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Budescu, & Attali, 2005; Diamond & Evans, 1973; Frary, 1989) and have been abandoned by major
examinations such as the GRE and SAT (Bennett & von Davier, 2017). Attention has also been paid to
more qualitative issues of item design, aimed at reducing the potential for construct-irrelevant
variance and improving the identification of knowledgeable responses from lucky puessing
(Haladyna, Downing, & Rodriguez, 2002). To this end, many discipline-specific improvements have
been proposed (Breakall, Randles, & Tasker, 2019; Moore, Nguyen, & Stamper, 2021; Towns, 2014),
including “ordered MC items” which recast distractors in terms of a staged progression in subject
mastery (Lazenby, Balabanoff, Becker, Moon, & Barbera, 2021).

1.1. Review of Theoretical Frameworks

The prevailing theoretical framework for controlling puessing in MC responses is item response
theory, or IRT. IRT models performance (probability of a correct response, P) on a given MC item
as a function of a student’s “latent ability™ & using a generalized logistic equation of the form:

o6-B)
I+ edeB

The parameters a, b, ¢ in Equation (1), define item characteristic curves (ICC), express item difficulty,
item discrimination, and guessing as represented by the curve’s position along the abscissa, its
steepness, and intercept on the ordinate. In the IRT paradigm, knowledge is inferred on a per-item
basis: a test consists of a set of items each with their own chracteristics, individually probing student
ability to generate the observed test score.

A different perspective of MC assessment is to parameterize knowledge and other psychometric
states directly from a phenomenological analysis of the MC test score (Wang & Calhoun, 1997), rather
than the inferred functional characteristics of individual test items. Psychometric models provide a
quantitative formulation of the intuition that MC scores integrate the test performance of multiple
psychometric states. In this complementary approach, test scores X represent the probability of
passing a student as follows (Dubins, Poon, & Raman-Wilms, 2018):

P(X=1x) = ::1[:{]:;—”1;] [(f){l _ g (::f)pz_f“ _ gy 2)

In Equation (2), a test of n MC items returns x correct responses. Of the correct responses, at most k
items are due to knowledge and the remaining items are guessed with an overall probability of success
p. Blunder § is the probability of an incorrect response despite knowledge. For modeling purposes,
blunder is an empirical parameter without reference to the underlying reason e.g., misinformation or
some construct-irrelevant factor. Equation (2) takes as input an ensemble of MC items, so it is directly
useful when quantification of knowledge of whole-fest structures is desired. As is the case with
phenomenological models, p and f reflect the data as observed and may be colored by partial
knowledge. These limitations and strategies for mitigation are addressed in the subsequent
Discussion section.

P(6;a,b,c) =c+(1—2¢) (1)

1.2. Rationale of This Study

Currently, methodological gaps exist in knowledge assessments from MC tests. IRT’s treatment of test
items as the unit of analysis lends itself to MC item design and, given a suitably diverse inventory of
items, test optimization. Without sizable test banks, assessors in specialized coursework are not
typically in possession of the large inventories needed to make significant adjustments to tests, nor
may abrupt changes be desirable from a continuity perspective. In most classroom situations where
test structures are at least partially constrained, one is often interested in the level of knowledge and
guessing by the examinees writing the tests as constructed, rather than focusing on characteristics of
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Table 1. MC Test set for this Study.

Test # ltems # Students # Analyzed # Non-responses®
A 43 40 1,668 12 {0.7%})

B 58 40 2302 18 {0.8%])

C 43 15 1415 55 (3.7%)

D 40 7 1461 19 {1.3%)

E n 20 569 17 {1.9%)

F 25 5 641 9 (1.4%)

G 32 20 638 2 [0.3%)

H 17 25m 412 13 (3.1%)
Total 286 9,106 139 (1.5%)

Note. # analyzed = # questions » # students - # non-responses.
*Mumber and % of Instances of MC or confidence non-response, not the number of respondents.
**These students took Test F also.

3. Results
3.1. MC Test Scores Alone are Not Robust Measures of Explicit Knowledge

To address Question 1, we begin with the simplest psychometric model of test scores. If only guessing
is considered, test scores are probabilistically modeled by a binomial distribution:

px=x =} )ra-p" ®

In this base model, knowledge is indirectly inferred as score distributions that are right-shifted from
those expected from random selection among equiprobable choices; p= .2 for a five-choice MC test.
Easier questions cluster toward to the left of the distribution and difficult questions to the right. We
illustrate this model with Test A, which consists of n =40 items written by 42 students (Table 1).
Equation (3) affords a fit to the data by conventional frequentist maximum likelihood methods
[Figure 1A]. To assess prior beliefs in a Bayesian realization of the model, we treated the prior
expectation of p by its conjugate prior, which is a beta distribution [Appendix 2A]. This and other
choices of priors made no meaningful effect on the posterior estimate for p=.71 [Figure 1B]. The
other tests in the data set exhibited similar statistics. A simple model of MC responses as a basket of
Bernoulli trials is therefore robust to prior beliefs on the test score.

To capture knowledge in MC test scores explicitly, the simplest extension of Equation (3) is to treat
each question as either probabilistically or definitively selected (Dubins, Poon, & Raman-Wilms,
2016). Knowledge is directly modeled as the removal of a subset of k items, or equivalently, a fraction
k/n of the whole test of n items, from probabilistic consideration:

PX=x)= (:: i)p“"{l -p)" T x=k (4)

As with p, a Bayesian approach assigns a prior distribution to the knowledge parameter k, in this
case (for a non-negative integer) a beta-binomial distribution [Appendix 2B]. In sharp contrast
with the base model, posterior estimates of knowledge k and success rate p are strongly
influenced by the choice of the prior distribution for k. Prior expectations of knowledge (k/n)
at 30%, 50% and 70% result in altogether different posterior values of k. A bias toward higher
levels of knowledge in the prior distribution inflates the posterior knowledge estimate while
discounting the posterior estimate on the guessing efficiency [Figure 1C and Figure 1D]. Thus,
Bayesian modeling of explicit knowledge based on test scores alone does not generate unbiased
posterior estimates. Since Model (4) is the simplest formulation of knowledge as a probabilistic
observation, this limitation would persist in more complex models that rely solely on test scores
as input.
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Figure 1. Umitation of Test Scores Alone In Empirical Modeling of Student Knowledge. EEE Histogram of scores from Test A (40
items x 42 students = 1,680 responses) are shown as an example. A, Binomial distributions for random selection (&2-.2) and
madmum Nkelihood Bt to binned 5-option MC scores (orange). B, Bayeslan Bt of the basal model, Bq (3), to the data based on a prior
expectation consistent with E& .2 The posterior distribution for ERs shown with the 95% credible interval. € and D, Bayeslan
Inference according to Model (4), Incorporating student knowledge B Shown are prior (beta-binomial) distributions for Eipeaking at
3096, 509, and 70% knowledge In Panel C. Posterior distributions for Biand E&nd thelr assodated credible Intervals are shown In
Panel D.
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Table 2. Psychometric Cassification of Examinee Knowledge In MC Testing.

Confidence Level Comect Incomect

1 Knowledge: Blunder (misinformed or construct-imelevant):
(Confident) “l was confident In my answer, and it was comect.” 1 was confident In my answer, and it was wrong.”
2 Partial knowdedge: Partial knowledge:

(Partially confident) °l was not sure of my answer, and It was comect.”  *1 was not sure of my answer, and It was wrong.”
3 Lucky guess (uninformed]: Unbucky guess {uninformed):

(Mot confident) “I was not confident In my answer, and It was comect.” 1 was not confident In my answer, and It was wrong.”

Table 3. Summary Classification of Aggregate Test Data.

Confidence Level Comact Incorrect Comect:Incormect

1 (most) Knowledge: 42.0% Blunder: 8.6% 53
(n=3,887) (n=730)

2 Partial knowledge: 20.4% Partial knowledge: 13.2% 14
{n=1,828) (m=1,262)

3 (least) Lucky Guess/ Unlucky Guess/Uninformed: 9.5% 0.8
Uninformed: 63% (n=T8&7)
(n=614)

in improving scores in the direction of more confident responses was evident [Figure 2B]. To precisely
resolve the relationships between confidence levels and knowledge, we stratified test performance by
the self-reported confidence ratings. Specifically, we treated the confidence response as second
random variable () with three levels of denoted from 1 to 3. Since the three confidence levels span a
complete sample space, () is described by a trinomial distribution:

n!
T qlgl(n—q — @)

For each level of confidence, test performance was modeled according to Model (3). Individual item
scores and their paired confidence responses jointly entered the model. Bayesian inference yielded
estimates of g, (i=1, 2, or 3) for each of the three confidence categories, and their corresponding
performance p; [Appendix 2C]. For Test A, the dispersion in the parametric estimates (95% credible
interval) revealed non-overlapping confidence levels as well as ordered tiers of test performance
[Figure 2C]. Specifically, items which students rated the most confident were correctly answered
(p1>80%) at a substantially higher probability than items on which students admitted to any level of
uncertainty. An intermediate performance level associated with partially confident responses (p-
o~60%) could be unambipuously distinguished from the least confident responses (p;~40%). The
least confident category performed with preater success than expected for random guessing for 5-
option questions (p=20%). In addition, the partially confident category performed better than
expected if the respondents eliminated options randomly: assuming an equal probability for students
to eliminate 0 to n-2 options, p = (0.2 + 0.25 + 0.333 + 0.5)/4 = 0.321 for a 5-option MC item (Dubins,
Poon, & Raman-Wilms, 2016). Thus, a self-assessed lack of confidence reflected a more considered
approach than random guessing. We address potential reasons and mitigating solutions to these
discrepancies in subsequent the Discussion section. Parenthetically, the well-resolved tiers of con-
fidence and performance demonstrated that, at three categories, statistical precision was not at all
limited by sample size.

From Table 2, blunder (which includes misinformation) may be directly taken as the rate of
incorrect responses in the most confident category, i.e., §=1- p,. The posterior distributions give a
range for § between 10% and 15% (95% HPD), which was within the range reported in the literature
(Fayyaz Khan, Farooq Danish, Saeed Awan, & Anwar, 2013). In the data set, the higher success rate in
educated guessing tended to offset the negative effect of blunder.

AQ=a,&=q) 1" pa%(1 — py — p2)" (5)
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Table 5. Pass Marks (%) Required to Detect 50% and 60% Knowledge for a 5-OQuestion MC, with < 5% of a False Positive Rate.
Pass marks requirad for

B=15.6%, probabilities and
rates of guessing from
the means of Table 5
(p=5324% Column C: Column D:
Column A Column B: Type Il error: Type | emor:
S0%: 60R% Probability that a student with 50% knowledge Probability that a student with no
#Items Enowledge Knowladge falls (pass mark from Column &, p=5324) passes (pass mark=50%, p=.42‘|"]
2 - - - 66.5%
4 - - - 56.1%
[ - - - 40,00
8 100.0% - 05.0% 45.5%
1o 100.0% 100.0% 098.2% 47.4%
12 100.0% 100.0% 093.0% 30.2%
14 02.0% 100.0% 06.0% 36.7%
16 03.8% 93.8% 08.4% 34.6%
18 B8.0% 04.4% 96.1% 32.7%
0 00.0% 00.0% 097.0% 31.0%
30 83.3% 86.7% 95.1% 24.3%
40 82.5% 85.0% 06.8% 19.7%
50 B0.0% 84.0% 05.4% 16.2%
60 B0.0% 81.7% 04.1% 12.4%
70 T8.6% 81.4% 96.1% 11.2%
80 T1.5% 81.3% 95.3% 0.4%
o0 T1.8% B0.0% 0d.6% B.0%
100 T7.0% B0.0% 05.3% 6.8%
120 75.8% 79.2% 95.3% 4.00
140 75.7% 78.6% 04.5% 31.6%
160 75.0% 78.1% 95.7% 27%
180 T4.4% T7.8% 95.2% 2.0%
200 T4.5% T1.5% 04, 7% 1.5%
220 T4.1% 76.8% 95.8% 1.1%
240 73.8% 76.7% 95.5% 0.8%
260 73.5% T6.5% 95.1% 0.6%
280 73.6% T6.4% 04 8% 0.5%

Mote: An Excel template used to for model the predicted test outcomes Is provided In Supplementary Spreadsheet. *Waighted
average combining the partial and least confident categories; BLeast confident category.

would pass the test (Column D). The model predicts that this hypothetical nalve student would pass
more than 5% of the time on a test with fewer than 120 items, given a 50% pass mark. For an “average”
test derived from our data set, consisting of 30 items, the model predicts a 24.3% chance of passing a
natve student, piven a 50% pass mark. Thus, based on the average characteristics of the tests and
students in the data set, a 5-option MC test would “fail to fail” a least-confident student about a quarter
of the time.

4. Discussion
4.1. Implications for Knowledge Measurement

In this study, we used a series of empirical models of knowledge, guessing, and blunder to resolve their
contributions in MC test scores. Compared with item response theory (IRT), which is geared at item
analysis, the two approaches thus represent different perspectives and offer complementary benefits in
modeling test scores. Where IRT provides detailed analysis on individual test items, our models
resolve whole-test performance and enable comparison across tests. Applying these models to a set of
real-world assessments, we showed that scores alone are insufficient to disentangle explicit knowledge
(number of questions known) among probabilistic outcomes (Question 1). More precisely, the
Bayesian analysis showed that prior belief of the knowledge level strongly pre-disposed the inferred
knowledge level when only test scores were considered. This is not a trivial result. Without explicitly
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sensitivity is more important in formative assessments that emphasize growth and change (Ding,
Davison, & Petersen, 2005). The techniques presented here furnish the tools for guiding these
decisions and provide useful information in curricular assessment.

As a practical matter, we are not advocating that confidence surveys be administered with MC test
as a routine scoring aid, which would likely bias examinee response. Instead, confidence surveys are
more useful in test development — such as the first few iterations of the test — to establish pass marks
for future sittings of the test based on the trial results. Subsequently, surveys can be re-administered
periodically (using the existing parameters for the priors) as part of existing curricular self-studies or
assessing the validity and reliability of test structures or items. Informed consent by the examinees
would include an explicit statement of their participation in continuous test improvement. Since the
results would update future versions of the test, and not influence how the present instance would be
scored, we do not expect this knowledge to significantly bias examinee behavior.
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APPENDICES

Appendix 1. Technical Analysis of Test Data Set

Test A B C ] E F G H
Mean (50} T15(8.7) 695(156) 66.2(126) 646(150) 7400132 B0E(134) 722(167) 6ET(139)

DE culty indices* @ @ ® @ @ @ @
O D S & & &

KR20 0433 0.818 0671 0.798& 0.551 0720 0751 0.59

*Distribution of the diE culty Indices: < 0.25 (redy; 0.25 to 0.75 (yellow]; > 0.75 (green.
**Distribution of the discrimination Indices: < 0.1 (red); 0.1 to 0.3 (yellow); > 0.3 (green).

Appendix 2. Bayesian Modeling of MC Scores
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Appendix 2B. Explicit Modeling of Knowledge

To model knowledge directly in a probabilistic context, knowledge is treated as the functional removal of a subset of k <
g items from the test, Equation (1). For Bayesian analysis, this extended model is:

obs~Binomial(p — k,q — k)
p-Beta(ay, ) (52)
k~Beta — binomial|az, £;, 9)

k ~ BetaBinomial
obs = Binomial

The mew discrete parameter representing student knowledge, k. is modeled as a beta-binomial prior
distribution which spans the interval [0, g]. Beta-binomial distributions are well suited for priors for k as
they model the fraction of known items (k/g, out of the test of g items) as a random variable within the beta
framework.

As shown in Figures 1C and I, posterior estimates of p and k are highly sensitive to the prior distribution for k. As
Figure 51 shows, the dispersion of these estimates i.e., widths of the posterior distributions also depend strongly on the
prior for k.
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Figure 51. Influence of the Dspersion In the Prior Distributions on Posterior Estimates by a Simple Model Incorporating Student Knowledge.
Test A scores (42 Items) are shown as an lllustrative example. A, Two prior distributions for k, both concentrated at kfq = 50% (g = 40)
but differing In dispersion. B, Postarior distributions of k and p following 105 steps of MCMC simulation, discarding 104 steps of burn-
In {not shown). €, Fits of the resultant binomial distributions to the observed scores.

Appendix 2C. Incorporation of Confidence in MC Score Analysis

To overcome the sensitivity of modeled knowledge level to its prior distributions from test scores alone, knowledge
enters independently from a paired survey of confidence levels from the respondents. Since the three confidence levels
span a complete sample space, they were subject to Bayesian analysis in a Dirichlet-multinomial framework (Chaloner &
Duncan, 1987} in which the confidence levels were represented as a trinomial distribution with a Dirichlet prior,
Equation (3). To express the differential performance among the three confidence levels, test scores corresponding to
each confidence level were modeled separately as binomial distributions with beta-distributed priors. Since the number
of confidence responses g from the three levels sum to the total number of questions in the text, the success rates
(probability of correct answers) over the three confidence levels (i=1 to 3) link the confidence responses with
performance data for the N students:
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=1 = (53)
]
pi T

a ~ Mutnoml bhunder ~ Deterministic

As before, the analysis was performed numerically by MCMC simulations, here initialized with uniform a Dirichlet
distribution for q (confidence levels) and beta priors for p (correct answers). (Bold symbols denote vectors spanning the
three confidence levels.) The simulations resolved estimates of q and p from the posterior distributions (Figure 2D).
Mote that the success rates p associated with each level of confidence relate to the subsef of items on which the students
offer that opinion.

As originally formulated, blunder (including misinformation) is the probability of an incorrect answer despite
knowledge, whatever the proximal cause (Dubins, Poon, & Raman-Wilms, 2016). Since knowledgeable respondents
are mapped as most confident, blunder was realized as:

blunder = 1 — p{ most confident) (54)

Agppregate analysis of the fitted data as a function of mean test scores (Figure 3B) shows a differential contribution to test
performance among the three confidence levels. Figure 3B included a confidence outlier as shown in Figure 3A. For
completeness, exclusion of this out-lying test in Figure 52 below did not alter the conclusion of the analysis.
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Figure 52. Comelation of Success Rates Per Confidence Level Minus Outller.
MNote. The same fits as described for Figure 3B In the main text were applied to the data set in Table 2 exduding the data for Test F

{purple symbols). The least confident category was still more efficlent In performance than the other two categories in tests over
~ 7% average.
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