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our recent work in developing a Galerkin boundary integral method for solving the
linear Poisson-Boltzmann (PB) equation. The solver has combined advantages in accuracy,
efficiency, and memory usage as it applies a well-posed boundary integral formulation
to circumvent many numerical difficulties associated with the PB equation and uses

::(gtw rz:lrudlst.ip()le method an O(N) Cartesian Fast Multipole Method (FMM) to accelerate the GMRES iteration.
Electrostatic In addition, special numerical treatments such as adaptive FMM order, block diagonal
Boundary integral preconditioners, Galerkin discretization, and Duffy’s transformation are combined to
Poisson-Boltzmann improve the performance of the solver, which is validated on benchmark Kirkwood’s sphere
Preconditioning and a series of testing proteins.
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1. Introduction

In biomolecular simulations, electrostatic interactions are of paramount importance due to their ubiquitous existence and
significant contribution in the force fields, which governs the dynamics of molecular simulation. However, computing non-
bonded interactions is challenging since these pairwise interactions are long-range with O (N?) computational cost, which
could be prohibitively expensive for large systems. To reduce the degree of freedom of the system in terms of electrostatic
interactions, an implicit solvent Poisson-Boltzmann (PB) model is used. In this model, the explicit water molecules are
treated as continuum and the dissolved electrolytes are approximated using the statistical Boltzmann distribution. The PB
model has broad applications in biomolecular simulations such as protein structure [1], chromatin packing [2], pKa [3-5],
membrane [6], binding energy [7], solvation free energy [8], ion channel profiling [9], etc.

The PB model is an elliptic interface problem with several numerical difficulties such as discontinuous dielectric co-
efficients, singular sources, a complex interface, and unbounded domains. Grid-based finite difference or finite volume
discretization that discretize the entire volumetric domain have been developed in, e.g., [10-15]. The grid-based discretiza-
tion is efficient and robust and is therefore popular. However, solvers that are based on discretizing the partial differential
equation may suffer from accuracy reduction due to discontinuity of the coefficients, non-smoothness of the solution, singu-
larity of the sources, and truncation of the domains, unless special interface [16,17] and singularity [18-22] treatments are
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Fig. 1. Schematic models; (a) the PB implicit solvent model, in which the molecular surface I' separates space into the solute region 1 and solvent region
Qy; (b) the triangulation of molecular surface of protein Barstar at MSMS [42] density d =5 (# of vertices per A2).

applied. These treatments come at the price of more complicated discretization scheme and possibly reduced convergence
speed of the iterative solver for the linear system.

An alternative approach is to reformulate the linear PB equation as a boundary integral equation and use the boundary
elements to discretize the molecular surface, e.g. [23-31]. Besides the reduction from three dimensional space to the two
dimensional molecular boundary, this approach has the advantage that singular charges, interface conditions, and far-field
condition are incorporated analytically in the formulation, and hence do not impose additional approximation errors.

One drawback of the boundary integral method is that the discretization leads to a dense matrix with O (N?) complexity
for storage and matrix-vector product, which is prohibitively expensive when N is large. Fortunately, iterative solvers can be
accelerated by fast methods such as fast multipole methods (FMM) [24-26,32,33] and treecodes [34-36]. Our recently de-
veloped treecode-accelerated boundary integral (TABI) Poisson-Boltzmann solver [28] is an example of a code that combines
the advantages of both boundary integral equation and multipole methods. The TABI solver uses the well-posed derivative
form of the Fredholm second kind integral equation [23] and the O (N log N) treecode [35]. It also has advantages in mem-
ory use and parallelization [28,37]. The TABI solver has been used by many computational biophysics/biochemistry groups
and it has been disseminated as a standalone code [28] or as a contributing module of the popular APBS software package
[38,39].

Recently, based on feedback from TABI solver users and our gained experience in theoretical development and practical
applications, we realized that we could still improve the TABI solver in the following aspects. First, the O (N log N) treecode
can be replaced by the O(N) FMM method with manageable extra costs in memory usage and complexity of the algorithms.
Second, the singularity that occurs when the Poisson’s or Yukawa'’s kernel is evaluated was previously handled by simply
removing the singular triangle [25,28] in fact can be treated by using the Duffy transformation [40] analytically, achieving
improved accuracy. Third, the collocation scheme used in TABI solver can be updated by using Galerkin discretization with
further advantage in maintaining desired accuracy. Fourth, the treecode-based preconditioning scheme that was used in TABI
solver [41] can be similarly developed and used under the FMM frame, receiving significant improvement in convergence
and robustness. By combining all these new features, we developed a Cartesian fast multipole method (FMM) accelerated
Galerkin boundary integral (FAGBI) Poisson-Boltzmann solver. In the remainder of this article, we provide more detail about
the theoretical background of the numerical algorithms related to the FAGBI solver. We conclude with a discussion of the
numerical results obtained with our implementation.

2. Theory and algorithms

In this section we briefly describe the Poisson-Boltzmann (PB) implicit solvent model and review the boundary integral
form of the PB equation and its Galerkin discretization. Based on this background information, we then provide details of
our recently developed FMM-accelerated Galerkin boundary integral (FAGBI) Poisson-Boltzmann solver, which involves the
boundary integral form, multipole expansion scheme, and a block diagonal preconditioning scheme.

2.1. The Poisson-Boltzmann (PB) model for a solvated biomolecule

The PB model for a solvated biomolecule is depicted in Fig. 1(a) in which the molecular surface I" separates the solute
domain 21 from the solvent domain £2;. Note our choice of the molecular surface is the Solvent Excluded Surface (SES) as
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the trace of the solvent probe (e.g. water molecule as a sphere with radius 1.4 A) when it rolls while contacting the solute
atoms. This surface is in general C! continuous but singularities and cusps can present under some extreme configurations.
Fig. 1(b) is an example of the molecular surface I" as the triangulated surface of protein barstar [43]. In domain €21, the
solute is represented by N, partial charges g located at atomic centers X; for k =1, ---, N¢, while in domain €2, a distri-
bution of ions is described by a Boltzmann distribution and we consider a linearized version in this study for the boundary
integral approach. The solute domain has a low dielectric constant €; and the solvent domain has a high dielectric constant
€;. The modified inverse Debye length i is given as k2 = e,k 2, where « is the inverse Debye length measuring the ionic
strength Is; kK =0 in €1 and is nonzero only in ;. The electrostatic potential ¢ (X) satisfies the linear PB equation,

Nc
—V-e®VHX) + &2 (0p(X) =Y qrd(X—Xp), (1)

k=1

subject to continuity conditions for the potential and electric flux density on T,

[¢] =0, [ehy]=0, (2)

where [f]= f1 — f, is the difference of the quantity f across the interface, and ¢, = d¢/dv is the partial derivative in the
outward normal direction v. The model also incorporates the far-field condition,

lim ¢ (x) =0. (3)
X— 00
Note that Egs. (1)-(3) define a boundary value problem for the potential ¢ (x) which in general must be solved numerically.
2.2. Boundary integral form of PB model

This section summarizes the well-conditioned boundary integral form of the PB implicit solvent model we employ [23,
28]. Applying Green'’s second identity and properties of fundamental solutions to Eq. (1) yields the electrostatic potential in
each domain [23],

N
dp(y) 9Go(x,y) -
P(x) = / Go(X.y) - 02T py) |dSy + > akGox. X)X € Qi (4a)
av vy
r k=1
ap(y)  9Gc(Xy)
¢(X)=/ [—GK(X, y) 5 +— ¢>(y)] dSy, Xx€Qo, (4b)
v dvy
r
where Go(X,y) and G, (x,y) are the Coulomb and screened Coulomb potentials,
e—KIx=yl
Gox,y)=—, Gex,y)=——. 5
0(X,y) pr— x(X,y) pr— (5)

Applying the interface conditions in Eq. (2) with the differentiation of electrostatic potential in each domain yield a set of
boundary integral equations relating the surface potential ¢ (the subscript 1 denotes the inside domain) and its normal
derivative d¢1/0v on T, [23,28],

1 0
S (1486100 = / [1<1(x, v) q;‘:‘” +1<2(x,y>¢1<y)]dsy+sl<x), xeT, (6a)
r
1<1 + 1) 10 _ / [1<3(x, v L kx v (y)]dsy+sz(x), xel, (6b)
2 e oV oV
r

where € =¢;/¢1, and the kernels K1 3 3 4 and source terms Si, are

3G, (x,y)  3Go(x,y)

KiX,¥) =Go(X,y) — G, (X,y), Ka(X,y)=¢ , 7
1X,¥) =Go(X,y) — G, (X, y) 2(X,y) avy avy (7a)
3Go(X, 1 3G, (x, 32G (X, 32Go(x,
Ks(x.y) = oxy) 109G, (x y)7 Ka(x.y) = k(X y)  97°Go(x,y) (7b)
JVx g 0x dvxdvy dVxdvy

and
Nc

1 Qe 1 3Go (X, Xg)
S100 = D aGox. ). S2(x) = = DG (8)
k=1 k=1 X
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As given in Egs. (7a)-(7b) and (8), the kernels Kj 334 and source terms S; 2 are linear combinations of Go, Gk, and their
first and second order normal derivatives [23,28]. Since the Coulomb potential is singular, the kernels have the following
behavior

1
Ki1(x,y) = 0(1), Kz,3,4(x,y)=0( )
[x -yl

asy— X.
After the potentials ¢1 and d¢1/9v have been found by solving the boundary integral equation, the electrostatic solvation
free energy can be obtained by

1 1 d¢1(y)

1

Esol = 5 ZQk¢reac(xk) = 5 ZQk/ |:K1 Xk, ¥) v + Ko (X, V)91 (Y)] dSy, (9)
k=1 k=1 r

where ¢reac(X) = ¢1 (X) — S1(X) is the reaction potential [23,28].

2.3. Galerkin discretization

In solving the boundary integral PB equation, both the molecular surface and the solution function need to be discretized.
The molecular surface I" (e.g. SES) is usually approximated by a collection of triangles

N
ry=J= (10)
i=1
where N is number of elements and 7; for i =1,..., N is a planar triangular boundary element with mid-point x{. This

triangulation must be conforming, i.e., the intersection of two different triangles is either empty, or a common vertex or
edge. Fortunately, algorithm and software for generating are available [42,44,45], and our choice for our computations is
MSMS [42]. Here, the resolution of the surface can be controlled by the parameter d that controls the number of vertices
per A2. For example, Fig. 1 (b) shows the triangulated molecule surface of the protein barstar, which will bind another
protein barnase to form a biomolecular complex (PDB: 1b2s) [43].

Each triangle 7; of I'y is the parametric image of the reference triangle t

T={=(5,6)eR*:0<8 <1,0<& <&} (11)

If u;, v and w; are the vertices then the parameterization is given by

XE)=uwi+&5Vi—w)+ LW —w) et forE=(1,58)er. (12)

The area of the element, the local mesh size, and the global mesh size of the boundary elements t; are given as A; =
%I(Vz‘ —u;) x (W; — )|, hj = /A;, and h = max h;.

1<i<N
Since a function f defined on 7; can be interpreted as a function g(&) with respect to the reference element 7,

f)=fxE) =g foréer, xer, (13)

we can define a finite element space by functions on I'y whose pullbacks to the reference triangle are polynomials in &.
The simplest example is the space of piecewise constant functions, which are polynomials of order zero on each triangle,
which will be denoted by SE(FN). Obviously, the dimension of this space is N and the basis is given by the box functions

WiO(X)Z 1 ifxer, (14)

0 otherwise,

where i is an index of a triangle.
The next step up are piecewise linear functions. Since there are three independent linear functions on 7, namely,

VE=1-8, ) =b-& Y36 =5 fot=¢E &) e, (15)
the dimension is 3N. Usually, one works with the space of continuous linear functions, denoted by S;(FN). It is not hard to
see that the dimension of this space is the number of vertices and that the basis is given by

1 forx =vj,

Yrx) =10 forx=v; #v;, (16)

piecewise linear elsewhere,
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where v; is the i-th vertex.
The approximation powers of piecewise polynomial spaces are well known, see, e.g., [46]. For a function w € H},W(FN)
we denote by wg the L,-orthogonal projection of w into the space of piecewise constant functions, then

N 7
0 2 2
W — willLyry <€ (th |w|H1(m> < chiWly, ry)- (17)

i=1

where c is the upper bound of the mesh ratio hpax/hmin, h is the maximal diameter of a triangle and

N 1/2
Wiy, ) = (lelé1<,,.>) : (18)

i=1
Thus, the constant piecewise basis function can give a convergence rate of maximum O (h).
Likewise, the error for the L,-orthogonal projection Wh of we HZW(FN) into S;(FN) is

N

2
W —wp Ly <€ (Z h%|w|?42(,i)> < ch? Wiz - (19)
i=1

Finite element spaces with higher order polynomials could also be considered, however their practical value for surfaces
with low regularity and complicated geometries is limited.

The Galerkin discretization is based on a variational formulation of integral equations (6a) and (6b). That is, instead of
understanding the equations pointwise for x € I'y the equations are multiplied by test functions ¥ and " and integrated
again over I'y. Solving the variational form amounts to finding ¢1 and d¢1/dv such that

1 d
/ {50 FE) ) — / [m x.y) Wy) F Ko, y)¢1(y)] dsy}w)dsx— / 519 (X)dSx. (20a)
I'n N I'n
1 1\ o 0
/ {5 (1+g> “’;‘f") - f [K x y) 22 M’) + Ka(x, y)¢1<y>] dsy}w ®dSy = / S0P (X)dSy. (20b)
N N I'n

holds for all test functions v, y". In the Galerkin method the solution and the test functions are formally replaced by
functions in the finite element space. To that end, the unknowns are expanded by basis functions y; (which could be either
box or hat functions)

N ¢ N
¢~ ¢y, and a—”‘z (21)
i=1 i=1

and integral equations are tested against the basis functions. This leads to the linear system Ax = b where x contains the
coefficients in (21) and

A An by
= and b= . 22
[ Ay An } [bz (22)
The entries of these block matrices are given as

1
A, j) = / S (1 + ) ViV (0dS+ / / Ka (%, )91 (00 ()dSydSx

T'n I'nIn
A, ) = / / K1 (%, )0 (01 ()d Sy dSx

I'nIn

(23)

Ar iy ) = / / K%, )01 (X)1; (¥)dSydSx

I'nIn

1 1

Azz(L]'):/i <1 +g> 1//i(x)1pj(x)dsx+f/I<3(x,y)1/fi(X)wj(y)d5yd5x

Ty I'nTn

and the right hand side is
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ba(i) = / S10Yi0dSx and ba(i) = / S2(09(0dSx (24)
I'n I'n

Since the basis functions vanish on most triangles, the integrations for the coefficients are only local and computed on the
fly. For instance, for piecewise constant elements, the integral fr ... 1¥jdSx reduces to '/Ti ...dSx. Since the coefficients cannot
be expressed in analytical form they have to be calculated by a suitable choice of quadrature rule. However singularities
will appear if triangles 7; and 7; are identical or sharing common edges and vertices. To overcome this issue, we apply the
singularity removing transformation of [47]. This results smooth integrals over a four dimensional cube. The latter integrals
are then approximated by tensor product Gauss-Legendre quadrature.

After the solution of the linear system has been obtained, the electrostatic free solvation energy can be calculated using
the approximations for the surface potentials and its normal derivative

N¢ N
1
Foi=32 ) [ [ 003007, + Ko 0[5 (25)
= i=1z

Since the matrix A is a dense and non-symmetric our choice of solver is the GMRES method. In each step of GMRES
iteration, a matrix-vector product is calculated and a direct summation for this requires O(N2) complexity. Below we will
introduce the O (N) Cartesian Fast Multipole Method (FMM) to accelerate the matrix-vector product. Calculating the electro-
static solvation free energy Ego in Eq. (25) is O(N:N) and we use a Cartesian treecode to reduce the cost to O (N.log(N)).
Both FMM and treecode algorithm are described the next for comparison and for the reason that both are used to accelerate
the N-body particle-particle interactions.

2.4. Cartesian fast multipole method (FMM)

In this section, we introduce the Cartesian FMM to evaluate matrix vector products with the matrix in (22) efficiently.
Instead of multipole expansions, our implementation is based on truncated Taylor series to approximate the Coulomb (x = 0)
and screened Coulomb (x # 0) potentials. For these potentials there exists a simple recurrence relationship to compute
all derivatives up to order p in O(p*) operations, see [48]. This considerably simplifies the translation operators for the
kernels Kqi_4 because they involve different values of «. Furthermore, the moment-to-moment (MtM) and local-to-local
(LtL) translation are easily derived using the binomial formula.

When a refined mesh is required for a larger N, increasing the expansion order is essential to control the accuracy. The
FMM error analysis implies that the truncated Taylor expansion error has the same magnitude as the discretization error if
the expansion order is adjusted to the level according to the formula

pi=pr+L-I (26)

where | =0,1,---,L with [ = 0 the coarsest level and [ = L the finest level. That is, the finest level uses a low-order
expansion p;, and the order is incremented in each coarser level, see [33].

Note that the multipole series is more efficient as it contains (p+1)? terms, while the Taylor series has p(p+1)(p+2)/6
terms. This difference becomes significant with larger values of p. However, with the variable order scheme the advantage
of the multipole series becomes negligible because most translation operators are in the fine levels where the number of
terms in both series are comparable.

The matrix vector product can be considered as generalized N-body problem of the form

al ak
Vi=//wf(X)—,—kG(x,y)fh(y)dSdex, (27)
dvx dvy
'y

where k,l € {0,1} and fj is a linear combination of the basis functions ;.

Next we show how the Cartesian FMM is used under the framework of boundary element method.

Fig. 2a is a 2-D illustration of a discretized molecular surface I'y embedded in a hierarchy of cubes (squares in the
image). Each black solid dot represents a boundary triangle 7; fori=1,---, N.

A cluster c in any level [ is defined as the union of triangles whose centroid are located in a cube of that level. C; is the
set of all clusters in level I.

The level-0 cube is the smallest axiparallel cube that contains I'y and thus Cy = I'y. The refinement of coarser cubes
into finer cubes stops when clusters in the finest level contain at most a predetermined (small) number of triangles. For a
cluster ¢ we denote by B, the smallest axiparallel rectangular box that contains ¢ and write X, for its center and p. for the
half-length of its longest diagonal. Note that B. can be considerably smaller than its cube, this is why we call this process
the shrink scheme. For two clusters ¢ and ¢’ in the same level we denote by

Pe + P!

(28)
[Xe — X¢/|

ne.c)=
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Fig. 2. FMM vs Treecode structure. Left: FMM cluster-cluster interaction list; Right: treecode particle-cluster interaction (R is the distance from the charge
to the blue cluster’s center; r. is the radius of the blue cluster ¢ which is the farthest particle inside c to the center of c. (For interpretation of the colors
in the figure(s), the reader is referred to the web version of this article.)

the separation ratio of the two clusters. This number determines the convergence rate of the Taylor series expansion,
see [33]. Two clusters in the same level are neighbors if their separation ratio is larger than a predetermined constant.
N(c) denotes the set of its neighbors for a given cluster c. The set of nonempty children of ¢ that are generated in the
refinement process is denoted by K(c). Finally, we use Z(c) to denote the interaction list for a cluster ¢, which are clusters
at the same level such that for any ¢’ € Z(c), the parent of ¢’ is a neighbor of the parent of c, but ¢’ itself is not a neighbor
of c.

Under the FMM framework, the evaluation of Eq. (27) consists of the near field direct summation and the Taylor expan-
sion approximation for well-separated far field. The near field direct summation happens in between neighboring panels in
the finest level. The far field summation is done by multipole or Taylor expansions between interaction lists in all levels.
This process is described in many papers, so we do not give details about the derivation.

To emphasize the distinguished features of the Cartesian FMM, we consider a cluster-cluster interaction between two
clusters ¢ and ¢’ € Z(c). Let u be the potential due to sources in ¢’ which is evaluated in c, then by Taylor expansion of the
kernel with center x =X, and y = X~ one finds easily that

al ok a!

U o (X) = ——G(X,Y)fh(Y)dSyQ“JE A —(x—x0)7%, (29)
avk gvk i
o xTy lor|<p X

where and o = (o1, o2, @3) € N3 is a multi-index. The expansion coefficients are given by

ja N DG %)

¢ 181
B0 alp!

D!ml(f). ol <p. (30)
where o! = o1!oz!a3! and mcﬂ,(f) is the moment of f, given by

ak
ml (f)= | — x—x)P fr®dSx, 18] <p. (31)
avk

Se

Equation (30) translates the moment of ¢’ to the local expansion coefficients of the cluster ¢, and it is therefore called MtL
translation. Since fj, is a linear combination of basis functions, we obtain from linearity that

mb ()= mb i fi (32)
iec
where f; are the coefficients of f, with respect to the v;-basis and the summation is taken over basis functions that whose
support overlaps with c. Since we consider a Galerkin discretization we have to integrate the function u. ~(x) against the
test functions, to obtain the contribution g; of the two clusters to the matrix vector product. Thus we get from (29)
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8[

gi= [ vi®uce®dSx= Y 2 [ — X—x)*Yi(0dSx= Y AImZ (¥ (33)

vl
¢ lal<p X la|<p

This operation converts expansion coefficients to potentials and is denoted as LtP translation.

To move moments and local expansion coefficients between levels, we also need the moment-to-moment (MtM) and
local-to-local (LtL) translations. They can be derived easily from the multivariate binomial formula. We obtain

me(H= 3 Z(E)(xc/—xcw-ﬁmﬁ(n, (34)
c'ek(c) Bz
and
2= > (;)(xcf—xc)“‘ﬁk‘é‘, 1Bl <p, (35)
a<p
leel<p

where ¢’ € K(c).

We see that moments and expansion coefficients are computed by recurrence from the previous level. In the finest
level the moments of the basis functions m.(;) can be either computed by numerical quadrature, or even analytically,
because we consider flat panels and polynomial ansatz functions. We skip the details, as these formulas are straightforward
application of the binomial formula.

In summary, the Cartesian FMM under the framework of boundary element method is described as the following.

1. Nearfield Calculation.
forceCy
for ¢’ e N(c)
multiply matrix block of ¢ and ¢’ directly.
2. Moment Calculation.
forceCy
Compute the moments mf,(f) in (32).
3. Upward Pass.
forl=L—1,...,Inin
for ce G
for ¢’ € K(c)
Compute the MtM translation (34)
4. Interaction Phase.
forl=1L,...,Inin
for v e C
for v e N(c)
Compute the MtL translation (30)
5. Downward Pass.
for | =lpin, ..., L —1
for ce G
for ¢’ € K(c)
Compute the LtL translation (35)
6. Evaluation Phase.
forceCy
Compute the LtP translation (33)

In this algorithm I, is the coarsest level that contains clusters with non-empty interaction lists.

Since the finest level contains a fixed number of triangles the number of levels grows logarithmically with N as the
mesh is refined. With a geometric series argument, one can show that the total number of interaction lists in all levels is
O(N). If the translations in all levels are computed with the same order p then the complexity of all translations is 0 (Np*).
If the variable order scheme (26) is used with fixed p; as L and N are increased, then the complexity reduces to O(N), see
[33].

2.5. Cartesian treecode
The Cartesian treecode can be considered as a fast multipole method without the downward pass. The computational
cost of treecode is order of O(NlogN) as opposed to the O(N) FMM. However, the constants in this complexity estimate

are smaller, and we found it to be useful for the computation of the electrostatic solvation free energy Eso (25), where the

8
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source and evaluation points are different and zero or limited near field calculations are required. The direct computation
of the solvation energy as interactions between N boundary elements and N, atomic centers has O(N.N) complexity. This
is shown in Fig. 2b, in which a charge located at x, will interact with induced charges (¢; or a;;ivl) located at the center
of each panel. These interactions consist of near field particle-particle interaction by direction summation and far field
particle-cluster interaction controlled by maximum acceptance criterion (MAC) as specified below. For simplicity, we write

the involved calculations as

Ne Ne N K
a
Ear= anVa =Y Y [ =G0 f 005 (36)
n=1 I=17% X

n=1

where G is Coulomb or screened Coulomb potential kernel, k € {0, 1}, g’s are partial charges, and f is either ¢; or d¢1/0v.

In our implementation, we use the same clustering scheme of 'y as in the FMM. Instead of using the interaction lists to
calculate the far field interaction, the treecode use the following multipole acceptance criterion (MAC) to determine if the
particle and the cluster are well separated or thus a far-field particle-cluster interaction will be considered. This is similar
to the separation ratio in the FMM. The MAC is given as

e
=<0, 37
R — (37)

where rc = maxy;ec|Xj — Xc| is the cluster radius, R =[x, — Xc| is the particle-cluster distance, and 6 < 1 is a user-specified
parameter. If the criterion is not satisfied, the program checks the children of the cluster recursively until either the MAC
is satisfied or the leaves (the finest level cluster) are reached at which direct summation is applied. Overall, the treecode
evaluates the potentials (36) as a combination of particle-cluster interactions and direct summations. Thus, when X, and ¢
are well-separated, the potential can be evaluated as

k p
[ G0 f0dsx D DPGen x-S (38)
J o 181=0

where the moment m’f (f) is calculated by the same operator-MtM in FMM.
The treecode method therefore can be concluded as

1. Moment Calculation.
forceCy
Compute the moments mf,(f) in (32).
2. Upward Pass.
forl=L—1,..., Iy
force G
for ¢’ € K(c)
Compute the MtM translation (34)
3. Interaction Phase

forn=1,..., N
E,=0
for c € Cy

addCluster(c,xy,Ep)

where addCluster(c,Xp,E;) as shown below is a routine that recurses from the coarse clusters to the finer clusters until the
separation is sufficient to use the Taylor series approximation

if X, and x. satisfy the MAC for ¢
p
Ent+= Y DP @@y x)(—=1)’m?(f)

|81=0
else if [C(c) # 0
for ¢’ € K(c)
addCluster(c’ x,,E;)
else
aK
En+= / — O (Xp, X) f (x)dSx

vy
Cc

Note that steps 1 and 2 are analogous to the steps the in FMM, hence the addition of the treecode to the FMM code
requires little extra work.
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Fig. 3. A schematic illustration of the boundary element dense matrix A and its preconditioning matrix M: (a) matrix A for the case of N =20 elements
(the size of the matrix entry shows the strength of the interaction; the four different color-coded region relates to Ki_4 in Eqs. (6a)-(6b)); (b) the “block
diagonal block” preconditioning matrix M (assuming the cube at the designated level contains at most 3 panels; (c) the “block diagonal” preconditioning
matrix M, which is a permuted matrix from M in (b) after switching the order of the unknowns.

2.6. Preconditioning

The results in our previous work [28,49] show that the PB boundary integral formulation in Eqgs. (6a) and (6b) is well-
conditioned thus will only require a small number of GMRES iteration if the triangulation quality is satisfied (e.g. nearly
quasi-uniform). However, due to the complexity of the molecular surface, the triangulation unavoidably has a few triangles
with defects (e.g. narrow triangles and tiny triangles) which deteriorate the condition number of the linear algebraic matrix,
resulting in increased GMRES iteration number required to reach the desired convergence accuracy.

Recently, we designed a block-diagonal preconditioning scheme to improve the matrix condition for the treecode-
accelerated boundary integral (TABI) Poisson-Boltzmann solver [41]. The essential idea for this preconditioning scheme is to
use the short range interactions within the leaves of the tree to form the preconditioning matrix M. This preconditioning
matrix M can be permuted into a block diagonal form thus Mx = y can be solved by the efficient and accurate direct meth-
ods. In the current study of FAGBI solver, the same conditioning issue rises and it can be resolved by a similar but FMM
structure adjusted and controlled preconditioning scheme.

The key idea is to find an approximating matrix M of A such that M is similar to A and the linear system My = z is easy
to solve. To this end, our choice for M is the matrix involving only direct sum interactions in cubes/clusters at a designated
level (an optimal choice considering both cost and efficiency) as opposed to A, which involves all interactions.

The definition of M will be essentially similar to A in (22) except that the entries of M are zero if 7; and 7; are not on
the same cube at a designated level of the tree, i.e.

Amn(i, j) if T;, Tj are on the same cube at a designated level of the tree

. (39)
0 otherwise.

Mmn (i, J) = {
Here we use Fig. 3 to illustrate how we design our preconditioning scheme and its advantage. Fig. 3(a) is the illustration
of the dense boundary element matrix A for the discretized system (22) with 20 boundary elements. The four different
colors represent the four kernels K;i_4 related entries of the linear algebraic matrix A in Eq. (23). Note the unknowns are
ordered by the potentials ¢ on all elements, followed by the normal derivative of the potential E’% The size of the matrix
entry in Fig. 3 indicates the magnitude of the interaction between a target element and a source element, which decays
from the main diagonal to its two wings. By only including the interactions between elements on the same cube at a
designated level, we obtain our designed preconditioning matrix M as illustrated in Fig. 3(b). This preconditioning matrix
M has four blocks, and each block is a diagonal block matrix. Following the procedure detailed in [41], by rearranging the
order of the unknowns, a block diagonal matrix M is achieved as illustrated in Fig. 3(c). Since M = diag{M1, M2, ---, My,}
as shown in Fig. 3(c) is a block diagonal matrix such that My = z can be solved using direct method e.g. LU factorization by
solving each individual M;y; = z;. Here each M; is a square nonsingular matrix, which represents the interaction between
particles/elements on the ith cube of the tree at a designated level. As shown in [41], the total cost of solving My = z is
essentially O (N) thus is very efficient. Results for the preconditioning performance will be shown in the next section.

3. Results
Our numerical results are mostly produced on a PC desktop with an i5 7500 CPU and 16G Memory (3.1-3.3) and on a
MAC Desktop with an i7 4.2 GHz Quad-Core Intel Core and 16GB memory (3.4), both using GNU Fortran compiler with com-

piling option “-02”. A few results for the long elapsed direct summation are obtained from the cluster available from SMU
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Table 1
Discretization error from solving the PB equation on a Kirkwood sphere with a centered charge. Results

include electrostatic solvation free energy ESSI with error eggl and convergence rate rfgl, and discretiza-

0

tion error in surface potential egs, normal derivative eg:¢ with their convergence rates rgs and rg:d).

N! h E% (kealfmol) el (%) 1l el (%)l e (%) ol lters?
320 990  -8413.28 1.692 36 17925 441 0.652 1.9 3
1280 495  -8328.18 0.663 26 4419 41 0.212 3.1 3
5120 248  -8293.42 0.243 2.7 1112 40 0.092 2.3 3
20,480 124  -8280.70 0.089 2.7 0.285 3.9 0.046 2.0 3
81,920 062  -8276.33 0.036 25  0.077 3.7 0.023 2.0 3
327,680 031 -8274.64 0.016 23 0.022 35 0011 2.0 3
1,310,720 015  -8273.91 0.007 22 0.007 32 0.006 2.0 4
oo® -8273.31

1N is number of triangles in triangulation; h in A is the average of largest edge length of all triangles;
ha~ O(N~1/2),

2 Number of GMRES iterations.

3 This row displays the exact electrostatic solvation energy Egx, which is known analytically [55].

Center for Research Computing (CRC), ManeFrame II (M2), with Intel Xeon Phi 7230 Processors, using OpenMPI compiler
with compiling option “-02”. Note these direct summation results are needed for the evaluation of accuracy only. Before
obtaining these results from HPC, we verified that low resolutions results computed on different machines are consistent.
All protein structures are obtained from Protein Data Bank [50] and partial charges are assigned by CHARMM22 force field
[51] using PDB2PQR software [52].

The physical quantity we computed in this manuscript is the electrostatic solvation free energy Eo as defined in Eq. (36)
with the unit kcal/mol. The electrostatic potential ¢ or ¢; governed in Eq. (1) or Egs. (6a)-(6b) uses the unit of e./ (47 A),
where e is the elementary charge. By doing this, we can directly use the partial charge obtained from PDB2PQR [52] for
solving the PB equation. After obtaining the potential, we can convert the unit e./(4mA) to kcal/mol/e; by multiplying
the constant 471332.0716 at room temperature T=300K. From potential to electrostatic solvation free energy Eg,, only
a multiplication of e, is needed. For the PB model related parameters in the spherical case, the dielectric constant is
&1 =1 inside the sphere and ¢; = 40 outside the sphere, and k = 0. The reason for the choice of these values is to be
consistent with some important previous work [25,28] for direct comparison. For protein cases, the dielectric constant is
&1 =1 in solute and ¢; = 80 in solvent, and « = 0.1257, which corresponds to I; = 0.15M physiological saline (Note:
k2 =8.430325455],/€,). More details about PB equation related units conversion can be found in [53,54].

We solved the PB equation first on the Kirkwood sphere [55], where the analytic solution is available to validate the
accuracy and efficiency of FAGBI solver, then on a typical protein 1a63 to demonstrate the overall performance on accuracy,
efficiency, and memory usage, and the next on a series of 27 proteins to emphasize the preconditioning scheme, and the
finally on 8 selected proteins with sizes ranging from 967 to 21,497 atoms for demonstrating the broad usage of the FAGBI
solver and its O (N) computational efficiency.

All numerical results reported here use constant basis functions for the discretization. For the test cases running on the
Kirkwood sphere, we vary the order of the quadrature rule for the nearfield coefficients in (23) to study its relationship
with accuracy. For test cases running on proteins, we use single point quadrature, which is also our recommended value for
the practical usage of the FAGBI solver. The reported CPU time is the total time, which includes the small portion of time
in generating the mesh by MSMS, the main portion of time in solving the PB equation, and the small portion of time in
computing the solvation energy. Although machines with multi-cores are used, all tests are in serial with one core/thread
being used. We will investigate the parallelization of FAGBI solver including its GPU implementation in future work.

3.1. Accuracy, CPU time, and memory tests on the Kirkwood sphere

Our first test case is the Kirkwood sphere of radius 50A with an atomic charge q = 50e. at the center of the sphere. We
provide three parts of this test case on the Kirkwood sphere, which show first the discretization error, then the impact of
the quadrature orders toward the convergence of accuracy, and finally the comparison between using the Cartesian FMM
and using direct sum in terms of error, CPU time, and memory usage.

3.1.1. Overall discretization error

We first solve the boundary integral PB equation on the Kirkwood sphere using the direct summation for matrix-vector
product instead of using the FMM acceleration. The linear algebraic system is solved using GMRES iterative solver with L,
relative tolerance T = 1078 and zero initial guess. The Galerkin method is applied to form the matrix combined with a single
point Gauss quadrature. Cubature methods [47] are applied for treating the singularities arising from Galerkin discretization
of boundary integral equations.

Table 1 shows the total discretization errors, which is related to triangulation, quadrature, and basis function. In this
table, Column 1 is the number of triangles N for the sphere with the refinement of the mesh and Column 2 is the average
of largest edge length of all triangles h. Note we have h ~ 0 (N~1/2), which can be seen from the comparison of values in
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Table 2
Discretization error of solvation free energy E
Gaussian quadrature orders of 2-4.

ds

<o for solving the same problem in case 1 using

Quad. Order 2 Quad. Order 3 Quad. Order 4

N E%, rds o lters  E% rds o lters  E% rds lters
320 -8378.82 3.7 2 -8369.13 3.9 2 -8369.21 3.9 2
1280 -8305.24 33 3 -8298.57 3.8 2 -8297.67 4.0 2
5120 -8284.01 3.0 3 -8280.12 3.7 3 -8279.40 3.9 3
20,480 -8277.27 2.7 3 -8275.21 3.6 3 -8374.81 4.0 3
81,920 -8274.94 24 3 -8273.89 33 3 -8373.68 41 3
327,680 -8274.03 23 3 -8273.51 3.0 3 -8373.40 4.0 3
1,310,720 -8273.64 2.2 3 -8273.38 2.7 3 -8273.33 4.7 3
[e9) -8273.31 -8273.31 -8273.31

the two columns. Since using N is more convenient to specify mesh refinement in our numerical simulation, we use it to
quantify the mesh refinement for the rest of the paper.
Columns 3-4 show that the electrostatic solvation energy Egsl and its error e

< compared with the true value in the
last row of the table. The convergence rate rggl defined as the ratio of the error is shown in column 5 with an O(N~1/2)

pattern. The relative Lo, errors of surface potential ¢, egs and normal derivative d,¢, eg’fd), are shown in columns 6 and 8.

The surface potential converges with a pattern of O(N~!) as shown in column 7, which is faster than its normal derivative
with a pattern of O(N~'/2) as shown in column 9. We also can observe that the GMRES iterations shown in column 10 in
all the tests are less than or equal to four, which verifies that the boundary integral formulation is well-posed.

Note a back-to-back comparison between Table 1 in this manuscript and Table 2 in our previous work [28] shows
improvements in convergence of Eggl, ¢, and 9,¢ for the present work. This is due to the Galerkin scheme with Duffy’s
trick and the Cubature method in treating the singularity as opposed to the collocation scheme with simply the removal of

singular integral whenever it occurs on an element [28].

ds

3.1.2. Quadrature error

In part 1, we noticed that the converge rate for ES is about O(N~1/2) as the rate of d,¢, but is less than the O(N~1)
rate of ¢. To investigate the possible reason, we study the influence of the quadrature rule the next.

We increase the order of the tensor product Gauss-Legendre rule to 2, 3 and 4 and test their effects on the discretization
error of E‘Sjgl as shown in Table 2. Comparing with results in Table 1, using higher order quadratures improves both the

convergence rate of Eggl and the required GMRES iterations. When the quadrature order is 4, the electrostatic solvation
ds

energy E_;, converges to the exact energy at the rate O(N ) approximately.

Increasing the quadrature order further will not significantly improve the convergence rate of Eggl, because then the
discretization error will be greater than the quadrature error. Since higher quadrature requires more computational cost, in
practice, due to the large size of the protein solvation problem, we will use quadrature order 1 as it shows the optimal
combination or accuracy and efficiency.

3.13. FMM

This part of the test studies the role of Cartesian FMM relating to the accuracy and efficiency of the algorithm. We
applied the FMM to replace the direct-sum for accelerating the matrix-product calculation in GMRES. Here we use the first
order quadrature rule for simplicity. We set n = 0.8, which is defined in (28) and adjust the number of levels L in the
FMM algorithm for different N, such that with the increment of N, Ng, the maximum number of elements in a cluster
at the finest level, is less than two times of its value associated with any previously used N. In other words, L will be
increased by 1 each time N is quadrupled. Fig. 4 shows (a) the error in electrostatic solvation energy, (b) the CPU time,
and (c) the memory usage versus the number of triangles N. Here the error is computed as compared with the exact value
EZ = —8273.31. We provide results using fixed Taylor expansion order p =1,3,5,7 and adaptive order start from p =1,
and p = 3. Here the adaptive order represents the idea that expansion order should be adjusted to the level (e.g. higher
expansion order at higher level) in order to match the discretization error [48]. In this figure, the solid blue line with square
marks is results of direct summation with one point quadrature, which shows in (a) an 0 (N~1/2) order of convergence in
accuracy as observed in Table 1, an O(N2) CPU time in (b), and an O (N) memory usage in (c).

As seen in Fig. 4(a), the use of FMM introduces truncation error in addition to the discretization error. Truncation errors
are more significant than the discretization error when the order p is small and are less significant when p is large.

Furthermore, we observed that when expansion orders p = 5,7 of the FMM are used, the errors are even smaller than
those obtained with the direct sum. This is due to the fact that the error of the truncation error of Taylor approximation is
smaller than the quadrature error of the far field coefficients in the direct sum.

As seen in Fig. 4(b), the use of FMM significantly reduces the CPU time, which shows a O (N) pattern as opposed to the
0(N?) pattern of the direct sum. Figs. 4(a-b) combined also justify the use of adaptive order. Adaptive order 1 and 3 use
about the same amount of CPU time as regular order 1 and 3 but achieved significant improvements in accuracy. Meanwhile,
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Fig. 4. Compute electrostatic solvation energy on a Kirkwood sphere as number of triangles/particles N in creases: (a) Error, (b) CPU time, and (c) Memory

usage; discretization error eggl (solid line), Cartesian FMM approximation error eg, (dashed line); Taylor expansion order p =1, 3,5,7 and adaptive Taylor
order p=1,3.

Table 3
(protein 1A63). FAGBI results; PB equations; showing electrostatic solvation energy Ego, error, CPU time, memory usage;
columns show MSMS density (d in Afz), number of triangles N, Ego values computed by direct sum (ds) and Cartesian FMM

(cf), discretization error eggl, Cartesian FMM approximation error eg(f)l and their convergence rate rsgl and rgf)l; adaptive Taylor

expansion order p = 1, separate rate n =0.8.
d N? Eso1 (kcal/mol) Error (%) Rate CPU (s) Mem. (MB)

ds of eggl eggl rggl rggl ds cf ds cf
1 20,227 -2755.05  -2756.82 1612  16.20 632 6 18 30
2 30,321 -2498.20  -2499.20 5.30 534 5.5 54 1135 8 23 40
5 69,969 -2412.40  -2413.02 1.68 1.71 27 27 5912 17 66 111
10 132,133 -2383.09  -2382.50 0.45 0.42 41 44 36,530 37 92 165
20 264,927  -237521  -2376.52 0.11 017 39 26 149,651 69 249 423
40 536,781  -2371.52  -2372.77 0.04 0.01 29 75 618,879 141 359 654
oo -237248  -2372.48

a4 Number of elements in triangulation.

b This row shows the estimates of exact energy E;’)‘] obtained by the parallel computing on high order quadrature method.

Fig. 4(c) shows that FMM use additional memory in trading of efficiency. However, the O(N) pattern of memory usage has
been well preserved at different orders with only an adjustment in a factor.

In summary, from Tables 1 and 2, we observed that the Galerkin discretization with piecewise constant basis functions
can achieve O (N~'/2) convergence rate with low quadrature order (e.g. 1 or 2) and can achieve O(N~!) convergence rate
with high quadrature order (e.g. 4). Applying FMM algorithm for acceleration significantly reduced the O(N2) CPU time to
O (N) while maintains desired accuracy and O (N) memory usage. For later tests, we apply the adaptive FMM with starting
order 1 and n = 0.8 as an optimal choice at the consideration of both efficiency and accuracy.

3.2. Accuracy, CPU time, and memory tests on protein 1a63

In this section, we use the FAGBI solver to compute the solvation energy for protein 1A63, which has 2065 atoms. In
computation involving proteins, the molecular surface is triangulated by MSMS [42], with atom locations from the Protein
Data Bank [50] and partial charges from the CHARMMZ22 force field [51]. MSMS has a user-specified density parameter d

controlling the number of vertices per A% in the triangulation. MSMS constructs an irregular triangulation which becomes
smoother as d increases. The GMRES tolerance is T = 10~4. These are representative parameter values chosen to ensure that
the FMM approximation error and GMRES iteration error are smaller than the direct sum discretization error, and to keep
efficient performance in CPU time and memory based on tests on spheres previously.

In Table 3, the first two columns give the MSMS density (d) and number of faces N in the triangulation. The next two
columns give the electrostatic solvation energy E, computed by direct sum (ds) and Cartesian FMM (cf). We use a parallel
version of direct sum to compute an estimate of the exact energy with high order quadrature methods. We computed the
discretization errors eggl and eggl on the fifth and sixth columns, which shows convergence rate faster than O(N~!) as
observed for the geodesic grid triangulation of the Kirkwood sphere in Case 1. The faster convergence seen here is due to
non-uniform adaptive treatment of MSMS triangulation [28].

A back-to-back comparison of results from direct sum (ds) and Cartesian FMM results (cf) in Error, Rate, CPU time, and
Memory in Table 3 provides the following conclusions. (1) the adoption of FMM only slightly modifies the error and its
convergence rate in accuracy, not even necessarily in a negative way; (2) Cartesian FMM dramatically reduces the O(N?)

direct sum CPU time to O(N). For example, the simulation with d = 10/2\_2 and N =132, 133 took 36, 530 s~ 10h by direct
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Table 4
Convergence comparison using diagonal preconditioning (d) and block diagonal preconditioning (bd) on a
set of 27 proteins; MSMS density d = 10.

Ind. PDB # of ele. Esor (kcal/mol) # of it. CPU time (s)

d bd diff. (%) d bd d bd ratio
1 1ajj 40496 -114117 -1141.15 0.00 22 14 125 9.7 1.28
2 2erl 43214 -953.43 -953.42 0.00 15 10 92 7.8 118
3 1cbn 44367 -305.94 -305.94 0.00 12 11 7.4 8.3 0.88
4 1vii 47070 -906.11 -906.11 0.00 16 14 106 11.5 092
5 1fca 47461 -1206.46  -1206.48  0.00 16 11 10.2 8.8 116
6 1bbl 49071 -991.21 -991.22 0.00 19 13 133 112 118
7 2pde 50518 -829.49 -829.46 0.00 75 23 507 195 2.60
8 1sh1 51186 -756.64 -756.63 0.00 100+ 21 70.7 182 3.89
9 1vjw 52536 -1242.55  -1242.56  0.00 11 10 82 9.3 0.87
10 luxc 53602 -114538  -114538  0.00 20 13 147 119 1.23
11 1ptq 54256 -877.83 -877.84 0.00 16 13 119 122 097
12 1bor 54628 -857.28 -857.27 0.00 14 13 109 125 0.87
13 1fxd 54692 -331818  -3318.14  0.00 10 10 78 9.9 0.79
14 1169 57646 -1094.86  -1094.86  0.00 13 12 106 126 0.84
15 1mbg 58473 -1357.32 -1357.33  0.00 18 13 1438 136  1.09
16 1bpi 60600 -1309.61 -1310.02 0.03 18 12 162 145 111
17 1hpt 61164 -816.47 -817.34 0.11 15 13 1238 140 092
18 451c 79202 -1031.74  -103191 0.02 27 20 303 288 105
19 Tsvr 88198 -1718.97 -1718.97 0.00 15 12 214 213 1.01
20 1frd 81792 -2868.29  -2867.32  0.00 14 12 181 17.2 1.05
21 la2s 84527 -192523  -1925.24  0.00 20 17 264 248  1.06
22 1neq 89457 -1740.50 -1740.49 0.00 19 15 26.7 228 117
23 1a63 132133 -2382.50  -2382.50  0.00 21 16 413 36.8 112
24 la7m 147121 -217113 -217212  0.00 55 21 111.2 514 216
25 2go0 111615 -1968.61 -1968.65  0.00 44 24 676 43.0 157
26 Tuv0 128497 -2296.43  -2296.43  0.00 73 25 1307 526 248
27 4mth 123737 -2479.62  -2479.61  0.00 36 18 643 37.0 1.74

sum and 37 s ~ 1/2min by FMM; (3) Moreover, the memory usage shows that both the direct sum and FMM memory usage
is O(N). For the FMM, more memory is used for the moment and local coefficient storage but this only adds a pre-factor
rather than increases the growth rate.

Note the data in Table 3 in this manuscript and Table 4 in our previous work [28] use the same protein 1a63 with only
a slight modification of triangulation and referencing solvation energy. Thus it is reasonable to compare the performance
between TABI solver and FAGBI solver. The FAGBI solver shows improvements in accuracy due to the Galerkin approach and
the singularity removal treatment and enhancement in CPU due to the O (N) Cartesian FMM. Both solvers use memory in
O(N) and the TABI solver uses less memory since no near field information is stored. Due to the simplicity of the algorithm,
the TABI solver is relatively easier in parallelization, which is discussed and demonstrated in [56]. We will investigate the
parallelization of FAGBI in future work.

3.3. Preconditioning tests on selected twenty-seven proteins

We the next provide testing results on a set of 27 proteins for the purpose of demonstrating the efficiency of the
preconditioning scheme. Table 4 shows the convergence tests using diagonal preconditioning (d) and block diagonal pre-
conditioning (bd) for a set of 27 proteins. After applying the block diagonal preconditioning scheme, the cases with slow
convergence using diagonal preconditioning have been well resolved. In this table, the first column is the protein index,
followed by the PDB ID in the second column, and the number of elements in the third column generated by MSMS with
density d = 10. Columns 4 and 5 are the solvation energy of the proteins applying both preconditioning schemes, and col-
umn 6 is the relative difference between both methods, which shows no significant difference. A significant reduction of
number of iterations using block diagonal preconditioning (bd) is shown in column 8 compared with results in column 7
using diagonal preconditioning (d). One can see that the worse the diagonal preconditioning result is, the larger improve-
ments block diagonal preconditioning can achieve. For example, proteins 2pde, 1sh1, 1a7m, 2go0, 1uv0 and 4mth first use
75, 100F (maximum number of iteration is reached), 55, 44, 73, and 36 iterations for diagonal preconditioning as highlighted
in column 7, but only use 23, 21, 21, 24, 25, and 18 iterations for block diagonal preconditioning. The CPU time comparison
in columns 9 and 10, as well as their ratio in column 11, further confirms the results in columns 7 and 8 as CPU time is
related to the number of iterations. The ratio of CPU reduction for some proteins is more than 2 times as highlighted in
the last column. We plot the results of columns 78,9 and 10 in Fig. 5 which shows the improvements on both number
of iterations and CPU time when block diagonal preconditioning is used to replace the diagonal preconditioning. It shows
that the block diagonal preconditioning does not impair the originally well-conditioned cases but significantly improve the
slow convergence cases, which suggests that we can uniformly use block diagonal preconditioning in replace of the original
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Fig. 5. Convergence comparison using diagonal preconditioning and block diagonal preconditioning: (a) number of iterations; (b) CPU time (s).

diagonal preconditioning. Figs. 5(a) and 5(b) shows a similar pattern as CPU time and the number of iterations are highly
correlated.

3.4. Accuracy and efficiency tests on selected eight proteins

Finally, we test the performance of our FAGBI solver on 8 selected proteins with even larger size range. These proteins
and their number of atoms are listed below.

PDB 4mn3 3dxg 3kgp 3udh 3f3c 2x8z 3ebp 2zx6
# of Atoms 967 1856 3533 6112 8183 9560 13127 21497

For these proteins, the number of atoms ranges from 967 to 21497. For each protein, we also refine the mesh using MSMS
density parameter d from d =1 to d = 16 by doubling d at each step, resulting in number of elements ranging from 10,966
to 1,422,568.

The results are reported in Table 5 and Fig. 6. The figure shows the pattern of convergence for solvation energy and
the pattern of CPU time growth when the meshes are refined, while the table provides the detailed data. Our explanation
focuses on the figure. Fig. 6(a) plots the solvation energy Ego against the number of triangular elements N taken from the
bottom part of Table 5. It is clear that for each tested protein, Es, converges when the mesh is refined as the difference
for Eg, received at different N narrows with the increment of N. Fig. 6(b) plots the total CPU time against the number of
triangular elements N, taken from the top part of Table 5. We can see for each protein the total CPU time is consistent
with O(N) pattern. Note in Cartesian FMM, the depth or level of the tree should be increased when the mesh is repeatedly
refined, otherwise there will be higher and higher portion of direct-sum computation with the increment of N, which
deteriorates the O (N) computational cost pattern. The general rule is that the depth or level of tree should be increased by
1 every time the mesh is refined by approximately four times. By applying this rule, we increase the tree depth by one at
d =4 and d = 16 to maintain the O(N) CPU growth pattern. The tree depth increment also explains the pattern observed
on the graph such that at d =4 and d = 16, the CPU time used is lower than that from the O(N) pattern. It is a piecewise
linear pattern with each new piece lower than the linear extension of the previous piece.

It is worth mentioning that we can see from Table 5, the number of iteration n; is stable for each protein at vari-
ous meshes, owing to the well-posed integral form and preconditioning scheme which alleviates ill-conditioning possibly
caused by triangulation quality. The strength of preconditioning, which is represented as the band width of the block diag-
onal preconditioning matrix, is determined by Np, the maximum number of elements in a cluster at the finest level. The
refinement of mesh causes the increment of N, which increases Ny while the increment of tree depth causes the reduction
of No. The variation of Ny is the major reason for the variation of n; as observed in some test cases shown in the table.

Furthermore, the CPU time is determined by number of atoms (or charges) N., number of elements N, and number of
GMRES iterations n; combined in the form of O (njN) + O(N¢logN). Assuming N increases with N, in O(N¢), in order to
receive a solver with desired performance O(N.), the remedy is to use smaller N thus the logN << N, at the price of
sacrificing certain level of accuracy.

As suggested by the reviewers, we provide a back-to-back comparison for the performance between the TABI solver [28]
and the present FAGBI solver in terms of solvation energy, number of GMRES iteration, memory usage, and CPU time on
protein 2x8z at different MSMS densities. The results produced using the same machine as specified earlier are reported
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Table 5
Solvation energy Ego and total CPU time t from solving PB equation on eight selected proteins; MSMS density d = 1,2, 4,8, 16; Here N is
number of triangular elements and n; is the number of iterations using GMRES.
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PDB d=1 d=2 d=4 d=38 d=16
N t n; N t n; N t n; N t n; N t n;
4mn3 10966 3 11 16428 4 10 30582 7 13 58454 15 13 122098 27 14
3dxg 16688 5 11 24782 10 14 46188 16 19 87874 29 14 183952 66 22
3kgp 26836 14 15 39804 27 17 74032 32 19 140123 98 23 291794 134 23
3udh 45796 57 27 68224 91 22 125606 83 20 237220 217 20 492548 311 22
3f3c 58092 61 17 85198 150 24 152260 109 18 281640 296 20 583052 510 28
2x8z 67784 110 28 100574 198 26 182062 170 24 344574 415 22 711296 641 27
3ebp 82850 113 19 122434 222 20 221834 225 22 417326 582 22 863321 808 23
27x6 135972 1110 52 200291 1385 30 364580 765 22 688770 2164 20 1422568 2536 23
N Esol N Esol N Esol N Esol N Eso]
4mn3 10966 -1878.78 16428 -1580.66 30582 -1501.26 58454 -1477.47 122098 -1467.65
3dxg 16688 -2227.16 24782 -1867.18 46188 -1765.18 87874 -1736.33 183952 -1722.58
3kgp 26836 -2926.11 39804 -2464.15 74032 -2305.60 140123 -2258.84 291794 -2237.79
3udh 45796 -5551.95 68224 -4773.15 125606  -4514.52 237220  -4435.15 492548 -4411.82
3f3c 58092 -4933.45 85198 -4307.33 152260 -4112.13 281640 -4057.60 583052 -4036.67
2x8z 67784 -12898.83 100574 -11588.09 182062 -11191.14 344574 -11063.83 711296 -11025.48
3ebp 82850 -8077.99 122434 -6716.17 221834 -6305.20 417326 -6177.53 863321 -6133.47
2zx6 135972 -11566.84 200291 -9824.83 364580 -9161.03 688770 -8993.91 1422568 -8931.67
0 4
10 ~%-4mn3
SO —a52 -e-3dxg
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Fig. 6. Solvation energy Es, and total CPU time from solving PB equation on eight selected proteins; N is the number of triangular elements.

Table 6

Solvation energy Eso, number of GMRES iteration n;, total memory usage m in kilobyte, and total CPU time t from solving
PB equation on protein 2x8z at MSMS density d =1, 2, 4, 8, 16 using both the TABI solver and the FAGBI solver.

d=1,N=67784

d=2,N=100574 d=4,N=182062

d=8,N =344574

d=16,N =711296

Esol nj Esol nj Esol nj Esol n; Esol n;
FAGBI  -12898.83 28 -11588.09 26 -11191.14 24 -11063.83 22 -11025.48 27
TABI -1321295 21 -11716.28 20 -11307.77 19 -11140.77 18 -11068.99 18

m t m t m t m t m t
FAGBI 78976 110 108820 198 203700 170 338580 415 801768 641
TABI 115432 225 158312 335 242600 606 413472 1256 835256 2742

in Table 6. From this table, we can see the solvation energies computed with both solvers converge to each other with
the increase of the density by showing less and less difference. Both solvers use similar amount of memory with O(N)
pattern. Although the FAGBI solver uses a few more GMRES iteration than the TABI solver, which is the combined effects
from resulting linear algebra matrix and the adopted preconditioner, its efficiency in O (N) surpass the O (NlogN) efficiency
of TABI solver more and more significantly with the increment of the size of the problem.

Also as suggested by the reviewers, we add an example on the protein 1a63showing that the triangulation quality affects
the GMRES convergence and the preconditioner designed improves the convergence. We compare the triangulation of the
two software MSMS [42] and Nanoshaper [44], which produce similar number of triangles (20240 for MSMS and 20388 for
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Fig. 7. Histograms of triangulation quality statistics for protein 1a63 whose molecular surface triangulations are generated by NanoShaper and MSMS:
(a) triangle areas in A%, (b) maximum interior angles in degree, and (c) aspect ratios.

Nanoshaper). Without the preconditioner, the TABI solver uses 23 and 14 number of iterations with MSMS and Nanoshaper
triangulations respectively. With the preconditioner, the TABI solver uses 11 iterations with both MSMS and NanoShaper
triangulations. Fig. 7 provides the histograms of triangulation of both MSMS and NanoShaper in terms of triangle areas,
maximum interior angles, and aspect ratios (outliers are omitted for better illustration). These histograms show that the
triangulation quality from NanoShaper is better than that from MSMS thus the solver takes less number of GMRES iterations
using NanoShaper triangulation than using MSMS triangulation.

4. Conclusion

In this paper, we report recent work in developing an FMM accelerated Galerkin boundary integral (FAGBI) method for
solving the Poisson-Boltzmann equation. The solver has combined advantages in accuracy, efficiency, and memory as it ap-
plies a well-posed boundary integral formulation to circumvent many numerical difficulties and uses an O(N) Cartesian
FMM to accelerate the GMRES iterative solver. Special treatments such as adaptive FMM order, block diagonal precondi-
tioning, Galerkin discretization, and Duffy’s transformation are combined to improve the performance, which is validated
on benchmark Kirkwood's sphere and a series of testing proteins. With its attractive O(N~!) convergence rate in accu-
racy, O(N) CPU run time, and O(N) memory usage, the FAGBI solver and its broad usage can contribute significantly to
the greater computational biophysics/biochemistry community as a powerful tool for the study of electrostatics of solvated
biomolecules. We have released the code for the FAGBI solver on GitHub (https://github.com/gengwh/CFMM-PB) and we
welcome interested users to apply the code for solving the Poisson-Boltzmann model. Feel free to contact us for questions
and technique support.
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