Check for
Updates

Disaggregated GPU Acceleration for Serverless Applications

Henrique Fingler
University of Texas at Austin

Zhipeng Jia
University of Texas at Austin

Abstract

Serverless platforms have been attracting applications from
traditional platforms because infrastructure management re-
sponsibilities are shifted from users to providers. Many appli-
cations well-suited to serverless environments could leverage
GPU acceleration to enhance their performance. Unfortu-
nately, current serverless platforms do not expose GPUs to
serverless applications.

We present DGSF, a platform that enables serverless applica-
tions to access virtualized GPUs by disaggregating resources.
DGSF facilitates provisioning and addresses utilization chal-
lenges by allowing a small pool of remote physical GPUs to
serve potentially many serverless applications concurrently.
With DGSF, the cloud provider decouples GPU resources from
others, facilitating resource consolidation.

In this article, we describe how DGSF tackles GPU disag-
gregation challenges using AP| remoting virtualization, and
optimizations, which include hiding communication latency
and pooling resources. Our evaluation shows that these API
remoting optimizations can lower the runtime of an applica-
tion by up to 50% relative to an unoptimized API remoting
scheme. Because these optimizations aggressively remove
the latency of GPU runtime and object management from
the application’s critical path, they can enable applications
executing on DGSF to have lower end-to-end time than when
running on a GPU natively. Through consolidation, DGSF can
lower queueing delays of application that use GPUs by up to
53%. We also demonstrate DGSF’s flexibility by augmenting
applications on AWS Lambda with GPU support.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components of
this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org. This work is based on an earlier
work: DGSF: Disaggregated GPUs for Serverless Functions, in 2022 IEEE
International Parallel and Distributed Processing Symposium (IPDPS), Lyon,
France, 2022, pp. 739-750, doi: 10.1109/IPDPS53621.2022.00077.

Zhiting Zhu
University of Texas at Austin

Emmett Witchel
University of Texas at Austin

Esther Yoon
University of Texas at Austin

Christopher J. Rossbach
University of Texas at Austin

1 Introduction

The continuous migration of event-driven applications from
conventional deployment infrastructure, such as infrastructure
as a service (laaS), towards serverless platforms [33,49, 58]
is driven by factors like rapid access to scalable resources
and the offloading of operational concerns such as infras-
tructure management. Many applications that are well-suited
for serverless environments could leverage GPU acceleration
to significantly enhance their performance. Unfortunately,
general access to GPUs to serverless platforms is in its in-
fancy [2, 3]. Some providers support GPU acceleration indi-
rectly, by specializing and modifying library APls (e.g. AWS
Elastic Inference exposes ML APIs like TensorFlow) to use
GPUs. These services are not accessible to serverless applica-
tions that do not use the library supplied by the provider.

Naively supporting GPUs for serverless platforms is triv-
ial: provision a subset of the machines in a datacenter with
GPUs, use existing virtualization techniques (e.g., by deploy-
ing CUDA-enabled containers [35,39]) and exclusively sched-
ule applications that use GPUs to those machines. However,
this immediately leads to provisioning challenges for the
provider. Installing too many GPUs is prohibitively expensive
and will lead to under-utilization of GPUs. Provisioning fewer
GPUs can lower that cost, but leads to a difficult scheduling
problem: matching functions that need CPUs, host memory
and GPUs with machines that actually have the required re-
sources requires complex high-latency scheduling algorithms,
and remains an active area of research [11, 46,52, 53]. We
believe these problems are the main reason current server-
less providers either do not support accelerators or provide
minimal applicable support; there is no cost- and complexity-
effective practical solution.

Installing GPUs in just some machines can lower that
cost, but leads to a difficult problem: matching functions
that need CPUs, host memory and GPUs with machines that
actually have the required resources requires complex high-
latency scheduling algorithms, and remains an active area
of research [11, 46,52, 53]. We believe current serverless

providers do not support accelerators because they lack a
practical solution: it is difficult to provision the infrastructure
in a cost- and complexity-effective way.

A compelling technique that can assist the design of a
GPU-enabled serverless platform is disaggregation of the
physical GPUs. Disaggregation allows the provider to in-
dependently manage and scale CPU and GPU resources to
minimize cost and maximize utilization. Disaggregation sim-
plifies the scheduling problem by separating resources: with-
out disaggregation, both CPU and GPU requirements must
be satisfied by a single host while, with disaggregation, CPU
and GPU requirements are decoupled.

However, realizing a disaggregated system to support GPUs
for serverless functions requires solutions to a number of
challenges, which we address in this paper:

C1 Preserving the serverless programming model: the GPU
should appear local to the application. Requesting and utiliz-
ing a GPU should not require any infrastructure management.

C2 Preserving the expected performance of GPU accelera-
tion in the face of overheads introduced by disaggregation.

C3 Improving and load balancing GPU utilization.

DGSF is a platform for enabling general disaggregated
GPUs for serverless functions. DGSF makes use of API re-
moting [21, 60] specialized for serverless, allowing a virtual
GPU to be backed by part of a physical GPU on a remote
server. DGSF uses AP| remoting-based GPU virtualization to
share GPUs across potentially many functions, consolidating
GPUs to increase utilization. DGSF solves C1 by transparently
exposing the GPU runtime AP (our prototype uses CUDA) in
such a way that the GPU appears to be local from the perspec-
tive of the function. DGSF solves C2 by optimizing the API
remoting system for the serverless environment by specially
handling some interposed API calls. For example, the GPU
runtime context and common handles are precreated to reduce
initialization overhead. DGSF solves C3 through transparent
workload migration across GPUs. Using statistics collected
at runtime, DGSF’s GPU server can load balance utilization
by moving the execution of an application from one GPU to
another.

Our DGSF prototype provides functions with CUDA run-
time version 10.1. We study the performance of the prototype
with six benchmark applications (§6) that use the CUDA
API directly or through GPU-enabled libraries, like CuPy,
OpenCV, TensorFlow and ONNX Runtime. This paper makes
the following contributions.

DGSF uses novel techniques to specialize APl remoting
for the serverless environment. These optimizations can
improve the runtime of a function by up to 50% relative
to unoptimized DGSF.

We describe new techniques for live migration that use
low-level GPU memory management to preserve address
space mappings across GPUs.

During a heavy load of GPU functions, DGSF with GPU
sharing can complete all requests in 20% less time rela-

Central Serverless
Backend

GPU Server

API
Server

S

Function
Server

API
Server

Function
Environment

API
remoting

Figure 1: Architecture of a serverless deployments using DGSF.
Components in blue are the scope of this work. Components
in yellow already exist in serverless deployments.

tive to DGSF without GPU sharing.

2 Background

DGSF’s goal is to enable the use of GPUs by serverless func-
tions, while not adding more limitations for the user and not

making management more difficult for the provider. GPUs for

serverless platforms would ideally be as fast as a local GPU

(for the client) and easy to consolidate onto a limited number
of physical GPUs (for the provider). GPU consolidation is

notoriously difficult [16, 32, 34, 37,43, 50]. DGSF schedules

applications optimistically, without needing complex schedul-
ing algorithms. In case a scheduling choice was not optimal,

DGSF can live migrate the execution between GPUs.

Virtualization through remote execution removes the need
for GPUs to be physically in the same machine that will exe-
cute the application, and allows late binding of physical GPUs
to functions. There are many flavors of remote execution for
accelerators, such as forwarding the PCle bus traffic [32] and
remoting driver and/or API calls [4,23,44,56,60]. DGSF disag-
gregates GPUs for serverless functions by virtualizing GPUs
at the runtime API layer (CUDA), which allows many server-
less functions to use few remote GPU-provisioned servers,
potentially increasing utilization. For the provider, this ap-
proach retains the “schedule anywhere” benefits of serverless
because serverless functions that need GPUs can be sched-
uled on machines without requiring those machines be provi-
sioned with physical GPUs. DGSF optimizes access to GPUs
using AP| remoting using techniques that range from generic
batching to pre-initialization of remote GPUs to hide startup
latency.

Although existing work can be used to provide GPUs to
serverless functions, none rely on specializations that enable
an efficient deployment; DGSF is the first system to meet all
requirements. We refer the reader to the original paper for a
more detailed comparison to previous work [22].

GPU Server

2 =
0

Figure 2: Internal architecture of DGSF.

Function Environment

A 1lication code

Library [functions

Inter osed
CU A 1i rar
uest 1i rar

3 Scope

This work (Figure 1) explores the disaggregation of physi-
cal GPUs, which reside within GPU servers, from serverless
applications.

A GPU server is a disaggregated GPU machine: it contains
GPUs and a few CPUs, and exclusively handles incoming
APIs from applications. Scaling up GPU servers in DGSF is
simple: a GPU server is provisioned and signals its availability
to the main serverless coordinator.

Outside the scope of this work is general serverless function
management, such as application scheduling and execution
environment management (e.g., optimizing creation [20, 38]
and destroying execution environments).

4 Design

This section details DGSF’s system architecture. DGSF is agnos-
tic to the serverless platform the applications execute under.
In this work we focus on serverless functions. We describe
the implementation details in Section 5.

4.1 Serverless GPUs

DGSF disaggregates GPUs from serverless functions using
API remoting. On a traditional server with physically attached
GPUs, applications access GPUs through vendors’ runtime
libraries, such as CUDA libraries for NVIDIA GPUs. With
API remoting, a shim, which we call guest library, is inserted
between the application and the original accelerator library.
The guest library intercepts all AP calls and executes them
at a remote server (AP server). AP servers are processes
on a GPU server that execute the intercepted API calls on
behalf of the guest application, using the vendor’s runtime
library. By interposing the runtime library, DGSF supports
transparent GPU acceleration for applications that use the
runtime library directly or indirectly, for example, through
libraries like TensorFlow for machine learning or CuPy for
scientific and array computation that have support for CUDA.

Figure 2 summarizes the architecture of DGSF. A GPU
server comprises a set of physical GPUs, a centralized man-

12

ager, a monitor and AP servers. The manager is respon-
sible for setting up the environment, checking the available
GPUs and creating the monitor and the initial idle API servers.
The monitor is the main component of the GPU server, main-
taining GPU and AP server statistics and scheduling applica-
tions to AP1 servers by using scheduling policies to choose
an appropriate API server. The monitor also tracks how much
memory is allocated by each API server and the memory
and processor utilization of each GPU. Using such data, the
monitor can observe each application’s behavior and decide
whether to rearrange the API server-GPU assignment.

An API server is a process that exclusively handles one
serverless function at a time and executes the intercepted APIs
on a physical GPU. It is initially assigned to one of the avail-
able GPUs, but this assignment can change through live exe-
cution migration. AP| servers are processes, thus multiple can
share a physical GPU. API calls intercepted from the applica-
tions are forwarded to an API server through TCP, APIs can
be handled by executing it on a physical GPU or, if the API is
restricted, simulating the result of the call. This is necessary
because information internal to the GPU server should not be
available to the function. For example, if the function asks
how many GPUs there are through the cudaGetDeviceCount
function, the API server should always reply with 1 to main-
tain isolation and provide only what the user requested. In
subsection 4.2 we describe the other API calls that require
special handling.

Before APIs called by an application start being remoted to
an APl server, the guest library must first 1 ask the monitor of a
GPU server (which was chosen by the serverless backend) the
address of an API server. With the address of an API server,
the guest library 2 sends information about its kernels and AP
remoting starts. Statistics are frequently sent by AP servers to
the monitor and captured independently by the monitor to
track utilization of each GPU. An API server is initially
assigned to a GPU 4 and will execute all remoted APIs in
that GPU. During API execution, the monitor can decide to
move the API server to another GPU . 5

4.2 Specializations for Serverless

DGSF classifies APls into two categories: remotable and lo-
calizable. Localizable APIs are not forwarded to the API
server because they can be immediately responded by the
guest library using internal information or they can be safely
ignored. Remotable APIs require the guest library to com-
municate with the API server and request execution. Some
remotable API calls require special attention: ones that do
memory management, kernel launching and device man-
agement functions.

Memory management. APIs such as cudaMalloc and
cudaFree are handled in a special way because DGSF does
not use general device memory allocation functions. Instead,
DGSF manually allocates physical memory on the GPU, re-

serves virtual address ranges and maps the allocation to the
reserved virtual address using CUDA’s universal virtual ad-
dresses and low-level memory management. This is required
to support AP| server migration from one GPU to another,
since the same virtual addresses must be kept to ensure that
all memory accesses done by the application are correct. By
keeping information about all memory management func-
tions, DGSF knows exactly how much memory an application
is using and ensures that it is not violating its limits. Virtual
address conflicts cannot occur because there is one virtual ad-
dress space per CUDA context, and each API server in DGSF
has, by construction, one CUDA context per GPU.

Kernel launches. To launch a kernel, a device function
pointer must be passed as argument. These function pointers
are unique to each CUDA context, thus, different for each
GPU. For migration, DGSF makes sure it is using the correct
function pointer by keeping a map of the function pointer in
the original GPUs to the function pointers on other GPUs.
DGSF does not support applications that use multiple con-
texts (e.g. through using cuCtxCreate) and each API server
has only one context for each device. All applications and
libraries in our workloads follow this requirement without
modifications.

Device management functions. Applications must not ob-
serve the entire hardware of GPU servers for isolation. When

an application starts execution, it is assigned to an API server,

and the AP server is assigned to a GPU: the mapping of API

server to GPU is one-to-one, meaning that DGSF allocates a

single GPU per application, and this GPU can be shared with

other API servers. TensorFlow for example, first asks the run-
time how many GPUs there are, gets their properties uses the

best fitting GPU found. For this reason, the AP| server must

always respond there is only one GPU (index 0), notwithstand-
ing the fact that the API server could be assigned to any GPU

(index from 0 to number of GPUs) and that the GPU server
probably has more than one GPU. For GPU property queries,

the information returned is from the currently active GPU.

The application trying to utilize any GPU other than the GPU
at index 0 is invalid and will cause an error. Our prototype of

DGSF does not support applications that use multiple GPUs

because we do not know of multi-GPU applications that are a

good fit for serverless. However, there is no fundamental issue

preventing DGSF from being extended for multiple GPUs.

Such extensions would be straightforward.

4.3 Optimizations for Serverless

Startup optimizations. Each API server initializes the
CUDA runtime before accepting AP requests because this
takes the initialization cost off of the execution path for
the serverless function. APIs that would create a context,
e.g. culnit, become a no-op. In our experiments (§7.5) the
CUDA runtime initialization takes on average 3:2 seconds.
This number can vary, according to our observations, from

2:8 to 3:6, depending on the GPU model, driver version and
other hardware parameters. The CUDA initialization time is
consistent within a machine, varying by less then 200 millisec-
onds. Each API server also pre-creates cuDNN and cuBLAS
handles, which can be immediately returned when the corre-
sponding API is called (e.g. cudnnCreate). A cuDNN handle
takes on average 1:2 seconds to be created on the machines
used in our evaluation. A cuBLAS handles takes 0:2 sec-
onds to be initialized. In total, an idle DGSF API| worker with
its precreated CUDA runtime, cuDNN and cuBLAS handle
occupies 755 MB of device memory on its assigned GPU and
takes approximately 4:6 seconds to fully initialize.

These optimizations significantly improve the initializion
of machine learning models. The impact of such optimizations
is presented in §7.3. Native GPU applications cannot pre-
initialize their own runtime, since its creation is tied to the
process’ virtual address space.

Guest library. DGSF precreates cuDNN-specific descriptor
structures (e.g. cudnnConvolutionDescriptor_t) on the
guest library for immediate return. APIs that create these de-
scriptors are called often and simply allocate a small amount
of memory on the host, without changing GPU state, to hold
the opaque structure. The pooling of such descriptors avoids
the remoting of the corresponding APIs, speeding up most
serverless functions that use cuDNN. APIs that only change
host state, such as cudaMallocHost, are fully emulated on
the client side and are not remoted to the API server.

Optimizing GPU API remoting. The vendor provided GPU
libraries are designed for local use, not for use over a network,
so there is no limitation in frequency of API calls, which
makes designing an efficient API remoting system difficult.
DGSF optimizes frequently called GPU APIs in a few ways.
First, DGSF’s runtime directly emulates some GPU APls. The
semantics of such API functions are preserved through other
mechanisms. The attributes of a pointer, for example, can
be responded by the guest library without remoting, since it
tracks the addresses returned by device memory allocation
functions. APIs that don’t cause an immediate change to GPU
state are accumulated locally and sent in batches to the API
server.

DGSF is able to reduce the number of forwarded CUDA
APIs when doing inference by up to 48% for ONNX runtime
and up to 96% for TensorFlow. Figure 4 shows that these
optimizations can reduce inference time by up to 59%. The
optimizations presented could be applied to most API remot-
ing systems, which includes non-disaggregated systems.

4.4 Migration

Scheduling applications to API servers is difficult: poor visi-
bility of application properties makes scheduling vulnerable
to poor decisions, and such decisions can affect the perfor-
mance of the applications. For example, some scheduling

decisions may cause load imbalance in GPU utilization. We
explore a scenario with such imbalance in §7.5.

To avoid GPU load imbalance, DGSF monitors GPU utiliza-
tion and, if the monitor notices imbalance, it requests an API
server to move execution to another GPU. In order for the ap-
plication to correctly run on the new assigned GPU, the GPU'’s
virtual address space must remain the same. Translating point-
ers passed as arguments to API calls is not enough since
indirect pointers, like device pointers stored in an applica-
tion’s data structure would not be translated. DGSF maintains
device virtual address space by leveraging CUDA’s low-level
memory management functions to manually manage mem-
ory. For example, the cuMemAddressReserve API reserves a
virtual address range that will be mapped to a physical mem-
ory allocation, created by cuMemCreate. This virtual address
range can be remaped to physical memory of a different GPU.
On migration, the API server must switch CUDA context
since it changes GPUs. This requires all context-dependent
data (e.g. CUDA streams) to be moved and translated to the
new context. After all data and context are copied between
GPUs, the API server can resume function execution.

5 Implementation

Our prototype provides applications with the CUDA runtime
version 10:1 and uses OpenFaa$S [6] v0.21.1 as serverless
platform. To demonstrate DGSF’s flexibility, we also deployed

our workloads and DGSF’s guest library on AWS Lambda.
DGSF is agnostic to the serverless platform, implementation

and execution environment. DGSF only requires that its shared

interposition libraries are correctly loaded to replace the origi-
nal GPU libraries. This is accomplished with LD_PRELOAD or
library path manipulation. We refer the reader to the original

D GSF paper [22] for more details of our prototype.

6 Workloads

We evaluate our DGSF prototype on six machine learning-
based workloads (Table 1): K-means [28], CovidCTNet [7,
31], face detection [14, 59], face identification [1, 13,29], a
natural language processing-based question answering appli-
cation [15,42,45] and image classification [12,27,45]. These
are general enough to represent general applications. A more
detailed description of each workload, including libraries and
models used, application’s inputs and batch size is presented
in the original paper [22].

7 Evaluation
DGSF’s evaluation aims to answer the following questions:

What is the cost of API remoting and what is the impact
of DGSF’s optimizations?

What is the utilization increase and performance gains
when functions are consolidated?

What is the overhead of migration and how can it im-
prove GPUs for serverless functions?

7.1 Testbed

Experiments were performed on AWS EC2 using two
p3.8xlarge machines, each with 4 NVIDIA V100 GPUs with
16GB of memory, 32 vCPUs of an Intel Xeon E5-2686, 244
GB of memory and a network interface of up to 10Gbps. We
run the function server and the GPU server on identical virtual
hardware to avoid performance variability.

7.2 APl Remoting

We measure our workloads when executed natively (the base-
line) and under DGSF’s AP| remoting mechanism (Table 1).
Comparison between GPU and CPU execution is presented
to show scale and to demonstrate that DGSF preserves GPU
acceleration benefits [30]. For CPU measurements each ap-
plication uses 6 threads (6 vCPUS is the maximum cores per
function in AWS Lambda). Workloads can be faster when
running over DGSF’s APl-remoting than when executed na-
tively because our optimizations aggressively hide runtime
latencies (e.g. CUDA initialization) that cannot be hidden in
the native environment.

To characterize DGSF’s API remoting performance, we
break down the execution time of the workloads: CUDA
context initialization, input and ML model download, model
loading and processing time. Results are shown in Figure 3.
For a simple workload like K-means, which uses few CUDA
APIls and no cuDNN or cuBLAS, the benefit comes exclu-
sively from pre-creating the CUDA context. Other workloads,
such as face detection, also benefit from the optimizations
described in §4.3.

On AWS Lambda using DGSF’s AP| remoting, workloads
that require more network transfers, such as NLP and image
classification, there is a spike in total execution time. This is
due to lower, unguaranteed and variable network bandwidth.
Other workloads behave similar to our deployment of Open-
FaaS.

7.3 Ablation Study

To understand the benefits of each optimization, we perform
an ablation study, breaking down execution time as we incre-
mentally add the optimizations described in Section 4.3, and
compare against native execution.

We do not show input download from remote storage (S3)
since these are not optimized by DGSF and are the same for all
comparison points. Results are shown in Figure 4. Benefits
are most pronounced for the face identification and image
classification workloads.

. Face Face Question Image classification

K-means CovidCTNet Detection Identification answering (NLP) (ResNet)
Peak GPU Memory Usage 323 MB 7802 MB 13194 MB 3514 MB 4028 MB 7650 MB
Average Runtime (Native) 14.0s 25.1s 18.5s 13.4s 34.3s 26.7s

Average Runtime (DGSF)
Average Runtime (AWS Lambda)
Average Runtime (CPU)

9.95 (29%)
9.95 (29%)
429.1s (-29.6)

22.4s (10%)
24.65 (2%)
99.2s (-2.9)

16.4s (11%)

10.5s (22%)
18.0s (-34%)
42.1s (-2.4)

32.4s (5%)
60.4s (-76%)
347.0s (-9.1)

24.8s (7%)
47.1s (-76%)
66.7s (-1.5)

17.9s (3%)
71.0s (-2.8)

Aprox. Migration Time 12 ms 805 ms

1064 ms 711 ms 555 ms 798 ms

Table 1: DGSF workloads. Times are averaged over three runs after one warmup. Numbers in parentheses are speedup (slowdown,

if negative) relative to native.

CUDA init.
Processing
Model Loading
Model Download
Input Download

[Native
[DGSF
[DGSF (no opt.)

o Dt

40

301

Time (s)

10 I
0

mea"®

face \d-

Co\l\dd

A"
s fac e Rest®

Figure 3: Breakdown of each step of our workloads when run-

ning natively, remoted through DGSF with and API remoting
without optimizations.

354
Cuda Init.

I Processing

B Model Loading

[DGSF
[Native

[No optimizations
[+ Handle Pooling
[+ cuDNN Desc.

-
Resnet

5]
. I
|| | |

K-means CovidCT Face Det. Face Id. NLP

o

Figure 4: Ablation study of DGSF’s optimizations compared
to using a GPU natively.

For face identification, the total processing time is 14:5
seconds with DGSF using no optimizations. Context precre-
ation reduces total processing time to 9:6 seconds, removing
4:9 seconds, which is roughly the time taken to initialize
the CUDA, cuDNN and cuBLAS libraries (3:2, 1:2 and 0:2
seconds respectively). Avoiding the remoting of cuDNN de-
scriptor creation APIs reduces inference time from 7:2 to 5:7
seconds. Batching APIs and avoiding unnecessary APIs fur-
ther reduces inference time to 2:3 seconds. In total, DGSF’s
optimizations reduce inference time of the face identification
workload by 67%: from 14:5 to 4:7 seconds. Face detection
and NLP have a borderline improvement with DGSF’s opti-
mizations because fewer optimized APIs are called.

15

7.4 Mixed workloads

For the experiments in this section, we mix all six work-
loads while varying function invocation interval. Scheduling
at the GPU server enforces a first-come first-serve policy per
serverless function, which means that a serverless function
requiring a large portion of the GPU (e.g. face detection), can
force other serverless functions to wait in queue. We leave ex-
ploration of policies like shortest-function-first, which could
improve throughput at some loss of fairness, for future work.
We use a poisson distribution to emulate a real sequence
of function invocations. Ten instances of each workload are
launched in a random (but consistent) order. On average our
workloads utilize 12 seconds of GPU.
To emulate a GPU server under heavy load we use intervals
drawn from an exponential distribution with rate equal to 2.
This models a scenario where a function is launched on

average every two seconds (| = 0:5).

NLP

80 1

60

Time (s)
IS
S

20 4

K-means CovidCTNet Face Det. ResNet

mmm 2 API Server/GPU (AW)
mmm 2 API Server/GPU (SW)

mmm 1 API Server/GPU (AW)
mmm 1 API Server/GPU (SW)
[Avg. Queue Time

Figure 5: Per workload queueing and execution delay when
the GPU server is under a high load, running two different sub-
set of workloads: all workloads (AW) and the four workloads
with smaller memory footprints (SW).

If there is no queueing on the GPU server, the end-to-end
time for each workloads should not have a large variance
and will be close to the uncontended runtime (see Table 1).
Sharing reduces the average queue time of each function in-
vocation and, consequently, the average time from launch
to finish, as seen in Figure 5. The image classification fin-
ishes, on average, 20% faster when sharing is enabled and all
workloads are used, due to a reduction of the queue time by

half.

We also emulate a GPU server under light load, which
shows that, with DGSF and GPU sharing, the provider can
reduce the number of active GPUs on a GPU server to reduce
cost, without causing significant performance changes on the
workloads. A deeper evaluation of this scenario is presented
in the original paper [22].

7.5 Migration

The primary benefit of live migration across GPUs is to re-
cover from scheduling decisions that (unpredictably) harm
performance by creating contention or load imbalance. A best-
fit scheduling policy tries to condense as many functions as it
can into GPUs, while worst-fit tries to spread the load across
GPUs, possibly causing fragmentation and higher queueing
latency. Cost could be reduced through maximizing function
packing, but it can leave some GPUs idle while others are
oversubscribed. Migration can help mitigate possible perfor-
mance issues by moving API servers between GPUs.

We explore a scenario using the NLP and image classifi-
cation workloads, using only two GPUs, each with 15GB of
free memory (1GB is used by the API servers’ contexts),
and four API servers. We launch two NLP workloads and two
image classification workloads. Because the image classifica-
tion workloads require more data to be downloaded, the NLP
workloads will start using the GPUs first. The baseline com-
parison does not GPU sharing: an NLP workload is assigned
to each GPU. Then, when the image classification functions
want to use GPUs, they must wait in queue until a GPU is
available. The total time to completion is 43:6.

With GPU sharing enabled, more scheduling options be-
come available. A worst-fit scheduler performs the best: one
image classification and one NLP workload share each GPU.
The total time is 38:9 seconds, an improvement of about 11%
over the baseline.

A best-fit approach yields the worst scenario: the two NLP
workloads share a GPU and the end to end execution takes
50:6 seconds. Because the NLP workloads are computation-
heavy, they don’t share the GPU well. The two image classi-
fication workloads run serially on the other GPU and finish
before the NLP ones, causing one of the GPUs to be idle while
the other is contended. This effect can be seen in Figure 6b,
where the utilization for GPU 2 falls to zero while GPU 1
stays at 100% for over 24 seconds.

Figure 6b shows that we can improve utilization and, con-
sequently the total runtime, by moving execution of one of
the applications running on GPU 1 to GPU 2. The utilization
for best fit policy with DGSF’s migration mechanism enabled
is shown in Figure 6c. When the second image classification
workload finishes, an imbalance is observed and the migration
of one of the NLP workloads is triggered. DGSF improves the
end-to-end runtime to 42:6 seconds, a 16% improvement over
best fit with no migration.

8 Related work

GPU virtualization. Cloud providers can expose GPUs to
virtual machines using PCle passthrough which dedicates
the hardware interface directly to a virtualized environment,
prohibiting sharing and causing underutilization [8]. Full-
virtualization [48,51], mediated pass-through (MPT) [40, 51,
55], para-virtualization [19] and SR-10QV [5,17,18] techniques
have limitations that have hampered adoption in production
cloud environments [61].

Accelerator virtualization specialized for serverless func-
tions is a relatively new research space. Existing literature
use CUDA-enabled containers [35] and API-remoting [39] to
simply expose GPUs to serverless functions; unlike DGSF, no
serverless platform specific optimizations are done, neither is
live migration supported.

API| remoting [4, 26, 56, 60] is a virtualization technique
that interposes a user-mode API, forwarding calls to a user-
level framework [47] on an appliance VM [54] or remote
server [44]. API remoting is attractive for serverless platforms
because it Disaggregates accelerator resources from other
resources. Scheduling in such scenarios is easier and allows
for several optimizations for heterogeneous workloads [9, 24,
52,53].

GPU consolidation. Although plenty of literature exists,
sharing GPUs is difficult [16,36,43,50]. NVIDIA introduced
Hyper-Q and MPS to increase utilization and improve shar-
ing. While Hyper-Q is general and used by DGSF, MPS is
aimed towards cooperative workloads and is not applicable
for serverless. Since GPUs are ubiquitous in machine learning,
many papers have focused on sharing for ML workloads [62].
For example, PipeSwitch [10] manually switches context of
applications in GPU to ensure high utilization, while Gan-
diva [57] implements time-slicing.

GPU migration. Execution migration across GPUs is an-
other heavily studied area of research [25,41,57] and is tightly
coupled with consolidation. NVIDIA’s GRID supports live
migration of VMs between servers, which is not the case when
API remoting is in place. DCUDA [25] uses peer-to-peer GPU
memory accesses to migrate kernel executions without man-
ually moving data. We experimented this approach for DGSF
but found that it can incur large overheads and memory du-
plication, likely from the CUDA runtime ensuring safety and
memory consistency. Gandiva [57] uses a checkpoint-restore
approach, relying on library support.

9 Conclusion

DGSF is a platform that enables serverless functions to use
GPUs through API remoting. DGSF disaggregates GPU re-
sources from CPU resources, simplifiying scaling and re-
source management. DGSF enables GPU sharing, to increase
GPU utilization, serving many functions with few GPUs.

100
80
60
40

Utilization (%)

20

0-

100

1001 __ GPU 1
— GPU2
60

40

Utilization (%)

20

—— GPU1 — GPU1
— GPU2 < 801 — GPU2
=
'5 60
=1
©
N 40
E
20
7 7 IR 0 0 0 . 0+ T
0 5 10 15 20 25 30 35 0 10
Time (s)

(a) Worst fit scheduling.

20

30
Time (s)

(b) Best fit scheduling.

T v 04 T A 7 7 y
40 50 0 10 20 30 40
Time (s)

(c) Best fit scheduling with migration.

Figure 6: Memory and GPU utilization for a scenario where two NLP applications and two image classification are launched
simultaneously, on a server with two GPUs and four API servers using different scheduling policies.

DGSF handles GPU utilization imbalance by migrating execu-
tion across GPUs transparently. DGSF provides performance
comparable to, and often better than native by offsetting dis-
aggregation overheads with optimizations specialized for the
serverless environment.

Acknowledgements. This work is supported in part by
NSF grants CNS-1846169, CNS-2006943, CNS-2008321 and

CNS-

1900457, and the Texas Systems Research Consortium.

References

(1]
(2]

(3]

(4]

(5]
(6]

(7]

(8]

(9]

(10]

ArcFace. (Accessed: October 2021).

Best practices for GPU-accelerated instances. (Ac-

cessed: May, 2023).

Deploy GPU-enabled container instance - Azure Con-
tainer Instances | Microsoft Learn. (Accessed: May,
2023).

End-to-End Solutions for Al/ML Workloads |VMware.
(Accessed: October, 2021).

NVIDIA GRID. (Accessed: October 2021).

OpenFaaSs - Serverless Functions Made Simple. (Ac-
cessed: January 2021).

ShahinSHH/COVID-CT-MD : A COVID-19 CT Scan
Dataset Applicable in Machine Learning and Deep
Learning. (Accessed: October, 2021).

Underutilizing Cloud Computing Resources. (Accessed:
October 2021).

M. Amaral, Jorda Polo, David Carrera, N. Gonza-
lez, Chih-Chieh Yang, Alessandro Morari, Bruce D.
D’Amora, A. Youssef, and M. Steinder. Drmaestro: or-
chestrating disaggregated resources on virtualized data-
centers. Journal of Cloud Computing, 10:1-20, 2021.

Zhihao Bai, Zhen Zhang, Yibo Zhu, and Xin lJin.
Pipeswitch: Fast pipelined context switching for deep
learning applications. In 14th USENIX OSDI 2020,
pages 499-514. USENIX Association, November 2020.

[11]

[12]

(13]

(14]

[15]

[16]

[17]

[18]

[19]

[20]

Chandra Chekuri and Sanjeev Khanna. On multi-
dimensional packing problems. In Proceedings of the
tenth annual ACM-SIAM symposium on Discrete algo-
rithms, pages 185-194. Citeseer, 1999.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. ImageNet: A large-scale hierarchical
image database. In CVPR 09. IEEE, 2009.

Jiankang Deng, Jia Guo, Xue Niannan, and Stefanos
Zafeiriou. Arcface: Additive angular margin loss for
deep face recognition. In CVPR, 2019.

Jiankang Deng, Jia Guo, Zhou Yuxiang, Jinke Yu, Irene
Kotsia, and Stefanos Zafeiriou. Retinaface: Single-stage
dense face localisation in the wild. In arxiv, 2019.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. Bert: Pre-training of deep bidirec-
tional transformers for language understanding. arXiv
preprint arXiv:1810.04805, 2018.

K. M. Diab, M. M. Rafique, and M. Hefeeda. Dynamic
sharing of gpus in cloud systems. In 2013 IEEE ISPA,
Workshops and Phd Forum, pages 947-954, 2013.

Yaozu Dong, Xiaowei Yang, Jianhui Li, Guangdeng
Liao, Kun Tian, and Haibing Guan. High Performance
Network Virtualization with SR-1OV. Journal of Par-
allel and Distributed Computing, 72(11):1471-1480,
2012.

Yaozu Dong, Zhao Yu, and Greg Rose. SR-10V Net-
working in Xen: Architecture, Design and Implementa-
tion. In Workshop on 1/O Virtualization, 2008.

Micah Dowty and Jeremy Sugerman. GPU virtual-
ization on VMware’s hosted I/O architecture. ACM
SIGOPS Operating Systems Review, 43(3):73—-82, 2009.

Dong Du, Tianyi Yu, Yubin Xia, Binyu Zang, Guan-
glu Yan, Chenggang Qin, Qixuan Wu, and Haibo Chen.
Catalyzer: Sub-millisecond startup for serverless com-
puting with initialization-less booting. In International

[21]

(22]

(23]

[24]

[25]

[26]

(27]

(28]

[29]

(30]

Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), pages
467-481. ACM, 2020.

José Duato, Antonio J. Pena, Federico Silla, Juan C.
Fernandez, Rafael Mayo, and Enrique S. Quintana-Orti.
Enabling CUDA Acceleration Within Virtual Machines
Using rCUDA. In Proceedings of the 2011 18th HIPC,
pages 1-10, Washington, DC, USA, 2011. IEEE Com-
puter Society.

Henrique Fingler, Zhiting Zhu, Esther Yoon, Zhipeng
Jia, Emmett Witchel, and Christopher J. Rossbach. Dgsf:
Disaggregated gpus for serverless functions. In 2022
IEEE International Parallel and Distributed Processing
Symposium (IPDPS), pages 739-750, 2022.

G. Giunta, R. Montella, G. Agrillo, and G. Coviello.
A gpgpu transparent virtualization component for high
performance computing clouds. Euro-Par 2010-Parallel

Processing, pages 379-391, 2010.

Anubhav Guleria, J Lakshmi, and Chakri Padala. Quadd:
Quantifying accelerator disaggregated datacenter effi-
ciency. In 2019 IEEE 12th International CLOUD, pages
349-357, 2019.

Fan Guo, Yongkun Li, John C. S. Lui, and Yinlong
Xu. Dcuda: Dynamic gpu scheduling with live migra-
tion support. In Proceedings of the ACM SoCC, page
114-125, New York, NY, USA, 2019. Association for
Computing Machinery.

Vishakha Gupta, Ada Gavrilovska, Karsten Schwan,

Harshvardhan Kharche, Niraj Tolia, Vanish Talwar, and

Parthasarathy Ranganathan. GViM: GPU-accelerated

Virtual Machines. In Proceedings of the 3rd ACM Work-
shop HPCVirt, pages 17-24, New York, NY, USA, 2009.
ACM.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE CVPR, pages 770-778, 2016.

B. Hu and C. J. Rossbach. Altis: Modernizing gpgpu
benchmarks. In 2020 IEEE ISPASS, pages 1-11, 2020.

Gary B. Huang, Manu Ramesh, Tamara Berg, and Erik
Learned-Miller. Labeled faces in the wild: A database
for studying face recognition in unconstrained environ-
ments. Technical Report 07-49, University of Mas-
sachusetts, Amherst, October 2007.

Paras Jain, Xiangxi Mo, Ajay Jain, Harikaran Subbaraj,
Rehan Sohail Durrani, Alexey Tumanov, Joseph Gonza-
lez, and lon Stoica. Dynamic space-time scheduling for
GPU inference. In Thirty-second Conference on Neural
Information Processing Systems, 2018.

[31]

[32]

[33]

[34]

[35]

[36]

(37]

Tahereh Javaheri, Morteza Homayounfar, Zohreh
Amoozgar, Reza Reiazi, Fatemeh Homayounieh,
Engy Abbas, Azadeh Laali, Amir Reza Radmard,
Mohammad Hadi Gharib, Seyed Ali Javad Mousavi,
Omid Ghaemi, Rosa Babaei, Hadi Karimi Mobin,
Mehdi Hosseinzadeh, Rana Jahanban-Esfahlan, Khaled
Seidi, Mannudeep K. Kalra, Guanglan Zhang, L. T.
Chitkushev, Benjamin Haibe-Kains, Reza Malekzadeh,
and Reza Rawassizadeh. Covidctnet: an open-source
deep learning approach to diagnose covid-19 using
small cohort of ct images. npj Digital Medicine, 4(1),
December 2021.

Hee Seung Jo, Myung Ho Lee, and Dong Hoon Choi.
Gpu virtualization using PCI direct pass-through. In
Information, Communication and Engineering, volume
311 of Applied Mechanics and Materials, pages 15-19.
Trans Tech Publications Ltd, 5 2013.

Eric Jonas, Qifan Pu, Shivaram Venkataraman, lon Sto-
ica, and Benjamin Recht. Occupy the cloud: Distributed
computing for the 99%. In Proceedings SoCC 2017,
pages 445-451, New York, NY, USA, 2017. ACM.

N. P. Jouppi, C. Young, N. Patil, D. Patterson,
G. Agrawal, R. Bajwa, S. Bates, S. Bhatia, N. Boden,
A. Borchers, R. Boyle, P. Cantin, C. Chao, C. Clark,
J. Coriell, M. Daley, M. Dau, J. Dean, B. Gelb, T. V.
Ghaemmaghami, R. Gottipati, W. Gulland, R. Hag-
mann, C. R. Ho, D. Hogberg, J. Hu, R. Hundt, D. Hurt,
J. Ibarz, A. Jaffey, A. Jaworski, A. Kaplan, H. Khaitan,
D. Killebrew, A. Koch, N. Kumar, S. Lacy, J. Laudon,

J. Law, D. Le, C. Leary, Z. Liu, K. Lucke, A. Lundin,
G. MacKean, A. Maggiore, M. Mahony, K. Miller,
R. Nagarajan, R. Narayanaswami, R. Ni, K. Nix, T. Nor-
rie, M. Omernick, N. Penukonda, A. Phelps, J. Ross,

M. Ross, A. Salek, E. Samadiani, C. Severn, G. Sizikov,
M. Snelham, J. Souter, D. Steinberg, A. Swing, M. Tan,

G. Thorson, B. Tian, H. Toma, E. Tuttle, V. Vasudevan,
R. Walter, W. Wang, E. Wilcox, and D. H. Yoon. In-

datacenter performance analysis of a tensor processing
unit. In 2017 ACM/IEEE 44th Annual International

Symposium on Computer Architecture (ISCA), pages

1-12, June 2017.

Jaewook Kim, Tae Joon Jun, Daeyoun Kang, Dohyeun
Kim, and Daeyoung Kim. Gpu enabled serverless com-
puting framework. In 2018 26th Euromicro Interna-
tional Conference on Parallel, Distributed and Network-
based Processing (PDP), pages 533-540, 2018.

U. Kurkure, H. Sivaraman, and L. Vu. Virtualized gpus
in high performance datacenters. In 2018 HPCS, pages
887-894, 2018.

Kuan-Ching Li, Keunsoo Kim, Won W. Ro, Tien-Hsiung
Weng, Che-Lun Hung, Chen-Hao Ku, Albert Cohen, and

(38]

(39]

(40]

(41]

(42]

(43]

[44]

(45]

Jean-Luc Gaudiot. On migration and consolidation of
vms in hybrid cpu-gpu environments. In Jengnan Juang
and Yi-Cheng Huang, editors, Intelligent Technologies
and Engineering Systems, pages 19-25, New York, NY,
2013. Springer New York.

Anup Mohan, Harshad Sane, Kshitij Doshi, Saikrishna

Edupuganti, Naren Nayak, and Vadim Sukhomlinov. Ag-

ile cold starts for scalable serverless. In 11th USENIX

HotCloud 19, Renton, WA, July 2019. USENIX Associ-
ation.

Diana M. Naranjo, Sebastian Risco, Carlos de Alfonso,
Alfonso Pérez, Ignacio Blanquer, and German Molté.
Accelerated serverless computing based on gpu virtual-
ization. Journal of Parallel and Distributed Computing,
139:32-42, 2020.

Bo Peng, Haozhong Zhang, Jianguo Yao, Yaozu Dong,
Yu Xu, and Haibing Guan. MDev-NVMe: a NVMe stor-
age virtualization solution with mediated pass-through.
In 2018 USENIX ATC, pages 665-676, 2018.

Javier Prades and Federico Silla. Gpu-job migration:
The rcuda case. |EEE Transactions on Parallel and
Distributed Systems, 30(12):2718-2729, 2019.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. Squad: 100, 000+ questions for machine
comprehension of text. CoRR, abs/1606.05250, 2016.

Vignesh T. Ravi, Michela Becchi, Gagan Agrawal, and
Srimat Chakradhar. Supporting gpu sharing in cloud
environments with a transparent runtime consolidation
framework. In Proceedings of the 20th HPDC, page
217-228, New York, NY, USA, 2011. Association for
Computing Machinery.

Carlos Reafno, Antonio J. Pefia, Federico Silla, José
Duato, Rafael Mayo, and Enrique S. Quintana-Orti.
CU2rCU: Towards the complete rCUDA remote GPU
virtualization and sharing solution. 20th Annual Inter-
national Conference on High Performance Computing,
0:1-10, 2012.

Vijay Janapa Reddi, Christine Cheng, David Kanter, Pe-
ter Mattson, Guenther Schmuelling, Carole-Jean Wu,
Brian Anderson, Maximilien Breughe, Mark Charlebois,
William Chou, Ramesh Chukka, Cody Coleman, Sam
Davis, Pan Deng, Greg Diamos, Jared Duke, Dave Fick,
J. Scott Gardner, Itay Hubara, Sachin Idgunji, Thomas B.
Jablin, Jeff Jiao, Tom St. John, Pankaj Kanwar, David
Lee, Jeffery Liao, Anton Lokhmotov, Francisco Massa,
Peng Meng, Paulius Micikevicius, Colin Osborne, Gen-
nady Pekhimenko, Arun Tejusve Raghunath Rajan, Dilip
Sequeira, Ashish Sirasao, Fei Sun, Hanlin Tang, Michael
Thomson, Frank Wei, Ephrem Wu, Lingjie Xu, Koichi

[46]

[47]

[48]

[49]

[50]

[51]

[52]

(53]

[54]

[55]

Yamada, Bing Yu, George Yuan, Aaron Zhong, Peizhao
Zhang, and Yuchen Zhou. Mlperf inference benchmark,
2019.

Mehdi Sheikhalishahi, Richard M. Wallace, Lucio
Grandinetti, José Luis Vazquez-Poletti, and Francesca
Guerriero. A multi-dimensional job scheduling. Future
Generation Computer Systems, 54:123-131, 2016.

Lin Shi, Hao Chen, Jianhua Sun, and Kenli Li. vCUDA:
GPU-Accelerated High-Performance Computing in Vir-
tual Machines. IEEE Trans. Comput., 61(6):804-816,
June 2012.

Jike Song, Zhiyuan Lv, and Kevin Tian. KVMGT: a Full
GPU Virtualization Solution. In KVM Forum, volume
2014, 2014.

State of the cloud report.
https://www.rightscale.com/Ip/state-of-the-cloud.
(Accessed: January, 2021).

Yusuke Suzuki, Hiroshi Yamada, Shinpei Kato, and
Kenji Kono. Gloop: An event-driven runtime for consol-
idating gpgpu applications. In Proceedings SoCC 2017,
page 80-93, New York, NY, USA, 2017. Association
for Computing Machinery.

Kun Tian, Yaozu Dong, and David Cowperthwaite. A
Full GPU Virtualization Solution with Mediated Pass-
Through. In 2014 USENIX ATC, pages 121-132.
USENIX Association, June 2014.

Alexey Tumanov, James Cipar, Gregory R. Ganger, and
Michael A. Kozuch. Alsched: Algebraic scheduling of
mixed workloads in heterogeneous clouds. In Proceed-
ings of the Third ACM Symposium on Cloud Computing,
New York, NY, USA, 2012. Association for Computing
Machinery.

Alexey Tumanov, Timothy Zhu, Jun Woo Park,
Michael A. Kozuch, Mor Harchol-Balter, and Gregory R.
Ganger. Tetrisched: Global rescheduling with adaptive
plan-ahead in dynamic heterogeneous clusters. In Pro-
ceedings of the Eleventh ACM European Conference
in Computer Systems (EuroSys), New York, NY, USA,
2016. Association for Computing Machinery.

Lan Vu, Hari Sivaraman, and Rishi Bidarkar. GPU
Virtualization for High Performance General Purpose
Computing on the ESX Hypervisor. In Proceedings of
HPC Symposium, pages 2:1-2:8, 2014.

Lei Xia, Jack Lange, Peter Dinda, and Chang Bae. Inves-
tigating virtual passthrough I/O on commodity devices.
ACM SIGOPS Operating Systems Review, 43(3):83-94,
2009.

(56]

(57]

(58]

(59]

(60]

[61]

(62]

Shucai Xiao, Pavan Balaji, James Dinan, Qian Zhu, Ra-
jeev Thakur, Susan Coghlan, Heshan Lin, Gaojin Wen,
Jue Hong, and Wu-chun Feng. Transparent accelerator
migration in a virtualized GPU environment. In Proceed-
ings of the 12th IEEE/ACM CCGrid, pages 124-131,
2012.

Wencong Xiao, Romil Bhardwaj, Ramachandran Ram-
jee, Muthian Sivathanu, Nipun Kwatra, Zhenhua Han,
Pratyush Patel, Xuan Peng, Hanyu Zhao, Quanlu Zhang,
Fan Yang, and Lidong Zhou. Gandiva: Introspective
cluster scheduling for deep learning. In 13th USENIX
2018 OSDI, pages 595610, Carlsbad, CA, October
2018. USENIX Association.

Mengting Yan, Paul Castro, Perry Cheng, and Vatche
Ishakian. Building a chatbot with serverless computing.
In Proceedings of the 1st MOTA, New York, NY, USA,
2016. Association for Computing Machinery.

Shuo Yang, Ping Luo, Chen Change Loy, and Xiaoou
Tang. Wider face: A face detection benchmark. In 2016
IEEE CVPR, pages 5525-5533, 2016.

Hangchen Yu, Arthur Michener Peters, Amogh Aksh-
intala, and Christopher J. Rossbach. AvA: Accelerated
virtualization of accelerators. In International Confer-
ence on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS), pages 807—
825. ACM, 2020.

Hangchen Yu and Christopher J Rossbach. Full Virtual-
ization for GPUs Reconsidered. In 14th WDDD, ISCA,
2017.

Peifeng Yu and Mosharaf Chowdhury. Fine-grained gpu
sharing primitives for deep learning applications. In
I. Dhillon, D. Papailiopoulos, and V. Sze, editors, PLMR
20, volume 2, pages 98—-111, 2020.

20

