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SUMMARY 

The 1,2,3-triazole coordinated ruthenium carbene complexes (TA-Ru) 
were reported for the first time as a new class of modified Grubbs 
catalyst to achieve challenging olefin metathesis at higher 
temperatures without catalyst decomposition. Previously reported 
N-tethered Ru-carbene complexes all suffered from rapid cis/trans 
isomerization, causing significantly reduced catalyst reactivity.  These 
new TA-Ru complexes hold the active trans-dichloro conformation 
even at 80 oC, allowing effective olefin metathesis for challenging 
substrates. With this new TA-Ru catalyst, cross-metathesis (CM), ring-
closing metathesis (RCM) and dynamic covalent chemistry (DCvC) 
were achieved.  Excitingly, the reactivity of TA-Ru prevails all 
previously reported N-coordinated Ru-carbene pre-catalysts, Grubbs 
II, and Hoveyda-Grubbs, making the TA-Ru a transformative catalytic 
system in olefin catalysis. 

INTRODUCTION 
Olefin metathesis (OM) is widely recognized as one of the most significant 
developments in synthesis and catalysis over the past three decades. It offers an 
effective method for construction of complex molecular skeleton through C=C bond 
formation.1-7 The two main categories of metathesis catalysts are Mo-carbene 
(Schrock catalyst)8-11 and Ru-carbene (Grubbs catalyst)12-20, with the latter exhibiting 
better stability toward air and moisture, allowing for operation under less restricted 
conditions. Encouraged by the chemo orthogonal reactivity and numerous chemical, 
material and biological applications, researchers have put tremendous efforts in 
developing new Ru-carbene complexes systems for improved reactivity with higher 
TON and TOF, good substrate tolerability (more hindered olefin starting materials), 
product selectivity (E vs Z alkene)21, and more practical operation conditions 
(tolerability of high temperature and large-scale synthesis at high concentration)22-25 
etc.  Current modification strategies for Ru-carbene complexes could be broadly 
classified into three categories: the primary ligand, pre-catalyst design, and 
alternative operation conditions. As shown in Scheme 1A, the investigation on 
primary ligand led to the discovery of Grubbs I and II catalysts along with various 



	
	
NHC-modified carbene complexes. Pre-catalysts have been developed to improve 
catalyst stability and reactivity, including 18 e complexes (i. e. Grubbs III)26-28 for fast 
activation and Hoveyda modification.29-34 Recently, some new operation conditions 
have been developed for improved olefin-metathesis performance, such as the 
application of paraffin oil as reaction media under vacuum to achieve ring-closing 
metathesis and photoactivation of bis-NHC precatalyst.22,35 Overall, the versatile 
reactivity of olefin metathesis and its broad applications keep metathesis reactions 
under the spotlight. New systems that could address the key challenges associated 
with previous reported OM catalysts are highly desirable. 
 

 
Scheme 1. Triazole Ru-carbene (TA-Ru) as new olefin metathesis catalyst 
(A) Ru-carbene catalyst modification; 
(B) Limitation of N chelated Ru complexes; 
(C) TA-Ru catalysts with unique reactivity in olefin metathesis 
 
Our research group is interested in developing new OM catalysts to overcome the 
challenge of poor stability at high temperatures.  According to literature, the 
application of NHC primary ligand (over PR3) was the first breakthrough, which made 
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the Grubbs II one of the most widely adopted catalysts for OM in academic and 
industry research.18 Although efforts to develop NHC derivatives have led to 
improved catalyst stability (such as L1), the cost of making these new NHC ligands 
and potential problem on scale-up production raised concerns of this tunning-
primary-ligand approach for further catalyst optimization.36 The 18-e pre-catalysts 
design has received tremendous success in rapid transformation through fast 
initiation. As the trade-off, these fast-initiating catalysts typically have very poor 
stability at higher temperature (fast ligand dissociation and complex decomposition). 
The application of hemi-labile coordination led to the discovery of Hoveyda-Grubbs 
catalysts, which were considered a breakthrough in OM with balanced reactivity and 
stability.  Higher TON and broader substrate scope have been achieved.31 
Interestingly, although alternative hemi-labile ligand modifications have been 
explored over the past decade, especially with the amine and sulfur chelation (Ru-N 
and Ru-S binding),37-41 HG catalysts are still playing a crucial role in OM. This is likely 
due to the primary ligand vs trans-effect dilemma: while the strong coordinating NHC 
primary ligand helped the alkene activation through trans-effect, the Ru-N complexes 
(unlike Ru-O) favor the formation of cis-dichloride isomers (thermally stable), giving 
less reactive intermediates with open-coordination site at the cis position of NHC 
primary ligand (Scheme 1B).37 Thus, no N-modified Ru-carbene complexes have been 
identified as one paradigm changing modification, despite stronger Ru-N bond was 
formed in the process.  In this work, we report the triazole-Ru carbene complexes (TA-
Ru) as new class of OM catalysts.  Unlike other N-modified Ru-carbene complexes, 
the high kinetic barrier of Ru-TA dissociation grants excellent stability to the active 
trans-dichloro isomers even at high temperatures (80 oC) without isomerization. This 
makes the TA-Ru a practical N-tethered Ru-carbene catalyst for OM at high 
temperatures for the first time (Scheme 1C).  The readily available synthesis, excellent 
catalyst stability and superior reactivity make the TA-Ru a potentially new catalytic 

system for many foreseeable applications to come. 
 

RESULTS AND DISSCUSION 
One well-known challenge in olefin metathesis is E-alkene activation.  As shown in 
Figure 1A, although the 18e pre-catalyst G-III could give rapid terminal alkene 
activation, there was no reaction with E-olefins at rt or 40 oC.  To activate sterically 
more hindered trans-alkene, higher temperature (60 oC) was required, which led to 
the observed poor reactivity (low TON) due to competing catalyst decomposition at 
higher temperature.  Moreover, the Ru-complexes containing simple NHC ligands 
gave trans-alkene as the preferred OM products.  As a result, although the OM 
transformation is considered under reaction equilibrium, the C=C bond is not 
considered as one practical bond forming strategy in dynamic covalent chemistry 
(DCvC) due to the high temperature (>60 oC) required for E-alkene activation and 
rapid catalyst decomposition under this reaction condition (Figure 1B).  Notably, with 
the application of Ru-carbene catalysts containing modified NHC primary ligands, 
Grela and coworkers have reported an interesting process protocol with melted 
paraffin as reaction media under oil diffusion pump (removal of low bp alkenes), 
allowing RCM at high temperature (>110 oC).22 Although with limited reaction scope 
(not working well without ester linkage), this protocol is a representative example to 
achieve OM at high temperature.  Unfortunately, this method has not been applied 
in the dynamic covalent chemistry, likely due to the poor solubility of oligomer and 
rapid polymer precipitation, dragging the reaction mixture to polymerization with 
very low yield of the desired cyclic DCvC products. Therefore, to develop new 
metathesis catalytic systems that could be achieve in DCvC is not only novel but also 
highly desirable. 
 



	
	

 
Figure 1. E-Alkene activation and challenges for DCvC using OM 
(A) Trans-alkene activation requires high temperature 
(B) Design principle for DCvC using OM 
 
Our group has previously investigated 1,2,3-triazole (TA) coordination ability toward 
with various metal cations and we concluded that the high polarity nature (three N on 
one side of the molecule) makes of TA one dynamic N-ligand with high kinetic 
activation barrier.42-46 Thus, we postulate that TA-modified Ru-carbene complexes 
could serve as new OM catalysts with balanced reactivity and high-temperature 
stability.  Ultimately, it might provide a practical solution to make the long-expected 
OM-DCvC possible.   
To explore triazole-Ru binding, a library of various triazole derivatives were prepared.  
Some key factors for ligand design are summarized in Figure 2A.  Both alkyl and aryl 
substituted alkenes are prepared. The linker between TA and alkene gave either 5 or 
6-membered metallocycles. The N1 or N2 substituted triazole derivatives could be 
prepared and purified using our previously reported methods. The linkage between 
TA and alkene could be either N- or C-link. Both triazole and benzotriazole were used 
to explore the influence of different TA-cores. Based on this analysis, >30 TA-ligands 
were prepared (see details in SI) covering the different combinations of the above-
mentioned factors.  The resulting ligands were applied into the reactions with Grubbs 
(I and II) catalysts under various conditions. Some representative reactivity of the TA-
ligand exchange is summarized in Figure 2B (see details in SI). 
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Figure 2. TA-Ru synthesis and X-ray structures. 
(A) TA-alkene ligand design 
(B) TA-Ru synthesis conditions 
(C) X-Ray structures of TA-Ru complexes 
 
Treating TA-alkene (1.0 equiv) with either Grubbs I or II in DCM gave complete ligand 
conversion in 12 h (rt). Messy reactions were observed with G-I. This is likely due to 
the TA-substitution of both PCy3 in Grubbs I, which caused complex decomposition. 
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suggesting the slow complex decomposition with alkyl substituted carbene. Reaction 
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of NH-triazole gave TA-bridged complex clusters, which decomposed over time.  
Interestingly, the 4-vinyl-benzotriazole and G-II gave the formation of the designed 
TA-Ru containing 5-membered metallocycle. However, X-ray crystal structure 
confirmed the formation of cis-dichloro isomers due to rapid isomerization in this 5-
member chelating system.  Based on these critical reaction insights (see details in SI), 
triazole-styrene 1a to 1f were prepared and applied to react with Grubbs II. Complete 
conversion of G-II was obtained in 12 h. The desired TA-Ru complexes (TA-Ru 2a-2f) 
were obtained with excellent yields (> 90% in all cases).  Notably, the TA-alkenes 
represent all key structural cases: N-linkage vs C-linkage, N-1 vs N-2 isomers and N-
alkyl vs N-aryl derivatives. The structures of TA-Rus were characterized by X-ray 
crystallography, confirming the exclusive formation of trans-dichloro isomers. To 
make direct reactivity comparison, representative literature reported N-Ru complexes 
(N-Cat-1 to N-Cat-5) were also synthesized (Figure 2C).37-40  
 

 
Figure 3. TA-Ru catalyzed OM reactions at high temperature. 
(A) TA ligand exchange process with Hoveyda Grubbs catalysts 
(B) Catalyst stability under metathesis conditions 
(C) TA-Ru Reactivity in RCM 
 
As shown in Figure 3A, treating TA-alkenes with Hoveyda-Grubbs II gave complete 
ligand exchange (formation of TA-Ru), confirming the stronger coordination ability of 
TA (N) over ether (O) toward Ru cation. The different exchanging rates observed 
suggest the tunable binding ability of these TA-ligands. Monitoring the sample 
decomposition at higher temperature using 1H NMR provided the direct comparison 
of catalyst stability under metathesis conditions (Figure 3B). As expected, HG-II gave 
complete decomposition within 1 hour at either 60 oC or 80 oC.  Both TA-Ru-2a and 
TA-Ru-2f showed excellent stability at high temperature, giving only slight 
decomposition even at 80 oC. The thermal stability of all Ru complexes has been 
tested at various temperatures (40, 60, 80 and 100 oC), and the detailed results are 
provided in SI. 
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With the clearly improved thermal stability, the TA-Rus were used in RCM reactions 
to evaluate their overall reactivity.  It is well-known that RCM of mono-substituted 
diene 3a could give cyclic alkene 4a in excellent yields using 1% HG-II at rt.  Similarly, 
the fast-activation catalyst G-III could achieve the same >98% yield with 1% loading 
if conducting the reaction at rt.  To achieve a higher TON, lower loading would be 
applied, which would require a longer reaction time. In this case, the competing 
catalyst decomposition became a concern.  For example, with 0.01% loading of HG-
II, RCM of 3a could only reach a 60% conversion at rt.  Raising reaction temperature 
to 40 oC could only slightly improve the reaction performance due to faster catalyst 
decomposition.  The excellent thermal stability of TA-Rus makes them ideal catalysts 
for RCM with high TON and large-scale synthesis.  For example, using TA-Ru-2f, 
almost complete conversion could be achieved with only 80 ppm catalyst loading at 
80 oC, giving TON > 10,000 (see different TA-Ru RCM reaction details in SI).  
Alternatively, the ability to promote OM at higher temperature allows TA-Ru as 
effective catalyst in promoting RCM of tetra-substituted alkenes.  While all tested Ru-
carbene catalysts, G-II, HG-II, G-III and all other N-Cats, gave almost no reaction for 
the RCM of 3b even with 50% loading, TA-Ru-2f successfully promoted this 
challenging transformation at 80 oC, giving 4b in modest yields.  It is important to 
note that all other N-chelated Ru-carbene catalysts N-Cat 1-5 gave even worse results 
than HG-II (see details in SI), which clearly highlights the unique reactivity of TA-Ru 
beyond any previously reported N-chelated Ru-carbene complexes. 
 
With the confirmation of TA-Ru’s excellent reactivity in promoting OM reactions at 
high temperature, we put our attention to the investigations whether TA-Ru could be 
applied as the first viable catalytic system for dynamic covalent chemistry (DCvC) 
through C=C double bond construction.47,48 The cross metathesis (CM) between two 
E-alkenes 5 and 6 were performed.  The results are summarized in Figure 4. 
 

 
Figure 4. Cross-metathesis (CM) of E-alkenes. 
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Ru modification as a potential new breakthrough in Ru-carbene based OM 
transformations.  Encouraged by this result, we turned our focus to investigating 
whether olefin metathesis could be used as a new protocol in dynamic covalent 
chemistry, assuming that trans-alkene activation is feasible at higher temperature 
using TA-Ru. 
 

 
Figure 5. Olefin metathesis DCvC promoted by TA-Ru 
 
Encouraged by the successful activation of E-5b using TA-Ru, dienes 8a-8c were 
prepared with the intention to form the hexametric compound 9 as the thermally 
stable macrocycles.  Notably, Zhang group has previously reported this chemistry and 
claimed that the ortho-divinylbenzene 8 could give macrocyclic compound 9 under 
olefin metathesis conditions.47  With the 120o functional group angle, the hexametric 
structure is the thermally stable product, if reaction equilibrium could be reached. 
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polymer formation.  As expected, with the syringe pump addition of 8 (over 12 h) into 
TA-Ru solution in DCE at 70 oC (0.5 M initial concentration), the desired macrocycles 
9a-9c were all received in excellent isolated yields (>88%) with only 1% TA-Ru loading.  
The cyclic core structure was identified by XRD, despite the presence of atom 
disorder.  It is important to note that all other tested Ru-carbene catalysts, including 
those literature reported N-chelated complexes, all gave <5% yields either under the 
dilution or syringe pump slow addition conditions, confirming the unique reactivity of 
TA-Ru as the practical good catalyst in DCvC through olefin metathesis. 
 
To understand why 1,2,3-triazole is a unique N-ligand in Ru-carbene coordination, 
the DFT computational studies were performed.  To our surprise, the catalytically less 
reactive cis-dichloro TA-Rus were the thermodynamically more stable isomers, similar 
to other chelated N-ligands (Figure 6A, see details in SI).   
 

 
Figure 6. Mechanism for trans-cis isomerization 
(A) DFT study of complex conformation 
(B) Synthesis of cis-dichloro TA-Ru and X-ray 
(C) Proposed isomerization mechanism 
 
From the synthesis of TA-Ru, all complexes obtained are exclusively trans-dichloro 
isomers and no isomerization even upon heating these complexes to 80 oC for 24 
hours.  Raising the temperature to 100 oC gave decomposition of TA-Ru, forming 
complex reaction mixtures. Enlighted by the computational results, we re-evaluated 
the reaction and cis isomers were identified from NMR.  Carefully purification gave 
cis-TA-Ru-2c in 15% yield with structure characterized by X-ray (Figure 6B).  
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Interestingly, after exploring reactivity of trans and cis TA-Ru, an improved synthesis 
of cis-TA-Ru was identified through addition of 1 equiv of PCy3 (75% yield of cis-TA-
Ru-2c).  As computational studies predicted, the cis-TA-Rus are very stable and will 
not convert into trans-isomers under various conditions.  Moreover, applying these 
cis-TA-Ru in the RCM, CM and DCvC discussed above, no reactions were observed 
at 60 oC, which suggested the high stability (and poor reactivity) of theses cis-TA-Ru.  
Two isomerization paths are proposed. Based on the reaction results, 14e 
intermediate A could not give the formation of cis-isomer as no TA-Ru isomerization 
was observed during the reaction cycle.  Considering that NHC could provide strong 
trans-effect in leading the axial bond coordination, the isomerization must occur 
either through axial coordinated intermediate B or 18e fully coordinated intermediate 
C. The detailed reaction mechanism and substituted effects of TA-ligands are 
currently under investigations in our lab and will be reported in due course.  
Nevertheless, the excellent thermal stability, good catalytic reactivity at high 
temperature and capability in retaining the catalytic active trans-dichloro geometry 
make the TA-Ru one unique new catalytic system for OM reaction. 

 
CONCLUSIONS  
In summary, we disclosed herein the effective use of 1,2,3-triazole-coordinated 
ruthenium carbene complexes, TA-Ru, as olefin metathesis catalysts for the first 
time. Unlike previously reported N-chelated Ru-carbene complexes, TA-Ru showed 
excellent thermal stability and reactivity, and were able to retain their catalytic 
activity even at high temperatures, owing to their trans-dichloro geometry. This sets 
them apart from all other previously reported N-chelated systems, allowing for 
trans-alkene activation with excellent performance that was previously unachievable. 
The use of the TA-Ru catalyst, along with the syringe pump addition strategy, has 
introduced a practical new approach in constructing C=C bonds under dynamic 
covalent conditions, and offers numerous new opportunities in the future. Overall, 
this new TA-Ru system has made challenging olefin metathesis transformations. 
Investigations of Z-alkene synthesis, asymmetric metathesis, and more complex 
molecular skeletons under the DCvC concept are currently ongoing in our lab to 
explore these possibilities. 
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