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A B S T R AC T
In this paper, we propose a decentralized first-order stochastic
optimization method Push-SAGA for finite-sum minimiza-
tion over a strongly connected directed graph. This method
features local variance reduction to remove the uncertainty
caused by random sampling of the local gradients, global
gradient tracking to address the distributed nature of the data,
and push-sum consensus to handle the imbalance caused
by the directed nature of the underlying graph. We show
that, for a sufficiently small step-size, Push-SAGA linearly
converges to the optimal solution for smooth and strongly
convex problems, making it the first linearly-convergent
stochastic algorithm over arbitrary strongly-connected di-
rected graphs. We illustrate the behavior and convergence
properties of Push-SAGA with the help of numerical exper-
iments for strongly convex and non-convex problems.

Index Terms— Stochastic optimization, first-order meth-
ods, variance reduction, decentralized algorithms, directed
graphs

1. INTRODUCTION AND R E L AT E D  WORK

Decentralized optimization has gained a significant interest
recently because of its relevance to modern signal process-
ing and machine learning tasks. In many such problems, the
size of the data is very large and is available at nodes that are
geographically distributed. Bringing the entire dataset to a
central processor for learning an inference is computationally
prohibitive and further requires extensive communication. It
is therefore essential to design algorithms that are computa-
tionally efficient and requires minimal communication.

In this paper, we consider decentralized finite-sum min-
imization over a directed network of n nodes where each
node i  possesses a local batch of data, i.e.,

P  : min F ( z )  : =  
1 X

f i ( z ) ; f i ( z )  : =  
1 X

f i ; j ( z ) ;
i = 1                                                       i  j = 1

where each local cost function f i  : Rp  !  R  is decomposed
into mi component functions f i ; j ,  and j  indexes the local data

The work of MIQ and UAK has been partially supported by NSF under
awards #1903972 and #1935555. The work of S K  and R X  has been partially
supported by NSF under award #1513936.

batch at node i; this setup is illustrated in Fig.1. Clearly, an
algorithm based on the local batch gradient r f i  requires mi

gradient evaluations which could be cost prohibitive. Our fo-
cus thus is on stochastic methods that randomly sample one
data point per iteration.

Fig. 1. Offline/Batch optimization problems.

A  promising solution for Problem P  is decentralized
stochastic gradient descent (DSGD) [1, 2] that is further ex-
tended to directed graphs by SGP [3,4] with the help of push-
sum consensus [5,6]. It is well known that DSGD (and SGP) in-
cur a steady state error due to the variance of the stochastic
gradients, and the difference in the local gradient r f i  and
the global gradient r F  [7]. The steady state error due to the
local vs. global functions’ dissimilarity is eliminated in [8]
with the help of gradient tracking [9–14], but the performance
still suffers from the variance of stochastic gradients. This
variance is eliminated in [15] with the help of variance re-
duction [16, 17]. All these methods however require doubly
stochastic network weight matrices and thus are not appli-
cable to arbitrary directed graphs.     Of relevance here are
also SADDOPT [18] that adds gradient tracking to SGP and is
a stochastic extension of the methods described in [13, 14].

In this paper, we propose Push-SAGA that systemati-
cally eliminates the steady state errors in SGP and SADDOPT
with a combination of three ingredients: local variance re-
duction, global gradient tracking, and push-sum consen-
sus. As a result, Push-SAGA converges linearly to the
optimal solution for smooth and strongly convex problems
over arbitrary directed graphs. To the best of our knowl-
edge, Push-SAGA is the first stochastic method that pro-
vides a linear convergence guarantee over directed graphs.
We now describe the rest of this paper. Section 2 devel-ops
and formally describes Push-SAGA while Section 3
provides the main result and convergence analysis. Finally,
Section 4 presents numerical experiments on strongly convex
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and non-convex problems.
Basic Notation: We use lowercase bold letters to rep-

resent vectors and uppercase letters for matrices. The col-
umn vector of n ones is denoted by 1n and I n  denotes
the n  n identity matrix. For a primitive column stochas-
tic matrix B  2  R n n ,  from Perron Frobenius theorem [19], we
have that B 1  : =  l i m k ! 1  B k  =  1> ,  where  =  f i g  is the
right eigenvector corresponding to the unique eigen-value 1.
We use ( B )  to denote the spectral radius of B .  We denote k  k2
and jjj jjj as the Euclidean vector norm and the spectral
(matrix) norm, respectively. Since ( B       B  )  <  1, it can be
shown that there exists a matrix norm jjj jjj , for-mally defined
in [20], such that  : =  jjj B      B 1  jjj <  1.

2. A L G O R I T H M  DEVELOPMENT

Recall Problem P  and the fact that the underlying commu-
nication graph is not necessarily undirected. SGP proposed
in [3, 4] is a decentralized optimization algorithm that can be
implemented over arbitrary directed graphs since it only re-
quires a column stochastic weight matrix B  =  fb i r g  2  R n n .
SGP is formally described as follows: at each node i,

y k + 1  =  
X

b i r y i  ;
r = 1

x k + 1  =  
X

b i r x i       r f i ; s k + 1  

 
z i  ;

r = 1
k + 1

k + 1  i
i y k + 1

where x k  and zk , both in Rp , estimate the global optimizer z  at
node i  and time k, sk + 1  is drawn uniformly at random from the
index set f1; : : : ; mig, r f i ; s k + 1  ( z i  )  is the gradient of a
randomly drawn component function from the local batch,
and yk 2  R  estimates the right eigenvector of B .  At each
node i, SGP is initialized with an arbitrary x0  2  Rp , z0 =  x0 ,
and y0 =  1. It can be shown [7] that the SGP iterate z i  , at
each node i, converges to an error ball that is a function of
two components, i.e., the variance introduced by stochastic
gradient r f i ; s k + 1  and the difference between the local batch
gradient r f i  and the global gradient r F .

The proposed algorithm Push-SAGA eliminates the vari-
ance of the stochastic gradient, introduced due to the sampling
of the local batch at each node, with the help of a variance re-
duction technique known as SAGA [16,17]. In particular, each
node i  maintains an iterate g i  that estimates the entire local
batch gradient r f i  from randomly drawn samples of the lo-
cal batch, and thus, loosely speaking, g i  !  r f i ( z k ) .  The
SAGA estimator g k  requires a gradient table at each node i
and thus results in extra storage costs. At each iteration of the
algorithm, the sk+1-th element of this gradient table is up-
dated with the component gradient r f i ; s k + 1  evaluated at the

current iterate zk + 1 .  Subsequently, these variance-reduced
estimators fgk g ’s are used to update the gradient tracking it-
erate wk such that, loosely speaking, wk ! gk , and thus
the descent direction wk asymptotically tracks the global gra-
dient r F .  The gradient tracking update comes from the dy-
namic average consensus protocol [21].

Algorithm 1 Push-SAGA at each node i
Require: x i  2  Rp ; z i  =  x i  ; wi =  g i  =  r f i ( z i  ); v i ; j  =  z i  ;

8j  2  f1;  ; mig; y0 =  1;  >  0; fb i r g r = 1 ,  Gradient
table: f r f i ; j ( v i ; j ) g j = 1

1: for k =  0; 1; 2; : : : do
2: x k + 1 n b i r x k         wk 3:

y k + 1                              b ir y k

4: z k + 1 x k + 1 =y k + 1

5: Select sk + 1  uniformly at random from f1; : : : ; mig
6: g k + 1 r f i ; s k + 1  ( z k + 1 )    r f i ; s k + 1  ( v k + 1  

1  )  +
 1 

j = 1  r f i ; j ( v k + 1 )
7: Replace r f i ; s k + 1  ( v k + 1  

1  )  by r f i ; s k + 1  ( z k + 1 )  in the
gradient table

8: w k + 1 n bir wk +  g k + 1       g k

9: if j  =  sk +1 , then v k + 2 zk + 1 ,  else v k + 2 v k + 1

10: end if
11: end for

3. L I N E A R  C ON V E R G E N C E  OF PUSH-SAGA

This section formally describes the convergence analysis
of Push-SAGA. We start with the following assumptions.

Assumption 1 (Strongly connected directed graphs). Each
node communicates over a strongly connected directed graph.
The underlying weight matrix B  =  fb i r g is such that it fol-
lows the sparsity of the graph. In addition, B  is primitive and
column stochastic, i.e., 1n B  =  1n and B  =  .

Assumption 2 (Smooth and strongly convex cost functions).
Each local cost function f i  is -strongly convex and each
component cost f i ; j  is L-smooth.

The above assumptions are standard in the literature.
Assumption 1 for example can be fulfilled when each node
chooses a suitable weight for its outgoing neighbors [13]. A
valid choice at node i  is br i  =  1=dout, for each outgoing
neighbor r, that requires each node to know its out-degree
denoted by dout. Following Assumption 2, it can be verified
that the global cost F  is L-smooth and -strongly convex and
thus have a unique global minimizer that is denoted by z.

Based on the above assumptions and Push-SAGA in Al-
gorithm 1, we now provide the main result of this paper.

Theorem 1. Consider Problem P  under Assumptions 1
and 2. For a sufficiently small step-size  >  0, Push-SAGA
linearly converges to the optimal solution z  at each node.
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In the following, we provide the convergence analysis
and the auxiliary results that are needed to prove Theorem
1. To this aim, we write Push-SAGA in a vector-matrix for-
mat. Let xk ; zk ; gk ; wk , all in R p n  be the global vectors that
stack the local variables xk ; zk ; gk ; wk 2  Rp , respectively,
and y k  2  R n  concatenate yk ’s. Similarly, the global matrices
can be defined as B  : =  B
 Ip  and Yk : =  diag(yk )
 Ip . It can be verified that Push-SAGA in Algorithm 1 can
be compactly written as

x k + 1  =  B x k         wk ;                              (1a)

y k + 1  =  B y k ;                                                (1b)

z k + 1  =  Y  1 xk + 1 ;                                       (1c)

w k + 1  =  B w k  +  g k + 1       gk :                     (1d)

We next introduce four error quantities that will aid in the
convergence analysis:

(i) Network agreement error: Ekx k       B 1 x k k 2 ;
(ii) Optimality gap: Ekx k       zk2;

(iii) Mean auxiliary gap: E[tk ];
(iv) Gradient tracking error: Ekwk      B 1 w k k 2 ;

where x k  : =  1
i  x k  and

n m i

t k  : = ( kv i ; j       zk2):
i = 1               j = 1

In order to show that Push-SAGA converges linearly to
the global minimum, we establish that each of these four
errors converges to zero linearly, which subsequently leads
to z k  !  z; 8i. These properties are derived with the help of
an LT I  system that captures the evolution of these error
quantities. We start with a standard result that comes from
the literature on directed graphs.

Lemma 1. [22] Let Assumption 1 hold and Y 1 : = l i m k ! 1 Y k ,
then jjj Yk      Y 1  jjj  T k; 8k, where T : = hk1n      nk2, h
: =  =,  =  maxi i  and  =  mini i .

Lemma 2. Consider Push-SAGA under Assumptions 1, 2,
and for all k  0, define uk ; sk 2  R4  and G ; H k  2  R44 as

E[kxk       B 1 x k k 2  ] E[kxk k2 ]

u k  : = 6 E[nk
E[tk ]

zk2 ]           
5 ; sk : = 4           

0 ;

E [ L  2kwk      B 1 w k k 2  ] 0
2 1 + 2

0 0
3

6  2 L 2       m 7
G  : = 6 2                    2  

2              5M
1 7 ;

188 169     1 38 M
3 + 2  1

2                     1 2                    1 2                      4

0 0     0     0
6  2 L 2 7

H k  : =
4  2 0     0     0 5

T k ;

188
2 0     0     0

where m : =  mini mi; M : =  maxi mi; y : =  sup jjj Yk jjj ;
y  : =  supk Yk 2, and : =  yy2 (1 +  T )h. Then, for
: =  L =  and the step-size 0 <    28L     

 , we have

u k   G u k  1 +  H k  1sk 1: (2)

The proof of Lemma 2 can be found in [23] and follows
the procedure in [15, 18]. Next, we show that kuk k2 goes
to zero and further characterize its convergence rate. To this
aim, note that H k  linearly decays to a zero matrix at O(k ).
The evolution of (2) further requires the spectral radius (G)  of
G. We characterize this spectral radius in Lemma 4 with the
help of the matrix perturbation argument in Lemma 3.

Lemma 3. [19] Consider X ; Y 2  R n n .  Let  be simple
eigenvalue of X ,  and w >  and v  be left and right eigenvectors
of X  corresponding to . Let (t) be an eigenvalue of X + tY ;  8t
2  R.  Then (t) is unique and differentiable at t =  0, and

d(t) wH Y v
dt     t = 0             w H v

Lemma 4. Consider G  defined in Lemma 2. If the stepsize  is
sufficiently small, then (G)  <  1.

Proof. We start by noting that G  can be decomposed into two
components: one that is independent of the step-size  and
another perturbation term that is controlled by . In par-ticular,
we have that G  : =  G0 +  P; such that

1 + 2
0 0 0

G0 : =  6  
2

0 1 0 
 1 

0 7 ;
1 m             

169     1              38 M

3 + 2

1 2 1 2 1 2 4

0 0 0
2 L 2       m

P  : =  4  0
2 5M

0 5 :

0 0         0 0

Since G0 is lower triangular, its eigenvalues appear on the di-
agonal and it can be verified that (G0 ) =  1 since  2  [0; 1) and
M  1. We next note that the left eigenvector of G0, cor-
responding to the eigenvalue 1, is w >  =  [0; 1; 0; 0], whereas,
by choosing r  =  169=M +  76=m, it can be shown that the
corresponding right eigenvector is

(1      2)2 (1      2)2 >

4M r 2mr

Denoting the eigenvalues of G  by (), Lemma 3 leads to 
d

d

)

= 0 ; = 1  
=  

w H v  
=   

10 
<  0;

because 1 is a simple eigenvalue of G0 . Finally, since eigen-
values are continuous functions of the parameters of a matrix,
we have that (G)  decreases from 1 as  slightly increases from
zero and the proof follows.

The following corollary derives the linear convergence of uk .
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Fig. 2. (Left) Directed exponential graph (top) with n =  16 nodes and directed geometric graph (bottom) with n =  500 nodes.
(Center) Optimality gap for logistic regression classifier trained over directed exponential graph (top) and directed geometric
graph (bottom); (right) Test accuracy and training loss for neural networks trained over a geometric graph.

Corollary 1. Let  : =  maxf; (G)g, then kuk k2 decays
linearly to zero i.e., there exists a constant  >  0; such that
kuk k2  (  +  )k ; 8k; where  >  0 is arbitrarily small.

Proof. We expand (2) and take the Euclidean norm on both
sides. Then for some positive constants 1 and 2,

kuk k2  kGu0k2 + r = 0  kGk  r  1 H r  srk2;  1

+  2 r = 0  ksrk2 
k ;

It can be verified that ksrk2  6(y2 + )kur k2  + 3y2nkzk2.
Then for b : =  6 (y2 +  )  and c : =  3 y2nkzk2, we have

kuk k2  
 

1 +  kc +  b
P

r = 0  kur k2
k :

We denote ck : =  (1 +  kc)k ; wk : = k  1 kur k2, and for
bk : =  bk , we can rewrite the above equation as

kuk k2 =  wk + 1       wk  (1 +  kc +  bwk )k :

We note that 8k; wk+1  (1 +  bk )wk +  ck , whereas the se-ries
bk <  1  and ck <  1 .  Thus from [24] we

have that the sequence fwk g converges. Hence, it is bounded
and 8
 2  (; 1),

lim 
ku 

k  
2  lim 

(1 +  kc +  bwk )k 
=  0; and

the corollary follows.

3.1. Proof of Theorem 1

Proof. We find a bound on E[kzk    (1n

 z)k2] with the help of Corollary 1. We have

E[kzk       (1n

 z)k2]  3y2 E[kxk       B 1 x k k 2 ]  +  3ny2

y2 E[kxk      zk2] +  3n(y     T k )2kzk2

 6y2 (y2 +  )kuk k2 +  3ny2 T 2kkzk2

 6y2 (y2 +  )(  +  )k  +  3ny2 T 2( +  )k kzk2  6y2 ! (  +

)k ;

with ! := (y 2  +  )  +  nT 2kzk2 and the result follows.

4. NUME R I C A L  E XPE R I M E N T S

In this section, we provide numerical experiments to illus-
trate Push-SAGA for strongly convex and non-convex prob-
lems, and compare its performance with related methods.

Logistic Regression: We first train a binary classifier
on N  =  12;000 images from two classes in MNIST and
CIFAR-10 datasets with the help of logistic regression,
with a strongly convex regularizer.     These images are di-
vided among n nodes that communicate over directed ex-
ponential and geometric graphs, see Fig. 2 (left). We com-
pare Push-SAGA with SGP and SADDOPT, along with
their deterministic counterparts GP and ADDOPT, and plot
the optimality gap F ( z k )       F (z) ,  where z k  : =  1 zk ,
over epochs (one epoch represents mi gradient computations
per node). Fig. 2 (center) shows that Push-SAGA is much
faster than GP, ADDOPT and, unlike the stochastic algorithms
(SGP, SADDOPT), converges linearly to the optimal solution.

Neural Networks: Finally, we train a multi-class classi-
fier using N  =  60;000 images from the MNIST and CIFAR-
10 datasets, with 6;000 images per class. We use this data
to train decentralized neural networks distributed over a di-
rected geometric graph, where each node possess a custom
two-layered neural network comprising of a hidden layer of
64 neurons and a fully connected output layer. We compare
the stochastic algorithms: SGP, SADDOPT and Push-SAGA,
in Fig. 2 (right) that plots the loss F ( z k )  and test accuracy. It
can be seen that Push-SAGA is not only faster than the other
two algorithms but also has smaller loss and better accuracy.

5. CONCLUSION

This paper describes Push-SAGA, a decentralized stochastic
method applicable to arbitrary directed graphs. We show that
Push-SAGA linearly converges to the optimal solution for
smooth and strongly convex problems with a sufficiently
small step-size. Numerical experiments illustrate the perfor-
mance for both strongly convex and non-convex problems.
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