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Abstract— This paper proposes anytime feasible networked
dynamics to solve resource allocation problems over time-
varying multi-agent networks. The state of agents represents
the assigned resources while their total (equal to demand) is
constant. The idea is to optimally allocate the resources
among the group of agents by minimizing the overall cost
subject to fixed sum of resources. Each agent’s information is
local and restricted to its own state, cost function, and the
ones from its immediate neighbors. This work provides a fast
convergent solution (compared to linear dynamics) while
considering more-relaxed uniform network connectivity and
(logarithmic) quantized communications among agents. The
proposed dynamics reaches optimal solution over switching
(sparsely-connected) undirected networks as far as their union
over some bounded non-overlapping time-intervals has a span-
ning tree. Moreover, we prove anytime-feasibility of the solution,
uniqueness, and convergence to the optimal value irrespective of
the specific nonlinearity in the proposed dynamics. Such general
proof analysis applies to many similar 1st-order allocation
dynamics subject to strongly sign-preserving nonlinearities, e.g.,
actuator saturation in generator coordination. Further, anytime
feasibility (despite the nonlinearities) ensures that our solution
satisfies the fixed-sum resources constraint at all times.

Index Terms—Distributed optimization, resource allocation,
consensus, logarithmic quantization, spanning tree

I . INTRODUC T I ON

Distributed optimization in machine learning, signal pro-
cessing, and control literature, solves the following optimiza-
tion of a global cost/objective as the sum of local functions:

minF (x) =  
X

f i ( x )  subject to C (x) =  0 (1)
i = 1

The centralized solution of (1) works under the premise
that all information is available and processed at a central
computing node. However, in large-scale, every node/agent
only has access to local information in its neighborhood,
and distributed multi-agent algorithms are needed to co-
operatively perform local computations via local informa-
tion. Such solutions find applications in multi-sensor target
tracking [1], edge-computing and load balancing [2], power
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allocation in cellular networks [3], and distributed support-
vector-machine [4], [5]. Different constraints and solutions
are considered for problem (1): unconstrained [6]–[8] (for
strongly-convex objectives), inequality constraint [9], and
consensus-constraint [4], [5], [10] aiming also to drive
the agents to reach consensus along with optimization. In
distributed resource allocation [11]–[19] (also known as
network resource allocation) the optimization is constrained
with constant summation of states, aiming to allocate a fixed
amount of overall resources over a large-scale network. This
finds applications in economic dispatch over power networks
[13], [14], [20]–[24], networked coverage control [25], [26],
and edge-computation offloading [27]. Implementing parallel
dynamics at agents via local information requires distributed
algorithms, some of which include: preliminary linear so-
lution [11], quantized solution via event-triggered commu-
nications (fixed network) [28], accelerated linear solution
via adding a momentum term (heavy-ball method) [16],
low communication rate protocol converging in quadratic
time (via long-term connectivity requirement) [12], game-
theoretic approach [19], [29], initialization-free [17], and
Lagrangian-based solution [13]–[15]. For many existing so-
lutions, as discussed in [22], there is no guarantee for anytime
feasibility, i.e., the summation constraint is not necessarily
feasible at all times but only at the final equilibrium state.
Particularly, the presence of nonlinearities (e.g., saturation,
quantization, or sign-based protocols) may affect solution
uniqueness, all-time feasibility, and optimality.

Contributions: This work proposes a nonlinear dynam-
ics for network resource allocation. The main purposes for
considering the nonlinearity are: fast convergence [30], [31],
quantization [32]–[35], and saturation/clipping [33], among
others. Knowing that fixed-time dynamics reaches faster
convergence than linear solutions [4], [31], we pro-pose a
continuous-time state-update for distributed resource
allocation with fast convergence (as compared to linear
solution) while considering logarithmic-quantized informa-
tion exchange among agents. We consider uniform con-
nectivity [7], [8] (instead of all-time connectivity), which
only requires the union network over some bounded non-
overlapping time-intervals to include a spanning-tree. In
contrast to unconstrained or consensus-constrained problems
[6]–[8], this work extends the solution to distributed resource
allocation over sparsely-connected dynamic networks with
quantized communications. Borrowing ideas from convex
optimization and level-set methods [36], [37], we prove
uniqueness, feasibility, and optimal convergence under the
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proposed continuous-time dynamics. The convergence to this
optimal value is proved via Lyapunov-type stability analysis.
Our convergence analysis, although given for a specific
dynamics, can be easily extended to strongly sign-preserving
nonlinear 1st-order solutions. Our main contributions are: (i)
fast-convergence (compared to linear solutions) while con-
sidering quantized data transmissions, (ii) proving anytime
feasibility (e.g., versus Lagrangian-based solutions), and (iii)
proving convergence for general strongly sign-preserving
nonlinearities (e.g., quantization and saturation) over general
uniformly-connected dynamic networks.

Paper organization: Section II  states the problem and
preliminaries. Section II I  describes the proposed dynamics,
while its convergence is proved in Section IV. Section V
provides simulations and Section V I  concludes the paper.

I I . P RO B L E M FO R M U L AT I O N

A. Problem Statement

Distributed resource allocation problem is formulated as,

min F ( x )  =  
X

f i ( x i )  s.t. 
X

x i  =  K (2)
i = 1 i = 1

where x i       � R  is the amount of resource allocated to
agent i, f i      : R  → R  is a convex function known by
agent i  representing the cost as a function of resources
x i .  The network resource allocation problem (2) aims to
allocate a fixed quantity of total resources,              x i  =  K ,
among a group of agents communicating over an undirected
graph G, such that the total cost F ( x )  is minimized. In
(2) the states should exactly meet the constraint K ,  e.g.,
in economic dispatch problem where the produced power
is equal to the demand (anytime-feasibility). This differs
from the inequality-constrained power bid cost minimization
problem in [9] solved by primal-dual methods. There might
be box constraints m     ≤  x i      ≤  mi involved to bound
the amount of resources. One can address these by adding
exact penalty functions [36] to the objective as f ǫ (x i )  =
f i ( x i ) + ǫ [ x i  − m i ] +  +ǫ[m − x i ] + ,  with [u]+ =  max{u, 0}.
Recall that the summation of the strictly convex f i ( · )  and
convex penalty [·]+ is a strictly convex function. Further, the
non-smooth [u]+ can be replaced by its smooth equivalent
1 log(1 +  exp(µu)) as in [5] or quadratic penalty ([u]+ )2

[38]. Applications include:
(i) Economic dispatch [20]–[22], [24]: to allocate the

electricity generation by facilities to minimize the cost
while meeting the required load/demand constraints.

(ii) Congestion-control and load-balancing [2], [27]: to
modulate traffics and data routing in telecommunication
networks to gain fair allocations among the users.

(iii) Coverage control [25], [26]: the objective is to opti-
mally allocate a group of networked robots/agents over a
convex area in order to achieve maximum coverage.

Remark 1: Note the difference of (constrained) problem
(2) with general (unconstrained) distributed optimization (as
in [6]–[8]). Other than the constraint, for general distributed
optimization the cost at all agents is the same function of

TA B L E  I
OV E RV I E W  O F R E L A T E D  L I T E R AT U R E  ON D I S T R I B U T E D  O P T I M I Z AT I O N .

Reference Solution Constraint C (x)
[11]–[14], [16], [20] 1st-order n x  =  K

[17] 2nd-order n x i  =  K
[6]–[8] 2nd-order –

[9] 2nd-order n g i (x i )   0
[4], [10] 2nd-order        x1  =  · · · =  x n

[5], [39]                  1st-order         x1  =  · · · =  x n

x,  i.e., F ( x )  =  
P n f i ( x ) ,  while in (2) the cost at agent

i  is only a function of x i ,  i.e., F ( x )  = f i ( x i ) .  This
implies that in (2) agent i  only needs to know its own state x i
and not the other agents’ states x j , j  =  i.
Table I  compares solutions and different constraints
in the literature. Recall that the 1st-order dynamics
refers to the consensus-type protocols in the form,
x i  = f ( x j  −  x i ) ,  while 2nd-order dynamics are in
the form, x i  =  g (yi ),  y i  = h(y j  −  y i ) .

Remark 2: For synchronization and consensus, the 1st-
order dynamics, compared to its similar 2nd-order counter-
parts, is known to have faster convergence [40, page 32].

B. Preliminary Definitions and Lemmas

The communication network of agents is modeled as
a sequence of (possibly) time-varying undirected graphs,
denoted by G(t) =  (V , E (t)) with V =  {1, . . . , n}. Two
agents i  and j  can communicate/exchange messages if and
only if ( i , j ) , (j , i)  � E (t). Define Ni (t)  =  {j |(j , i) � E (t)}
as neighbors of agent i  at time t and n by n matrix W (t)
as adjacency weight matrix of G(t), where Wi j  >  0 if link
(i , j )  � E (t) and Wi j  =  0 if ( i , j )  �/ E (t).

Definition 1: In the undirected graph G =  (V, E ), define a
spanning tree as an undirected spanning subgraph in which
any two vertices in V are connected by exactly one path.
Such tree contains the minimum possible links in E.

Assumption 1: There exists a sequence of non-
overlapping bounded time-intervals, [t , t     +  l ], where
the union network across each interval t k + l k  G(t) has a
spanning tree, while G(t) might be sparsely-connected.
Note that the above weak connectivity requirement ensures
a path from any node i  to any node j  infinitely often. A
situation where Assumption 1 does not hold is when the
network is in the form of two separate graph components.

Definition 2: ( [36]) Function h(x) : R n  → R  is strictly
convex if h(kx1 +  (1 −  k)x2 ) <  kh(x1 ) +  (1 −  k)h(x2),
�x1 , x2     � Rn , 0 <  k <  1, or �2h(x) >  0 for twice
differentiable h(x); if �2h(x) >  u >  0 it is strongly convex.

Assumption 2: The functions f i ( x i ) , i  =  1, . . . , n in prob-
lem (2) are strictly convex and differentiable.

Lemma 1 ( [11], [16]): Under the Assumption 2, the re-
source allocation problem (2) has a unique optimal solu-
tion x� for which �F (x�)  =  ψ�1 , where �F (x�)  =
( df 1  (x�), . . . , df n  (x�))� denotes the gradient of F  at x�,
and 1n is the column vector of 1’s.
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The optimality condition of Lemma 1 is simply the K K T
condition, with ψ� as the optimal Lagrange multiplier and 1
as the gradient of the constraint [36].

Definition 3: Define the feasible set of states as the affine
space S K  =  { x  � Rn| n x i  =  K } .

Definition 4: [36], [37] Given h(x) : R n  → R,  define its
level set L γ (h)  =  { x  � Rn |h(x) ≤  γ � R } .  For strictly
convex h, L γ (h)  is closed, compact, and strictly convex.
The following lemma describes the solution of (2).

Lemma 2: Under Assumption 2, there is a unique point x�

such that �F (x�)  =  ψ�1 for every feasible set S K .  In other
words, given a feasible set S there is only one such point

x� � S K  for which df i  (x�) =  df j  (x�), �i, j � {1, . . . , n}.
Proof: Following strict convexity of F ( x )  (Assump-

tion 2), only one level sets, say L γ ,  is adjacent to the
constraint facet S K ,  with touching only at one point x�

for which �F (x�)  is orthogonal to S K ,  i.e., d x  (x�)  =  j

(x�), �i, j . By contradiction, assume x�1, x�2 � S K  such that
�F (x�1 ) =  ψ11 and �F (x�2 ) =  ψ21 , implying that the

strongly convex L γ ,  γ =  F  �1 =  F  �2     is tangent to the
affine faucet S K  at two points x�1 and x�2, or two level sets
L F  �1     and L F  �2     are adjacent to S K .  Both cases contradict

the strict convexity and closedness of the level sets. This
proves the lemma by contradiction.

Lemma 3: Let gl : R  → R, l � {1, 2} be an odd mapping,
matrix W � R n × n  be symmetric, and ϕ � R n .  Then,

X
ϕ i  

X
W i j g 2 ( g 1 (ϕ j )  −  g1(ϕ i )) =

i = 1 j = 1

−
1  X  

Wi j (ϕ j  −  ϕ i )g2 (g1(ϕj ) −  g1(ϕ i )). (3)
i , j = 1

Proof: For every i, j , Wi j       =  Wj i , and gl (x) =
−g l (−x ) , l  � {1, 2}. Thus, we have,

ϕ i Wij g2 (g1 (ϕ j ) −  g1(ϕ i )) +  ϕ j Wj i g2 (g1 (ϕ i ) −  g1 (ϕ j ))
=  Wi j (ϕ i  −  ϕ j )g2 (g1 (ϕ j ) −  g1(ϕ i ))
=  Wj i (ϕ j  −  ϕi )g2(g1(ϕi ) −  g1(ϕj )). (4)

and the proof follows.
We borrow results on nonsmooth analysis and set-value

notions from [41], and skip the details due to space limita-
tion. Define the generalized gradient ∂h : R n  → B { R }  for
a nonsmooth function h : R n  → R  as,

∂h(x) =  co{
i
lim �h(xi )  : x i  → x , x i  �/ Ωh � S } (5)

with co denoting convex hull, S  � R n  as a zero Lebesgue
measure set, and Ωh � R n  as the set of non-differentiable
points in the domain of f .  If h is locally Lipschitz, then
∂h(x) is nonempty, compact, and convex, and ∂h : R n  →
B { R } ,  x  → ∂h(x), is upper semi-continuous and locally
bounded. Then, the set-valued Lie-derivative L H h  : R n  ⇒ R
of function h with respect to the dynamics x  � ∂H ( x )  is,

L H f  =  {η  � R|�ν � H ( x )  s.t. ζ�ν =  η, �ζ � ∂ f ( x ) }  (6)

We use this for nonsmooth Lyapunov analysis in Section IV.

I I I . T H E PROPOSED SO L U T I O N

Consider linear dynamics to solve (2) over undirected
graphs (e.g., Laplacian-gradient model in [22]),

x i  =  −η1  
j �N i  

Wi j dx i  
−  

dx j
, (7)

where η1 >  0 and we assume symmetric weight matrix W
with Wi j  ≥  0. Note that for switching networks the RHS of
(7) is discontinuous and the dynamics indeed represents a
differential inclusion x  � ∂H(x) .  Throughout the paper for
notation simplicity we use equality instead of "�". By ideas
from finite-time consensus [42], [43], to reach faster
convergence for | dxi 

−  d x j  
| <  1, (7) is modified as,

x i  =  −η1  
j �N i  

Wij sgnv
dx i  

−  
dx j

, (8)

where 0 <  v <  1 and sgnv (x) =  x|x|v−1 which is non-
Lipschitz at 0 (for 0 <  v <  1). In general, non-Lipschitz
dynamics in the form x i  =  −η1 Wij sgnv (xi  −  x j )  is
proved to reach finite-time convergence [44] and faster than
linear case close to the equilibrium (because |sgnv(x)| >  |x|
for |x| <  1). Further, consensus is in finite-time [43], [44],
however, with slow rate in regions far from the equilibrium
(because |sgnv(x)| <  |x| for |x| >  1). To overcome this, in
fixed-time consensus protocols [44], typically a second term
is added as sgnv2 (x )  with v2 >  1. Having |sgnv2 (x)| >  |x|
for |x| >  1 implies faster convergence rate than the linear
case for states far from the consensus equilibrium. There-
fore, the combination of the two gives faster convergence
tunable by parameters v1, v2. Therefore, this work proposes
nonlinear 1st-order dynamics to solve problem (2) via,

˙ i  =  −
j �N  

Wij η1 sgnv1 (
dx i  

−  
d x j  

)  +  η2 sgnv2 (
dx i  

−  
d x j  

)
 
(9)

with 0 <  v1 <  1 <  v2, 0 <  η2, η1, and Wi j  =  Wj i  ≥
0, where |sgnv2 (x )  +  sgnv1 (x)| >  |x|; therefore, for any
df i  , df j  , |ẋi| is greater under dynamics (9) (compared to the
linear case). Unlike [11], [16] we do not assume W to be
(doubly) stochastic. Further, the convergence rate can be
tuned by v1, v2. Next, consider quantized links1,

1The proposed model (10) represents a system dynamics whose RHS
changes in discrete-time, therefore, a hybrid state ζ  =  (x , τ )  with τ  as
the timer state and p : t � R → P  =  {1, 2, . . . , p} as the index
of the switching network G . Then, the switching flow map is F  :
ṗ =  0,τ̇ � [0,  1  ] along with the dynamics of x  in (10) and domain set
ζ  =  (x, p, τ ) � C =  R n  ×  P  ×  [0, 1]. Then, the jump map is J  : x +  =
x , p +  � P , τ +  =  0 over the jump domain set ζ  � D  =  R n  ×  P  ×  {1} ,
implying that the hybrid system jumps to a new mode p � P  whenever ζ  �
D  with the interval length depending on the timer rate τ̇  for each mode p. For
example, for the minimum-length switching time-interval mω, the rate is τ̇
= . This simply means that after m (and in general mp ≥  m)
periods ω, the jump occurs as τ  =  1 and p switches to a new mode (a new
topology Gp), τ  starts over, while the state x  is continuous and unchanged.
This is known as piece-wise constant jump mapping and satisfies the so-
called Basic Assumptions for stability, see [5], [45] and references therein.
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(10)

where function qρ(z) represents the data-quantization (of the
shared information d x j  

) as [33], [34],

qρ(z) =  sgn(z) exp(qu(log(|z|, ρ))), (11)

with qu (z) =  ρ z        as the uniform quantizer ([·] denotes
rounding to the nearest integer). The strongly sign-preserving
odd function q (·) represents logarithmic data-quantization
with level ρ, where (1− ρ )z ≤  qρ(z) ≤  (1+ ρ )z . For notation
simplicity in the rest of the paper we use ψ i  = :  df i       and Wi j
instead of Wij (p, t). In (10), every agent knows its own state
and objective along with information of its neighbors over G.
We consider periodic communication, say every ω sec,
with sufficiently small ω (similar to [46, Theorem 10]) with
hybrid state as in [5], [45]. Every agent i  shares ψ i  =  df i

with j  � N  (t) via (logarithmic) quantized channels, where
the agent j  receives qρ( df i  ). Following the strict convexity of
the level-sets of F  and [41, Proposition S2], for initialization
point x0  � S K  and its level set L F ( x  ) , the solution in
L F ( x  )  ∩ S K  under the differential inclusion (10) exists and is
locally bounded, upper semi-continuous, with non-empty,
compact, and convex values. We use this along with L H
referring to Lie-derivative with respect to x  =  ∂H ( x )  given
by differential inclusion (10) in the rest of the paper.

Lemma 4: Consider a feasible x0  � S K .  For any sym-
metric weight matrix W , solution x(t) keeps its feasibility
(sum-preserving) under dynamics (10) for t >  0.

Proof: x0  � S K  implies that i = 1  x i (0)  =  K .  Then,
n n

˙ i  =  − Wi j      η1sgnv1 (qρ (ψ i ) −  qρ (ψ j ))
i = 1 i , j = 1

+  η2sgnv2 (qρ (ψ i ) −  qρ (ψ j )) . (12)

Note that sgnv (qρ (ψ j ) − qρ (ψ i )) =  −sgnv (qρ (ψ i ) − qρ (ψ j ))
and Wi j  =  Wj i , therefore dt i = 1  x i  = i = 1  ˙ i  =  0.

This lemma implies that initializing from a feasible x0 , the
solution under (10) remains feasible at all times. This any-
time feasibility, e.g., in generator coordination, outperforms
[13]–[15] as the produced power does not deviate from the
demand constraint, and the feasibility set S K  is positively
invariant under dynamics (10). A  feasible initialization
could be simply x i (0)  =  K  at all agents (if within the box
constraints) or via the algorithm in [22]. However, in many
problems, the feasibility is initially satisfied; for example, in
the economic dispatch, the initial energy production meets
the demand (anytime-feasibility), and in the coverage control,
the agents’ coverage initially includes the entire convex area
[25] and the algorithm optimizes the production/coverage.
Unlike [10], it is not necessary to constrain the initialization
as i = 1  

∂ f
i  
(0) =  0.

I V. C O N V E R G E N C E A N A LY S I S

In this section, we first characterize the unique equilibrium
of dynamics (10) and then prove its stability.

Theorem 1: If Assumption 1 holds, the equilibrium point
x� with �F (x�)  =  ψ�1 is the only equilibrium of (10).

Proof: For x� with �F (x�)  =  ψ�1, we have x� =  0
which implies that x� is the equilibrium of (10). By con-
tradiction suppose there exists another equilibrium x  under
dynamics (10) (i.e. x  =  0) where d x i  

=  d x j      
for at least two

nodes i, j . Let �F (x)  =  (ψ1, . . . , ψn)� and consider nodes a
=  argmaxλ�{1, . . . ,n} ψλ  and b =  argminλ�{1,. . . ,n} ψλ .
Clearly, ψa >  ψb. From Assumption 1 and Definition 1,
there is (at least) one path between a and b in the union
graph t k + l k  G(t), which includes two nodes α, β such that
ψα  ≥  ψN       and ψβ ≤  ψN       with strict inequality for (at least)
one node in N α  and Nβ .  Both fixed-time and quantization
are sign-preserving odd functions, and thus, in a sub-domain
of [tk , tk +  lk ],       j �N      sgnv (qρ(ψα) −  qρ (ψ j )) >  0 and

j �N β  
sgnv (qρ(ψβ ) −  qρ (ψ j )) <  0 from dynamics (10).

Therefore, x α  <  0 and x β  >  0 contradicting the equilibrium
condition for x.  This proves the theorem.

To illustrate more, assume that Assumption 1 does not
hold; for example, the network has two separate connected
components with nodes 1, . . . , m in component G1     and
nodes m +  1, . . . , n in component G2. Then, for x� as the
equilibrium of (10), d x i  

(x�)  =  d x j  
(x�)  =  ψ�1 for i , j  �

{1, . . . , m} and d x  (x�)  =  d x  (x�)  =  ψ�2 for i , j  � {m +
1, . . . , n} where in general ψ =  ψ . Therefore, for
such cases the equilibrium in general may differ from the
optimal solution of the problem (2) stated in Lemma 2.

Remark 3: In the virtue of Lemma 4, the solution x(t)
remains feasible under dynamics (10), i.e., x(t)  � S K  for
t >  0. Then, following Lemma 2, for initial value x0  � S K

there is only one equilibrium x� satisfying �F (x�)  =  ψ�1n.
Theorem 2: Under Assumptions 1 and 2 and starting from

a feasible state x0  � S K ,  dynamics (10) solves the resource
allocation problem (2) (with feasibility at all times).

Proof: Following Lemma 1, for x� as the optimal solu-
tion of problem (2), �F (x�)  =  ψ�1 . From Lemma 4 x0  �
S implies solution feasibility under (10), and therefore,

n x� =  K .  Let F � =  F (x�)  and F ( x )  =  F ( x )  −  F �

denoting the residual with respect to optimal value. Consider
this positive F ( x )  as the Lyapunov function with unique
equilibrium F (x�)  =  0. From [41, Proposition 10], for this
nonsmooth, regular, and locally Lipschitz Lyapunov function
F (x ) ,  its derivative satisfies ∂ F (x(t))  =  L H F ( x ( t ) )  [41,
Proposition 10] with H  referring to dynamics (10). We show
here that this non-negative Lyapunov function is monotoni-
cally non-increasing under dynamics (10). We have,

n

∂ F (x)  = ψ i      − Wi j      η1sgnv1 (qρ (ψ i ) −  qρ (ψ j ))
i = 1 j �N i

+  η2sgnv2 (qρ (ψ i ) −  qρ (ψ j )) .
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Then, in Lemma 3 set g2(·) as sgnv (·) and g1(·) as qρ(·),

∂ F (x)  =  −  
η1 X  

Wij |qρ(ψi ) −  qρ (ψ j )|v1 +1

i , j = 1

−  
η2 X  

Wij |qρ(ψi ) −  qρ (ψj )|v2 +1 . (13)
i , j = 1

Therefore, ∂ F (x )  ≤  0. Following Lemma 2, Remark 3, and
Theorem 1 the unique point x� satisfying �F � span{1n }, is
the unique equilibrium of dynamics (10), and, based on
Lemma 1, it is the optimal solution to the problem (2). For
any initial value x0  � S K ,  the compact and closed (affine)
solution set { L F ( x  ) ∩ S K }  is anytime feasible and positively
invariant under (10). Thus, using LaSalle invariance principle
for differential inclusions [22, Theorem 2.1], the solution
converges to the largest invariant set I  contained in { x  �
L F ( x 0 )  ∩ SK |0 � L H F ( x ( t ) ) } .  Since I  =  {x�} ,  F  ≤  0,
and max L H F (x ( t ) )  <  0 for all x  � S K  \  I ,  dynamics
(10) globally asymptotically converges to I  =  { x�}  [41,
Theorem 1]. This completes the proof.
Recall that in Lemma 3 the oddness ensures anytime-
feasibility. The connectivity requirement in Assumption 1
gives the unique optimal state x� (with �F (x�)  =  ψ�1) in
Theorem 1, while Theorem 2 proves convergence to x�.

Remark 4: The following gives an estimate of the conver-
gence rate of Eq. (13).

|qρ(ψi) −  qρ (ψj )|v1 +1+|qρ (ψ i ) −  qρ (ψ j )|v2 +1

≥  |qρ(ψi) −  qρ(ψj )|2 (14)

where the RHS of the above represents the convergence rate
of the linear (and linear quantized) protocols [11], [28]. Thus,
the dynamics (10) is faster than its linear counterparts.

Remark 5: The results of this paper can be extended to
consider saturation effects [33]. For example, in case of
actuator saturation one may substitute sgn(x) or satκ (·)
instead of sgnv (·) in dynamics (10), where satκ (x) =  x  for
− κ  ≤  x  ≤  κ  and κsgn(x) otherwise. Recall that the proofs
of the given theorems and lemmas use only having non-zero
derivative at zero, oddness, and sign-preserving property of
sgnv (·), which are also true for satκ (·) function. Therefore,
the uniqueness, feasibility, and convergence results can be
restated for general strongly sign-preserving nonlinearities
on the agent’s dynamics and communications.

V. N U M E R I C A L S I M U L AT I O N S

For the simulations, smooth penalty ([u]+ )2 [38] (with
ǫ =  1) for the box constraints is used to satisfy Assumption 2.

A. A Comparison Study

Consider the strictly-convex costs as [12],

f i ( x i )  =  b i (x i  −  ai )4, (15)

with random coefficients bi      � (0, 4], ai     � [−2, 4], and
box constraints 0 ≤  x      ≤  5. The random initial states
satisfy        n        x i (0)  =  K  =  20 (as in Lemma 4). The
multi-agent network is a cycle of n =  10 nodes with

Fig. 1.    
 
This figure compares the time-evolution of the residual under the

proposed quantized dynamics (for quadratic cost) with some literature.

100

10-2 

0 5 10 15 20

Fig. 2. Time-evolution of the residual (bottom) and the states (top) under
dynamics (10). The box constraint and feasibility constraint (average of state
values) are respectively shown by (dashed) blue and (solid) black lines.

random stochastic link weights (this is required by [11],
[16] and only for the sake of comparison). In Fig. 1, the
convergence of the dynamics (10) is compared with linear
[11], accelerated linear (β =  0.6) [16], quantized linear (with
all-time triggered communications) [28], finite-time [20], and
node-based fixed-time [23] (with time-period ω =  2 ×  10−5 ,
η =  1, and v1 =  0.1, v2 =  1.6 in dynamics (10)).

B. Simulation over Weakly Connected Sparse Networks

We consider sparse networks of n =  100 agents every 0.05
sec switching between Scale-Free networks, none of which
includes a spanning tree, while t k + 0 . 2  G(t) is connected,
i.e., l k  =  0.5 (100 time-periods with ω =  5 ×  10−3) in As-
sumption 1. The link weights are random and non-stochastic.
Similar to [11], consider strictly-convex objectives as,

f i ( x i )  =  
1

ai (x i  −  ci )2 +  log(1 +  exp(bi (xi  −  di ))), (16)

with random coefficients ai � (0, 0.1], bi � [−0.01, 0.01],
ci , di � [−0.5, 0.5] and box constraint 3 ≤  x i  ≤  7. The

time-evolution of the states and absolute residual cost F ( x )
is shown in Fig. 2 with random initialization n x i (0)  =
K  =  500, η =  1, ρ =  5 ×  10−4 , and v1 =  0.3, v2 =  1.6.

V I . CO N C L U S I O N

This work provides a distributed nonlinear 1st-order so-
lution for resource allocation over dynamic undirected net-
works subject to (logarithmic) quantized data transmission,
with convergence proved over sparse (uniformly-connected)
networks. The explicit discretization of (10) (e.g., via Euler
Forward method) can be used in real implementations assum-
ing certain lower-bound on the sampling rate. For uniform
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dz

´

´

quantization with dqu |−0.5ρ<z <0.5ρ  =  0 (sign-preserving but
not strongly), one can prove convergence to ε-neighborhood
of x�, as a direction of our future research.
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