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A B S T R AC T

This paper considers distributed estimation of linear sys-
tems when the state observations are corrupted with Gaussian
noise of unbounded support and under possible random ad-
versarial attacks. We consider sensors equipped with single
time-scale estimators and local chi-square (2) detectors to
simultaneously observe the states, share information, fuse
the noise/attack-corrupted data locally, and detect possible
anomalies in their own observations. While this scheme is
applicable to a wide variety of systems associated with full-
rank (invertible) matrices, we discuss it within the context of
distributed inference in social networks. The proposed tech-
nique outperforms existing results in the sense that: (i) we
consider Gaussian noise with no simplifying upper-bound as-
sumption on the support; (ii) all existing 2-based techniques
are centralized while our proposed technique is distributed,
where the sensors locally detect attacks, with no central co-
ordinator, using specific probabilistic thresholds; and (iii) no
local-observability assumption at a sensor is made, which
makes our method feasible for large-scale social networks.
Moreover, we consider a Linear Matrix Inequalities (LMI)
approach to design block-diagonal gain (estimator) matrices
under appropriate constraints for isolating the attacks.

Index Terms— Attack detection and isolation, Kronecker-
product network, distributed estimation, 2-test.

1. INTRODUCTION

The unprecedented large size of social networks mandates
distributed sensing, inference, and detection [1–7], where the

This work has been supported by the European Commission through the
H2020 project FinEst Twins under grant agreement No 856602. The work of
U. Khan was supported by NSF under awards #1903972 and #1935555. The
work of T. Charalambous was supported by the Academy of Finland under
Grant 317726. Corresponding email: doo s t @ s e m n a n . a c . i r ,
mohammadreza.doostmohammadian@aalto.fi.

information is collected and processed locally while meeting
certain security concerns. Recent distributed estimation pro-
tocols [6–11] are prone to faults/attacks that may result in in-
accurate state estimates. Different attack detection and FDI
(fault detection and isolation) strategies are thus proposed in
the literature, ranging in applications from biological mod-
eling [12] to smart-grid monitoring [13, 14], and from cen-
tralized approaches [15–20] to more recent distributed meth-
ods [21–23]. Among the centralized solutions, determinis-
tic FDI and attack detection methods design decision thresh-
olds based on the upper-bound on the noise support [17, 18],
while, in contrast, probabilistic 2-test with no such assump-
tion on the noise is proposed in [15] and further developed in
[19, 20]. Among the distributed strategies, [23] requires
injecting a watermarking input signal conceding to a loss in
the control/estimation performance, which is not applicable
to autonomous systems (such as the social network model in
this paper). In order to close this gap, this paper aims at de-
veloping a technique for distributed inference of autonomous
(social) systems while simultaneously detecting and isolating
adversarial attacks locally with no central coordinator.

The main contributions of this paper are as follows. (i)
This work considers a windowed 2 benchmark to locally
design probabilistic decision thresholds based on certain
false alarm rates (FARs). This is in contrast to existing
deterministic thresholds assuming certain upper-bound on
the noise support [17, 18], which results in faulty outcome
when the noise upper-bound is considerably larger than the
attack/fault magnitude.     (ii) This work extends the recent
centralized 2 detectors [19, 20] to distributed ones, where the
sensors are widespread over a large social network and, thus,
the centralized solutions are infeasible/undesirable due to
heavy communication loads or inability for parallel pro-
cessing. In this direction, the notion of Kronecker-product
network [24] is used to perceive (structural) observability of
the composite social/sensor network, which allows to find
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minimal connectivity requirement on the sensor network for
distributed estimation/detection. (iii) Our distributed tech-
nique, as in [21, 22], does not require local-observability at
every sensor. However, unlike fixed biasing faults/attacks
on sensor outputs in [21, 22], this work extends the results
to general anomalies in the form of a random variable. In
particular, we adopt the notion of distance measure [19], a
scalar variable to compare the residual variance in presence
and absence of attacks.

technique enables each sensor to locally detect anomalies in
its observation with a certain FA R  (false-alarm rate).

3. MAIN A L G O R I T H M

We consider a modified version of the single time-scale dis-
tributed estimator in [7] with one step of averaging on a-priori
estimates (similar to DeGroot consensus model [8]) and one
step of measurement update (also known as innovation [8]),

2. PROBLEM FORMULATION

We consider the interaction of individuals in a social network
as a linear-structure-invariant (LSI) autonomous model [4–7],

x k j k  1 =
X  

w i j A x k  1jk  1; (3)
j 2 N ( i )

x k j k =      x k j k  1 +  K i H >       y i      H i x k j k  1      : (4)

x k + 1  =  A x k  +  k ; k  0; (1)

where k is the time-step, A  is the social system matrix as-
sociated with social digraph G, k       N (0; Q) is additive i.i.d
noise vector, and vector x k  =  x1 ; : : : ; xn >  2  R n  rep-resents
the global social state. Note that n is the size of so-cial
network and x i      represents the i’th individual’s social state,
e.g., opinion, rumor, or attitude [1–7]. The state x i

of individual i  at time k is a weighted average of the states
x j of its in-neighbors in G and its own previous state x i .
This is well-justified for opinion-dynamics in social systems,
and particularly implies that matrix A  is (structurally) full-
rank [7]. Consider N  social sensors (agents or information-
gatherers [5]) sensing the state of some individuals as,

yk =  H i x k  +  k  +  k ; (2)

with H i  as the measurement matrix, i  as possible attack and i
N (0; R i )  as Gaussian noise at sensor i  at time k. Define R  =
diag[Ri ] as the covariance matrix of the i.i.d noise vec-tor k .
Throughout this paper, without loss of generality, we assume
every sensor observes one state variable, i.e., y i  2  R.  Further,
as in similar works [15, 19, 20], we assume the sys-tem and
measurement noise covariance (Q and R)  are known. Then,
sensors share their information over a sensor network GN  .
Clearly, system A  is not locally observable to any sen-sor, but
globally observable to all sensors. The condition on (A; H )-
observability is given in the following lemma.

Lemma 1 [7] Given a social network G (with structurally
full-rank adjacency matrix A), if at least one social state is
sensed in every strongly-connected-component (SCC) in G,
then, the pair (A; H )  is (structurally) observable.

Given (social) system (1) and state observations (2) satis-
fying Lemma 1, we aim to design a distributed iterative proce-
dure to simultaneously estimate the (social) state x i  while de-
tecting adversary attacks at (social) sensors. The attack by the
adversary is modeled as an additive random term i  at sensor i
in (2). The proposed distributed estimation makes the entire
system observable to every sensor, and the attack-detection

with stochastic matrix W =  fwi j g  as the adjacency matrix of
the sensor network GN  representing the fusion weights among
the sensors, K i  as the local gain matrix at agent i, and x k j k  1

and x k j k  as the state estimate at time k given all the infor-
mation of agent i  and its in-neighbors N (i) ,  respectively, at
time k   1 and k. In contrast to double time-scale estima-
tors/observers [11] with many consensus iterations between
every two consecutive time-steps k   1 and k of social dy-
namics (1), the estimator (3)-(4) performs one iteration of in-
formation fusion between steps k   1 and k, which is more
efficient in terms of computation/communication loads.

Define the estimation error at agent i  as ei =  x k    x k j k

and the error vector ek =  e1 > ; : : : ; en > > .  Following sim-
ilar procedure as in [6], the error dynamics is as follows,

ek =  (W
 A       K D H ( W
 A))ek  1 +  qk ; (5)

with D H  =  diag[H > Hi ], K  =  diag[Ki ] as the feedback gain
matrix, and q as the collective vector of noise-related terms
qk =  q1 > ; : : : ; qn > >  as,

qk = k  1      K i      H i  k  +  H i  k  +  H i  H i k  1     ; (6)

qk = 1 N

 k  1      K D H ( 1 N

 k  1)

     K D H k       K D H k ; (7)

with 1N  as the vector of 1’s of size N  and D H  =  diag[H > ].
Following Kalman theory, for bounded steady-state estima-
tion error, (W
 A ; D H )  needs to be observable, charac-terizing the
distributed observability condition for network of
estimators/observers [25]. Using structured system the-ory,
this condition can be investigated via graph theoretic no-tions.
In this direction, the associated network to W
 A  is a Kronecker-product network, whose observability
condi-tion relies on the structure of both G and GN  . Given
the social network G, the conditions on the sensor network
GN  to satisfy distributed observability follows the recent
results on composite-network theory and network
observability dis-cussed in [24], which is summarized in the
following lemma.
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Lemma 2 [24] Given (A; H )-observability via Lemma 1,
minimal sufficient condition for (W
 A; DH )-observability is that matrix W be irreducible, i.e.,
the network GN  be strongly-connected (SC).

and  =  E(qk qk  ). Then, from (5),

k =      A k
0 ( A k ) >  +  

k  1 

A j ( A j ) >  +  : (10)
j = 1

For an observable pair (W
 A; D H ) ,  the feedback gain matrix K  can be designed to
stabilize the error dynamics (5). Mathematically, for A  =  W
A  K D H ( W
A), we need to design K  such that (A)  <  1 (Schur stability of
error dynam-ics (5)) for general social systems with (A)  >  1
with ()  as the spectral radius. As mentioned before, for
distributed case, K  needs to be further block-diagonal such
that each sensor only uses local information in its own
neighborhood. The iterative LMI-based algorithm to design
such block-diagonal gain K  is given in [26]. In attack-free
scenario, the distributed estimator/observer (3)-(4) with proper
gain K  ensures track-ing the global social state with bounded
steady-state error as discussed in [6, 7]. Next, in this section,
we further study the performance of the proposed protocol in
the presence of non-zero random attack signals. Define yb =
H i x i as the
estimated output at sensor i  at time k. To detect possible at-
tacks, each sensor calculates its residual as the difference of
its original output and the estimated one,

Knowing that (A)  <  1, the first term in (10) goes to zero.
Therefore, it can be proved from [4] that for 1  =  l i m k ! 1

k ,

k 1 k 2  =  k
X

A j ( A j ) >  +  k2  
kk2 ; (11)

j = 1

with b =  kAk2 <  1. For attack-free case (k =  0N  in (6)),

qk qk =  ( I N n       K D H ) ( 1 N N

 k  1 k 1 ) ( I N n       K D H ) >  +  ( K D C ) k
> ( K D H ) > ;

(12)

where 1 N N  is the 1’s matrix of size N . Applying the E ( )
and 2-norm operators,

kk2 =  k ( I N n       K D H ) ( 1 N N

 Q)( I N n       K D H ) > k 2

+  k ( K D H ) R ( K D H ) > k 2 : (13)

r i  = y k       yb =  yk      H i x k j k  =  H i e i  +  k  +  k : (8)
Then, the upper-bound on kk2 is,

kk2  k I N n       K DH k2 N kQk2  +  kK k2 kRk2 ;

Having (A)  <  1, the steady-state error in (5) only relies on
the term qi defined in (6) as,

H i q i  =  H i k  1      H i K i H i  
i

with R  =  diag[Hi R i H i ] .  Then, using (11),

k 1 k 2 a1N kQk2 +  a2a3kRk2

N                         N (1      b2)
(14)

     H i K i H i  k       H i K i H i  H i k  1: (9)

From (8) and (9), it is clear that for i  =  0, only the resid-
ual r i  at sensor i  is biased with no effect on the residual of
other sensors j  =  i. This allows to isolate the attacked sen-
sor as r i  only depends on i  and not on j ’s. To detect a
possible attack at agent i  via residual r i  , the non-zero term
i    H i K i H > i  needs to be sufficiently larger than other noise
terms. This ensures that the residual in attacked case is large
enough to be distinguished from the noise terms in attack-
free case. Clearly, the detecting probability of an at-tack
depends on the magnitude of i , which justifies the prob-
abilistic threshold design. In this direction, we consider a dis-
tributed probability-based 2-test which outperforms the de-
terministic fault/attack detection methods as it considers noise
of unbounded support. In this case, instead of a determin-
istic threshold with 0 (no attack) or 1 (attack detected) out-
come, different probabilistic thresholds (with different sensi-
tivities) are defined each assigned with an FAR. In fact, higher
residual-to-noise ratio (RNR) stimulates the threshold with
lower FAR. In this direction, first the covariance of error ek

and (attack-free) residuals need to be calculated, which are
tied with the noise covariance Q and R .  Let k  =  E(ek ek  )

where k I N n    K D H k 2  =  a1, kK k2 =  a2, and kRk2 =
a3kRk2. Note that in (14) the error covariance is scaled by
the number of sensors N . From (14), assuming no attack
is present (i      =  0), a conservative approximation for er-ror
variance at sensor i  is E(e i  ei > )  =  . Then, follow-ing the
discussion in [19], the residual r i  in (8) can be as-sumed as a
zero-mean Gaussian variable with maximum vari-ance i  =
E ( r i  r i  > )  =  H > H i  +  R i ,  i.e., r i   N (0; i ). Define,

z i =  
(rk ; v i  =

X
zi ; (15)

i                         t = k  T + 1

with T as the length of the sliding window1. It is known
that, for a Gaussian variable r i  , scalars z i and v i follow 2-
distribution with degree 1 and T respectively (E[z i ] =  1 and
E[v i  ] =  T ) [27]. In fact, these so-called distance measures
z i and v i give an estimate of variance of r i  relative to the
attack-free variance i  [19], and are known to outperform
simple detectors comparing absolute residual to a threshold
as in [21, 22]. Next, we determine the decision threshold  on
v i based on a pre-specified FA R  p. It can be shown that

1In general, each agent can consider a different length for the horizon T.
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 =  2  1(1      p; 
2 

); (16) Fig. 1: The small social network G considered for simulation. The
black state nodes are observed by the sensors (satisfying Lemma 1).

with   1(; ) as the inverse regularized lower incomplete
gamma function [27]. Using (16), our attack detection logic at
each sensor i  is as follows,

v i  H i  : Attack Detected
v i <                     H i  : No Attack
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It should be noted that the existing 2-based attack detection
scenarios in literature are all centralized [15, 19, 20] and in
this work, using distributed estimation, we enable detection
of attacks locally at every sensor with no need of a central
unit. We summarize our proposed simultaneous distributed
estimation and attack detection technique in Algorithm 1.
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Algorithm 1: Proposed iterative methodology.

1 Given: System matrix A, Network GN  , Fusion
matrix W , Measurements yk , Measurement matrix
H ,  System/Measurement noise covariance Q/R,
false-alarm probability (FAR) p, sliding window T

2 Choose block-diagonal gain K  via LMI in [26];
3 Find x k j k  at every sensor i  via (3)-(4);
4 Find i  based on R ,  Q, and (14);
5 Find residuals r i  at every sensor i  via (8);
6 Find z i and v i at every sensor i  via (15) ;

7 Define threshold  based on p and T via (16);
8 If v i   return H i  : Attack Detected with FA R  p; 9
If v i <   return H i  : No Attack;

10 Return: Hypothesis H 0  or H 1  for i  =  f1; :::; N g.

Note that after detecting a malicious attack with low FAR,
the strategy in [28] can be adopted to remove unreliable data
and replace the compromised sensor with its observationally
equivalent counterpart to regain distributed observability.

4. SIMULATION R E S U LT S

We evaluate our theoretical results on an example social net-
work G of 10 state nodes with 4 sensor observations shown in
Fig. 1. The network GN  of 4 sensors is considered as a cycle
(satisfying Lemma 2). The fixed non-zero entries of A  and W
are chosen randomly in (0; 1:1]. Further, (A)  =  1:1 imply-ing
a potentially unstable system, i  ; i   N (0; 0:06), and non-zero
entries of H  are set as 1. Using M AT L A B  CVX, the stabilizing
block-diagonal gain K  is designed via the iterative LMI in [26]
subject to j1   H i K i H > j  >  0:2, which results in (A)  =  0:97,
b =  1:42,  =  4:82, and i  =  4:88. In attack-free case, each
sensor is able to track the global social state x k  over time via
protocol (3)-(4). The time-evolution

Fig. 2: (top) No attack: mean squared estimation error at all sensors
are steady-state stable. (bottom) Attack at sensors 1 and 3: the non-
zero attacks add bias to the estimation error at all sensors. Distance
measures v1 and v3 exceeding 2 reveal possible attacks at sensors 1
and 3 with FA R  p2 =  35%, while vk exceeding 1 implies lower FA R
p1 =  5% for attack at sensor 1.

of mean squared errors ke i  k 2      

and distance measures at all
sensors are shown in Fig. 2(top). Next, considering two non-
zero attack sequences as 3  N (0:2; 0:3) for k  60 and 1

N (0; 0:8) for k  40, the distance measures v i ’s over a
sliding window of T =  12-step length are shown in Fig.
2(bottom). The figure clearly shows that the attacks af-fect
the estimation error at all sensors. Setting two FARs p1 =
5%, p2 =  35%, the associated decision thresholds are 1 =  21,
2 =  13:3 via (16). From the figure, the less conser-vative
threshold 2 reveals both attacks, while 1 only detects one and
the other one remains stealthy most of the times.

5. CONCLUSION

We proposed an algorithm for simultaneous estimation of
states and attack detection over a distributed sensor network.
Using a windowed chi-square detector, every sensor is able
to locally detect possible measurement anomalies causing
the residuals to exceed an FAR-based threshold. As future
research directions, the results in [5, 29] can be adopted to
optimally locate the sensing nodes and design the network
among the social sensors to reduce cost. Additionally, adopt-
ing the pruning strategies in [1, 2], one can change the social
network structure and, in turn, tune its observability and
information flow to improve estimation/detection properties.
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