 0.

The PL condition, originally introduced in [54], general-
izes the notion of strong convexity to nonconvex functions;
see [55] for more discussion. When Assumption 3 holds, we
denote k := ﬁ > 1, which may be interpreted as the condition
number of F'. Note that the PL condition implies that every
stationary point x* of F, such that VF(x*) = 0,, is a global
minimizer of F, while F' is not necessarily convex.

Assumption 4: The weight matrix W = {w;,.} € R™*" of
the network is primitive and doubly stochastic, i.e., W1, =1,
1,W =1, and A := 42(W) € [0,1), where Ao(W) is the
second largest singular value of W.

Weight matrices that satisfy Assumption 4 may be designed
for strongly connected, weight-balanced, directed networks or
for connected undirected networks. We next discuss the perfor-
mance metrics of GT-SAGA for different problem classes. For
general smooth nonconvex problems, we define the iteration
complexity of GT-SAGA as the minimum number of iterations
required to achieve an e-accurate stationary point of the global
function F, i.e.,

n K-1

. 1 1 ky (12

mf{K'nZK Z]E [HVF(XZ)H } §e}.
=1 k=0

When the global function F' further satisfies the PL condition,

we define the iteration complexity of GT-SAGA as

inf{k:E [Tllzn:(F(xf)—F*) <e}.

i=1
These are standard metrics for decentralized stochastic noncon-
vex optimization methods [2], [21], [44], [45]. We refer the iter-
ation complexity as the convergence rate metric of GT-SAGA,
since it is the same as the communication and component gradi-
ent computation complexity at each node. We are now ready to
state the main results of GT-SAGA in the next subsections and
discuss their implications.

A. General Smooth Nonconvex Functions

In this subsection, we present the main convergence results
of GT-SAGA for general smooth nonconvex functions.

Theorem 1: Let Assumptions 1, 2, and 4 hold. If the step
size a of GT-SAGA satisfies 0 < a < @y, where

m.n{(l—k2)2 2n'/3 1 (1—x2)3/4} 1
1= 1

ol

480 13m2/37 27 18A1/2mi/2 [ L

then all nodes asymptotically agree on a stationary point in both
mean-squared and almost sure sense, i.e., Vi,r € V

P <lim |xF —xF| = 0) =1, lmE [|xf—xF|*]=0
k—00 k—o0

P<anF@®n:o)=1,lmﬂEmVF@ﬂ2}=0
k—00 k=00

Moreover, if &« = @, GT-SAGA achieves an e-accurate station-
ary point in

o (EUEE)=F) | UV

€ ne

iterations, where F is given by

2/3 2 AL/2m1/2
E = max{m m }

1
ni/3 O L= )2 (1= A/

and [[VE(x)||? = Y, [V (=)

Theorem 1 is formally proved in Section I'V-F. We discuss its
implications in the following remarks.

Remark 3 (Effect of the function heterogeneity): We note
that [|[V£(x?)|?/n in the second term of (2) can be viewed
as a measure of heterogeneity among the local functions. In
particular, when all local functions are identical such that
fi=fr=F,Yi,r €V, this term diminishes, i.e., it can be
shown that ||[Vf(x%)||2/n = |[VF(X%)||? < 2L(F(X°) — F*).
On the other hand, when the local functions are significantly
different, |[Vf(x°)||?/n can be fairly large compared with
L(F(X%) — F*). Based on Theorem 1, it is important to note
that the effect of the function heterogeneity || V£ (x?)||*/n on
the convergence rate of GT-SAGA is decoupled from F, the
effect of the local batch size m and the network spectral gap
1 — A. It is further interesting to observe that the heterogeneity
effect diminishes when the network is sufficiently either well
connected or weakly connected. In other words, the function
heterogeneity effect is dominated by the network effect in these
two extreme cases of interest.

We next view Theorem 1 in two different regimes.

Remark 4 (Big-data regime): We first consider a big-data
regime that is often applicable in data centers, where the local
batch size m is relatively large compared with the network
spectral gap inverse (1 — A)~! and the number of the nodes n.
In particular, if m large enough such that

) A )\‘1/2m1/2 m2/3
max{ =27 (1- x>3/4} ~ i/

Theorem 1 results into an iteration complexity of

o <m2/3L<F<x0> S| VR -,

3)

nl/3e ne

We emphasize that the first term in (4) matches the it-
eration complexity of the centralized SAGA with a mini-
batch size n [46], as GT-SAGA computes n component gra-
dients across the nodes in parallel at each iteration. We note
that under the big-data condition (3), it typically holds that
[VEx)|12/n < m2BL(F(X°) — F*)/n'/3, i.e., the first term
dominates the second term in (4). Therefore, GT-SAGA in this
regime achieves a nonasymptotic linear speedup, i.e., the total
number of component gradient computations required at each
node to achieve an e-accurate stationary point is reduced by a
factor of 1/n, compared with the centralized minibatch SAGA
that operates on a single machine.
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Remark 5 (Large-scale network regime): We now consider
the case where a large number of nodes are weakly connected,
a scenario that commonly appears in sensor networks, robotic
swarms, and ad hoc Internet of Things networks. In this case,
the number of the nodes n and the network spectral gap in-
verse (1 — A)~! are relatively large in comparison with the local
batch size m. In particular, if

m 21/2m1/2 A
max< 1, , <
nl/3 (1- A)3/4 (I=2)2

then the component gradient computation complexity at each
node of GT-SAGA, according to Theorem 1, becomes

ML(F(X%) — F* A2(1 — 22| VE(x2)|1?

o (HEEE) —F) 220 a)|[VEOF) o
(1 —2)2 ne

We note that the component gradient complexity at each node

of GT-SARAH [45], the state-of-the-art decentralized noncon-
vex variance-reduced method, in this regime is

0 (s (2w -+ FEY) - )

Comparing (7) to (6), we observe that GT-SARAH, unlike GT-
SAGA, does not achieve a separation between the dependence of
the network spectral gap 1 — A and the function heterogeneity
measure ||[Vf(x")||?/n on the convergence rate. We, hence,
conclude that GT-SAGA outperforms GT-SARAH if the net-
work is weakly connected and the local functions are largely
heterogeneous, i.e., when 1 — A is small and ||Vf(x?)||?/n is
large. Moreover, we recall from Remark 1 that GT-SAGA is
single timescale and, thus, is much easier to implement than
the two-timescale GT-SARAH over large-scale networks. We
also emphasize that the storage requirement of GT-SAGA in
this regime is significantly relaxed since the data samples are
distributed across a large network, leading to a small local batch
size m at each node.

2/3

&)

B. Global PL Condition

Theorem 2: Let Assumptions 1-4 hold. If the step size a of
GT-SAGA satisfies 0 < « < @s, where

(1-2%)2 1-22 (1-2a2)3
550ML T 13AkY/AL7 388A2nL’
nlt/3 1 1-2% 1
10.5m?2/3k1/3L7 36L° 2u 4mpu

Qo := min {

then all nodes converge linearly at the rate O((1 — pa)*) to a
global minimizer of F. In particular, if o = @o, then all nodes
agree on an e-accurate global minimizer in

1
(@ (max {Qopn Qnet} IOg E)
iterations, where Qop and Qe are given, respectively, by
m2/34/3
Qopl = max {nl/?’, K, m}

AR APt A2nk 1
(1—=2)2"1—-2"(1=2)p3"1—-2)"

Qret := max {

Theorem 2 is formally proved in Section IV-G. The following
remarks discuss a few key aspects of it.

Remark 6 (Linear rate under the global PL condition): The-
orem 2 shows that GT-SAGA linearly converges to an opti-
mal solution when the global F' additionally satisfies the PL
condition. This is the first linear rate result for decentralized
variance-reduced methods under the PL condition, while the
existing ones require strong convexity, e.g., [39]-[43]. A notable
feature of the linear rate in Theorem 2 is that the effects of
the local batch size m and the network spectral gap 1 — X are
decoupled. Hence, in a big-data regime where the local batch
size m is sufficiently large such that Quee S Qopt, GT-SAGA
achieves a network topology-independent rate of O(Qqp log %)
In addition, we note that Theorem 2 implies the linear rate of
GT-SAGA in the almost sure sense under the PL condition, by
Chebyshev’s inequality and the Borel-Cantelli lemma; see [41,
Lemma 7] for details.

Remark 7 (Comparison with other decentralized gradient
methods): When the local batch size m is relatively large,
the linear rate of GT-SAGA improves that of the existing de-
centralized batch gradient methods [21], [50], [S1] under the
PL condition in terms of the component gradient computation
complexity. Moreover, decentralized online stochastic gradient
methods, e.g., [21], [56], only exhibit sublinear rate under the
PL condition due to the persistent variances of the stochastic
gradients. Therefore, GT-SAGA achieves faster convergence
under the PL condition compared with the existing decentralized
methods, demonstrating the advantage of the employed SAGA
variance reduction scheme that is able to exploit the finite-sum
structure of local functions.

Remark 8 (Improved convergence results for the centralized
minibatch SAGA): When A = 0, i.e., when the underlying net-
work is a complete graph whose weight matrix can be easily
chosen as W = 11,17, GT-SAGA reduces to the centralized
minibatch SAGA and achieves the linear rate of O(Qop log 1).
Hence, a special case of Theorem 2, i.e, A = 0, provides the
first linear rate result under the PL condition for the centralized
SAGA. Indeed, the existing linear rate results [46], [52] under
the PL condition are only applicable to a modified SAGA that
periodically restarts O(log 1) times with the output of each
cycle being selected randomly from the past iterates in this
cycle. This procedure is not feasible particularly in decentralized
settings. In contrast, the linear rate shown Theorem 2 is on the
last iterate of the original SAGA without periodic restarting and
sampling.

I1l. NUMERICAL EXPERIMENTS

In this section, we present numerical simulations to illustrate
our main theoretical results. The network topologies of interest
are undirected ring, undirected 2D-grid, directed exponential,
undirected geometric, and complete graphs; see [3], [41], and
[57] for details of these graphs. The doubly stochastic weights
are set to be equal for the ring and exponential graphs and are
generated by the lazy Metropolis rule for the grid and geometric
graphs. We manually optimize the parameters of all algorithms
in all experiments for their best performance.
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Big-data regime: the KDD98 dataset Big-data regime: the covertype dataset

Big-data regime: the MiniBooNE dataset Big-data regime: the BNG dataset
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Fig. 1.
datasets.

TABLE |
DATASETS USED IN NUMERICAL EXPERIMENTS

Dataset train (N = nm) | dimension (p)
nomao 30,000 119
a9%a 48,800 124
w8a 60,000 300
KDD98 80,000 478
covertype 100,000 55
MiniBooNE 100,000 51
BNG(sonar) 100,000 61

[Online]. Available: https://www.openml.org/

A. Nonconvex Binary Classification

In this subsection, we consider a decentralized nonconvex
generalized linear model for binary classification. In view of
Problem (1), each component cost f; ; is defined as [53]

1 (—u)>2

fig(x) =L (&;%"0i ;) £(u) := (1 1+ exp(—u)

where 0; ; € RP? is the jth data vector at the ith node, &; ; €
{—1,+1} is the label of 6; ;, and £: R — R is a 3-smooth
nonconvex loss. We normalize each data to be ||0; ;|| = 1, Vi, j.
Since V2 f; j(x) = ¢"(&;,;x"6;7)0; ;6. ;. itcan be verified that
[V2fi; ()|l = [¢(&.,;%"0; ;)| < 5. Hence, each component
cost f; ; is nonconvex and -smooth. We measure the perfor-
mance of the algorithms in question in terms of the decrease
of the stationary gap |VF(X)|| versus epochs, where X :=
%Z?:l x; for x; being the model at node ¢ and each epoch
represents m component gradient evaluations at each node. All
nodes start from a vector randomly generated from the standard
Gaussian distribution. The statistics of the datasets used in the
experiments are provided in Table I.

1) Big-Data Regime: We first test the convergence behavior
of GT-SAGA in the big-data regime by uniformly distributing
the KDD98, covertype, MiniBooNE, and BNG (sonar) datasets
over a network of n = 20 nodes. We consider four different
network topologies with decreasing sparsity, i.e., the undirected
ring, undirected 2D-grid, directed exponential, and complete
graph; their corresponding second largest singular values of the
weight matrices are A = 0.98,0.97, 0.6, 0, respectively. It can be
verified that the big-data condition (3) holds. The experimental
results are shown in Fig. 1, where we observe that the conver-
gence rate of GT-SAGA is independent of the network topology
in this big-data regime; see Remark 4.

2) Large-Scale Network Regime: We next compare the
performance of GT-SAGA with DSGD [2] and GT-SARAH [45]

20 40 60

Epoch

80 100

Epoch

Big-data regime: the network topology-independent convergence rate of GT-SAGA on the KDD98, covertype, MiniBooNE, and BNG (sonar)

in the large-scale network regime. To this aim, we generate a
sparse geometric graph of n = 200 nodes with A ~ 0.99 and
uniformly distribute the nomao, a9a, w8a, and BNG (sonar)
datasets over the nodes. It can be verified that the large-scale
network condition (5) holds. The numerical results are presented
in Fig. 2: the first three plots show that GT-SAGA achieves the
best performance among the algorithms in comparison, while
the last plot shows that the convergence rate of GT-SAGA is
dependent on the network topology in this large-scale network
regime; see Remark 5.

3) Robustness to Heterogeneous Data: We now make the
data distributions across the nodes significantly heterogeneous
by letting each node only have data samples of one label, so that
no node can train a valid classification model only from its local
data. We compare the performance of GT-SAGA under hetero-
geneous and homogeneous distribution of the nomao dataset.
We consider a well-connected graph, i.e., the 20-node exponen-
tial graph, and a weakly connected graph, i.e., the 200-node
geometric graph. The numerical results are shown in Fig. 3,
where we observe that the convergence rate of GT-SAGA is
not affected by the data heterogeneity over both graphs; see
Remark 3.

B. Synthetic Functions That Satisfy the PL Condition

Finally, we verify the linear rate of GT-SAGA when the global
function F’ satisfies the PL condition. Specifically, we choose
each component function f; ; : R — R as

fij(x) = x? 4 3sin?(x) + a; ;j cos(z) + b; jx
m

where 371" >0 a; ;= 0and 337, 377 bi ;= 0 such that
ai; #0, b ; #0, Vi,j. This formulation, hence, leads to
the global function F(z) = 2% + 3sin?(z). It can be veri-
fied that I is nonconvex and satisfies the PL condition [55].
Note that each f; ; is nonlinear and highly deviated from F;
see the last three plots in Fig. 4 for a comparison of lo-
cal and global geometries. We use the 20-node exponential
graph and set m = 5. It can be observed from the first plot
in Fig. 4 that GT-SAGA achieves linear rate to the opti-
mal solution, while DSGD converges to an inexact solution;
see Remark 7.

IV. CONVERGENCE ANALYSIS

In this section, we present the convergence analysis of GT-
SAGA, i.e., the sublinear convergence for general smooth non-
convex functions and the linear convergence when the global
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Large-scale net. regime: the nomao dataset Large-scale net. regime: the a9a dataset Large-scale net. regime: the KDD98 dataset Large-scale net. regime: the BNG dataset
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Fig. 2. Large-scale network regime: the first three plots present the performance comparison between GT-saGa, DSGD, and GT-SARAH on the

nomao, a9a, and KDD98 datasets; the last plot presents the performance of GT-SAGA over different graph topologies in this regime on the BNG

(sonar) dataset.
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Fig. 3. Robustness of GT-SAGA to heterogeneous data over well con-
nected and weakly connected graphs on the nomao dataset.

function F' additionally satisfies the PL condition. Throughout
this section, we assume that Assumptions 1, 2, and 4 hold without
explicitly stating them; we only assume that Assumption 3 hold
in Section IV-G. In Sections IV-B-IV-E, we establish key rela-
tionships between several important quantities, based on which
the proofs of Theorems 1 and 2 are derived in Sections IV-F
and I'V-G, respectively. We start by presenting some preliminary
facts.

A. Preliminaries

GT-SAGA can be written in the following form: Vk > 0
vl — W (yk tgk gk—1>

X Z W (xF — ayt )

(8a)
(8b)

where x*, y*, and g* are random vectors in R™ that concate-
nate all local states {x¥}"_,, gradient trackers {y¥}™_;, and lo-

cal SAGA estimators {giC i, respectively,and W = W @ L.
We denote FF* as the filtration of GT-SAGA, i.c., Vk > 1

Fri=o({rhsiiievt<k—1}), F'i={¢Q}

where ¢ is the empty set. It can be verified that x*, y*, and
z} ;,Vi, j, are F*-measurable and g* is F**!-measurable for
all k > 0. We use E[-|F*] to denote the conditional expectation
with respect to F*. For the ease of exposition, we introduce the

following quantities:

J:=(1,1)/n)®1,

VExF) = [VAGENDT, ... VT
VE(x) = (1, @ I,/n) VE(x"), %"= (1) ®I,/n)x"
yk = (1;®Ip/n) ykv gk = (1;®Ip/n) gk-

We assume that X° € R? is constant, and hence, all random
variables generated by GT-SAGA have bounded second mo-
ment. The following lemma lists several well-known facts in the
context of gradient tracking and SAGA estimators, which may
be found in [17], [18], [34], [41], and [54].
Lemma 1: The following relationships hold.
a) Vx € R, |Wx — Jx|| < Aljx — Jx]|.
b) ¥ =gk, vk > 0.
o) [VE(xF) — VFE")|? < L||x* — Jx*|2, V& > 0.
d) E[gF|F*] = V f;(xF),Vi € V,Vk > 0.
&) IVF(x)|? < 2L(F(x) — F").

Note that Lemma 1(e) is a consequence of the L-smoothness
of the global function F’ and is only used in Section IV-G, while
other statements in Lemma 1 are frequently utilized throughout
the analysis. The next lemma states some standard inequalities
on the network consensus error [21], [41].

Lemma 2: The following inequality holds: £ > 0

[l — 32 < Lk — IR 2

242
+ Al -y o)
ka+1 _ Jxk+1||2 < 2k2||Xk _ Jxk||2
+2070 " = Jy"EHE 10y

™t = I < A — I+ anllyt T -y
(11)

B. Bounds on the Variance of Local SAGA Estimators

In this subsection, we bound the variance of the local SAGA
gradient estimators g¥s. For analysis purposes, we construct two
auxiliary F*-adapted sequences: Vi € V, Vk > 0

I o=, _ 1 &
IR =
j=1 i=1

These two sequences are essential in the convergence analysis.
We note that t* measures the average distance between the mean
state X* of the networked nodes and the latest iterates zﬁ ;8
where the component gradients were computed at iteration & in
the gradient tables. Intuitively, t* goes to 0 as all nodes in GT-
SAGA reach consensus on a stationary point. We will establish
a contraction argument in ¢* in Section IV-D. In the following
lemma, we show that the variance of g¥ may be bounded by the

network consensus error and t*.

tf:
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GT-SAGA versus DSGD under the PL condition Geometry of the global function

Geometry of the 3th function at 2th node Geometry of the 4th function at 4th node
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Fig. 4.

PL condition: the first plot presents the performance comparison between GT-SAGA and DSGD when the global function satisfies the PL

condition; the last three plots present the geometry comparison of the global and local component functions.

Lemma 3: The following inequality holds: V& > 0

E [||lg" — VE(x")|?|F*] < 2L%|x" — Ix"||? + 2nL?tF

(12)

_ 212 212 —
B[22t — 3|2 + 22 [Tt
(13)
Proof: We denote V¥ := Vf, o+ (XF) = VS 1 (2F 1), Vi€

V, Vk > 0, for the ease of exposition. We first observe from
Algorithm 1 that V& > 0,Vi € V

- 72 fz,j

In light of (14), we bound the variance of gf‘
ing: vk > 0,Vi € V

V fi(xF)[1|F*]

V417 11217

E [ﬁﬂfﬂ Vfi(x (14)

in the follow-

E[lgf -
=E {W%E

<E [1941217]

j=1
(iii) 12 9
e Sy
j=1
< 22 ||xk — F||* + 2224, (15)

where (7) is the conditional variance decomposition, (%) uses
that ||V fi ;(xF) — V f; (2} ;)||? is F*-measurable and that 7
is independent of F*, and (#4i) uses the L-smoothness of
each f; ;. Summing up (15) over ¢ from 1 to n gives (12).
Toward (13), we have: Vk > 0

E [Ig"1°17] 2E [Ie*
i) 1
()ﬁﬂmﬁ—

VE) P17 + [VEGD)|1?

VEGR)|PIFF] + [ VE()|?
(16)

) and that Vf(x*) is F*-
E[(g} -

where (i) uses that E[g¥| F*] = Vf(x*
measurable while (zz) uses that, whenever i # 7,

V/i(xF), gl — Vfj(xh)|F¥] = 0, since 7/ is independent
of o (o (7} ) }'k) and E[g | F¥] = V£(x*). The proof follows
by applying (12) to (16). |

C. Descent Inequality

In this subsection, we provide a key descent inequality that
characterizes the expected decrease of the global function value
at each iteration of GT-SAGA.

Lemma4: If 0 < a < 21L,then‘7k: >0
k(2

)l

E [P < FE) - SIVEEY|? - TIVE(x

L2 2L3
n a—nx Ixk||2 4 L2 gk

Proof: Since F'is L-smooth, we have [4]: Vx,y € RP

L
F(y) < Fx) +(VF(x).y =x) + o ly - x|*. A7)

7X>

We multiply (8b) by -
xhtl = xF ayk+1 =xF - agk Yk > 0. Setting y = X
and x = X* in (17) obtains: Yk > 0

L (1] ®1,) and use Lemma 1(b) to obtain
<h+1

2
PE) < FE) - o(VFED. 25 + SE % a8

Conditioning (18) with respect to F*, since VF(X*) is F*-
measurable, we have
E[FE)|FF] < F(EY) — a(VE(EY),

f(xk)>

a’L _
+ —-E[Ig"1"I7"]- (19)

Using 2(a,b) = ||a||? + ||b||?> — |la — b||?,Va,b € RP, in
(19), we obtain: Vk > 0

E [FE)|FY) < F(R) = SIVEE|? - SIVEH)|?

— a’L _
= VEN)|? + —=E [I[g"[I*[F*] . 0)
Applying Lemma 1(c) and (13) to (20), we have: Vk > 0

E[F (=) )

+ %HVF(ik

Al —aL) ok 2

_ e} _ —alL
< F(xF) - §HVF(XI€)||2 S w—
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L2 LS 2L3
+ (a +2 ) b — IxF|2+ Sk @l
2n n? n
The proof follows by the fact that if 0 <a < 2L’ we
have —70‘(12@) < —%and % + ;53 < % [ ]

Compared with the corresponding descent inequality for
centralized batch gradient descent [4], Lemma 4 exhibits two
additional bias terms, i.e., ||x* — Jx*|| and ¢*, which are due
to the decentralized nature of the problem and sampling. To
establish the convergence of GT-SAGA, we, therefore, bound
these bias terms by || Vf(x*)|| and show that they are dominated
by the descent effect —||Vf(x*)]|.

D. Bounds on the Auxiliary Sequence t*

In this subsection, we analyze the evolution of the auxiliary
sequence t* and establish useful bounds.
Lemma 5: The following inequality holds: V& > 0

E [tF+HFF] < 0tF + (2a2 + g) [ VE(x")|?

202 L2 2\ 1
(25 2 o - e
m n

n
where the parameter § € R is given by

2022

9::1—l+a6+ (22)
m
and 8 > 0 is an arbitrary positive constant.
Proof: We define A" := (U 0(7F), F¥) and clearly
F* C A*. By the tower property of the conditional expectation,
we have: Vi € V,Vk > 0

1 m
k4L 4] K k4112 4k] | Tk
E [th+!|FF] :Ez [[IEHE — Z 12 AR] | 7Y
(23)
Since s¥ is independent of A* under Assumption 1, we
have: Vi € V,Vj € {1,...,m},k >0
1 1
K] _ kK] _
E [Il{sf:j”A } = —andE [ﬂ{s?#}ut ] —1-— 24
In light of (24), we have: Vi € V,Vj € {1,...,m},k >0
E [Hik-H _ ijlH2|Ak}
2
—k+1 k k k
I:H k+1|| ‘Ak +E |:Hﬂ{sk_J}X +ﬂ{sk#J}Z ‘Ak:|

2B [(Z 1 myyxd + Ly t) |A4Y]
i 1 1
@ |=EY2 — 2<xk+1, —xf + <1 — ) zfj>
m m ?

1
P+ (1= ) et

||7k+1 (25)

k fk: k
i2+< ) gk 2

where (i) uses (24) and that X**! x}, and z}; are A*-
measurable. Usmg (25) in (23), we obtain: Vi € V,Vk >0

]

() B e et 2]
(26)

We next bound the two terms on the right-hand side (RHS)
of (26) separately. For the first term, we have: Vi € V, k > 0

E [||I%F — x7|*|F*]
=E [|Ix"! —x* + %" — xF|?| 7]
= ’E [||g"*|F*] - 2(aVE(x"),x" - xf) + X" —x
< % [[g"[P|F"] + o®|[VEGF) 1P + 2f|xf — <2

B U7 = SR [[R —x

qh
@7)

where the last line uses the Cauchy—Schwarz inequality. Toward
the second term on the RHS of (26), we have: Vi € V), j €
{1,....m},VE>0,¥8 >0

[H—kJrl ﬁ]HZ‘]_—k]
—F [”ik—‘rl —ik —l—fk _ le ||2‘]_-k}
= o’E [||lg"|*|F*] — 2a(VE(x"),x" — 2 ;) + |[x* — 2}

< o’E [Ig"?1F*] + (1 + aB)IIX* — 2811* + BIIW(X’f)II2

(28)
where the last line uses Young’s inequality. Now, we apply (27)
and (28) to (26) to obtain: Vi € V, Vk > 0

E [tk+1|]_—k] (1 _ ;) (1+ aB)tl + o’E [|[g"|1?|F*]

20k k2 0‘: LY @) o k2
2w (S (1- 1) ) ITTe e

(29)

We average (29) over ¢ from 1 to n and use (13) in the resulting
inequality to obtain: V& > 0

202 1.2 2 1
a +> 2k — Ixk |2
m n

2 1 o
+ (a2 e (1 - m) g) [VF) |

2712
+ (2a L (1 - ;) (1+a6)) 5. (30)

n

E [t++1|74] < (

We conclude by using - + 1 <2and1—-- <1in(30). W

Next, we specify some particular ch01ces of 3 and the range
of o in Lemma 5 to obtain useful bounds on the auxiliary
sequence t*. The following corollary shows that t* has an
intrinsic contraction property.
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Corollary 1: Tf0 < a < v

N then Vk > 0

E [tFT!|FF] < (l - 4171) t* + 4ma® | VE(x")||?

9
+ THXk — JXkHz.
Proof: We choose 8 = m in Lemma 5 to obtain: if 0 <
< \/%L, ie., ZanL < 1, then
1 202 L2 1
h=1-—+af+ 27 <1 — 31)
m dm
202 + % — 202 + 2ma? < 4ma? (32)
20212 2 1 2 9
+ =< —4+ == — (33)
n m =~ 4dm  m  4dm
We conclude by applying (31)—(33) to Lemma 5. |

The following corollary of Lemma 5 will be only used to
bound E[||gh+! — Vf(xk1)||2|F¥].

Corollary 2: If0 < a < \/LL, then Vk > 0

E [t*1F*] <2t 4 307 VE(x") |2 + —|Ix" — Ix"||*.

dmn

Proof: Setting f = 1/« in Lemma 5, we have: if 0 < a <
N 20212 1
1.€ B < Im? then

TamD €
1 L2 2
0=1——+ab+ “ <2 (34)
m
20 + = = 30> (35)
B
20207 2 1 2 9
S R A (36)
n m~— 4dm  m  4dm
We conclude by applying (34)—(36) to Lemma 5. |

With the help of (10), (12), and Corollary 2, we provide an
upper bound on E[||gk*+t — Vf( kL) 12| 7M.
Lemma 6: If 0 < a < then Vk > 0

FL’

k+1 Vf(xk+1)||2\}"k} < 8.5L2||Xk

E|g — IxF |+ An L

+ 6na® L%||VE(x")|? + 402 L°E [||yk+1 — Jyk+1||2|]-"k] .

Proof: By the tower property of the conditional expectation,
we have: Vk > 0

E [|lght = VEG|121 7]

—F [E [”gk+1 _ Vf(Xk+1)H2|.7:k+l} ‘]_—k}

<2L°E [||x"*' — Ix" | FY] + 2n LK [t54 | FY]

= IyHEIF)

x" —Jxk||2>

where the second line uses (12) and the third line uses (10) and
Corollary 2. The desired inequality then follows. |

k+1
< 2L7 (2]xF — Ix"||? + 20°E [||y" !

2nL? ( 2t° + 32| VE(x")|? + —
2022 (264 302 TG + |

E. Bounds on Stochastic Gradient Tracking Process

In this subsection, we analyze the variance-reduced stochastic
gradient tracking process (8a).
Lemma 7: The following inequality holds: V& > 0

E [”yk+2 o Jyk+2”2]
< )LQE [Hyk—‘rl _ Jyk—HHQ] 4 )\2]E [”gk—H _ ngQ]
+2E [(W = D)y (W = J) (VE(x"T) — VE(x")))]

+2E [((W = D)y (W = J) (VE(xF) -

g))] -

Proof: Using (8a) and JW = J, we have: Vk > 0

[y* 2 — Jykt?|?
= Wy —Jy" '+ (W —J) (" — ") |I?
= [[Wy"*! — JkaH2 +{[(W=J) (g" —g") |I?
+2(Wy - JyF (W - J) (6" - )
<Ayt - Jyk“ll2 +2%g" - g¥|?
19 <Wyk+1 — JyFtt, (W —1J) (gk"'l — gk)> (37

where the last line uses Lemma 1(a) and [|[W — J|| = A. To
proceed, we observe that Vk > 0

E [(WyFt! — JyF+t (W —J) (gFT! — gF)) | FF ]

= (Wy*H! —Jy’“+1 (W —J) (Ve - gh))

_ <Wyk+1 k+1 (W J)( ( 1) Vf( ))>
+<Wy’““—Jyk“,(W—J>( f(x")—g")) (38

where the first line uses that E[ght1|Fk*1] = Vf(xk*!) and
that y**! and g* are F**!-measurable for all & > 0. We
conclude by using (38) in (37) and taking the expectation. M
We next bound the third term in Lemma 7.
Lemma 8: The following inequality holds: V& > 0

(Wyr ! — Jyk+t (W — J) (VE(xF) — VE(xY)))
< (AL +0.5m +2) A2y — Iy 2
+0.50; 220 LPn|[g"||* + ny "W L7 X" — IxF|?

where ; > 0 and 1y > 0 are arbitrary.
Proof: Using Lemma 1(a) and ||[W — J|| = A, we have

Vf(xk))>
VE>0.  (39)

(WyFth — Jy*t (W — J) (VE(xF) —
< APLYyRT = Iy x T — x|

Observe that Vk > 0

[t —x"|
= [|xF = IxP o IxR - JxR 4 JxE - x|
< xFH = IxEH 4 Vnalg | + (X" - Ix"|

< 2[|x" = IxF| + vnallgh|| + arlly* Tt — Iy (40)
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where the last line is due to (11). We use (40) in (39) to obtain

<Wyk+1 Iy (W - ) (Vf(xkﬂ) _ vf(xk))>
<aLy** = Iy*IVnaLlg"|
—JxF| vk>o. 41)

_ JkaHQ +)\2||yk+1
+ 202 |y — Iy R L) "

By Young’s inequality, we have: Vk > 0, for some n; > 0

Ayt — Iy* T VnaLlg" |
< 0.527 (mly* ™ = Iy" P + 0 e LP88)7) 42)
and, Vk > 0, for some 15 > 0
2% ||ly* = Iy L)%Y — I
<Py = IyFEHP 4 %0 L2 XN — I 43)

The proof follows by applying (42) and (43) to (41). |
We next bound the fourth term in Lemma 7.
Lemma 9: The following inequality holds: V& > 0

E [<Wyk+1 ~ Iy (W - J) (vf(xk) _ gk)>]
<E [llg" — VEH)|2] /.

Proof: In the following, we denote Vf* :=
plify the notation. Observe that Vk > 0

VE(x*) to sim-

E [(Wy" ! — Jy* 1 (W — ) (VEF — g¥)) | 7]
g [<W2 yE+gh =gt (W= 0)(VE* —gh)) | F*]
CE (W — ) (Vi —gh)) | 7]
e [<w2< ka> (W —J) (V" — g")) | 7]
YE (e - ~WIW?)(gF - VIR FY] 44

where (i) uses (8a) and JW = J, (ii) and (iii) use that y*,
gh1, and V¥ are F*-measurable and that E[g*|F*] = V¥
for all £ > 0, and (w) uses JW = J. Since, whenever i # j €

V.E[(gF — Vfi(x}), g — Vf;(xF))|F*] = 0,and W W?is
nonnegative, we have. Vk >0
E [(g" — V") T (I - WTW?) (gF — VEF) | F¥]
=E [(g" — V*) "diag (J - WTW?) (gF — V) |F]
<E [(g" — Vf*) diag(J) (g" — VI¥) |7*]. (45)
The proof follows by taking the expectation of (45). |

We finally bound the second term in Lemma 7.
Lemma 10: The following inequality holds: V& > 0

E [”ngrl _ ngﬂ S IQXQQQLQIE [Hyk+1 _ Jyk+1||2]
+2E [[lg* — VE")|?] +E [lgh*! — VE")]1?]
+18L°E [||Ix* — Jx*||?] + 6na’L2E [||g"|%] .

Proof: Since g¥ and Vf(x**1) are F**!-measurable, and
E[ghtt|Fk1] = VE(xkT1), we have: Vk > 0

k+1 gk ||2‘]_-k+1]

E[lg

=E [|g""" — VE")|?|F ] + | V) — gb)?
<E [Hgk-i-l VE(x"H) |12 |]_-k+1]

+2| VE") = VE)|P + 2| VE(x") - g
<E [Hngrl — VE(xF)|2 |]_-k+1]

+2L7|xF — xF |2 4 2| VE(xF) — gF|%. (46)

Similar to the derivation of (40), we have: Vk > 0
[xh+1 — xk||2

<3| — M2 4 3na®g" 17 + 3)1x" - Ix"?
< 9)lx" = IxF|? + 3na? |8 |17 + 60227y T — Iy

where the last line is due to (10). We conclude by applying the
last line above to (46) and taking the expectation. |
Now, we apply Lemmas 8—10 to Lemma 7.
Lemma 11: The following inequality holds: Vk > 0

k+2 k+2||2]

E [[[y** - Jy
< (1+20aLl +my + 2 + 120%0°L7) A2
x E [[ly* — Iy ]

+ (203" 4+ 18) A’L°E [||x*
+ (ny ' +6) A2’ L?nE [||g"||]
+ (222 +2/n) E [|lg* — VE(x")[?]
+37E [Jlg"! - VI

Proof: Apply Lemmas 810 to Lemma 7. |
Finally, we use Lemmas 3 and 6 to refine Lemma 11 and
establish a contraction in the gradient tracking process.

—Jxk\ﬂ

Lemma 12: If 0 < a < min{:2, M}L, then we
have: vk > 0
E U|yk+2 _ Jyk+2H2]
1422 : 30.5L2
< E [y = Iy" 7] + T2 B [l — IxF?]
97L%n 16A202L%n_ - ==
- E [t"] + ————E [|VE(x")|?].
8 1—A
Proof: We apply Lemmas 3 and 6 to Lemma 11 to obtain:
ifo<a< FL,thend >0
E [||yk+2 _ Jyk+2”2]

< (1+2hal +m + 2np + (1202 +4) o*L?) 12
Na ) [Ilyk+1 _ JkaHﬂ

20202 L% 4
+((2n21 +18)A% + (nyt + 6)% +—+ 12.5)?)
x L*E [||x" — Ix¥||?]
+ (201" +6)A%aL? + (227 + 1/n) 4n) L°E [t"]
+(n '+ 12)22aL?nE [||[VE(x")|?] - 47
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We fix n; = It can then be verified that

1-2
Toiz and 72 = 812

1+2/\aL+n1+2n2+(12A2+4) 2P < B if)<a<
1 3 L The proof then follows by applying this inequality and the
values of 11 and 72 to (47). |

F. Proof of Theorem 1

In this subsection, we prove the convergence of GT-SAGA for
general smooth nonconvex functions. To this aim, we write the
contraction inequalities in (9), Corollary 1, and Lemma 12 as
an LTI dynamics that jointly characterizes the evolution of the
consensus, gradient tracking, and the auxiliary sequence t*.

Proposition 1: If 0 < a < min{ 11& , \/%}7 then
ub !t < Gout + b VE>0

where u* € R?, G, € R3*3, and b* € R? are given by

E [%ka - Jxk||2] 0
ub = E [tk] . b:=|4ma?
2 .2
E [rzlly™ = Iy 7] 1255
[1412 22202 L2
0 e
Ga = 1 1 — 777’7, 0
30.5 97 1422
LT-22 8 2

and b* := bE[||VF(x*)|]?].

We first derive the range of the step size o under which the
spectral radius of G, defined in Proposition 1 is less than 1,
with the help of the following Lemma from [58].

Lemma 13: Let X € R%*? be a nonnegative matrix and x €
R% be a positive vector. If Xx < x, then p(X) < 1. Moreover,

if Xx < fx, for some 5 € R, then p(X) < S.
Lemma 14: If 0 <a < rnin{(l%ﬁ)2 , \/Tim}%’ then we
have p(G,) < 1, and thus, > 7, GF = (I3 — G,) 1.
Proof: In light of Lemma 13, we find a positive vector € =
[€1,€2, €3] and the range of a s.t. G,€ < €, i.e.,

s (1-2%)%¢

a” < W; (48)

9¢1 < €9 (49)
61 97

(1_)L2)2€1+ 4(1_)2)62 < €3. (50)

Based on (49), we set € = 1 and e, = 10. Then, based on (50),
we set €g = %2)2 The proof follows by using the values of ¢;
and €3 in (48). [ |

Based on the LTI dynamics in Proposition 1, we derive the
following lemma that is the key to establish the convergence
of GT-SAGA for general smooth nonconvex functions.

. 1-22)2 n
Lemma 15: If 0 <« Smin{( 35/\) ’\/%}%’ then we
have: VK > 1

dut<(I-Go) (uo +b i: E [|VE(x")[?] )
k=0 k=0

Proof: We recursively apply the dynamics in Proposition 1 to
obtain: u? < GFu® + S F7L GrbF 17 Wk > 1. We sum this
inequality over k to obtain: VK > 1

K k-1
SR SRS 9 S
=17=0
o] K-1 oo
< (Let)w 3 (et )u
k=0 k=0 \k=0
The proof follows by > 72, GF = (I - G,) ! and the defini-
tion of b* in Proposition 1. ]
2
Lemma 16: If 0 < o < min{(14§/\) \/\@ , then
r 776A2ma? L2 162202 L2
(1,}2)3 (1,2)\22)32
-Gl < [« sm  Lidap
* * *

[ (3104m2 + 2592 22l
33m2a?

*

(IS - Ga)_lb S

where the * entries are not needed for further derivations.
Proof: In the following, for a matrix X, we denote X* as
its adjugate and [X]i,j as its (i, j)th entry. We first note that

if0<a< S22 det(Iy — Gy) > U

upper bounds for entries of (I3 — G,)

. We next derive

. B 97)\'20[2[/2 N o )\2042112

(=Gl = G —3ay [~ Gal'his = 30—
. (1— )LQ)Q . - 91202 L2

[(I-Ga)l22 < =7 [1=Ga)l23 = 2m(1 - 22)’

The upper bound on (I3 — G,,) ! then follows by using the
above relations. Finally, we have

31042.2m?a*L? + 256A%a L2
(17)»2)3 (417412%4
(Is = Ga)'b < | 32m%a® 4 2gsts
*
I 0<a< O then 32m2a? + 2040'LE < 33,242
and the bound on (I3 — G,,) " !b follows. [ ]
We now bound two important quantities as follows.
(1-22)2

Lemma 17: If 0 < a < min{
have: VK > 1

K
1

> E [|x’f -J
n

k=0

o ,—ﬁsm}f, then we

I

2] < 16Ata? || VE(x°
(1—22)3 n

822\ 32420412 N .
+ (97m2—|— l_ﬂ) e 2 E [IVES)[?] 51
k=0
and VK > 1
K
ZE 114x4 2 | VE(x0)|?
- (1 —22)3 n
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K-1
+33m2a® Y " E [||VE(x"))?] .
k=0

(52)

Proof: By (8a), we have ||y! — Jy!||? = [[(W — J)(y° +
gl — g H)||? < A?||VE(x%)||2. The proof then follows by ap-
plying this inequality and Lemma 16 to Lemma 15. |

Now, we are ready to prove Theorem 1.

Proof of Theorem 1: We sum up the inequality in Lemma 4

over k to obtain: if 0 < o < 2L,thenVK >1

K-1
E[FE)] < FE) - 5 Y E [IVFE)|)
k=0

« a”L
=7 2 E[IVECS)IP] + E [t"]
k=0 k=0
K1 1y
2 Lk Tok2
+al’ > E [nnx Jx"| } . (53)
k=0
By the L-smoothness of F, we have 5~ 37" | [|[VF(xF)|? <

IVFER)|2 + £ L |x* Jxk||2 Vk > 0. Using this inequality
in (53), we 0bta1n if0<a< 2L,then VK >1
a n K-1
E[FEO] < P& - 02 2 EIVFEI]
1=1 k=
e’ a”L
-3 E [I9E) ) + E [¢']
n
k=0 k=0
3aL? < [1 & Lo
+ ’;)IE [on — Jx" ] (54)

Applying (52) to (54), we obtain the following inequality: if 0 <
232 /i

a<m1n{ 5 ,\/@,2 L,thenVK>1
a n K-
E[F(x")] < F(=° @ZZ [IVEGE)?]
i=1 k=0
a¢ 11@ TR + 1142404 L3 | VE(x0) )2
8 &~ n(l—a2)3 n
9 K—

[x -3

o 264m2a3 L3\
-3 (1 ) Z E [|VE(x))?]. (55)
k=0

fo<a< 132”:;;, 1-— 2647”21‘13” > 0, and thus, the last term

in (55) may be dropped. We then use (51) in (55) to obtain: if

1 12)2 2 1/3 1
0<a<minfiEl 200 Bl hen VK > 1

n K-1

E [F(xX)] < F(R%) - %ZZEWF )1%]

=1 k=0

—iKZ [|x -]

(5
(1_

Ol

282103 L2 | VE(x
1-223 &

g7 52 ) 8963%1L!
" (1—22)3

8
K-1
X ZE [VE(x")|1?] . (56)
k=0
We note that if 0<a< mln{%, 11_212 %, then

2 82

max{97m?, 25} 890504 < 1 and the last term in (56) may

be dropped. Therefore if 0 < a < @ for @y defined in Theo-
rem 1, we obtain from (56) that VK > 1

n K-1
_ «
E[F9)) < FE) - =30 SR [IVEGE)P]
i=1 k=0
_al? Rl Lt gt | 12040° L2 VR
4 X' Ix (1—22)3 n
k=0
(57)
Since F' is bounded below by F*, (57) leads to VK > 1
1, n
EZ [V F G2 + 22k — =)
=0\ _ 1 4. 272 0\]/2
< 4(F(x )— F*)  448)0*a”L* | VE(x)]] ' (58)

a (122

Since the RHS of (58) is finite and independent of /', welet K’ —
oo in (58) to obtain

f:f:za [IVF(x

k=0 i=1

DIP 4 == 7] <00 (59)
which shows that all nodes in GT-SAGA asymptotically agree
on a stationary point of F' in the mean-squared sense. Moreover,
since the series on the left-hand side (LHS) of (59) is nonneg-
ative, we may exchange the order of the series and expectation
to obtain [59]: E[Y3 1, (IVF(b)[2 + b —%¥[2)] <
00, which implies that

(ZZ |VF(x

k=0 i=1

DIP + [xd —%M%) < oo) =1 (60)
i.e., all nodes in GT-SAGA asymptotically agree on a stationary
point of F' in the almost sure sense. Finally, toward the iteration

complexity of GT-SAGA, we set a = «; in (58) and divide the
resulting inequality by K to obtain: VK > 1

*i ZIE IV (xF)|]

4(F(x%) —

- ) 448)»451 L? HVf(XO
- a1 K

)|I”
1- 223K ‘

(61)
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Based on (61), the iteration complexity of GT-SAGA then where v¥ € R* and H, € R*** are given by
follows by recalling the definition of @; in Theorem 1 and _ _ .
that 44(? Aoél)ng < '\2(1;'\2) since 0 < @y < (14;\\2]:)2. ] E [7]1x" — Ix*||%]
o 1E [F(x*) — F7]
G. Proof of Theorem 2 E [t*]
. . . E [L”ykﬂrl _ Jyk+1||2]
In this subsection, we prove the linear rate of GT-SAGA when L™ LnL?
the global function F' additionally satisfies the PL condition. In r 1422 0 0 21202 L2
particular, we use the PL condition and Lemma 1(e) to refine 2L 1 22 1E)A2
the descent inequality in Lemma 4 and the previously obtained H,, := 2a2 0 N /; a2 "
LTI system in Proposition 1. 8ma”L” + 1o 16”;‘a2L2 I 0 ,
Lemma 18: If0 < a < 5, then Vk > 0 - G o L g
E [ F(ikﬂ) — F }‘kl We are ready to prove Theorem 2, i.e., to establish an upper

al? a’L3
< (1 — pa)(FEF) - F*) + Tnx’“ —IxM? + Ttk.
Proof: Apply the PL condition to Lemma 4 and then sub-
tract F™* from the resulting inequality. ]
Next, we refine Corollary 1 as follows.

Lemma 19: If 0 < a < \/LL,thend >0

B < (1 gy )¢ 0math (P - )

9\1
+ <8moz2L2 + 4) —|]x* — Ix¥|2.
m)n

Proof: By Lemmas 1(c) and 1(e), we have: Vk > 0

IVE")|? < 2 VEEN)|? + 2| VE(X") - VE(x")|?
212
<4L (F(x*) - F") + —Ix F_JxM)? (62)
The proof follows by applying (62) to Corollary 1. ]
We finally refine Lemma 12 as follows.
Lemma 20: If 0 < o < min %7 \/%}%, then V& > 0
E [Hyk-‘rQ o Jyk+2”2]
1+ 22 , 31L2
< E [y = 3y" 7] 4+ 5 E [Ix" = 3x|?]
L? 4020”3
978 "E ] + 61_0‘7/\2"]}: [F(x) — F*].

Proof Applying (62) to Lemma 12, we have: if 0 < o <

min{1Z- ,\/‘gim +,then Vk >0

1422
2

k+2

_Jy

. Jyk+2H2] S

E [”yk-l-l k+1||2]

E [|ly

+ (30.5 + 322.2a*L?) 3k [[|*

n 97L2n 642202 L3n
8 1— A2

We conclude by 30.5 + 32220%L? < 3lif0 < a < 1222 W

Now, we write (9) and Lemmas 18-20 in an LTI system

Proposition 2: Tf 0 < a < min{ 116/\ , \/\gim, 5 f, then

vk >0

—Jxk||2]

E [t*] + E [F(x") — F*].

Vk-‘rl < Havk

bound on p(H,,) that characterizes the explicit linear rate of
GT-SAGA under the PL condition.

Proof of Theorem 2: In light of Lemma 13, we solve for
the range of o under which there exists a positive vector s, =
[51, S9, 83, 54]-r S.t. HaSa S (1 — %)Sa, i.e.,

22202 L2 1-2%2 o
< =
1-22 S“( 2 2)31 (63)
2L2
OtLSl + S3 S — S92 (64)
1-2
<8ma2L2 + 9) 51 4 16ma’L?sy < ﬂ@, (65)
4m m
31 641202 L2 97 1—22 — pa
Tt g ety s Ty (60

We first note that (64) is equivalent to %33 < %52 — Lsq,
based on which we set the values of s1, s9, and s3 as
s1 =1/(4k), s3 = n/(4darl)

where k = L/u. Next, we write (65) equivalently as

so =1, (67)

1 —-2mpa
4m
Accordmg to (68), we enforce 0 < o < 4m“ 1*421% >

%, therefore, to make (68) hold, with the help of the values
of s1, s2, and s3 in (67), it suffices to further choose « such that

8ma’L? (s + 2s5) < 83 — —S1. (63)
4m

i.e.,

1 n
18ma2L? < (— - 9) . 69
ma — 16mk \2aL ©9)
According to (69), we enforce 0 < o < ﬁ, ie., ﬁ —9>
1oz and therefore, to make (69) hold, it suffices to further

nl/3
choose « such that 0 < « S 10.5m2/3:1/3L

to (66), we further enforce 0 < a < 1g—lz,i.e., 17’\227‘“" > %,
and therefore, to make (66) hold, we set s4 as
124 N 2561202 L2 97
s S 83.
(1T—a227' " 1=z 2T 2a -2

Next, according

S4 = (70)
Finally, since 0 < a < % to make (63) hold, it suffices to

82222 54

further choose o such that 1-22)

values of s; and s4, becomes
9921202 L2 n 8192k1%a* L4 n 388A2nal
(1—22)1 (1—22)1 (1

<1, which, using the

5 <1 (7D
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car (=222 12 (122234 1
If0 < o <min{ 55, 537577, 5s5:2, ) - then the terms on

the LHS of (71) are, respectively, less than %, and thus, (71)
holds. Based on the above derivations and Lemma 13, we have:
if 0 < a < @y, for @, defined in Theorem 2, then p(H,, ) < 1 —
£%, which concludes the proof. [ ]

V. CONCLUSION

In this article, we analyze GT-SAGA, a decentralized ran-
domized incremental gradient method that combines node-level
variance reduction and network-level gradient tracking. For both
general smooth nonconvex problems and problems, where the
global function additionally satisfies the PL condition, we prove
that GT-SAGA achieves fast convergence rate. We further iden-
tify practical regimes, where GT - SAGA outperforms the existing
approaches. We also present numerical simulations to verify the
theoretical results in this article. Future research includes gen-
eralization of GT-SAGA to the setting of time-varying directed
networks [60] and of zeroth-order gradient computation [50],
[61], [62]. It is also of interest to incorporate weighted sampling
techniques [63] in GT-SAGA to improve the dependence of
the smoothness parameters of the component functions on the
convergence rate.
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