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Tourette syndrome (TS) is characterized by multiple motor and vocal
tics, and high-comorbidity rates with other neuropsychiatric disorders.
Obsessive compulsive disorder (OCD), attention deficit hyperactivity
disorder (ADHD), autism spectrum disorders (ASDs), major depressive
disorder (MDD), and anxiety disorders (AXDs) are among the most
prevalent TS comorbidities. To date, studies on TS brain structure and
function have been limited in size with efforts mostly fragmented. This
leads to low-statistical power, discordant results due to differencesin
approaches, and hinders the ability to stratify patients according to
clinical parameters and investigate comorbidity patterns. Here, we
present the scientific premise, perspectives, and key goals that have
motivated the establishment of the Enhancing Neuroimaging Genetics
through Meta-Analysis for TS (ENIGMA-TS) working group. The ENIGMA-TS
working group is an international collaborative effort bringing
together a large network of investigators who aim to understand brain
structure and function in TS and dissect the underlying neurobiology
that leads to observed comorbidity patterns and clinical heterogeneity.
Previously collected TS neuroimaging data will be analyzed jointly and
integrated with TS genomic data, as well as equivalently large and
already existing studies of highly comorbid OCD, ADHD, ASD, MDD, and
AXD. Our work highlights the power of collaborative efforts and
transdiagnostic approaches, and points to the existence of different TS
subtypes. ENIGMA-TS will offer large-scale, high-powered studies that
will lead to important insights toward understanding brain structure and
function and genetic effects in TS and related disorders, and the
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Introduction

Tourette syndrome (TS) is characterized by multiple,
persistent motor and vocal tics, and affects approximately 0.6—
1% of children worldwide (1). Tics are often preceded by
premonitory urges and resemble voluntary actions but are
patterned and repetitive and may also be voluntarily suppressed.
These characteristics suggest that neural networks and brain
regions associated with both voluntary and involuntary motor
behavior and affective processes may be involved. There isno
cure for TS and efforts to develop novel pharmacological
treatments are hampered by our limited understanding of
the neurobiology and brain structural and functional deficits
that underlie the disorder. With 90% of patients with TS
presenting comorbid with other neuropsychiatric disorders,
our efforts to understand and treat this disorder are further
complicated. Most frequent comorbid disorders in TS are found
along the impulsive—compulsive spectrum and include obsessive
compulsive disorder (OCD up to 50% of patients with TS),
attention deficit hyperactivity disorder (ADHD up to 54%), and
autism spectrum disorders (ASDs up to 20%). Major depressive
disorder (MDD up to 26%) and anxiety disorders (AXDs up to
36%) are also often found comorbid with TS, especially in the
clinical settings (1-3).

From a genetic perspective, TS is a complex disorder;
multiple genes interact with environmental factors to lead to
the onset of symptoms (4, 5). Recent multi-site studies have
identified genome-wide significant susceptibility variants and
pathways that implicate ligand-gated ion channel signaling
(highlighting the role of GABA), immune, cell adhesion,
and transsynaptic signaling processes in TS (6—9). From a
pathophysiology perspective, the quest for the anatomical
structure and brain circuits that underlie TS and tackle
its clinical heterogeneity has proven challenging, impeded by
low sample mostly fragmented
multiple sites (10, 11). Here, we present the scientific premise,
perspectives, and key goals that have motivated the recent
establishment of the ENIGMA-TS (Enhancing Neurolmaging
Genetics through Meta-Analysis for TS) working group.
Leveraging an international network of collaborators, existing
collections of data, and established infrastructure and pipelines
for large-scale neuroimaging and genetics studies, ENIGMA-TS
will help close major gaps in understanding brain structure and
function in TS, help dissect the basis of the heterogeneity of its

size and efforts across

Frontiers in Psychiatry

03

clinical presentation, and explore the underlying links between
TS and its frequently comorbid disorders.

Leveraging the power of international
collaboration to understand brain
structure and function in Tourette
syndrome

To date, structural and functional neuroimaging studies for
TS have been limited in size and have produced mixed results
that are sometimes not replicated across studies [reviewed
in (1, 5, 12-16)]. In general, abnormal development and/or
maintenance of cortico-striato-thalamo-cortical (CSTC) circuits
are implicated (1, 11, 17). Several studies report lower prefrontal
cortical thickness in patients with TS (12, 18-22). Beyond the
prefrontal cortex, structural alterations have been documented
in many other brain areas, involving most brain structures
associated with sensorimotor processing (13, 16, 23-29). The
largest multicenter structural magnetic resonance imaging
(MRI) study of TS to date (103 patients with TS and 103 matched
controls), found lower white matter volume bilaterally in the
orbital and medial prefrontal cortex, and larger gray matter
volume in the posterior thalamus, hypothalamus, and midbrain
in patients with TS (12) (Figure 1A). Similarly, studies of the
functional neuroanatomy of tic disorders have been very limited
in size. Resting-state functional MRI (rsfMRI) can be used to
assess an idle “ticcing” state and inform on the brain networks
associated with the manifestation of tics, irrespective of specific
cognitive (task-related) demands (11). TS rsfMRI studies show
reduced long-range connectivity and increased short-distance
connectivity associated with motor processing (30, 31). Overall,
these findings could reflect the aberrant or “immature” brain
development of individuals with TS. However, these reports are
based on a handful of patients and controls, and much larger
studies are required to provide definitive evidence.

Small sample sizes have entailed low-statistical power and
hampered the dissection of TS subtypes (on average less than
30 cases and 30 controls as reviewed in (11)). Furthermore,
differences in analytic approaches have also contributed to
inconsistent findings and limited reproducibility. ENIGMA
(32) is an unprecedented worldwide initiative to tacklethe
crisis of reproducibility that comes from underpowered
studies. Analyzing diverse worldwide samples (more than 40
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Brain regions that have been implicated in TS and related disorders (A) volumetric MRI studies of key brain regions for TS and related disorders.
TS was associated with larger subcortical volumes of thalamus and hypothalamus (12, 29). OCD in children was associated with larger
subcortical volumes of thalamus, while OCD in adults was associated with larger subcortical volumes of pallidum and smaller subcortical
volumes of hippocampus (35). ADHD was associated with smaller subcortical volumes of the caudate, putamen, amygdala, and nucleus
accumbens (39). ASD was associated with smaller subcortical volumes of the pallidum, putamen, amygdala, and nucleus accumbens (41). MDD
was associated with smaller subcortical volumes of hippocampus (55). (B) TS—~ADHD—-ASD GWAS and TS-OCD GWAS cross-disorder tissue
specificity analysis, testing 30/53 tissue types from GTEXx v7 tissue expression atlas (61). Significant enrichment of gene expression in
corresponding tissue under Bonferroni correction (p < 1.67 10 3 for 30 tissues tested and p < 943 10 * for 53 tissues tested). The green label
indicates enrichment of gene expression in TS-ADHD-ASD Tissue Specificity Analysis. The red label indicates enrichment of gene expression in
both TS—-OCD and TS—-ADHD—-ASD tissue specificity analysis (Created with BioRender.com).

countries and 1,400 investigators), ENIGMA has pioneered
the identification of genetic markers that underlie cortical
measures and subcortical volumes through neuroimaging
genome-wide association studies (GWAS) (33, 34). Disorder-
focused ENIGMA working groups have identified brain profiles
for multiple psychiatric disorders and conditions based on an
analysis of large worldwide datasets (32). These include the
largest neuroimaging studies for multiple disorders that are
highly correlated to TS: OCD (N = 5,423) (35-38) ADHD (N
3,762) (39, 40), ASD (N = 3,222) (41), and MDD (N =
10,327) (42, 43) (Figure 1A).

The ENIGMA-TS working group was formed to address

the need for large-scale studies to understand brain structure
and function in TS and tackle clinical heterogeneity. The
effort was motivated not only by ENIGMA but also TS—
EUROTRAIN, an earlier collaborative consortium funded
by the European Union (2012-2016), which represented
an international network of researchers from 12 different
sites in academia and industry aiming to understand the
neurobiology of TS (5, 44-50). With a strong basis of
collaboration, investigators from 23 sites and 12 countries
(namely, Australia, Germany, Denmark, France, Italy, the
Netherlands, Norway, Poland, Spain, the United Kingdom,
China, and the United States) have already joined ENIGMA—
TS and are currently working to pool and harmonize previously
collected TS neuroimaging data with an initial goal of analysis
for 1,000 TS individuals and a corresponding number of
controls. The data mostly represent diverse European and
European American ancestry and one cohort from China. There

is an open and ongoing call for additional investigators to join
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ENIGMA-TS and information on how to join is available on
the ENIGMA-TS website.! Indeed, through our publications,
conference presentations, our website, and access to the
ENIGMA network, our goal is to draw additional membership,
further expanding our sample size and representation of diverse
populations in our studies.

The ENIGMA-TS working group uses standardized
protocols for the processing and analysis of imaging data, to
determine the reliability of effects across datasets, and identify
common trends of low effect size that may not reach statistical
significance in any individual study (37, 51, 52). We will use
previously standardized methods to harmonize structural
MRI, diffusion tensor imaging (DTI), and rsfMRI data across
different sites, scanners, and imaging protocols (41, 53-55).In
addition to greatly enhanced statistical power, data pooling
allows novel comparisons across demographics (e.g., sex). In
particular, our proposed analyses will have sufficiently large
sample sizes to examine the effects of comorbidity and uncover
different TS brain phenotypes or dimensions. Integrating
with genetics, we will shed light on the links between TS
and related disorders and underlying the brain structure and
function (Figure 1B).

We can specify some hypotheses based on prior work,
especially for structural MRI, which was the only case where
sample sizes exceeded 100. The two largest previous structural
studies
volume, especially in the posterior thalamus (12, 15). Several

in TS both found evidence for increased thalamic

1 https://enigma.ini.usc.edu/ongoing/enigma-ts/
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studies identified lower gray or white matter in the orbito-
frontal cortex in TS (12, 18-20, 22, 56, 57). Others identified
case—control differences in TS relating to the primary motor
cortex (13). Studies of striatal volumes in TS have shown
inconsistent results (12, 15), as have white matter DTI and
functional connectivity rsfMRI results, but mostly included
much smaller sample sizes compared to what we will achieve
(13). However, rsfMRI has been demonstrated to contain
diagnostically relevant information in TS (58). Several structural
MRI reports suggest effects of age, sex, and comorbidity,
supporting our plans to include such information in our
models. In addition, both similarities and differences have
been noted with the spectrum of childhood onset disorders
that often occur comorbid with TS. For example, higher
thalamic volume was also noted in the pediatric OCD (36,
59-62), whereas lower thalamic volume has been reported in
ADHD (63-65). Lower gray or white matter volumes in the
orbito-frontal cortex was seen in TS (9, 31, 58, 66—69) and
also in the ADHD and OCD (18). Our hypotheses strongly
motivate cross-disorder analyses, which we will also present
later in this article.

Genetics vs. brain structure and
function in Tourette syndrome

The TS has a complex and heterogeneous genetic basis,
with both common and rare variants contributing to risk (6—9,
70-78) (Figure 2A). The largest TS copy number variant
(CNV) analysis performed to date (2,434 TS cases and 4,093
matched controls) (9), identified the first two genome-wide
significant rare loci for TS (namely, NRXN1 deletions, and
CNTNG6 duplications) (9). The largest family exome-sequencing
study for TS to date (800 trios), also pointed to de novo
mutations that contribute to TS risk (8, 70), implicating
two high-confidence TS risk genes, WWC1 and CELSR3. On
the contrary, focusing on common genetic variants, a large
GWAS by Yu et al. (6) and follow-up studies showed that
ligand-gated ion channel signaling, immune, cell adhesion,
and transsynaptic-signaling processes are involved in TS (7).
Analysis of an even larger GWAS for TS bringing together all
major consortia working on TS genetics in a study of more
than 12,000 patients is currently underway, promising novel
insights into the genetics of TS by uncovering additional genes
and that underlie disease risk. Already,
intermediate results point to two additional novel candidates
for TS (79).

Bringing together TS GWAS and ENIGMA data, Mufford
et al. performed the first study aiming to map TS genes to brain
structure (80) using summary statistics from the Yu et al. TS
GWAS (6) and the ENIGMA GWAS of subcortical volumes
(30,717 individuals), we examined the genetic pleiotropy
(the same SNP affecting two traits) and concordance (the

pathways
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agreement in SNP effect directions across these two traits).
We found significant pleiotropy between TS and putaminal
and caudate volumes, independent of the direction of effect,
and significant concordance between TS and lower thalamic
volume. It should be noted that this analysis associates TS
with smaller thalamus, whereas the two largest previous
studies in TS suggested an opposite effect. This discordance
emphasizes the need for a much larger TS neuroimaging
study, such as the one to be undertaken by ENIGMA-TS.

Furthermore, preparing for the ENIGMA-TS analysis, we
asked whether the polygenic risk score (PRS) based on the
recent Tsetsos et al. TS GWAS (79) correlates with brain
structures in neuroimaging data from 29,798 individuals from
the UK Biobank (UKB) (Figure 2B). We observed that increase
in the genetic risk of TS was significantly associated with
decrease in right putamen (beta: -0.0175, adj.p: 0.0069) and
left pallidum (beta: -0.0137, adj.p: 0.043) volumes. We also
found significant correlations between TS PRS and bilateral
thalamic volume (beta: -0.0132 to -0.0138). ENIGMA-TS will
pursue further analysis based on the most up-to-date TS
GWAS and also the latest ENIGMA and UKB MRI GWAS
datasets. In ENIGMA, more than 50,000 people from diverse
populations from around the world have been assessed and
analyzed with GWAS and whole-brain MRI, including over
10,000 with DTI and over 10,000 with rsfMRI. UKB data on
approximately 10,000 individuals have also been recently
integrated with ENIGMA (34, 81), while an even larger
UKB dataset is now available. ENIGMA has now identified
multiple genetic variants determining brain structure, namely,
intracranial volume (ICV) (82) and subcortical volumes (33, 34,
83, 84). Our recent work also provides genetic determinants
for regional and global measures of cortical surface area and
thickness (34, 85). These rich datasets will be leveraged to gain
insights into the brain structural measures that correlate with
TS genetic risk.

More than just tics: Understanding the
genetic basis of frequent comorbidities
in Tourette syndrome

With 90% of patients with TS presenting with additional
neuropsychiatric comorbidities, understanding the molecular,
pathophysiological, and neuroanatomical underpinnings of TS
should also extend to investigating relationships to other
comorbid disorders, with ADHD, ASD, OCD, MDD, and
AXD being among the most prevalent (1-3). We recently
performed the largest cross-disorder meta-analysis for TS,
ADHD, ASD, and OCD, analyzing 124,000 samples and 6.8
million single nucleotide polymorphisms (SNPs) (66, 86). We
showed that the hypothalamus-pituitary-adrenal (HPA) gland
axis—and thus stress response—plays an important role in
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Genetics vs. brain structure in TS (A) network of the GO: Biological processes (GO:BP) terms from key genes previously implicated in TS as
reviewed in the text. Enrichment analysis of the genes implicated in TS was performed with the ToppFun function in Toppgene
(https://toppgene.cchmc.org/). Terms with p < 0.05 after FDR correction were considered statistically significant. Related GO:BP terms
including the same genes were collapsed into a single term. Cytoscape (https://cytoscape.org/) was used for network visualization. The
following genes were included: ASH1L (72), CD180 (7), CDH26 (7), CELSR3 (8, 70), CNTN6 (9), COL8A1 (71), CTNNA3 (93), FLT3 (7), GABBR2 (7),
GABRGL1 (7), GRIK4 (7), HCN1 (7), HDAC9 (7), HDC (74-76), IL12A (7), KIF26B (72), NCAM2 (7), NCR1 (7), NLRP7 (7), NRXN1 (9), NTM (7), ROBO2
(7), SLITRK1 (77, 78), WWC1 (8, 70). (B) Associations between TS PRS calculated based on the latest TS GWAS meta-analysis (79) and volume of
14 sub-cortical brain structures in UK Biobank. Each part was measured separately in the left hemisphere and the right hemisphere of the brain.
Linear regression was performed with age, sex, genotyping batch, and top 10 PCs used as covariates in the analysis. The asterisk (*) indicates a
significant association after multiple testing correction using the FDR method (p < 0.05). (C) Exploring the genetic architecture of TS and related
comorbidities via genomic structural equation modeling. The path graph shows loads and corresponding standard errors in parenthesis.

the shared pathophysiology of the studied disorders. Given this, we used the R package, GenomicSEM (89). Identified
the high comorbidity of TS to MDD and AXD, ENIGMA-TS factors highlight shared genetic liability across the studied

will extend the cross-disorder analysis to include these disorders. We would like to point out the existence of aTS
additional comorbidities. Figure 2C shows our exploratory + OCD factor that is anticorrelated to ADHD and a shared
factor analysis of the genetic correlation matrix produced liability factor with contributions across TS, ADHD, ASD,
from multivariable LD Score Regression (LDSR), across the and MDD. Based on such analyses, we will pursue
TS, ADHD, ASD, and OCD datasets described in Yang et additional GWAS meta-analysis aiming to identify genetic
al. (66) and large-scale GWAS on MDD and AXD susceptibility loci of different genetic factors along this
(142,646 and 17,310 individuals, respectively) (87, 88). To do phenotypic spectrum. We will then seek to correlate brain
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structure differences for the studied disorders to the genetic
variants that underlie the brain structure in ENIGMA and
UKB GWAS.

Insights into Tourette syndrome
pathophysiology from neuroimaging
cross-disorder analysis

At a pathophysiological level, the association of tics

with  psychiatric comorbidities may result from the
disruption of several cortico-basal ganglia loops. For
instance, several behavioral and neuroimaging studies

suggest the involvement of partly overlapping, albeit still
separate, fronto-striatal circuits in both TS and ADHD
(18, 22, 90). Although studies that compare TS to OCD
have not been reported so far, the presence of OCD in
patients with TS was found to be associated with volume
reduction in the caudate nucleus (14), and lower cortical
the prefrontal
hippocampus (22).

ENIGMA recently created pipelines that allowed a first
cross-disorder analysis of cortical
structure across three of the disorders that appear often
comorbid in TS (ADHD, ASD, and OCD) (54). Structural
T1-weighted brain MRI scans of controls (n = 5,827) and
individuals with ADHD (n = 2,271), OCD (n = 2,323),and
ASD (n = 1,777) from 151 datasets
analyzed using standardized ENIGMA processing protocols.
Subcortical volume and regional cortical thickness differences
were examined in a mega-analytical framework (54). Analyses
were performed separately for children, adolescents, and
adults using linear mixed-effects models controlling for age,
sex, and site (and ICV for subcortical measures). Lifespan
dynamics were found in the pairwise findings: Children
with ADHD compared with those with OCD had smaller
hippocampal volumes, possibly influenced by 1Q. Children and
adolescents with ADHD had smaller ICV than controls and
those with OCD or ASD. Adults with ASD showed thicker
frontal cortices compared with controls and other clinical
groups. No OCD-specific alterations across age groups—or
surface area alterations among all disorders in childhood and
adulthood—were observed. Furthermore, differences between

thickness in ventromedial cortex and

and subcortical brain

worldwide were

medicated and unmedicated patients, and effects of duration
of illness and age of onset were identified (54). Through
collaboration with the relevant ENIGMA working groups,
ENIGMA-TS will extend this work across TS, and ADHD,
OCD, ASD, MDD, and AXD, analyzing a combined worldwide
dataset of unprecedented power. Our work will yield brain
maps of the main effects of each disorder, in children,
adolescents, and adults, ranking brain metrics for effect sizes,
and detection of metrics with common and disease-specific
brain alterations.
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Validating Tourette syndrome genetic
and neuroimaging biomarkers in
population-based cohorts

Recent work supports a continuity of behavioral disorders—
related traits across the population, with patients being at
one extreme of the distribution. For instance, Demontis et
al. found that ADHD symptoms in the general population are
determined by largely the same genetic factors as those
associated with a clinical diagnosis of ADHD (91). Robinson
et al. showed that similar continuity from the general
population to the phenotype for ASD-
related traits (92); also confirmed by others (93) and for
OCD symptoms (94). In a similar manner, a recent study
showed that PRS from the Yu TS GWAS (6)
predicted the presence of tics in a general population cohort
(95). Such continuity thus allows us to extend the case—
control findings to large population cohorts andto study
the underlying mechanisms in more detail interms of the
roles of specific symptom domains and brain regions. More
broadly, it also allows us to move toward the identification
of diagnostic and prognostic biomarkers. ENIGMA-TS will
seek to explore the value of the TS genetic and neuroimaging
biomarkers that will be identified based on our studies to
predict related symptoms in population-based cohorts. To do
this, we will analyze large population studies (ABCD and
Generation R cohorts) (96—-100) for which symptoms and
related to TS and its highly comorbid
disorders of interest and genomic and MRI measures are
available.

clinical exists

et al.

behavioral traits

Discussion

We have presented the background, rationale, and
perspectives that support the establishment of the ENIGMA-TS
working group and motivate our mission. Our large-scale,
high-powered studies, integrating data from multiple countries,
have the potential to offer a major breakthrough in the
quest to understand brain structure and function and
genetic effects in TS and correlated disorders. ENIGMA's
global approach offers higher power to detect factors that
underlie TS onset and disease progression and test the
generalizability of brain biomarkers in diverse samples
across the globe. ENIGMA-TS already has partnerships with
12 countries while the ENIGMA reference neuroimaging
GWAS includes samples from more than 40 countries
around the world.

For the first time, ENIGMA-TS will undertake a large-
scale cross-disorder study of brain structure and function
and genetic susceptibility across TS and often comorbid
OCD, ADHD, ASD, MDD, and AXD. We aim to identify
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biomarkers for disease subtypes that cut across diagnostic

boundaries, lifting a major barrier in truly understanding
factors that drive high comorbidity in patients with TS.
Although our initial studies include mostly European datasets,
we will make every effort to extend analyses to include
representation from more diverse datasets through ENIGMA-
available resources, public databases, and through our open call
for additional collaborations.

To date, all major progress in understanding the
genetics of TS and other neuropsychiatric disorders has
been realized thanks to international collaborative efforts.
Through ENIGMA-TS, we will seek to replicate this success to
understand brain structure and function in TS and related
disorders bringing together investigators working on the
genetics and neuroimaging of these common disorders. Our
joint work can offer far-reaching implications for future
research, including the identification of robust multimodal
markers of disease burden, and may ultimately lead to new
therapies, improved patient management, and improved quality
of life for patients and their families.
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