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Abstract—This paper studies distributed resource allocation
and sum-preserving constrained optimization over lossy net-
works, with unreliable links and subject to packet drops. We find
the conditions to ensure convergence under packet drops and link
removal by focusing on two main properties of our algorithm: (i)
The weight-stochastic condition in typical consensus schemes is
reduced to balanced weights, with no need for readjusting the
weights to satisfy stochasticity. (ii) The algorithm does not
require all-time connectivity but instead uniform connectivity
over some non-overlapping finite time intervals. First, we prove
that our algorithm provides primal-feasible allocation at every
iteration step and converges under the conditions (i)-(ii) and
some other mild conditions on the nonlinear iterative dynamics.
These nonlinearities address possible practical constraints in real
applications due to, for example, saturation or quantization.
Then, using (i)-(ii) and the notion of bond-percolation theory, we
relate the packet drop rate and the network percolation threshold
to the (finite) number of iterations ensuring uniform connectivity
and, thus, convergence towards the optimum value. In other
words, we derived the maximum tolerable rate of packet drop (or
link failure) where below this rate the algorithm is guaranteed to
converge. Real-world applications include: distributed economic
dispatch over power grid, CPU scheduling over networked data
centers, smart scheduling of PEV charging units.

Index Terms—smart scheduling, uniformly-connected net-
works, packet drop, sum-preserving constrained optimization,
graph theory

I. INTRODUC T I ON

Distributed algorithms are widely considered for optimiza-
tion and learning over networks with several seminal works ad-
dressing the case of networks with reliable links [1]–[10]. Due
to unreliable nature, these results are not readily applicable
in communication networks, e.g., wireless networks. In such
networks, randomness of the links should be considered as
link-failures due to inevitable packet drops. The unreliability
of information exchange in such settings can influence the
algorithm’s convergence and solution feasibility.

Equality-constraint optimization problems intend to opti-
mize the allocation cost subject to constant sum of overall
resources. Possible applications include: generator scheduling
and power allocation over the smart-grid [9], CPU scheduling
over data centers [10], and smart scheduling of PEV charging
stations [1]. The existing literature either focus on dual-based

methods and ADMM solutions [1]–[5] or primal-feasible
gradient-tracking methods [6]–[10]. These allocation algo-
rithms are developed over reliable communication networks
and require either (i) stochastic weight design over the network
or (ii) all-time network connectivity as a giant component
[7], [8] or both [1]–[6]. However, in unreliable networks with
packet loss and message drops over the communication links,
these restrictive conditions do not necessarily hold. As the
messages are not delivered over some links at different times,
the network resembles a dynamic graph topology over time
that may even lose its connectivity at some iterations, failing
condition (ii) for high drop rates. On the other hand, even
assuming a connectivity guarantee, condition (i) mandates
robust consensus algorithms (as in [11], [12]) to modify the
stochastic weights on the shared information after the drop of
some messages.

Our proposed allocation algorithm relaxes the stochastic
condition in [1]–[6] on the adjacency matrix to being only a
balanced weight matrix. Assuming the common knowledge of
the delivered messages over the undirected links (i.e., both
sender and receiver know whether its packet is delivered)
[11], [13], there is no need for compensation strategies to
readjust the weights to make them stochastic again in case
of link removal or packet drops. Further, our solution only
needs uniform-connectivity over time relaxing the all-time
connectivity requirement over undirected [1]–[5], [7] and
directed networks [6], [8]. This implies that the network can
lose path-connectivity (i.e., connectivity over a sequence of
linked nodes) between some nodes over some iterations.

In this paper, the loss of packets at every iteration is
modeled as removing the associated links over the network.
Therefore, for high packet drop rates, a connected network
may go through a transition phase and lose its connectivity
(due to link failure). This is studied via percolation theory in
network science literature [14] and is discussed in Section II-A
in details. In particular, bond-percolation refers to phase-
transition (or percolation) in the network connectivity under
certain rate of link failure or removal [15]. Similar threshold-
based approaches are adopted in the epidemic processes with
a spread of a certain disease or virus over the network [16],

978-1-6654-5452-0/22/$31.00 ©2022 I E E E 371
Authorized licensed use limited to: TUFTS UNIV. Downloaded on August 07,2023 at 16:02:46 UTC from IEEE Xplore. Restrictions apply.



⟨N ⟩

⟨N ⟩

P n
i = 1

x

X X

P
i = 1 n

1 n

[17]. As a typical approach, we analyze this bond-percolation
analysis over general random networks, where the randomness
stems from the link failures, e.g., due to random packet
dropouts in wireless sensor networks [18]. Some well-known
existing random models include Erdos-Renyi (ER), Scale-
Free (SF), and Small-World (SW) networks. Such models
are further known to be a typical representative of networks
encountered in many real-world applications. Therefore, the
literature focuses on studying such networks’ properties to
understand and resemble the behaviour of a diverse range of
practical large-scale networks, including IoT, social, financial,
and transportation networks. We relate the packet drop rate to
the uniform connectivity of the network and, in turn, its
bond-percolation threshold such that the convergence of the
optimization algorithm is guaranteed.

Paper Organization: Section II  formulates the problem with
some background on the bond-percolation theory. Section II I
provides the proposed allocation algorithm and its convergence
analysis. Section I V  states the convergence under packet drops.
Section V  and V I  provide simulations and concluding remarks.

I I . P RO B L E M S E T U P

A. Background on Graph Theory
In many networked applications, the topology and interac-

tions of entities resemble a graph model. In such a network
topology, connectivity plays a vital role in the convergence of
the adopted algorithms. Any change in the network may cause a
transition from connected to disconnected, which is studied via
percolation theory.

Definition 1:     [14] Given the probability of link removal
equal to p, bond-percolation is defined as the probability
threshold pc such that for p >  pc there is no giant connected
component in the network with probability 1, i.e., the network
loses its connectivity.
Recall that, following Kolmogorov’s zero-one law, one can
also claim that for probability of link removal p <  pc the
network preserves its connectivity [14]. In other words, this
critical probability pc represents a two-sided phase transition
point in terms of network connectivity.

In the perspective of packet drop analysis, this percolation
threshold is similarly defined as the probability where there
exists no reliable delivery-path between (at least) two nodes
over the network, where a path between nodes i , j  denotes a
sequence of linked nodes starting at i  and ending at j .  Due to its
complexity, no analytical solution exists to define the bond-
percolation threshold for general networks, and the existing
literature is mostly limited to lattice and grid networks. For
example, some rigorous bounds for different lattice graphs are
given in [14], [19]. However, many experimental and numer-
ical works on this problem exist in the literature based on the
Monte-Carlo simulation [15]. For a survey of percolation
theory over complex networks and wireless networks see, for
example, [19] and [20].

On the other hand, random graph models are analyzed to
estimate the percolation thresholds of similar large-scale and
complex real networks. An interesting result is reported

following the nearest neighbour rule and the well-known scale-
free (SF) model, assuming a set of nodes scattered via the
Poisson point process, for example, in networks of cellular or
mobile phone base stations. One can show that connectivity of
nodes to (at least) m =  3 nearest neighbours, in the presence
of lossy links and drop-outs, guarantees that the entire network
remains connected [20]. For the E R  random graph models
[21], the bond-percolation threshold is defined equal to  1

with ⟨N ⟩ denoting the average node degree. For the Small-
World (SW) networks, this threshold is exactly determined
in [22]. Some bond-percolation thresholds for well-known
networks are given in the literature; e.g., for Square Grid
pc =  0.5, for E R  [21] pc =   1  with ⟨N ⟩ as mean degree
[15]. For special cases of SW (m =  1) [22] and SF [19]
networks some relations are also given.

Next, we provide some relevant notions on algebraic graph
theory [23], [24] and Laplacian analysis over graphs [25]. De-
note by W the adjacency matrix associated with the network G
=  {V , E }, with weights Wi j  >  0 as the weight on the link ( j , i )
� E and 0 for ( j , i )  �/ E. If the network is undirected with
balanced weights, W is symmetric. For such a network, define
N i  =  {j |(j , i)  � N i }  as the neighborhood of node i. Define the
diagonal matrix D  =  diag( Wi j )  and the Laplacian
matrix as L  =  D − W . For a connected network (containing a
spanning-tree) with symmetric L ,  its eigen-spectrum includes
one and only one 0 eigenvalue associated with the eigen-vector
1n. Recall that spectral localization of the L  matrix plays a key
role on the convergence properties of the consensus algorithms
and distributed optimization methods, see more details in [25].

B. The Equality-Constraint Allocation Problem
The constraint-coupled optimization problem in this work

is defined as follows:
n n

P1  : min F ( x )  = f i (x i ) ,  s.t. x i  =  b, (1)
i = 1 i = 1

Intuitively, solving P1  gives the optimal allocation of resources
x  for which the cost F ( x )  is minimized. Recall that the
equality-constraint n x i  =  b (or 1�x =  b) is known as
the feasibility constraint or the sum-preserving constraint.

Assumption 1: The local objectives f i ( x i )  : R  → R,
i  � {1, . . . , n} are strictly convex, differentiable with locally
Lipschitz derivatives such that ∂ 2 f i (x i )  <  2u.

In general, there might be some local box constraints mi ≤
x i  ≤  Mi involved in P1  that can be addressed using additive
penalty terms [26], [27] or the so-called barrier functions [2].
Proper initialization for x i (0) under such box constraints is
discussed in [8]. Following the K K T  conditions and under
Assumption 1, it is clear that for the unique optimal point x�

we have �F (x�)  =  φ�1n with 1n as the column vector of 1s
and �F (x�)  : =  (∂ f1 (x�); · · · ; ∂ fn (x� )), assuming that this x�

is in the range of the box constraints.

I I I . T H E A L L O C AT I O N A L G O R I T H M

We consider the following gradient-tracking dynamics to
solve P1 :
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x i (k  +  1) =  x i (k )
−  η Wi j gn      g l (∂ f i (x i (k ))  −  g l (∂ f j (x j (k ) ) (2)

j �N i

with gn (·) and gl (·) representing some nonlinear functions
on the nodes and the links. The following assumptions hold
throughout the paper.

Assumption 2: All the links over the network G(k) are
undirected and weight-balanced, i.e., the adjacency matrix
W (k) is symmetric. Further, there exists a B  � Z such
that the network GB (k) = k + B  G(k) is connected, i.e., the
union network GB (k ) includes a spanning-tree for all k ≥  0
(implying uniform connectivity or B-connectivity).

Given the network structure, its associated balanced weight
matrix W can be designed in a distributed manner using
the strategy in [28]. In case of quantized updates, similar to
allocation in [6], [29], integer weight-balancing strategy [30]
can be used, however, with convergence to the ε-neighborhood
of the optimizer [29].

Assumption 3: The nonlinear mappings gn, gl : R  → R  are
odd and “strongly” sign-preserving with g(z)z >  0 for z =  0,
g(0) =  0, and limz→0 

g (z )  =  0. Further,

κ  ≤  
g(z) 

≤  K (3)

with κ l , K l  and κ n , K n  for gl (·) and gn (·), respectively.
Such gn (·) and gl (·) include, for example, all monotonically

increasing and Lipschitz functions. It can be proved that under
Assumptions 2-3, the gradient-tracking solution (2) satisfies
the feasibility constraint at all times k. This is called all-time
feasibility, and, in resource allocation perspective, implies that
the assigned resources n x i  always meet the demand b
and is a privilege of our gradient-tracking solution (2). Note
that violating this constraint can damage or disrupt the service
in many applications [2]. Our proposed allocation scheme is
summarized in Algorithm 1.

Data: Input: W , Ni ,  η, f i ( · )
Result: Output: Final state x(k ) and cost F (x(k ))
Initialization: Every node i  sets k =  0 and randomly
chooses mi ≤  x i (0) ≤  Mi satisfying the feasibility
while termination criteria NOT true;
do

Each node i  receives g l (∂ f j (x j (k ))  from j  � N i  ;
Updates x i (k +  1) via Eq. (2) ;
Shares ∂ f i (x i (k +  1)) with its neighboring nodes

j  � N i  ;
Sets k ← k +  1 ;

end
Algorithm 1: The Resource Allocation Algorithm

Example applications in economic dispatch problem [9]
and CPU scheduling and battery reservation over the smart
grid [10] are given for gn (z) =  z|z|v1−1 +  z|z|v2−1 with
0 <  v1     <  1, v2     >  1, and logarithmic quantizer ql (z) =

h i
sgn(z) exp(qu(log(|z|, ρ))) with qu (z) =  ρ z       as the uniform
quantizer, sgn(·) as the sign function, and [·] as rounding
to the nearest integer. In case the function gn (·) or gl (·) is
sign-preserving, but violates condition (3), one can guarantee
convergence to the ε-neighborhood of the optimizer x�; for
example, with uniform quantization [31] and single-bit data
exchange scenarios [32].

Theorem 1: Let Assumptions 1-3 hold. The dynamics con-
verges to the optimal solution of P1  for η (B  +  1) <  η : =
u λ 2  K 2  K

      with λ2 , λn as the smallest non-zero and largest
eigenvalue of GB (k) for all k ≥  0.

Proof: We provide the sketch of the proof here.
Uniqueness: Following Assumption 1 and the K K T  condi-

tions one can prove that there exists a unique optimizer x� to
P1  satisfying �F � span(1n) [7].

Feasibility: Under Assumptions 2-3, recall from [9,
Lemma 3] that, for z  � R n ,

n n

zi Wij gn (gl (zj ) −  gl (zi )) =
i = 1         j = 1

−
1  X  

Wi j (z j  −  zi )gn (gl (zj ) −  gl (zi )). (4)
i , j = 1

Substituting for z  =  �F (x(k)), we have 1�x(k +  1) =
1�x(k) and the proof follows.

Convergence: Define F (k ) : = F (x(k ))  −  F (x�) ,
δx(k) : =  x(k +  B )  −  x(k). Following the strong-convexity in
Assumption 1 we have [26]

F (x(k  +  B ) )  ≤  F (x(k ))

+  �F (x(k))�δx(k) +  uδx(k)�δx(k) (5)

We first consider the case B  =  1. To prove F (k + 1)  ≤  F (k),
we need to show

�F �δx +  uδx�δx ≤  0 (6)

where we dropped the k for notation simplicity. Recall the
definition of the Laplacian-gradient tracking dynamics in [8]
and define dispersion parameter ξ(k) : =  �F (k) − 1��F (k).
Using the results in [25, Section V], from (2) and some
mathematical manipulations based on Assumptions 2-3 it is
sufficient that

(−κn κ l ηλ2  +  uλ2 K 2  K2η2)ξ�ξ ≤  0 (7)

with the strict inequality for

η <  
uλ

n

K 2  K l
(8)

and for ξ =  0n holds the equality implying �F � span(1n). For
B  ≥  1, the right-hand-side of (8) changes to η (B + 1)  with
parameters λ2 , λn defined for GB . This completes the proof.

Note that, for versatile network topology, one can choose
the ratio λ

2
      for the spanning tree contained by GB (k) as the

minimum connectivity ensured by Assumption 2. This min
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spanning tree problem could be a promising direction of future
research to determine the bound on the convergence rate of the
algorithm.

Some relevant results on the eigen-spectrum of L  are given
in the literature, for example, to estimate the spectral range
based on the node degrees [25], its variation under link
removal/addition [17], bounds on the algebraic connectivity
λ2 (G ) ≥   1  with dg as the network diameter [24, p. 571].

The following remark distinguishes this work in terms of
packet-drop tolerance.

Remark 1: In the proposed allocation dynamics (2):
1) In contrast to [1]–[7], we do not require the weight

matrix to be stochastic, but only to be symmetric.
Therefore, there is no need for weight compensation
strategies [11], [12] after packet drops or any change
in the network.

2) The algorithm converges under uniform connectivity, in
contrast to all-time connectivity requirement, e.g., in
[6]–[8] or ADMM-based solutions [1]–[5]. Therefore,
although the network may lose its connectivity over
some time periods, due to a high rate of packet drops or
switching over sparse topologies, uniform connectivity
over every B  � Z ≥ 0  steps is sufficient for convergence.

This remark motivates the application over lossy networks,
as discussed next.

I V. PA C K E T  DROPS AND S PA R S E C O N N E C T I V I T Y

In this section, we focus on networks with unreliable links.
This can represent various scenarios, for instance, when nodes
are activated from sleep mode at a random times as is
common in devices with energy harvesting capabilities [33].
In general, data transmission over wireless networks is subject
to random packet dropouts which motivates us to consider a
topology with random links. Given a network topology G we
model the packet drops over unreliable links at time k by
removing those links from the graph structure G(k). Simply
speaking, given m packet drops over distinct links at time
k, m links are removed from the network G(k). Then, to
satisfy Assumption 2 for convergence, the remaining reliable
network needs to hold uniform connectivity over every B  time
iterations for a B  � Z ≥ 0 .

Assuming common knowledge, both nodes i , j  are aware
of the delivery or loss of the messages or packets over the
bi-directional link ( i , j )  [11], [13]. This is to (i) keep the
networking balanced following Assumption 2 and (ii) satisfy
the all-time feasibility in the proof of Theorem 1. For this
purpose, in case the message from i  to j  is lost at iteration
k, node i  does not incorporate possibly received message
gl (∂ f j (x j (k ))  from node j  in its data-processing and updating
state x i (k +  1) via (2). In other words, the mutual messages
are either both dropped or both used in Algorithm 1. This
consideration makes the probability of packet drop different
from the probability of link removal in our calculations; for
packet drop rate pd (or packet delivery rate 1 −  pd) over the
links from i  to j  or j  to i, the equivalent probability of link

removal in our analysis follows as

pl =  1 −  (1 −  pd)2 =  2pd −  p2. (9)

implying the probability that either of the messages or both
are lost (i.e., 1 minus the probability of mutual delivery).

Recall that the notion of uniform connectivity implies that
the union network over every finite number of time-steps B
is connected, i.e., G B  = k + B  G(k) is connected. This is
much more relaxed than the all-time connectivity requirement
in many literature [1]–[8]. Intuitively, for example with B  =  2,
one can assume existence of B  =  2 links between every two
nodes i , j  over the union network G B  = k + B  G(k). Assume
pl as the probability of link removal over connected graph G.
Recalling the definition of the union graph, the link between
i, j  over GB (k) is lost if the link over both G(k) and G (k + 1)
are removed as unreliable links. Therefore, the probability that
any link is unreliable over the union network GB (k) is p2 for
B  =  2. One can extend this to uniform connectivity over any
B  iterations, i.e., the probability of link removal over G (k) =

k + B  G(k) for B  ≥  1 is p B + 1 .  This is the intuition behind
the following theorem.

Theorem 2: Assume a connected network topology G with
bond-percolation threshold p . There exists B  � Z such
that G B      =  �k + B G (k )  remains uniformly connected with
probability 1 under any drop rate 1 − 1 −  pc <  pd <  1;
this B  satisfies

(2pd −  pd )B + 1  <  pc. (10)

For pd <  1 − 1 −  pc the network G(k) remains connected
at iteration k with probability 1.

Proof: First, recall that for packet drop rate pd     the
probability of link removal is pl =  2pd −  p2 from (9). For
percolation threshold p , find B � � Z as the minimum value
satisfying p1 + B � 

<  pc. Note that, for pl <  1, function p1 + B � 
is

monotonically increasing on pl and decreasing on B�.  Then, for
any B  ≥  B�, the probability that all the links are dropped over
B � time-steps is less than the percolation threshold pc. This
means that, for B  ≥  B � and pc <  pl <  1, the network G B
remains uniformly connected with probability 1 under link
removal probability pl =  2pd −  p2. This gives the admissible
range of the packet drop rate 1 − 1 −  pc <  pd <  1.

Corollary 1: Assume a dynamic sparse network which is
not connected but uniformly-connected over B 0  >  0 time
iterations. Given the bond-percolation threshold pc associated
with G B       and drop rate 1 − 1 −  pc <  pd <  1, one can find
B � � Z ≥ 1  such that p <  pc with pl =  2pd−p2 . Then, the
union network G B  under the same packet drop rate remains
uniformly connected for any B  ≥  B0 B�.

Remark 2: In the case of heterogeneous and time-varying
drop rates pi j (k ) at different links (i, j ),  one can consider
pd =  max{pi j (k )}  in Theorem 2 as a conservative solution
to find minimum B � value.

V. S I M U L AT I O N

For the simulation we consider a network G of n =  20
nodes based on the E R  model shown in Fig. 1(TopLeft). The
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(a) pl =  0 (b) pl =  0.64 (c) pl =  0.71 (d) pl =  0.79

(e) pl =  0.86 (f) pl =  0.93

Fig. 1: This figure shows (a) the primary network and (b)-(f) the outcomes after different link removal rates pl .

linking probability between every two nodes is considered as
p =  0.3. The E R  theory states that for p >   1     , the network
is connected [21], i.e., the connectivity transition occurs at
np =  1. We consider different link removal probabilities
pl =  [0.64, 0.71, 0.79, 0.86, 0.93] over 40-steps switching
periods. From (9) the associated packet drop rates are pd =
[0.4, 0.46, 0.54, 0.62, 0.73]. We use M AT L A B  rand-perm
function to randomly assign these rates over successive periods
of every 200 steps. Sample network topologies (after removal
of unreliable links) associated with the given proba-bilities pl

are shown in Fig. 1. For the E R  graph in Fig. 1(a) (with pl =
0), we have ⟨N ⟩ =  5.6 (as average node degree) and pc =
0.177. Note that all considered pl values are over this
threshold. From Theorem 2, we have respective values B �

=  [3, 5, 7, 11, 23], which implies uniform-connectivity over
B  ≥  23 steps and, thus, any sufficiently small η satisfying
Theorem 1 ensures algorithm convergence, as described next.

To verify, we apply Algorithm 1 over this dynamic network
to solve the following allocation problem:

n n

f i ( x i )  = i  ( x i  −  ci )2 +  log (1 +  exp (l i (xi  −  di )))
i = 1 i = 1

n

s.t. x i  =  b =  100 (11)
i = 1

with random parameters ai , li , ci , di and adding penalty terms
max{x i  −  Mi , 0}2 +  max{mi −  xi , 0}2 to address the box
constraints mi =  2, Mi =  7. In the proposed dynamics (2),
we consider two example strongly sign-preserving nonlinear
functions gn (z) =  z + z3 and logarithmic quantizer gl (z) with
ρ = . We consider random symmetric link weights Wi j  in
the range (0, 10] (non-stochastic). For the states bounded by
the given box constraints, we have κ n  =  1 and K n  =
147 and u =  0.05. For the logarithmic quantization we have
κ l  =  1 −  ρ =  0.998 and K l  =  1 +  ρ =  1.002. For the given
network G B  we have λ 2

       =  0.019. This gives η =  0.0025

Fig. 2: This figure shows (Top) decrease in the residual cost F
and (Bottom) time-evolution of the assigned states. The dashed
blue lines and the solid black line represent the box constraints
and the average of states (approving all-time feasibility).
as the bound on the step rate for convergence. This gives a
sufficient bound to ensure convergence and, for faster decay
rates, in this simulation we choose η =  0.05. Fig. 2 shows the
evolution of the residual F  and states x i .

V I . DI S C U S S I O NS AND CONCLUDING R E M A R K S

This paper provides a robust approach for distributed re-
source allocation over networks with unreliable links that
resemble communication channels subject to packet drops. By
relaxing (i) the all-time network connectivity requirement to
uniform connectivity and (ii) the dynamic weight-stochastic
condition to weight-balanced links, the proposed allocation
algorithm is proved to converge under different packet drop
rates, but over a longer time horizon. This improves the state
of the art by, e.g., eliminating the need for distributed redesign
algorithms to compensate for losing network stochasticity.
approach finds application in mobile multi-agent networks
and wireless communication networks with the inevitable high
rate of packet losses. The proposed algorithm has many other
advantages over the existing allocation solutions. For example,
it can address nonlinearities on the agents’ dynamics. This
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nonlinear model may resemble (i) physics of the system and
inherent constraints in application, e.g., quantized information
exchange [6], [9], clipping, or actuator saturation, and (ii)
purposely designed dynamics to suppress impulsive noise or
improve the convergence time [31]. The solution is not limited
to the quadratic cost models, e.g., in CPU scheduling and
economic dispatch, but it can handle general non-quadratic
models, e.g., due to additive barrier functions [2] and penalty
terms [26], [27]. Our future research direction includes, e.g.,
addressing time-delays in data exchange over the links.

Another interesting preventive approach is survivable net-
work design via Q-edge-connected graphs which is robust to
link removal. This problem aims to design the network such
that it remains connected after removing any subset of size
(up to) Q links, or it preserves a prescribed routing criterion
(up to) a certain disruption cost [34], [35]. By such a design,
dropping up to Q packets over the network, a route/path of
package delivery between every two nodes is guaranteed over
time, ensuring convergence of our allocation algorithm. Recall
that existing survivable design algorithms ensure connectivity
at every time-instant and extension to more relaxed uniform
connectivity over time (as described in Assumption 2) is
another promising future research direction.
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