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Understanding the dynamic, interconnected processes that characterize the modern hazard

information system can transform the creation, communication, and use of weather and

climate information.

hen a hurricane approached Galveston, Texas,

in 1900, meteorological forecasting and

information dissemination capabilities were
limited. Although warnings were communicated to
people in Galveston prior to landfall, the hurricane
inundated the town with an unanticipated 15-ft storm
surge. Entire neighborhoods were swept away, even
sturdy buildings on high ground that meteorologists
and residents had thought were safe.! Thousands of
people—an estimated 20% of Galveston’s popula-
tion—died.

Much has changed since then. Today, a potential
hurricane is tracked and forecast from the time it is
a small atmospheric disturbance over the ocean. As
the disturbance evolves, meteorologists use satellite
and aircraft observations, computer models, and

! For further details, see, for example, Garriott (1900).
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other information to create updated forecasts of its
path and evolution. If a storm threatens U.S. landfall,
forecasters issue increasingly detailed forecasts and
warnings, and public officials recommend protective
actions in areas at risk. This information is updated
and disseminated multiple times per day, and it is
rapidly communicated, interpreted, and recommu-
nicated through broadcast media, the Internet, inter-
personal interactions, and other channels. Assisted
by digital technologies, members of the public can
rapidly—often continuously—obtain new informa-
tion about the threat and discuss it with people
around the world. Together, these processes produce
a vast, rapidly evolving body of information about
an approaching hurricane that propagates through
society, transforms across many people, and is used
in protective decisions, all in ways that could not have
been imagined even a decade ago.
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As these examples illustrate, scientific and
technological advances over the last century have
revolutionized humans’ capabilities to anticipate and
warn for weather-related risks. Moreover, advances
in information and communication technology have
transformed the ways in which many people access,
share, and use information. In particular, the Internet
and the social computing platforms it supports are
creating new relationships among individuals, their
social networks, and information during times of
threat (Palen et al. 2010; Fraustino et al. 2012).

Together, these advances are fundamentally
changing how information about weather and climate
risks is created, communicated, and used. Yet, we
know little about how people interact with and inter-
pret the vast, complex collection of weather-related
information available in today’s world. Without this
understanding, it is difficult to develop effective
strategies for improving weather forecasts, warnings,
and information communication in ways that benefit
diverse populations.

To help build this understanding, this article syn-
thesizes knowledge across atmospheric science, com-
puter and information science, and social sciences
to articulate a new framework for conceptualizing
hazardous weather prediction, risk communication,
and decision-making in the modern information
environment. The framework integrates uncertain
predictive information that evolves as a hazardous
weather threat approaches, information flow and
social interactions in the physical and digital worlds,
and people’s evolving risk perceptions, vulnerabili-
ties, and decisions. It conceives of these as intercon-
nected processes within a natural-human dynamic
system. Using this perspective as an analytical
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starting point, we then present two complementary
research approaches for examining these intercon-
nected processes in greater depth: analysis of social
media “big data” streams and coupled natural-hu-
man system modeling.?

The framework and research approaches build on
existing knowledge and tools from multiple fields of
study. By connecting and combining ideas across these
fields, we develop an integrative perspective that ex-
tends beyond the contributions of the individual fields
as well as new methodological approaches for studying
the system within this expanded frame. To demon-
strate the research approaches, we present examples
from our ongoing research investigating how evolving
information and social interactions influence people’s
risk interpretations and decisions as a hurricane ap-
proaches the U.S. coastline. The results of this research
will be discussed in detail elsewhere; here, we use the
research examples to show how the methods help
ground and support the broader frame and how this
type of research can open up novel research directions.

Building on other work that challenges simplified,
one-way models of risk communication focused on
“educating” members of the public [e.g., National
Research Council (NRC) 1989; Fischhoff 1995;
Lewenstein 1992; Michael 1996; Bauer et al. 2007;
Welsh and Wynne 2013], we conceive of weather risk
communication and decision-making as an interac-
tive experience among people who are working within
their own evolving, uncertain worlds, embedded in
larger sociotechnological contexts. In doing so, we
seek to lay the groundwork for a hazard prediction,
communication, and response system that acknowl-
edges and capitalizes on new scientific capabilities,
networked communication, and socially distributed
information, while also accounting for the vulner-
abilities and capacities of different populations.

RECONCEPTUALIZING CREATION, COM-
MUNICATION, INTERPRETATION, AND
USE OF WEATHER RISK INFORMATION.
In the atmospheric science community, weather risk
communication and decision-making is often con-
ceptualized as a largely linear process: meteorologists
or public authorities create and disseminate a forecast
or warning message, which individuals at risk then
receive and use to decide whether to evacuate, take
shelter, or engage in other preparedness action. This
framing reflects the limited predictive skill of the past

2 The research presented here is part of a larger project entitled
Communicating Hazard Information in the Modern Envi-

ronment (www.mmm.ucar.edu/chime).
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SOCIAL MEDIA, HAZARD EVENTS, AND WEATHER RISK COMMUNICATION

ince the mid-2000s, the rise of social

media, text messaging, and other
forms of computer-mediated com-
munication has dramatically expanded
opportunities for peer-to-peer and one-
to-many communication. During times
of threat, when disruption to everyday
activities is accompanied by more in-
tensive information seeking and sharing,
people are increasingly going online to
interact. Over the last decade, social
computing use during hazard events has
continued to grow, event after event and
across the world (Fraustino et al. 2012).
This rapid expansion in online communi-
cation and the new behaviors it enables
have important implications for weather
risk communication and responses.

New information and communica-
tion technologies can be powerful
conduits for disseminating information
about hazard warning and response
[Mass 2012; Department of Homeland
Security (DHS) 2013; Hughes and Palen
2014]. Thus, when meteorologists and
emergency management professionals
enter social media environments, they
often focus on sending messages “out.”
This emphasis on using social media for
dissemination leads information pro-
ducers and communicators to ask cer-
tain types of questions. For example:
What should messages contain? How
often should they be issued? How many
“followers” are needed for a message
to be effective?
A next step is realizing that people

in social media environments are not

simply passive recipients of informa-
tion; instead, they are active partici-
pants in communication. During hazard
threats, for example, members of the
public use social media to message

“in” to meteorologists and emergency
management professionals, to ask
questions, request help, and share
on-the-ground information (DHS 2013;
Hughes et al. 2014). People also use
social media extensively to pass on
messages from others and contribute
their own observations and opinions.
For meteorologists, these social media
messages have potential value as new
sources of data for prediction, warning,
and research (Hyvarinen and Saltikoff
2010; Mass 2012). Importantly, they
are also indicators of how people are
participating in the process of weather
risk communication, interpretation,
and response.

A further step is recognizing that
when people interact on social media,
they can engage in creative behaviors
beyond the types of two-way informa-
tion exchange and individual decision-
making discussed above. Social comput-
ing enables new forms of information
processing and social problem solving
during times of threat (Palen et al. 2010;
Palen and Anderson 2016). During and
after disasters, for example, new volun-
teers and groups emerge—connecting
people locally and across the globe—to
filter, consolidate, integrate, and relay
needed information and organize other
activities to help affected populations

(Sutton et al. 2008; Starbird and Palen
201 1; DHS 2013;White et al. 2014;
Meier 2015). Our ongoing research
suggests that these types of networked
online behaviors also occur during the
preevent (forecast, warning, and prepa-
ration) stage. For example, in our analy-
ses of Twitter data as Hurricane Sandy
approached, we find people interacting
online to access, interpret, and share in-
formation and to seek and provide help
in protective decision-making (Anderson
et al. 2016; Demuth et al. 2017, manu-
script submitted to Wea. Climate Soc.).
When considering messaging to or
from members of the public on social
media, atmospheric scientists and
emergency management professionals
often ask questions about the accuracy
or trustworthiness of information or
its source (Hyvirinen and Saltikoff
2010; Castillo et al. 2011; Tapia et al.
201 1;NRC 2013; Silva et al. 2015).
Although such questions are important,
the world of online communication is
much more complex and dynamic than
these questions suggest. The rapid ad-
vancement of social computing and the
behaviors it facilitates are pushing our
understanding of how information is
and will be created, communicated, and
used as hazardous weather approaches
and arrives. Acknowledging these be-
haviors and appreciating their potential
value can help atmospheric scientists
engage more effectively with social
media to improve weather forecasting,
warning, and risk communication.

as well as a view that hazard information is created
by a few formal sources and transmitted through a
limited set of channels to a passive, waiting audience.
It also reflects a belief that people respond (and should
respond) to risks based primarily on information
provided by people and organizations with formal
scientific or other professional expertise.

These simplified depictions of information cre-
ation, communication, and use have never been ac-
curate, neither for experts nor for the public. Hazard
warning communication and response are social
processes in which members of the public have al-
ways played active roles (Mileti and Sorensen 1990;
Drabek 1999; Tierney et al. 2001; NRC 2006; Dash and
Gladwin 2007). People are often innovative consumers
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and disseminators of hazard information. Moreover,
they do not interpret and decide how to respond to
risks based solely on scientific and technical infor-
mation originated by official experts. Instead, these
processes are influenced by many interconnected
factors—including past experiences, risk perceptions,
emotions, attitudes and beliefs, and situational mo-
tivations and constraints—and are deeply embedded
in their social and cultural contexts (Slovic 1987;
Loewenstein et al. 2001; Slovic et al. 2004; Gladwin
and Peacock 1997; Sorensen 2000; Dash and Gladwin
2007; Taylor et al. 2009; Lindell and Perry 2012; Lazo
et al. 2015; Morss et al. 2016a; Demuth et al. 2016).
Although warning communication and response
have always been complex processes, recent evolutions
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Fic. |. Simplified depiction of several of the processes that intersect to form the modern dynamic hazard in-
formation system, for the example of an approaching hurricane. The evolving hazard is represented by the red
hurricane symbol, and the evolving forecasts of the threat and associated uncertainty are represented by the
changing area of risk (red shading) as the hurricane approaches the coast. The evolving networks through which
people interact to create, communicate, interpret, and use information are represented by the interconnected
symbols over land. The symbols represent different actors, including forecasters (square), public officials (stars),
information intermediaries (including broadcast and digital media outlets; diamonds), and diverse members of
the public (different colored circles). The white lines connecting the symbols represent information flow among
actors through connections in the physical and digital worlds.

in information and communication technology have
dramatically increased that complexity. In today’s
multisource, multimessage communication envi-
ronment, people can obtain much more and a wider
variety of information (Gladwin et al. 2007; Neeley
2013). They can also access and broadcast informa-
tion more easily, quickly, and frequently, through a
rapidly growing array of information networks and
digital media. With modern communication tech-
nologies, people often receive information even when
they are not seeking it because it is pushed to them
(e.g., through alerts on wireless devices) or they ac-
cidentally encounter it (e.g., by seeing a social media
post). New technologies have also expanded the scale
and form of interpersonal interactions, transforming
how people interact with information and each other.
Moreover, these changes are enabling new types of
online socially networked groups that allow people
to combine, interpret, and generate information in
new ways during times of threat (Liu and Palen 2010;
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Starbird et al. 2010; see sidebar on “Social media,
hazard events, and weather risk communication”).
Another important evolution during the last few
decades is the dramatic improvements in the skill of
weather forecasts and warnings (Bauer et al. 2015).
Depending on the phenomena involved, potential
weather-related threats can now often be identified
hours, days, or sometimes even a week or more in
advance. As a threat approaches, these predictions
evolve to provide more localized, more detailed
forecasts and warnings. This forecast information
is now accessed and used by many members of the
public to help them evaluate the risks posed by ap-
proaching hazardous weather (Dow and Cutter 2000;
Zhang et al. 2007; Lee et al. 2009). Today’s forecast
and warning information is not only more accurate,
more specific, and available further in advance, it
is also more complex and updated more frequently
(Bostrom et al. 2016). Accompanying this rapid
expansion in forecast information and its use, the



number of forecast interpretations available—es-
pecially from the private sector and other nongov-
ernment sources—has exploded. These changes, in
conjunction with information and communication
technology advances, have transformed the preevent
warning and preparedness stage for weather hazards.

The complexities and changes raised by each of
these perspectives—from social sciences, computer
and information science, and atmospheric science—
modify our understanding of how weather forecasts
and warnings are created, communicated, interpret-
ed, and used in today’s world. Together, they produce
a hazard information system that is fundamentally
different than it was even a decade ago and that con-
tinues to change with new developments in science,
technology, and society. Several of the key processes
that contribute to the dynamics of this system are
depicted in simplified form in Fig. 1.

In Fig. 1, information about an approaching
hazard evolves as the hazard and knowledge about
it develop. As a hurricane approaches a coastline,
for example, uncertainties in forecasts of the hurri-
cane’s track are typically reduced, narrowing down
the geographic area that is most likely to be at risk.
At the same time, predictive information about the
likelihood of specific weather phenomena in different
areas, such as winds of a certain strength, typically
improves. As landfall approaches and uncertainty
in the atmospheric predictions decreases, forecast-
ing hurricane-related hazards (such as coastal and
inland flooding) and associated impacts at different
locations becomes more feasible, although still uncer-
tain. These capabilities for predicting weather-related
risks and the predictability limits that bound them
are important influences on the system.

As the threat evolves, so do the social interac-
tions (Fig. 1) that influence how information flows
through society, is interpreted and reinterpreted, and
gets translated into decisions. Enabled by advances
in information and communication technology,
today’s social networks are complex, evolve rapidly,
and exhibit emergent behaviors during a threat. As
indicated in Fig. 1, forecasters and public officials
play important roles in the system by providing new
forecast information about the threat and recom-
mendations for protective actions. However, this
information typically is not translated directly into
protective decisions. Instead, it propagates across
social networks and is interpreted and used in com-
bination with the vast quantities of other information
from different sources flowing through the system.
Moreover, as new forecast and warning informa-
tion enters the system, it becomes available to many
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others to disseminate, interpret, and use, and it is
often revised or substantively changed in the process.
Information about hazard risks can now be created
and conveyed not only by formally trained experts
but also by millions of interconnected intermediaries
and Internet-engaged citizens.

The perspective presented here builds on models
of warning response and protective decision-making
that include social interactions and feedback loops
as people seek or obtain new information (Mileti
and Sorensen 1990; Gladwin et al. 2001; Lindell and
Perry 2012). It also builds on conceptions of forecast
and warning communication that include complex
information networks (Gladwin et al. 2007; Lindell
and Perry 2012) as well as work that explores people’s
dynamic interpretations and behaviors as weather
threats evolve (Morss and Hayden 2010; Meyer et al.
2013, 2014; Ruin et al. 2014; Morss et al. 2016b). We
propose that people are immersed in a vast sea of
continuously evolving risk information that they
access and interpret through complex, evolving
interactions across the physical and digital worlds.
Although Fig. 1 depicts the system at distinct points
in time, in reality it is a continuum; before people
have time to digest and react to one new piece of
information, they often have obtained more in-
formation to consider. As a threat evolves, people
are continually interacting with their natural and
social environments, filtering and processing new
data, deciding how much to attend to the threat,
and updating interpretations and decisions. These
features of the modern hazard information system
can alleviate or exacerbate people’s vulnerabilities to
weather hazards by enabling or constraining infor-
mation access, risk interpretations, and protective
decisions (see “Dynamic hazard vulnerability and
risk communication” sidebar).

This integrative framework provides a more accu-
rate and more comprehensive paradigm for thinking
about and analyzing hazardous weather prediction,
communication, and decision-making in the modern
information environment. Next, we explore how
this framework enables novel research that can yield
new forms of knowledge about this system and the
processes within it.

BUILDING UNDERSTANDING OF THE DY-
NAMIC HAZARD INFORMATION SYSTEM.
Studying this system requires approaches that can
simultaneously follow individuals, their social and
information networks, and system-level behaviors as
a threat evolves. The processes we are interested in are
nonlinear, rapidly changing, and distributed among a
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hen hazardous weather occurs,

an important determinant of
impacts is the vulnerability of affected
populations, in other words, their
susceptibility to harm. Not all people
are affected equally by a hazard due to
their different exposures, sensitivities,
and capacities (Morss et al. 2011). Many
factors contribute to population vul-
nerability; here, we focus on how risk
communication as a hazard approaches
can influence people’s experiences and
outcomes from hazardous weather
events. By integrating concepts from
vulnerability research into how we
conceptualize the preevent forecast,
warning, and preparedness stage,
we can deepen our understanding of
diverse populations in ways that shift
the framing of weather forecast and
warning communication.

Vulnerability is often characterized
using aggregate population-level de-
mographic and environmental charac-
teristics, such as gender, race, socio-
economic status, and residence type
or location (e.g., Cutter et al. 2000).
However, in reality, vulnerability is
malleable and changes with space, time,
and circumstance (Hilhorst and Bankoff
2004; Dilling et al. 2015). Approaches
that rely on demographic character-
istics alone can describe potential
vulnerability at a broad level. However,
these approaches can miss important
individual-level capacities and behavior-
al factors as well as hazard-specific as-
pects of vulnerability. The actual harm
that people experience during and after
a hazardous weather event depends

on their capacities to prepare for and
respond to perceived risks and on what
they do as the threat unfolds (Adger

et al. 2005; Wilhelmi and Hayden

2010; Engle 2011; Hayden et al. 2011).
Although demographic characteristics
are often associated with differences in
capacities and behaviors, other factors,
such as risk information and social
networks, play important roles.

For example, residents of public
housing typically have lower socioeco-
nomic status, and so might be consid-
ered highly vulnerable. However, in
focus groups conducted in New York
City after Hurricane Sandy, we found
that social connections enabled by pub-
lic housing (e.g., with building managers
and neighbors) helped some residents
access important information about
evacuation orders and transportation to
shelters, supporting protective decisions
(Lazrus et al. 2017). In contrast, some
residents of nearby private housing did
not receive key information, did not
have informed social networks, and
were unable to access transportation.
This demonstrates how demographic
characteristics alone are not adequate
to assess population vulnerability. It also
illustrates how information as well as
the social networks that serve as con-
duits of that information (Eisenman et al.
2007; Taylor et al. 2009) can enhance
people’s capacities to manage risks.

The new modes of communication
enabled by information technologies can
also play important roles in alleviating
or exacerbating vulnerabilities. As risk
communication increasingly relies on

DYNAMIC HAZARD VULNERABILITY AND RISK COMMUNICATION

digital platforms, those who are digitally
disconnected (i.e., cannot themselves
access much, or any, of the information
available online) may have more dif-
ficulty obtaining important information,
which could increase their susceptibil-
ity to harm from hazardous weather.
However, Lazrus et al. (2012) found that
data services on cellular phones have
enabled new forms of access to hurri-
cane information among those who are
deaf or hard of hearing. Additionally, our
post-Sandy focus groups in New York
City indicate that some digitally discon-
nected individuals have other capacities
that alleviate these potential vulner-
abilities, such as members of their social
networks who transmit key information
to or from the online world and enable
protective actions when needed (Lazrus
et al. 2017). In other words, by help-
ing people access and share important
information, features of the modern
information environment can facilitate
social safety nets (Turner et al. 2003)
that support behaviors to reduce harm.
These examples illustrate the nu-
anced, context-dependent nature of
vulnerability to weather hazards and
the dynamic ways that vulnerability
intersects with the modern hazard
information system. Approaching
vulnerability as evolving and malleable
expands our framing to ask how the
content and communication of hazard-
ous weather forecasts and warnings
can be improved in ways that enable
people’s capacities to reduce harm,
cope with impacts, and recover in the
context of their actual situations.

diverse population, which makes obtaining the data
needed to understand the full system challenging.
For example, when hazardous weather threatens, it is
difficult to collect data from a large number of people
at risk about how they are interacting with each other
and with information and then to follow them through
the threat. After an event, it is difficult for people to ac-
curately recall and explain all details about their social
interactions, information exchange, perceptions, and
decisions across the stages of a threat.

To begin addressing this knowledge gap, we are
using two research approaches: analysis of real-world
behaviors using social media data and computational
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experiments using coupled natural-human system
modeling. We combine these approaches because
they have complementary strengths and limitations;
linked by our conceptual framework, they (and other
approaches) can inform each other to develop a more
comprehensive, deeper understanding.

The system we are studying continues to change
rapidly, as science, technology, and society continue
to evolve. Any analysis provides, at best, only a snap-
shot in time. With this in mind, our discussion of the
research emphasizes larger-scale, conceptual findings
that we anticipate will be relevant beyond the specific
times and places studied.



ANALYZING REAL-WORLD BEHAVIORS
USING SOCIAL MEDIA DATA STREAMS.
Social media posts offer new sources of first-person
data that can help us understand how people are in-
teracting with information and what they are think-
ing and doing during an event, such as a hazardous
weather threat. Microblogging platforms, in particu-
lar, facilitate posting quickly and frequently and thus
have potential to provide a rich source of near-real-
time data for investigating topics such as informa-
tion flow, information use, and decision-making as
a situation evolves. Our current research analyzes
data from the microblogging platform Twitter, which
has been used to study a variety of sociobehavioral
phenomena in hazard events (Hughes and Palen
2009; Houston et al. 2015).> We generate meaning
from the vast Twitter data available by integrating
quantitative and qualitative analyses, informed by
our research questions, understanding of the nature
of the data, and expertise in the relevant research
domains (Kogan et al. 2015; Palen and Anderson
2016; Anderson et al. 2016; Stowe et al. 2016; Bica
etal. 2017; Demuth et al. 2017, manuscript submitted
to Wea. Climate Soc.).

Because social media platforms and their use change
rapidly, our aim is not to study Twitter itself. Rather,
we are using data from Twitter because it is currently
one of the most popular microblogging platforms in
the United States and other parts of the world, and the
accessibility of its data makes it well suited for this type
of research. Data from other social media platforms can
be used to investigate similar questions. For example, in
China, multiple platforms, including Sina Weibo and
Tianya, have been popular and thus have been used for
related research (Qu et al. 2009, 2011).

The types of big datasets that platforms like Twit-
ter provide are often used to examine macroscale
behavior, using quantitative analyses. For example,
much of the current work using Twitter data for
hazardous weather research focuses on questions
about how many people are tweeting, where, and how
frequently (Lachlan et al. 2014; Shelton et al. 2014;
Ripberger et al. 2014; Silva et al. 2015; Kryvasheyeu
et al. 2016). However, the power of social media data
also lies in their potential to provide insight from
those who are experiencing a threat through their
near-real-time documentation about the experience.

3 Twitter communications (called tweets) are limited to 140
characters, but individual tweets can provide more than 140
characters’ worth of data by linking to other online content,
such as images, web pages, and posts on other social media
platforms that allow longer formats.

AMERICAN METEOROLOGICAL SOCIETY

The goal of such analyses is not to analyze a repre-
sentative sample. Rather, by sampling data carefully
and then treating these “found” data similarly to data
gathered using other ethnographic methods, we can
develop in-depth understanding about processes of
interest.

To demonstrate some of the ways that social media
data can be analyzed and what these data can reveal,
here we present examples from our ongoing analyses
of Twitter data created during a recent hazardous
weather threat: Hurricane Sandy.* We start with
macroscale analyses of large Twitter datasets and
then focus our attention inward to examine data from
a significantly affected, socioeconomically diverse
neighborhood and narratives from individual locals
at risk. As a complement to the Twitter data analysis,
we also conducted focus groups in neighborhoods
of New York City, New York, that were significantly
affected by Hurricane Sandy, with an emphasis on
populations who are less likely to be active on social
media (Lazrus et al. 2017). By combining Twitter
analyses with these focus groups, we aim to ad-
dress interrelated research questions using different
data collection methodologies and complementary
samples, integrated by our broader conceptual frame.

Asan entry point for studying Hurricane Sandy, our
research team collected Twitter data in real time using
eight Sandy-related keywords (including hurricane,
Sandy, Hurricane Sandy, and frankenstorm) starting
on 24 October 2012, 5 days before Sandy’s U.S. land-
fall (Kogan et al. 2015; Palen and Anderson 2016). As
shown in Fig. 2, millions of people tweeted using Sandy
keywords during the threat. The frequency of tweets
containing Sandy keywords increased significantly on
the day prior to landfall (28 October), as evacuation
orders were announced for major populated areas such
as New York City. It dipped during the overnight hours
in the United States and then peaked near the time of
landfall on the evening of 29 October. After another,
smaller overnight dip, there was a secondary peak on
the morning after landfall.

To identify the place of origin of a tweet, one
can use the tweet’s geolocation (latitude, longitude)
information, although only a small subset of tweets
is geotagged (typically less than 2%). As shown in
Fig. 3, the Sandy keyword dataset includes tweets
from around the world. An animation of these data
(more information can be found online: https:/doi
.org/10.1175/ BAMS-D-16-0058.2) shows that several

* Although Sandy transitioned into a posttropical cyclone,
for simplicity, we refer to the storm as Hurricane Sandy or
simply Sandy.
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days before landfall, geotagged Sandy keyword tweets
are generated primarily in the Caribbean and eastern
coastal United States (in the areas directly at risk). As
the storm approached and then affected the mainland
United States, the Twitter conversation using Sandy
keywords expanded across the United States and then
quickly spread around the globe.

The data in Figs. 2 and 3 combine many different
types of conversations about Sandy, from global to
local. We are interested in extracting from these
online conversations new understandings about
how people interact with, interpret, and respond to
evolving information about approaching weather
threats. For this analysis, we must identify Twitter-
ers who are evaluating the threat and deciding what
to do. Approaches for narrowing large social media
datasets such as those in Fig. 2 include random or
opportunistic selection, searches for terminology
representing concepts of interest, or use of geotagged
tweets. However, none of these strategies yielded a

suitable sample of Twitterers for our analyses.” Thus,
we developed a sampling approach that focused on
geographic areas at high risk, without relying on
geotagged data.

Rather than examine individual tweets, we analyze
Twitterers’ full “contextual” tweet streams, in other
words, their full sequence of tweets during the period
of interest, regardless of the presence of a keyword
(Anderson et al. 2016; Palen and Anderson 2016). We
do so, first, because people often tweet about a topic
without using specific researcher-defined keywords,
and so limiting analyses to only tweets containing
certain terms can introduce biases. In addition, indi-
vidual tweets often have new meaning when viewed in
the context of a Twitterer’s narrative—the story that
develops in their Twitter stream. Tweet streams also
provide far richer data than individual tweets about
how processes evolve and interact over time.

Here, we utilize Twitterer narratives from Far
Rockaway, Queens, New York, which was in a

> Random selection of keyword tweets yields a dataset focused on the global response rather than those who are directly at risk.
Terminology-based searches miss the large number of tweets about concepts of interest that do not use that (researcher defined)
terminology (see, e.g., the example “stationary” tweet in Fig. 5 and the example “move somewhere safer” tweet in Fig. 6). Relying
on geotagged tweets also misses the vast majority of data, and initial analyses using geolocated tweets to identify Sandy Twitterers
in areas at risk yielded few people of interest for understanding risk interpretations and protective decision-making.
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FiG. 3. Geographical distribution of the geotagged tweets in the Sandy keyword Twitter dataset shown in Fig. 2.
During the period shown (0000 UTC 25 Oct-0000 UTC 7 Nov 2012), this dataset contains approximately
160,000 tweets from 92,000 Twitterers. (For an animation of the temporal evolution of these data, see the
online supplement.)

mandatory evacuation zone for Sandy, experienced
major flooding from storm surge, and is socioeco-
nomically diverse. Using the methods discussed
in Anderson et al. (2016) and Demuth et al. (2017,
manuscript submitted to Risk Anal.), we examined
contextual Twitter streams to identify a sample of
Twitterers who lived in or very near Far Rockaway
as Sandy approached. Each tweet in each of those
streams was then coded as either relevant to Sandy
or not, in the context of its narrative, as well as by the
topics in a coding scheme that our interdisciplinary
research team developed to help analyze how factors
related to people’s hazard information use, vulnera-
bilities, and decision-making are represented in social
media data (Anderson et al. 2016; Stowe et al. 2016).

Figure 4 shows how the number of Sandy-relevant
tweets in the Far Rockaway contextual dataset evolves
over time, compared to the Sandy keyword tweets in
this dataset. As this illustrates, adding the contextual
tweets provides many additional relevant tweets that
help fill in Twitterers’ narratives, especially during
and after landfall. Compared to the global keyword
dataset in Fig. 2, the frequency of Sandy-relevant
tweets from these Far Rockaway residents exhibits a
similar peak as the evacuation order for Far Rockaway
is announced and then a much sharper peak near
the time of landfall, as Far Rockaway experiences
the worst of Sandy’s winds and flooding. Unlike the
global Sandy Twitterers, many in the Far Rockaway

AMERICAN METEOROLOGICAL SOCIETY

dataset are relatively silent on Twitter after landfall
because they lost power for an extended period or
for other reasons as they dealt with Sandy’s impacts.

To help illustrate what we can learn from examin-
ing these types of Twitter narratives in greater depth,
Figs. 5 and 6 depict the evolution of two individual
Far Rockaway Twitterers’ tweet streams during a
7-day period around the time of Sandy’s landfall.
Figure 5 depicts a rare example in the Sandy Twitter
data of a nonmeteorologist who explicitly references
weather forecasts. He also gathers data from his own
observations of what others are doing and, as landfall
approaches, from natural and built environmental
cues related to the storm. Although he sometimes
uses humor when discussing Sandy, his tweets also
indicate that he is aware of and worried about the
potential for harmful impacts from Sandy, including
life-threatening flooding. As the storm approaches,
his tweets shift to focus more and more on Sandy
compared to other topics, reflecting his concern. He
discusses the threat of surge as well as wind, and he
knows that he lives in an evacuation zone and about
New York City’s evacuation order. Nevertheless, he
decides to stay in his home through the storm, for
multiple reasons revealed in his tweet stream. Then,
at landfall, his home floods, leaving him surprised
and frustrated.

Figure 6 depicts a person who, like most in our
Sandy Twitter data, does not explicitly reference a

DECEMBER 2017 BAMS | 2661



8

—— Sandy-relevant
—— Sandy keyword

Landfall

8

8

8

]
o
1

=
o
1

o4 a\d I\ m\ ' A!Jl ..i k Mu.‘ Lh

Number of tweets per hour (Far Rockaway)

,.N N M.M‘( AR M

o o W PR LR
S o 1© C o© 0© 20 A o © aw
<P P (ot (o’l ,\O'L 4\03 4\03 <o° _‘Ool .‘o° <o° <% Y «00
oV oY oV oV o oY % oV o oY oY oY oY oY
o® o® P o o® o o ® P & o o o &
Time

FiG. 4. As in Fig. 2, but for the number of Sandy-related tweets (blue line) and Sandy keyword tweets (red line)
in the Far Rockaway (New York) contextual Twitter dataset. The dashed vertical lines represent the timing
of the New York City evacuation order and Sandy’s U.S. landfall, as in Fig. 2. During the period shown, this
dataset contains 2,378 Sandy-related tweets from 58 Twitterers; only 268 of these tweets contain one of the
Sandy keywords used in data collection, and only 70 Sandy-related tweets are geotagged.

weather forecast. However, the influence of forecast
information is indirectly revealed by her tweets about
Sandy beginning several days before landfall. She
is aware of the risk to Far Rockaway and is worried
about Sandy. Nevertheless, shortly after the evacua-
tion order is issued, she tweets that she is not evacuat-
ing. The morning of landfall, she tweets about seeing
high ocean waves and flooding in Far Rockaway. Her
tweets then indicate that she has changed her decision
to stay home and has moved to a sturdier building
nearby where a relative lives.

These narratives show how social media data
streams, carefully sampled and analyzed, can reveal
new insights about the dynamic ways in which people
evaluate and respond to approaching hazardous
weather threats. For example, Figs. 5 and 6 illustrate
how people gather and use different types of infor-
mation and how they interact with others to evaluate
a threat and decide what to do as a threat evolves.
They also illustrate the complex evolution of people’s
interpretations of risks, emotional and other coping re-
sponses, and decisions. These and additional findings

» FiG. 5. Graphical depiction of an example tweet stream produced by a Far Rockaway resident as Sandy ap-
proached and arrived. (top) The temporal evolution of this Twitterer’s Sandy-relevant tweets (black dots) and
tweets related to 10 different topics related to Sandy (colored dots), along with sample content from individual
tweets. The topics and sample tweets were selected to illustrate how attention to different types of information
evolves in conjunction with Sandy-related sentiments and protective decision making. The topics represent,
from top to bottom, Sandy-relevant tweet content that mentions weather forecasts or forecasters; mentions
public officials or their information or actions; mentions what others are doing related to the threat (social
cues); mentions natural or built environmental cues; indicates attempts at humor; indicates worry, fear, or
anxiety; indicates frustration, anger, or defiance; mentions staying at home during the threat; or mentions
moving somewhere safer related to the threat. Each tweet could be coded into multiple categories or none.
The sample tweet content is represented using the color of one of the topics with which that tweet was coded;
“RT” indicates a retweet, and “@” represents the mention of another Twitterer (@ mentions of members of
the public were anonymized). (bottom) The temporal evolution of this Twitterer’s tweet volume and Sandy-
relevant tweet volume on the same time axis as in the top panel. Note that many tweets are quasi-real-time
posts (indicating the Twitterer’s current situation), but some tweets are summative or retrospective posts
(indicating the Twitterer’s past situation, reported after the fact). The dashed vertical lines represent the tim-
ing of the New York City evacuation order and Sandy’s U.S. landfall, as in Figs. 2 and 4.
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are discussed further in Anderson et al. (2016) and De-
muth et al. (2017, manuscript submitted to Risk Anal.).

The example results in Figs. 2-6 illustrate that
finding robust, meaningful signals of interest about
the complex hazard information system in the vast
data available online is not an easy task. Decisions
about how to collect, sample, and analyze social
media data can inadvertently limit or skew a study’s
results. Therefore, it is important to design and imple-
ment each analytical step using knowledge about the
processes being studied and the strengths and limita-
tions of different analytic techniques. Quantitative
and automated data processing techniques (such as
natural language processing, text classification, and
information diffusion analyses) can help build under-
standing (Verma et al. 2011; Imran et al. 2015; Kogan
etal. 2015; Stowe et al. 2016; Bica et al. 2017). However,
tweets use free-form language, including unique
grammar and spellings and can contain embedded
symbols, links, and images. By focusing in on locals
at risk, without relying on tweets that are geotagged
or use certain terminology, we uncover rich, diverse
stories about people’s thoughts, feelings, experiences,
and actions as a threat evolves. Once we understand
how the concepts and processes of interest are rep-
resented in the data and how to find them, we can
use this knowledge to apply automated processing
techniques and interpret the outputs of quantitative
analyses in more valid, informative ways.

Like all data, social media data have important
limitations that must be considered when performing
analyses and interpreting results. One limitation is
that social media provides data only from those who
are online and posting on that platform, when and
about what they are posting. While we do not present
the Twitter analysis results as generalizable, we also
take other steps to involve populations who may not
be engaged with social media. In our research on
Hurricane Sandy, we are complementing the Twitter
analysis with focus groups with people from Span-
ish- and Russian-speaking communities, residents
of public and senior housing, and other populations,
investigating how risk communication related to
Sandy interacted with population vulnerabilities
(Lazrus et al. 2017). Insights from the focus groups
help us identify indicators and discussions of vulner-
ability in the social media data that we may not have
seen otherwise. They are also helping us understand
the roles of information, social networks, and other
factors in protective decision-making among people
who do not personally use social media. By purpo-
sively designing and implementing this empirical
mixed-method approach, we aim to develop new
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understandings from multiple investigative angles
about how diverse populations are engaging with
the dynamic hazard information system and making
decisions as hazardous weather approaches.

COMPUTATIONAL MODELING OF THE
COUPLED NATURAL-HUMAN SYSTEM.
Coupled natural-human systems such as that exam-
ined here exhibit complex dynamics that are challeng-
ing to comprehensively investigate. Computational
modeling can provide a laboratory for investigat-
ing the system’s behavior in different scenarios by
conducting experiments that would be impossible
to perform in the real world. With computational
modeling research, we are not attempting to predict
the decisions of real people in real situations or to
digitally recreate the complete behavior of the real
system. Rather, we are using models to provide a
controlled setting for exploring how the system’s
component processes interact and how they influence
the system dynamics and outcomes of interest under
different circumstances.

Computational natural-human system model-
ing can take multiple forms (Rounsevell et al. 2014;
Barton et al. 2016; Verburg et al. 2016; Moss et al.
2016); the most appropriate modeling tools depend
on the spatial and temporal scales, processes, and
interactions of interest. The approach we use here
combines geophysical modeling of hurricanes and
hurricane-related hazards with a model of interac-
tive human decision-making in response to evolving
social and environmental information.

The geophysical component of the modeling labo-
ratory couples atmospheric predictions of landfalling
hurricanes with storm surge inundation modeling.
Initially, we are using idealized representations of
hurricane forecast uncertainty as input to the ad-
vanced circulation (ADCIRC; Luettich and Westerink
2004) storm surge model (Fossell et al. 2017); this can
later be extended to also use numerical modeling for
the atmospheric component. We are using this hurri-
cane surge modeling, first, to investigate the practical
predictability of storm surge by examining the propa-
gation of uncertainty in atmospheric predictions into
surge predictions. This research is building funda-
mental scientific knowledge about the predictability
of coupled atmosphere-hazard systems. The findings
can also be of practical use to forecasters and forecast
users by indicating the potential for providing differ-
ent types of hazard forecasts at different lead times

» FiG. 6. As in Fig. 5, but for a second example tweet

stream from a Far Rockaway resident.
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in different situations. For example, results from our
coupled hurricane-surge experiments suggest that
typical errors in current hurricane track forecasts
severely limit the skill of location-based storm surge
predictions beyond 12-24-h lead times, except for un-
usually large storms (Fossell et al. 2017). In addition,
we are using the hurricane-surge modeling to help
design and conduct modeling experiments investi-
gating how evolving information about approaching
hurricanes interacts with the human system.

The human component of the modeling laboratory
is an agent-based model (ABM), a form of computa-
tional simulation in which autonomous “agents” are
provided with simple rule sets for perceiving their
environments and making decisions that influence
subsequent model states (Bankes et al. 2002; Miller
and Page 2007). In an ABM, agents can reside in dif-
ferent parts of a spatially explicit virtual world and
have different social connections, and hence have
different natural and social environmental experi-
ences. Thus, agents with the same rule sets can obtain
different information and make different decisions,
resulting in emergent patterns at the aggregate system
level. Different populations of agents can also be given
different rule sets, and individual agents can have
characteristics that vary across the population and
influence their decisions.

Because of its adaptable, bottom-up approach to rep-
resenting decisions and interactions of heterogeneous
agents at multiple scales, agent-based modeling offers
scientists a powerful toolkit for investigating complex
social behaviors (Miller and Page 2007; Barton 2014).
Increasingly, ABMs are being employed to represent
interactions and feedbacks between natural and hu-
man systems (Parker et al. 2003; French 2010; Boone
et al. 2011; Rounsevell et al. 2012; Farmer et al. 2015;
Barton et al. 2016). In the weather and climate realm,
however, most of this work emphasizes time scales
of months, years, or longer, unlike the shorter time
scales of interest here. Our research also extends this
type of work by modeling agents that are influenced
by information about the anticipated future weather
or climate (i.e., forecasts) as well as the environmental
conditions themselves. In the hazards arena, ABMs
have been used to model human behaviors for ap-
proaching hurricanes (Chen et al. 2006; Zhang et al.
2009; Widener et al. 2013; Yin et al. 2014) and other
natural hazards (Dawson et al. 2011; Wang et al. 2016).
Our modeling advances this application of ABMs by
taking a novel and sophisticated approach to study-
ing hazard information flow and decision-making,
simulating an imperfect, socially interactive, dynamic
information environment.

2666 | BAMS DECEMBER 2017

The ABM we have developed includes a spatially
explicit landscape, weather hazards that move across
that landscape, forecasts that evolve with the hazards,
and computational agents that are abstractions of
people who obtain, process, and share information
and make protective decisions as a hazard approaches
and arrives. The ABM and its behavior are discussed
further by Watts et al. (2017, manuscript submitted to
Environ. Modell. Software), and the model code and
detailed description are available for download in
the Network for Computational Modeling for Socio-
Ecological Science (COMSES Network) model library
online (www.openabm.org/model/5504). Here, we
briefly describe key features of the ABM and then
present an example model run to illustrate how this
type of computational social science can be used for
exploring natural-human system interactions.

The current version of the ABM contains sev-
eral types of agents, representing the major actors
in weather forecast, warning, and response systems
(Demuth et al. 2012; Brotzge and Donner 2013; Morss
et al. 2015; Bostrom et al. 2016). As in the real world,
the majority of the agents in our simulations repre-
sent members of the public. These citizen agents can
seek, receive, and transmit information; combine
information from different sources; and process that
information to decide whether to take protective ac-
tion. Other agent types represent weather forecasters
(who transmit forecast information into the model
world), information intermediaries (including broad-
cast media and Internet information aggregators),
and public officials (who can issue protective action
information). We developed the rule sets for agent
decision-making using the literature on how people
obtain, interpret, and use information for hurricanes
and other weather hazards (e.g., Dash and Gladwin
2007; Lindell and Perry 2012; Demuth et al. 2012), in
conjunction with relevant expertise from members
of our research team.

The ABM can carry out experiments with real
or synthetic weather events and forecasts, and the
virtual environment can be idealized or use real-
world data about relevant natural (e.g., topography
and coastlines) and social (e.g., census data, political
boundaries) features. This flexibility allows research-
ers to compare the model’s behavior with outcomes
in real-world cases, while also allowing a wide range
of experiments. The model is currently implemented
for a hurricane making landfall along a U.S. coastline,
but the modeling framework is designed to be adapt-
able to other types of weather hazards and regions.

Figure 7 depicts the temporal evolution of a
single 5-day run of the current version of the ABM
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(animation available in the online supplement). As the
simulation evolves, public officials who perceive that
their counties are at risk based on the forecasts decide
to issue evacuation orders (white stars in the middle
and right panels in Fig. 7). Before any evacuation orders
are issued (left panel), a few citizen agents have decided
to gather information more frequently (green circles)
or evacuate (orange circles) based on their evaluations
of the risk using the forecast information they have
received up to that time. Once the evacuation orders
have been issued and disseminated (right panel), this
information, in conjunction with the evolving forecast
information, contributes to more citizen agent evacua-
tion decisions. As the storm begins to affect land (not
shown in Fig. 7), environmental cues (such as strong
winds) motivate additional citizen agents to decide
to evacuate. As expected given the hurricane’s track
and the forecasts, evacuation orders and evacuating
citizens are focused in coastal western Florida, near
where the storm made landfall and to the north (where
the storm was predicted to make landfall at 1-2-day
lead times; middle and right panels). However, as in
the real world, people’s protective decisions vary both
in and out of these areas.

Because the ABM includes stochastic elements
(e.g., through randomly distributed parameters in the
citizen agents’ rule sets), it can exhibit different behav-
iors even under a single set of model parameters and
conditions. Thus, each experiment is repeated multiple
times to assess central tendencies and variability in
the model’s behavior. Multiple sets of experiments
can then be run, varying the model parameters and
inputs, to investigate how information flows through
the computational system, assess how information
transforms across time and space and is translated
into decisions, characterize emergent system-level pat-
terns, and compare outcomes of interest. In this way,
the modeling laboratory can be used to investigate the
effects of changing different aspects of the natural or
human system or the couplings between them (J. Watts
et al. 2017, unpublished manuscript). When perform-
ing such experiments, we can observe the model’s
behavior at multiple scales simultaneously, from the
individual agent to the system level. Interpreted in
conjunction with findings from empirical research,
these modeling experiments can help develop new
insights about the system’s dynamics and the ways in
which different processes interact.

THE FUTURE OF HAZARDOUS WEATHER
RESEARCH, PREDICTION, AND COM-
MUNICATION. This article articulates an inte-
grative framework for understanding the creation,
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communication, interpretation, and use of hazardous
weather information as evolving, interconnected
processes. It then demonstrates how these processes
interact in a dynamic system using examples from
novel research. The framework recognizes that
weather hazards and information about them evolve,
along with the associated uncertainties. It recognizes
that risk communication likewise evolves and that it
includes information created by and exchanged with
many different sources in the physical and digital
worlds. It recognizes that people’s hazard-related risk
perceptions and decisions evolve, as new information
becomes available and is propagated and interpreted
within its larger social and cultural context. And it
recognizes that individuals and populations have
different capacities to prepare for, respond to, and
recover from hazards and that these capacities evolve
based on risk communication, circumstances, and
other factors.

The framework provides an important conceptual
and analytical starting place; it allows us to see impor-
tant features of the system, which then makes these
features available for analysis. Without the frame-
work, we could not have designed or implemented our
research approaches, and we would have struggled to
make sense of the dynamic, interconnected processes
that are revealed by the social media, computational
modeling, and other data. The research examples also
illustrate and support the larger framework, which
ongoing research will continue to refine and clarify.

The framework and research examples illustrate
how interdisciplinary research can integrate different
intellectual and methodological approaches rigor-
ously to develop a broader, deeper understanding. At
the same time, the interdisciplinary integration helps
us articulate research directions—related to weather
risk communication and decision-making in the age
of social media, dynamic population vulnerability
as a hazard approaches, coupled weather-hazard
predictability, and other topics—that lead to novel
contributions within multiple fields of study.

What are the implications of the reality of hazard
communication as a dynamic, interconnected system?
Our empirical analyses and computational experi-
ments indicate that weather forecasts and warnings
play critical roles in the hazard information system
by initiating the threat recognition process and help-
ing guide how information about the threat evolves.
Public officials’ evacuation orders also play critical
roles by helping spur protective actions. However,
these professionals and the information they provide
are only a small subset of the many actors and pieces
of information within the system. Once information



enters the public sphere, it can rapidly propagate and
transform; the information’s original creators have
limited control over how it is interpreted and used.
As the Twitter narratives illustrate, even people who
receive forecasts, warnings, and protective action
recommendations for an approaching hazard and
are aware of and worried about the risks may decide
not to take protective action until they see first-hand
evidence of the threat. There are also many contextual
factors that influence people’s access to information,
their interpretations of risks, and their capacities to
take protective action. The framework we present and
these findings of our research can help atmospheric
scientists and weather forecasters understand these
realities and engage more effectively with the modern
hazard information system.

What does this new paradigm mean for the future
of hazardous weather prediction and communica-
tion? The scientific and sociotechnical revolutions of
the last few decades have transformed the creation,
communication, and use of information about hazard
risks, setting the stage for new relationships among
geophysical science, computer and information sci-
ence, and risk and hazards research and practice.
To take full advantage of these advances, it will be
critical to incorporate the roles played by members
of the public—including the complex, creative ways
that they are using information and communication
technologies—into how we approach creating and
communicating hazardous weather information.
People often have valuable knowledge about the risks
that they are exposed to, and they can integrate, con-
vey, and use information in ways that professionally
trained meteorologists and emergency management
personnel might never have imagined. As discussed
by Fischhoff (1995, p. 138), effective risk communica-
tion requires moving beyond “get[ting] the numbers
right” and “explain[ing] what we mean by the num-
bers” to incorporating those who may be affected by
a risk—in other words, the intended audience—as
partners. This is especially important because the
scientific and technological drivers of the system
are evolving rapidly, and so the system is changing
faster than we can study and understand it. Thus,
to intersect effectively with people’s dynamic infor-
mation interactions, risk interpretations, decisions,
and vulnerabilities, future approaches to hazardous
weather prediction and communication must be
flexible and adapt quickly to new technologies and
circumstances.

How can the knowledge developed through this
type of research be used to improve forecast, warn-
ing, and communication strategies? On Twitter, in
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our focus groups, and in related empirical research,
diverse people at risk are telling us what they need
and want to know, and how they are accessing,
interpreting, sharing, and using information as a
threat evolves. The computational modeling research
is building understanding about what types of pre-
dictions of weather-related hazards are possible on
different time scales and about how evolving hazard
information interacts with societal information flow
and protective decisions. By bringing this knowl-
edge together, we can identify new entry points for
improving hazardous weather prediction and risk
communication in the modern information environ-
ment in ways that help alleviate vulnerabilities and
reduce harm.
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