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ABSTRACT

In this paper, we study the problem of learning from data
available over a network of geographically distributed nodes.
Each node possess a private local cost function and the goal
is to minimize the global cost defined as the average of all
local costs. Assuming that the cost functions are smooth and
strongly-convex, and that the information exchange among
the nodes can be asymmetric, we propose two first-order
stochastic optimization methods PushSVRG and AB-SVRG
converging to the global minimum. Both methods use net-
work level gradient tracking to eliminate the dissimilarity
among heterogeneous data distribution and node level vari-
ance reduction to mitigate the variance caused by imper-
fect (local) gradient information. To eliminate the asym-
metry of information exchange caused by the communica-
tion, PushSVRG uses column-stochastic weights and push-
sum consensus while AB-SVRG uses both row and column
stochastic weights and does not require the extra push-sum
iterations. We compare the proposed methods with related
work on first-order stochastic optimization using extensive
numerical experiments and highlight the practical aspects of
different variance reduction techniques.

Index Terms— Distributed optimization, stochastic first-
order methods, variance reduction.

1. INTRODUCTION

Stochastic first-order methods lie at the heart of many modern
signal processing and machine learning tasks, see e.g., [1-5].
In many realistic scenarios, data is often collected and stored
at various geographically distributed nodes. The nodes are
connected over a strongly-connected graph and can send and
receive information from their neighbours. Each node has a
local cost function and the goal is to minimize the average
of the local costs available at n nodes. Mathematically, we
consider the following problem:

.. — min £ S -
P1: min F(x) = Inin & > i1 fi(%),
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where each local cost f;(x) is private to node 7. A special case
of this problem is when each local f; is further decomposable
into a finite sum of m; component cost functions leading to

P2: min F(x) = min 37 |

1
xERP xeRp " i

m

ZT:H fi,j (X)

Much existing work over distributed data assumes bi-
directional communication over agents. However, many
modern [oT or robotic networks may only allow one-way
communication because of diverse battery and charging ca-
pabilities. We thus seek algorithms that are able to deal with
directed graphs, i.e., one directional communication where a
node may not be able to directly receive information from a
node to which it can send information. The directed graph
however is assumed to be strongly-connected, i.e., there exists
a path between every two nodes in the network. In stochas-
tic problems, another source of noise comes from imperfect
data. In particular, we are not able to compute a gradient V f;
at any node ¢ and can either compute a noisy gradient g;,
in the context of Problem P1, or randomly sample a com-
ponent cost function from the local data, in the context of
Problem P2. In a more general form, a distributed stochastic
first-order method thus has to address the following chal-
lenges: (i) Information asymmetry caused by the directed
nature of the communication; (ii) Data dissimilarity across
the nodes; (iii) Imperfect gradient information. The current
research thus has addressed various facets of these challenges.
We provide a brief literature survey next.

Early work on distributed optimization includes DGD
that requires a bidrectional communication [6], which was
then extended in GP [7] to directed graphs with the help of
push-sum to address the asymmetry caused by the directed
communication [§8]. Both DGD and GP incur a steady-state
error due to the data dissimilarity across the nodes, which
was removed with the help of gradient tracking [9]. Gradient
tracking based methods over undirected graphs were intro-
duced in [10, 11] and then extended to directed graphs with
the help of push-sum [12, 13]. A novel approach was intro-
duced in AB [14], where push-sum was removed with the help
of data fusion that utilizes both row and column stochastic
matrices; a detailed survey can be found in [9]. The work we
covered so far assumes full local gradients V f;’s available at
each individual node. Stochastic extensions to DGD and GP
can be found in DSGD [15] and SGP [16, 17], while [18, 19]
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and S—-ADDOPT [20] further use gradient tracking. An-
other line of work S—AB [21] removes push-sum consensus
from S—ADDOPT and is the stochastic extension of AB.

In this paper, we introduce two new methods PushSVRG
and AB—-SVRG that use a variance reduction technique in-
spired by the SVRG method [22] to address distributed
stochastic optimization over arbitrary strongly-connected
graphs. During this process, we recap the recent work on
stochastic first-order methods and describe their theoretical
results. We further discuss the practical aspects of the cor-
responding methods and describe their limitations. We now
describe the rest of the paper. Section 2 states the assump-
tions necessary for convergence and motivates the proposed
methods. The algorithm developments are discussed in Sec-
tion 3. Section 4 highlights the implementation of SVRG-
based methods along with their comparison with other tech-
niques. We provide extensive numerical experiments to show
linear convergence of both PushSVRG and AB-SVRG and
compare with other related methods in Section 5. Finally,
Section 6 concludes the paper.

Notation: We use uppercase letters to denote matrices,
lowercase letters to denote scalars and lowercase bold letters
vectors. We define the Euclidean vector norm by || - ||.

2. ASSUMPTIONS AND MOTIVATION

We next describe the assumptions to guarantee linear con-
vergence of PushSVRG and AB-SVRG to the unique mini-
mum x* of the global cost function F'.

Assumption 1 (Stochastic First Oracle). Each agent i has
access to a stochastic first-order oracle (SFO) that returns a
stochastic gradient g;(x¥,£F), VxF € RP, such that

Eer [gi(xf, &0)Ixf] = Vfi(xP),
Eer [llgi(xt, €F) — V fi ()| 2[x!] < 0

>0
i={1,...,n}

where we assume that the set of random vectors {5 K }
are independent of each other.

Assumption 2 (Smoothness and strong convexity). Each lo-
cal f; is L-smooth and the global cost F is p-strongly convex.

Assumption 3 (Strong Connectivity). The nodes communi-
cate over a strongly-connected graph.

These assumptions are standard in literature on distributed
optimization. Assumption | ensures that each node can ac-
cess it’s stochastic gradient and that the second moment is
bounded by a positive number. Assumption 2 guarantees that
the f;’s are differentiable and that there exists a global mini-
mizer of F', which is also unique. We now recap a few stan-
dard distributed stochastic first-order methods.

DSGD is one of the earliest first-order stochastic optimiza-
tion method proposed in [15, 23] to solve P1. Let o > 0

be the step-size, x* be the unique global minimum of P1,
and x¥ € R? be the estimate of the minimum at node i and
iteration k. DSGD updates the estimate at each node as

X,]L-C+1 = Z::l waf - Q- gl(xf7 é‘f)’

where W = {w;,.} € R™*™ is a doubly stochastic weight ma-
trix restricting the network communication graph to be bi-
directional (undirected). For a constant step-size «, the er-
ror e := E||x¥ — x*||2 at each node decays linearly such that

VE >0, (1)

limsup 2 3" &b =0 (*U + 95 co? + e >\)2 77)

k—o0
where x = L/u is the condition number, (1 — X) is the
spectral gap of W, andn = 1 31" | [|[VF(x*) — V f;(x*)||?
is the error due to global versus local cost gap. The third
term was removed in DSGT [18, 19] using gradient tracking
where g; (x¥, £¥) in (1) is replaced by the following equation:

Wf = ZT 1 ’I,U”«(W + g ( k+1 £k+1) - gt(xf7£f))a

such that w¥ mimics the stochastic gradient of global cost F.
For a constant step-size, the resulting asymptotic error at each
node decays linearly to an error ball given by [18]

_ 2 2
=0 (nu + (1 >\)30' )

It can be observed that the error in DSGT is a function of
the variance o2 of the stochastic gradient evaluated by each
node. DSGT converges to the global minimum x* using de-
caying step-size but the rate of decay becomes sub-linear. To
keep the convergence linear, variance reduction is often em-
ployed. Furthermore, we observe that DSGD and DSGT re-
quire bi-directional communication and therefore do not guar-
antee convergence for asymmetric information exchange. To
deal with these challenges, we discuss some recent advance-
ments on stochastic optimization in the following section.

limsup L 377 | eF

k—o0

3. ALGORITHM DEVELOPMENT

S—ADDOPT proposed in [20] is based only on column
stochastic weights B = {b;.} € R"*™ characterizing the
(one directional) communication of the underlying network
of nodes. In addition to gradient tracking, it uses push-sum [8]
that requires a division with an eigenvector estimate of the
underlying communication graph. The method is formally
described below:

k+1 Z bZ’I‘X
k+1 E+1 _ i E+1
Zbuyja z; =X/y0

with = Z biywh + Vg (2t et — Vg2l €F),
j=1
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where we initialize y¥ = 1,Vi. Using push-sum correction, it
can be shown [9] that the scaled iterates z converge to the av-
erage of the initial states of the nodes, i.e., zF — L Z@ 1 x2,

Vi. This iterative procedure of eigenvalue estlmatlon slows
down the convergence of S—ADDOPT especially when the
network of nodes is not well connected. S—AB proposed
in [21] uses row and column stochastic weights instead of
using push-sum consensus and converges linearly to an error
ball around the global minimum x*. This error is dependent
on the variance caused by stochastic gradients evaluated at
each node.

PushSAGA [24] and AB-VR [25] are two techniques built
upon the SAGA-based variance reduction, applicable to Prob-
lem P2. Each node evaluates the gradient of a randomly sam-
pled component cost V f; ; and estimates the gradient of the
full local batch V f;. PushSAGA uses push-sum consensus to
handle the asymmetric information exchange and achieves e-
optimal solution in

(’)(max{M M(l A)Q}log )

component gradient computations where 1 > 1 is the direc-
tivity constant, M = max; m; and m = min; m;. AB-VR
uses row and column stochastic weight to handle one di-
rectional communication between the nodes. It is similar
to S-AB with the addition of variance reduction. SAGA-
based optimization is generally faster than other first-order
methods but it requires storing the most recent component
gradients at each node [5].

4. SVRG BASED IMPLEMENTATION

Another well-known variance reduction method is SVRG.
SVRG can be thought of as a double loop method, which
achieves variance reduction by evaluating the local gra-
dients periodically (with a period of 7'). At every outer-
loop update {xlT}lZO, over [, each node computes local
full gradient V f;(x'T), which is used in subsequent inner-
loop iterations to update the local gradient estimator v¥.

Fork € IT,(1+1)T — 1],

_vfze ( ) sze ( iT)_val(XiT)

We propose two SVRG-based methods formally described
in Algorithm 1 and 2. PushSVRG (described in Algorithm 1)
uses column stochastic weights B along with the push-sum it-
erations, to deal with asymmetric communication among the
nodes, gradient tracking, to eliminate the local versus global
cost gap, and SVRG-based gradient estimation, to eliminate
the variance caused by inexact gradient evaluation at each
iteration. AB—SVRG (described in Algorithm 2) uses row
stochastic weights A = {a;,} € R"*™ and column stochastic
weights B to address the asymmetric communication among
the nodes instead of the push-sum protocol. Avoiding push-
sum potentially leads to faster convergence especially when

Algorithm 1 PushSVRG at each node 7
Require: x? € R, d) =x{, w? =v? = Vf;(x?),
Yi =1, a>0, {blr}rzl’
I: fork:O,l,Q,... do

2 R S bk ae )

3. k+1 (72,_ Wyr

4 k+1 o XLyt

5: Select sF ! uniformly at random from {1,...,m;}

6 if mod (k+1,7) =0, then d*™' < z""! else

ditt « db

7: end if

8: Vf+1 — Vf k+1( k+1) — Vfi78(:+1 (derl) +
Vi(di )

o Wit L bWy v = )

10: end for

the connectivity among the nodes is weak. We show numer-
ically that both PushSVRG and AB-SVRG converge linearly
to the global minimum. Detailed numerical studies on real
data are provided in the next section. Next we highlight some
features of the different methods provided in this paper and
discuss several practical aspects.

Remark 1 (Class of problems). DSGT, S—ADDOPT, and S—-AB
are applicable to a broader class of problems often referred
to as streaming or online, where the local costs f;, Vi, are not
necessarily decomposable. The variance reduction methods
however assume that each f; is decomposable into compo-
nent costs as described in Problem P2 and therefore SAGA
and SVRG-based implementations are not directly applicable
to Problem P1.

Remark 2 (Convergence to the global minimum). The
stochastic optimization methods that don’t use variance
reduction converge to the global minimum sub-linearly
with a decaying step-size. PushSAGA, AB-VR, PSV RG,

Algorithm 2 AB-SVRG at each node ¢
Require: x! € R?. d) =x¥, w? =v¥ = V£ (x?),

79

a>0, {aw}r:h {b““}'r‘zl’
1. fork=0,1,2,... do

N

3 Select " uniformly at random from {1,...,m;}

4 if mod (k+1,7) =0, then d*™ « xF™! else

dft! « df

5: end if

6: Viﬁ_l — Vf k+1( k+1) - Vfi}sfﬂ(diﬁ_l) +
sz(dk+1)

7: k'H — > b (wh f'H vF)

8: end for
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and AB-SVRG achieve faster (linear) convergence with the
help of variance reduction.

Remark 3 (Synchronization versus storage). PushSVRG
and AB—-SVRG require network synchrony as all nodes are re-
quired to evaluate their full local gradients every T iterations.
This requirements results in idle time for nodes with smaller
datasets as they complete their gradient computation faster
than nodes with larger datasets. PushSAGA and AB—VR re-
quired extra storage as they need to keep a record of gradient
table but do not need any network synchrony.

5. NUMERICAL EXPERIMENTS

In this section, we illustrate the performance of PushSVRG
and AB-SVRG for strongly-convex problems and compare
it with related work. We randomly select two classes from
MNIST and CIFAR-10 datasets and classify them using lo-
gistic regression with a strongly-convex regularizer. We
use IV = 12,000 labeled images to train, which are divided
among n nodes. Each node possess a batch of m; training
samples and the local cost function can be described as

fi= = n 1+ exp {—(b"x;; +c)yi; }] + 5[bl3,

where b and ¢ define the hyperplane separating the two
classes. The network aims to solve for

min F(b.c) = LT, .

To model variety in network connectivity, we use exponential
graph for structured applications and geometric graph for ad-
hoc training setups. Next we provide the performance com-
parison for different graphs.

Fig. 1. (Left) Directed exponential graph with n = 16 nodes.
(Right) geometric graph with n = 100 nodes

Structured training setup—Data-centers: We choose an
exponential graph consisting of n = 16 nodes (see Fig. 1, left)
to model a highly structured training setup, e.g., a data cen-
ter. Each node possesses the same number of data samples,
m; = 750, Vi, and we plot the optimality gap F/(X*) — F(x*)
such that X* = 1 35°" x¥. Fig 2 shows the results for
MNIST (left) and CIFAR-10 (right) classification. It can be
seen that S-ADDOPT converges to an error ball around x*
but the methods that use variance reduction converge to the
global minimum. Moreover, PushSVRG and AB-SVRG are

MNIST CIFAR-10
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Epochs Epochs

Fig. 2. Balanced data: performance comparison over expo-
nential graph of n = 16 nodes.

comparatively slower that PushSAGA and AB-VR but are
effected by network synchronization issues (see Remark 3).

Ad hoc training setup-Multi-agent networks: Next
we use a geometric graph that, e.g., models ad hoc IoT-type
training environments where the nodes possess different sizes
of local batches depending on their location and resources.
For a network with n = 100 nodes, we classify the images
from MNIST and CIFAR-10 datasets and plot the optimality
gap, see Fig. 3. It can be observed that AB—SVRG converges
much faster than PushSVRG. This aspect is highlighted in
the case of a geometric graph because it takes more time
for PushSVRG to estimate the right eigenvector using push-
sum.

100 MNIST CIFAR-10
" —»— SADDOPT
o 10 8- PUShSAGA
a 10 o AB-SAGA
] @ 1077 —k— AB-SVRG
9 102 : o
_}:-\ S ? 10°°
E 1072 E 107
=1 —+— SADDOPT =
Q10744 - PushSAGA b D 107
o AB-SAGA o}
5 | 7= PushSvRG 104
1071 — ABSVRG
o 10 20 30 a0 50 60 0 50 100 150 200 250 300 350 400
Epochs Epochs

Fig. 3. Unbalanced data: performance comparison over geo-
metric graph of n = 100 nodes.

6. CONCLUSIONS

In this paper, we proposed two first-order methods, PushSVRG
and AB-SVRG, to minimize a sum of functions available over
a geographically distributed network of nodes. Both methods
are based on the SVRG-based variance reduction technique,
to estimate local batch gradients from component gradients,
and gradient tracking, to eliminate local versus global cost
gap. To deal with the potential asymmetry in the underlying
communication, PushSVRG uses column stochastic weights
along with the push-sum correction, while AB—SVRG uses
both row and column stochastic weights. For smooth local f;
and strongly-convex global cost F', we numerically showed
that both algorithms converge linearly to the global minimum.
We compared the performance with the related methods and
further highlighted their practical aspects.
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