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ABSTRACT

In this paper, we study the problem of learning from data

available over a network of geographically distributed nodes.

Each node possess a private local cost function and the goal

is to minimize the global cost defined as the average of all

local costs. Assuming that the cost functions are smooth and

strongly-convex, and that the information exchange among

the nodes can be asymmetric, we propose two first-order

stochastic optimization methods PushSVRG and AB-SVRG
converging to the global minimum. Both methods use net-

work level gradient tracking to eliminate the dissimilarity

among heterogeneous data distribution and node level vari-

ance reduction to mitigate the variance caused by imper-

fect (local) gradient information. To eliminate the asym-

metry of information exchange caused by the communica-

tion, PushSVRG uses column-stochastic weights and push-

sum consensus while AB-SVRG uses both row and column

stochastic weights and does not require the extra push-sum

iterations. We compare the proposed methods with related

work on first-order stochastic optimization using extensive

numerical experiments and highlight the practical aspects of

different variance reduction techniques.

Index Terms— Distributed optimization, stochastic first-

order methods, variance reduction.

1. INTRODUCTION

Stochastic first-order methods lie at the heart of many modern

signal processing and machine learning tasks, see e.g., [1–5].

In many realistic scenarios, data is often collected and stored

at various geographically distributed nodes. The nodes are

connected over a strongly-connected graph and can send and

receive information from their neighbours. Each node has a

local cost function and the goal is to minimize the average

of the local costs available at n nodes. Mathematically, we

consider the following problem:

P1 : min
x∈Rp

F (x) = min
x∈Rp

1
n

∑n
i=1 fi(x),
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where each local cost fi(x) is private to node i. A special case

of this problem is when each local fi is further decomposable

into a finite sum of mi component cost functions leading to

P2 : min
x∈Rp

F (x) = min
x∈Rp

1
n

∑n
i=1

1
mi

∑mi

j=1 fi,j(x).

Much existing work over distributed data assumes bi-

directional communication over agents. However, many

modern IoT or robotic networks may only allow one-way

communication because of diverse battery and charging ca-

pabilities. We thus seek algorithms that are able to deal with

directed graphs, i.e., one directional communication where a

node may not be able to directly receive information from a

node to which it can send information. The directed graph

however is assumed to be strongly-connected, i.e., there exists

a path between every two nodes in the network. In stochas-

tic problems, another source of noise comes from imperfect

data. In particular, we are not able to compute a gradient ∇fi
at any node i and can either compute a noisy gradient gi,

in the context of Problem P1, or randomly sample a com-

ponent cost function from the local data, in the context of

Problem P2. In a more general form, a distributed stochastic

first-order method thus has to address the following chal-

lenges: (i) Information asymmetry caused by the directed

nature of the communication; (ii) Data dissimilarity across

the nodes; (iii) Imperfect gradient information. The current

research thus has addressed various facets of these challenges.

We provide a brief literature survey next.

Early work on distributed optimization includes DGD
that requires a bidrectional communication [6], which was

then extended in GP [7] to directed graphs with the help of

push-sum to address the asymmetry caused by the directed

communication [8]. Both DGD and GP incur a steady-state

error due to the data dissimilarity across the nodes, which

was removed with the help of gradient tracking [9]. Gradient

tracking based methods over undirected graphs were intro-

duced in [10, 11] and then extended to directed graphs with

the help of push-sum [12, 13]. A novel approach was intro-

duced in AB [14], where push-sum was removed with the help

of data fusion that utilizes both row and column stochastic

matrices; a detailed survey can be found in [9]. The work we

covered so far assumes full local gradients ∇fi’s available at

each individual node. Stochastic extensions to DGD and GP
can be found in DSGD [15] and SGP [16, 17], while [18, 19]
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and S-ADDOPT [20] further use gradient tracking. An-

other line of work S-AB [21] removes push-sum consensus

from S-ADDOPT and is the stochastic extension of AB.

In this paper, we introduce two new methods PushSVRG
and AB-SVRG that use a variance reduction technique in-

spired by the SVRG method [22] to address distributed

stochastic optimization over arbitrary strongly-connected

graphs. During this process, we recap the recent work on

stochastic first-order methods and describe their theoretical

results. We further discuss the practical aspects of the cor-

responding methods and describe their limitations. We now

describe the rest of the paper. Section 2 states the assump-

tions necessary for convergence and motivates the proposed

methods. The algorithm developments are discussed in Sec-

tion 3. Section 4 highlights the implementation of SVRG-

based methods along with their comparison with other tech-

niques. We provide extensive numerical experiments to show

linear convergence of both PushSVRG and AB-SVRG and

compare with other related methods in Section 5. Finally,

Section 6 concludes the paper.

Notation: We use uppercase letters to denote matrices,

lowercase letters to denote scalars and lowercase bold letters

vectors. We define the Euclidean vector norm by ‖ · ‖.

2. ASSUMPTIONS AND MOTIVATION

We next describe the assumptions to guarantee linear con-

vergence of PushSVRG and AB-SVRG to the unique mini-

mum x∗ of the global cost function F .

Assumption 1 (Stochastic First Oracle). Each agent i has
access to a stochastic first-order oracle (SFO) that returns a
stochastic gradient gi(x

k
i , ξ

k
i ), ∀xk

i ∈ R
p, such that

Eξki

[
gi(x

k
i , ξ

k
i )|xk

i

]
= ∇fi(x

k
i ),

Eξki

[‖gi(x
k
i , ξ

k
i )−∇fi(x

k
i )‖2|xk

i

] ≤ σ2;

where we assume that the set of random vectors
{
ξki
}k≥0

i={1,...,n}
are independent of each other.

Assumption 2 (Smoothness and strong convexity). Each lo-
cal fi is L-smooth and the global cost F is μ-strongly convex.

Assumption 3 (Strong Connectivity). The nodes communi-
cate over a strongly-connected graph.

These assumptions are standard in literature on distributed

optimization. Assumption 1 ensures that each node can ac-

cess it’s stochastic gradient and that the second moment is

bounded by a positive number. Assumption 2 guarantees that

the fi’s are differentiable and that there exists a global mini-

mizer of F , which is also unique. We now recap a few stan-

dard distributed stochastic first-order methods.

DSGD is one of the earliest first-order stochastic optimiza-

tion method proposed in [15, 23] to solve P1. Let α > 0

be the step-size, x∗ be the unique global minimum of P1,

and xk
i ∈ R

p be the estimate of the minimum at node i and

iteration k. DSGD updates the estimate at each node as

xk+1
i =

∑n
r=1 wirx

k
i − α · gi(x

k
i , ξ

k
i ), ∀k ≥ 0, (1)

where W = {wir} ∈ R
n×n is a doubly stochastic weight ma-

trix restricting the network communication graph to be bi-

directional (undirected). For a constant step-size α, the er-

ror eki := E‖xk
i − x∗‖2 at each node decays linearly such that

lim sup
k→∞

1
n

∑n
i=1 e

k
i = O

(
α
nμσ

2 + α2κ2

1−λ σ2 + α2κ2

(1−λ)2 η
)
,

where κ = L/μ is the condition number, (1 − λ) is the

spectral gap of W , and η = 1
n

∑n
i=1 ‖∇F (x∗)−∇fi(x

∗)‖2
is the error due to global versus local cost gap. The third

term was removed in DSGT [18, 19] using gradient tracking

where gi(x
k
i , ξ

k
i ) in (1) is replaced by the following equation:

wk
i =

∑n
r=1 wir(w

k
r + gi(x

k+1
i , ξk+1

i )− gi(x
k
i , ξ

k
i )),

such that wk
i mimics the stochastic gradient of global cost F .

For a constant step-size, the resulting asymptotic error at each

node decays linearly to an error ball given by [18]

lim sup
k→∞

1
n

∑n
i=1 e

k
i = O

(
α
nμσ

2 + α2κ2

(1−λ)3σ
2
)
.

It can be observed that the error in DSGT is a function of

the variance σ2 of the stochastic gradient evaluated by each

node. DSGT converges to the global minimum x∗ using de-

caying step-size but the rate of decay becomes sub-linear. To

keep the convergence linear, variance reduction is often em-

ployed. Furthermore, we observe that DSGD and DSGT re-

quire bi-directional communication and therefore do not guar-

antee convergence for asymmetric information exchange. To

deal with these challenges, we discuss some recent advance-

ments on stochastic optimization in the following section.

3. ALGORITHM DEVELOPMENT

S-ADDOPT proposed in [20] is based only on column

stochastic weights B = {bir} ∈ R
n×n characterizing the

(one directional) communication of the underlying network

of nodes. In addition to gradient tracking, it uses push-sum [8]

that requires a division with an eigenvector estimate of the

underlying communication graph. The method is formally

described below:

xk+1
i =

n∑
r=1

birx
k
i − αwk

i ,

yk+1
i =

n∑
j=1

bijy
k
j , zk+1

i = xi
k+1/y

k+1
i ,

wk+1
i =

n∑
j=1

bijw
k
j +∇gi(z

k+1
i , ξk+1

i )−∇gi(z
k
i , ξ

k
i ),
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where we initialize yki = 1, ∀i. Using push-sum correction, it

can be shown [9] that the scaled iterates zki converge to the av-

erage of the initial states of the nodes, i.e., zki → 1
n

∑n
i=1 x

0
i ,

∀i. This iterative procedure of eigenvalue estimation slows

down the convergence of S-ADDOPT especially when the

network of nodes is not well connected. S-AB proposed

in [21] uses row and column stochastic weights instead of

using push-sum consensus and converges linearly to an error

ball around the global minimum x∗. This error is dependent

on the variance caused by stochastic gradients evaluated at

each node.

PushSAGA [24] and AB-VR [25] are two techniques built

upon the SAGA-based variance reduction, applicable to Prob-

lem P2. Each node evaluates the gradient of a randomly sam-

pled component cost ∇fi,j and estimates the gradient of the

full local batch ∇fi. PushSAGA uses push-sum consensus to

handle the asymmetric information exchange and achieves ε-
optimal solution in

O
(
max

{
M, Mm

κ2ψ
(1−λ)2

}
log 1

ε

)
,

component gradient computations where ψ ≥ 1 is the direc-

tivity constant, M = maxi mi and m = mini mi. AB-VR
uses row and column stochastic weight to handle one di-

rectional communication between the nodes. It is similar

to S-AB with the addition of variance reduction. SAGA-

based optimization is generally faster than other first-order

methods but it requires storing the most recent component

gradients at each node [5].

4. SVRG BASED IMPLEMENTATION

Another well-known variance reduction method is SVRG.

SVRG can be thought of as a double loop method, which

achieves variance reduction by evaluating the local gra-

dients periodically (with a period of T ). At every outer-

loop update {xlT }l≥0, over l, each node computes local

full gradient ∇fi(x
lT ), which is used in subsequent inner-

loop iterations to update the local gradient estimator vk
i .

For k ∈ [lT, (l + 1)T − 1],

vk
i = ∇fi,ski (x

k
i )−∇fi,ski (x

lT
i ) +∇fi(x

lT
i ).

We propose two SVRG-based methods formally described

in Algorithm 1 and 2. PushSVRG (described in Algorithm 1)

uses column stochastic weights B along with the push-sum it-

erations, to deal with asymmetric communication among the

nodes, gradient tracking, to eliminate the local versus global

cost gap, and SVRG-based gradient estimation, to eliminate

the variance caused by inexact gradient evaluation at each

iteration. AB-SVRG (described in Algorithm 2) uses row

stochastic weights A = {air} ∈ R
n×n and column stochastic

weights B to address the asymmetric communication among

the nodes instead of the push-sum protocol. Avoiding push-

sum potentially leads to faster convergence especially when

Algorithm 1 PushSVRG at each node i

Require: x0
i ∈ R

p,d0
i = x0

i , w
0
i = v0

i = ∇fi(x
0
i ),

y0
i = 1, α > 0, {bir}nr=1,

1: for k = 0, 1, 2, . . . do
2: xk+1

i ← ∑n
r=1 bir(x

k
r − α ·wk

i )

3: yk+1
i ← ∑n

r=1 biry
k
r

4: zk+1
i ← xk+1

i /yk+1
i

5: Select sk+1
i uniformly at random from {1, . . . ,mi}

6: if mod (k + 1, T ) = 0, then dk+1
i ← zk+1

i , else
dk+1
i ← dk

i

7: end if
8: vk+1

i ← ∇fi,sk+1
i

(zk+1
i ) − ∇fi,sk+1

i
(dk+1

i ) +

∇fi(d
k+1
i )

9: wk+1
i ← ∑n

r=1 bir(w
k
r + vk+1

i − vk
i )

10: end for

the connectivity among the nodes is weak. We show numer-

ically that both PushSVRG and AB-SVRG converge linearly

to the global minimum. Detailed numerical studies on real

data are provided in the next section. Next we highlight some

features of the different methods provided in this paper and

discuss several practical aspects.

Remark 1 (Class of problems). DSGT, S-ADDOPT, and S-AB
are applicable to a broader class of problems often referred
to as streaming or online, where the local costs fi, ∀i, are not
necessarily decomposable. The variance reduction methods
however assume that each fi is decomposable into compo-
nent costs as described in Problem P2 and therefore SAGA
and SVRG-based implementations are not directly applicable
to Problem P1.

Remark 2 (Convergence to the global minimum). The
stochastic optimization methods that don’t use variance
reduction converge to the global minimum sub-linearly
with a decaying step-size. PushSAGA, AB-VR, PSV RG,

Algorithm 2 AB-SVRG at each node i

Require: x0
i ∈ R

p,d0
i = x0

i , w
0
i = v0

i = ∇fi(x
0
i ),

α > 0, {air}nr=1, {bir}nr=1,

1: for k = 0, 1, 2, . . . do
2: xk+1

i ← ∑n
r=1 air(x

k
r − α ·wk

i )

3: Select sk+1
i uniformly at random from {1, . . . ,mi}

4: if mod (k + 1, T ) = 0, then dk+1
i ← xk+1

i , else
dk+1
i ← dk

i

5: end if
6: vk+1

i ← ∇fi,sk+1
i

(xk+1
i ) − ∇fi,sk+1

i
(dk+1

i ) +

∇fi(d
k+1
i )

7: wk+1
i ← ∑n

r=1 bir(w
k
r + vk+1

i − vk
i )

8: end for
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and AB-SVRG achieve faster (linear) convergence with the
help of variance reduction.

Remark 3 (Synchronization versus storage). PushSVRG
and AB-SVRG require network synchrony as all nodes are re-
quired to evaluate their full local gradients every T iterations.
This requirements results in idle time for nodes with smaller
datasets as they complete their gradient computation faster
than nodes with larger datasets. PushSAGA and AB-VR re-
quired extra storage as they need to keep a record of gradient
table but do not need any network synchrony.

5. NUMERICAL EXPERIMENTS

In this section, we illustrate the performance of PushSVRG
and AB-SVRG for strongly-convex problems and compare

it with related work. We randomly select two classes from

MNIST and CIFAR-10 datasets and classify them using lo-

gistic regression with a strongly-convex regularizer. We

use N = 12,000 labeled images to train, which are divided

among n nodes. Each node possess a batch of mi training

samples and the local cost function can be described as

fi =
1
mi

∑mi

j=1 ln
[
1 + exp

{−(b�xi,j + c)yi,j
}]

+ λ
2 ‖b‖22,

where b and c define the hyperplane separating the two

classes. The network aims to solve for

min
{b,c}

F (b, c) = 1
n

∑n
i=1 fi.

To model variety in network connectivity, we use exponential

graph for structured applications and geometric graph for ad-

hoc training setups. Next we provide the performance com-

parison for different graphs.

Fig. 1. (Left) Directed exponential graph with n = 16 nodes.

(Right) geometric graph with n = 100 nodes

Structured training setup–Data-centers: We choose an

exponential graph consisting of n = 16 nodes (see Fig. 1, left)

to model a highly structured training setup, e.g., a data cen-

ter. Each node possesses the same number of data samples,

mi = 750, ∀i, and we plot the optimality gap F (xk)− F (x∗)
such that xk = 1

n

∑n
i=1 x

k
i . Fig 2 shows the results for

MNIST (left) and CIFAR-10 (right) classification. It can be

seen that S-ADDOPT converges to an error ball around x∗

but the methods that use variance reduction converge to the

global minimum. Moreover, PushSVRG and AB-SVRG are

Fig. 2. Balanced data: performance comparison over expo-

nential graph of n = 16 nodes.

comparatively slower that PushSAGA and AB-VR but are

effected by network synchronization issues (see Remark 3).

Ad hoc training setup–Multi-agent networks: Next

we use a geometric graph that, e.g., models ad hoc IoT-type

training environments where the nodes possess different sizes

of local batches depending on their location and resources.

For a network with n = 100 nodes, we classify the images

from MNIST and CIFAR-10 datasets and plot the optimality

gap, see Fig. 3. It can be observed that AB-SVRG converges

much faster than PushSVRG. This aspect is highlighted in

the case of a geometric graph because it takes more time

for PushSVRG to estimate the right eigenvector using push-

sum.

Fig. 3. Unbalanced data: performance comparison over geo-

metric graph of n = 100 nodes.

6. CONCLUSIONS

In this paper, we proposed two first-order methods, PushSVRG
and AB-SVRG, to minimize a sum of functions available over

a geographically distributed network of nodes. Both methods

are based on the SVRG-based variance reduction technique,

to estimate local batch gradients from component gradients,

and gradient tracking, to eliminate local versus global cost

gap. To deal with the potential asymmetry in the underlying

communication, PushSVRG uses column stochastic weights

along with the push-sum correction, while AB-SVRG uses

both row and column stochastic weights. For smooth local fi
and strongly-convex global cost F , we numerically showed

that both algorithms converge linearly to the global minimum.

We compared the performance with the related methods and

further highlighted their practical aspects.
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[6] A. Nedić and A. Ozdaglar, “Distributed subgradient

methods for multi-agent optimization,” IEEE Trans. on
Autom. Control, vol. 54, no. 1, pp. 48, 2009.
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