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1 | INTRODUCTION

It is an important problem in algebraic geometry and in differential geometry to decide if a
given Fano variety X admits a Kéhler-Einstein (KE) metric. The Yau-Tian-Donaldson (YTD)
conjecture predicts that the existence of a KE metric on X is equivalent to the K-polystability
of X. Using Cheeger-Colding-Tian theory, the YTD conjecture was first proved when X is
smooth [7, 17, 46], when X is Q-Gorenstein smoothable [33, 44], or when X has dimension
2 [31]. Later, a different method, namely the variational approach, was introduced in [6]. The
analytic side of the variational approach was completed in [29, 32] which shows that a Q-Fano
variety X, that is, a Fano variety with klt singularities, admits a KE metric if and only if X
is reduced uniformly K-stable, a concept introduced in [23] as an equivariant version of uni-
form K-stability (see also [49]). Recently, using purely algebro-geometric methods, the work
[35] establishes the equivalence between K-polystability and reduced uniform K-stability. This
work, combining with the variational approach, proves the YTD conjecture for all Q-Fano
varieties.
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K-stability of del Pezzo surfaces which are quasi-smooth hypersurfaces in weighted projec-
tive 3-spaces has been studied extensively. Johnson and Kollar [25] classified those which are
anticanonically polarised (that is, have Fano index 1) and decided the existence of a KE met-
ric on many of these, using Tian’s criterion which relates KE metrics to global log canoni-
cal thresholds (also called a-invariants) [13, 19, 20, 40, 41, 45]. This method was applied to
most of these del Pezzo surfaces by Araujo [4], Boyer—-Galicki-Nakamaye [12], and Cheltsov-
Park-Shramov [15]. One case was missing and was finally solved in [14] using delta invariants
(see [9, 22]).

The (non-)existence of KE metrics on many del Pezzo surfaces which are quasi-smooth hyper-
surfaces in weighted projective 3-spaces with Fano index >2 has been studied in [14-16, 27].

In this paper, we study K-polystability of quasi-smooth degree 2a hypersurfaces in the weighted
projective space P(1,1, a,a). When a € {2, 4}, such del Pezzo surfaces are Q-Gorenstein smooth-
able, and their K-polystability was determined by Mabuchi-Mukai [37] and Odaka-Spotti-Sun
[42] (see Remark 5). To the authors’ knowledge it is not known if they are K-polystable for an
integer a = 3 or a > 5. In [27], Kim and Won conjecture that these surfaces are K-polystable and
not K-stable.

Our main result relates the K-polystability (respectively, K-semistability) of degree 2a hyper-
surfaces in P(1, 1, a, a) to GIT polystability (respectively, GIT semistability) of degree 2a binary
forms (see [39, Chapter 4]).

Theorem 1. Let a > 2 be an integer and let P(1,1, a, a) be the weighted projective space with coor-
dinates [x,y, z, w] with weights deg x = degy = 1 and degz = degw = a. Let X be a hypersurface
of degree 2a in P(1,1, a, a).

Then X is K-semistable (respectively, K-polystable) if and only if, after an automorphism of
P(1,1,a,a), the equation of X is given by z> + w? + g(x,y) = 0 where g # 0 is GIT semistable
(respectively, GIT polystable) as a degree 2a binary form. Moreover, X is not K-stable.

As a consequence we prove the K-polystability of quasi-smooth hypersurfaces in P(1, 1, a, a) of
degree 2a, hence partially confirming [27, Conjecture 1.3].

Corollary 2. Let a > 2 be an integer and let X be a degree 2a quasi-smooth hypersurface in
P(1,1, a, a). Then X is K-polystable and not K-stable. Moreover, X admits a KE metric.

Recently, the result of this corollary has been independently announced by Viswanathan using
different methods.

It is possible to give a proof of K-polystability for a general hypersurface in P(1, 1, a, a) of degree
2a, when a is odd, by analysing the deformation theory of the toric surface appearing in Proposi-
tion 3 similar to [26] and without using Theorem 1.

Notation and conventions

We always work over C. A del Pezzo surface is a normal projective surface whose anticanonical
divisor is Q-Cartier and ample. Every toric variety we consider is normal. We do not even try to
write down the definitions of K-(poly/semi)stability of Fano varieties and of log Fano pairs: we
refer the reader to the excellent survey [47], the paper [5], and to the references therein.
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2 | PROOFS

In what follows a is a fixed integer greater than 1. We consider the weighted projective space
P(1,1, a, a) with coordinates [x, y, z, w] with weights degx = degy = 1 and degz = degw = a.

Proposition 3. IfY is the hypersurface in P(1, 1, a, a) defined by the equation zw — x*y? = 0, then
Y is a K-polystable toric del Pezzo surface.

Proof. We fix the lattice N = Z? and its dual M = Hom (N, Z). Elements of N will be columns
and elements of M will be rows.
Let Q be the convex hull of the points

(0,0), (0,1), (a~%,0), (—a~1,1)

in M. Let X be the inner normal fan of Q; thus X is the complete normal fan in N whose rays are

generated by the vectors
a 0 —a 0
(0)-0)-()-(5) »

We want to show that Y is the toric variety associated to the fan X.

Provisionally, let TV(Z) denote the toric variety associated to . Consider the cone7in M @ Z
spanned by Q X {1}. Consider the finitely generated monoid r N (M @ Z) and the semigroup alge-
bra C[t N (M & Z)], which is N-graded via the projection M @ Z - Z. Toric geometry says that
TV(Z) = ProjC[t n (M & Z)]. One can see that the minimal set of generators of the semigroup
TN (M @ Z) is made up of the vectors

(07 0’ 1)9 (07 1’ 1)9 (17 0’ a)’ (_1’ a’ a);
these vectors satisfy a unique relation:
a(0,0,1) + a(0,1,1) = (1,0,a) + (-1,a,a).

Hence, the N-graded ring C[t N (M @ Z)] coincides with Cl[x,y,z,w]/(zw — x%y?), where
degx = degy = 1and degz = degw = a. Therefore Y = TV(Z).

The vectors in (1) are the vertices of a polytope P in N. This implies that Y is a del Pezzo surface,
that is, —Ky is Q-Cartier and ample.

Let P° be the polar of P; thus P° is the convex hull of (0, +1) and i(%, —1) in M. The polygon
P° is the moment polytope of the toric boundary of Y, which is an anticanonical divisor. Since P
is centrally symmetric, also P° is centrally symmetric, thus the barycentre of P° is the origin. By
[7]Y is K-polystable. O

Remark 4.

(i) Another way to show K-polystability of Y is by realising Y = (P! x P1)/(Z/aZ), where the
Z/aZ-action on P! x P! is given by

¢ ([ugs uy ], [vg, 1 1) 2= ([Cutgy ug 1, [E Mg, 01])  with & = e271/0,
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520 | LIU AND PETRACCI

Since the above action is free away from finitely many points, and it preserves the product
of Fubini-Study metrics on P! x P!, we know that Y admits a KE metric and hence is K-
polystable by [7].

(ii) A degree 2a hypersurface in P(1, 1, a, a) is defined by an equation

q(z,w) + f(x,y)z + h(x,y)w + g(x,y) =0

where q is a quadratic form, f and h are forms of degree a, and ¢ is a form of degree 2a. With
an automorphism of P(1, 1, a, a) which is induced by a linear change of the coordinates z, w,
we can diagonalise the quadratic form g, so that the term zw disappears. Furthermore, if q
has full rank, with an automorphism of P(1,1, a, @) induced by z - z + 1 andw P w+ ﬁ

the equation becomes
zZZ+w? 4 g(x,) =0

Proof of Theorem 1. We start from the ‘if’ part. Suppose X C P(1,1, a, a) is defined by the equa-
tion z2 + w? + g(x,y) = O with g # 0. Then the ‘if part states that X is K-semistable (respectively,
K-polystable) if g is GIT semistable (respectively, GIT polystable).

By forgetting the w-coordinate, we obtain a double cover 7 : X - P(1,1,a) with branch
locus D = (z? + g(x,y) = 0). Thus by [36, 51] we know that X is K-semistable (respectively, K-
polystable) if and only if (P(1, 1, a), %D) is K-semistable (respectively, K-polystable).

Let us assume for the moment that ¢ is an arbitrary degree 2a binary form. Denote by
D, :=(z*> = 0) as a divisor on P(1,1,a). It is clear that P(1,1,a) is the projective cone over
P! with polarisation Op:1(a), and %DO is the section at infinity. Since P! is KE, [30, Proposi-
tion 3.3] shows that (P(1,1,a),(1 — %)%Do) admits a conical KE metric, where r € Q. satis-

fies Op1(a) ~g —r 'Kpi, thatis, r = % By computation, (1 — %)% = az—_al Thus (P(1, 1, a), az—_HIDO)
admits a conical KE metric and hence is K-polystable. It is clear that under the G,,-action o on
P(1,1, a) given by o(t) - [x,y,z] = [x,y,tz], the log Fano pair (P(1, 1, a), D) specially degen-
erates to (P(1,1,a), & DO) as t — 0. Thus by openness of K-semistability [10 48] we know that

(P(1,1,a), & D) is K semlstable

Next, we assume that g # 0 is GIT semistable. By GIT of binary forms, we know that each
linear factor in g(x,y) has multiplicity at most a. In other words, the curve D has only A;_;-
singularities (that is, locally analytically given by x? + y* = 0) where k < a. Thus we have that
Ict(P(1,1,a); D) > % + i = a+2 . This implies that (P(1, 1, a), a+2D) is a log canonical log Calabi-
Yau pair. Thus interpolation for K-stability [5, Proposition 2.13] implies that (P(1, 1, a), 2D) is K-
semistable.

Next, we assume that g # 0 is GIT polystable. There are two cases: g is strictly GIT polystable
(that is, GIT polystable but not GIT stable), or g is GIT stable. In the first case, under a suit-
able coordinate we may write g(x,y) = x%y®. Thus the double cover X is toric, and as shown in
Proposition 3 X is K-polystable. In the second case, we know that each linear factor in g(x, y) has
multiplicity at most a — 1. Thus the curve D has only A,_;-singularities where k < a — 1. Thus
we have that Ict(P(1,1,a);D) > + > a—+2 , which implies that (P(1, 1, a), a+2D) is a klt log

Calabi-Yau pair. Thus interpolatlon for K stablhty [5, Proposition 2.13] implies that (P(1, 1, a), > D)
is K-stable. This finishes the proof of the ‘if’ part.
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ON K-STABILITY OF SOME DEL PEZZO SURFACES OF FANO INDEX 2 | 521

Next, we treat the ‘only if’ part. In fact, this follows from moduli comparison arguments as
in [5]. Let A := H(P!, Op1(2a)) be the affine space parametrising degree 2a binary forms. Let
ASS C A\ {0} be the open subset of GIT semistable binary forms. Consider the universal family of
weighted hypersurfaces X — A% where X C P(1,1,a, a) X A% has fibre (z> + w? + g(x,y) = 0)
over each g € A, By the ‘if’ part we know that each fibre of X — ASS is K-semistable. Consider
the (G, x SL,)-action 1 on A given by A(t, A) - g(x,y) = t?g(A~1(x, y)). It is clear that A*S is a
(G,, X SL,)-invariant open subset. Then there is a (G,, x SL,)-action 1 on X as a lifting of 1 given
by

Z(t’A) : ([X,y, z, w]a g) = ([A(X,y), tZ,tU)],l(t,A) : g)

Denote by M®IT :=[A%/(G,, X SL,)] and MC'T := P//SL, where P := P(A). It is clear that
MO'T is the good moduli space of MC!T. Taking quotient of the family X — A% by A, we obtain
a Q-Gorenstein flat family of K-semistable Q-Fano varieties over MOIT where fibres over closed
points are precisely K-polystable fibres.

From a series of important recent works [2, 8, 10, 11, 18, 24, 34, 35, 48-50], we know that there

exists an Artin stack of finite type MZKSSS/a parametrising K-semistable (possibly singular) del

Pezzo surfaces of degree 8/a. Moreover, MXS admits a projective good moduli space MEPS

2,8/a 2,8/a
parametrising K-polystable ones. Let MX be the Zariski closure (with reduced structure) of the

locally closed substack in M?;S/a parametrising K-semistable degree 2a weighted hypersurfaces
Kps

X Cc P(1,1,a, a). Let MX be the good moduli space of M as a closed algebraic subspace of M 28/a"
Then the above construction and the ‘if’ part produces a morphism ® : MST — M¥ which
descends to a morphism ¢ : M®'T — MX, Since a general weighted hypersurface X has the form
z2 + w? + g(x,y) = 0in asuitable coordinate where g # 0 has no multiple linear factors, we know
that ® is dominant. The ‘if part shows that ® sends closed points to closed points. Since M°'T is
projective, we know that ¢ is proper and dominant, which implies that ¢ is surjective. Moreover,
since SL, has no non-trivial characters, we have injections

Pic(M°'") = Pic(P//SL,) & Picg; (P*) & Pic(P*)

by [28, Proposition 4.2 and Section 2.1]. It is clear that P \ P* has codimension at least 2 in P. Thus
we have Pic(P%) = Pic(P) & Z. In particular, the GIT quotient M°!T has Picard rank 1. It is clear
that M¥ is not a single point. Thus ¢ : M®'T — M¥ is a finite surjective morphism by Zariski’s
main theorem.

Next, we show that K-poly/semistability implies GIT poly/semistability. Since ¢ is surjec-
tive, a K-polystable hypersurface X C P(1, 1, a, a) satisfies that [X] = ¢([g]) € MX for some GIT
polystable binary form g € A \ {0}. Thus X has the form z? + w? + g(x,y) = 0 with g # 0 being
GIT polystable. If X C P(1, 1, a, a) is K-semistable, then it specially degenerates to a K-polystable
point [X,] € M¥ by [34]. Clearly X, has the form z + w? + g,(x,y) = 0 with g, # 0 being GIT
polystable. Since the rank of quadratic forms cannot jump up under degeneration, the quadratic
terms in (z, w) of the equation of X has rank 2, which implies that X = (z + w? + g(x,y) = 0)
for some g. By [21, Corollary 1.7], we know that (P(1,1,a), %D) is K-semistable where D =
(z% + g(x,y) = 0). Since X carries a Z/2Z-action given by w — —w, we may assume that the
special degeneration from X to X, is Z/2Z-equivariant by [36, 51]. In particular, this shows
that (P(1,1,a), %D) specially degenerates to (P(1,1,a), %DO), where D, = (22 + go(x,y) = 0).
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By the lower semi-continuity of Ict (see, for example, [19]), we know that Ict(P(1,1, a); D) >
Ict(P(1,1,a); Dy) = a2_4(—12 where the latter inequality was proven in the ‘if’ part due to the fact that
go is GIT polystable. Thus this shows that ¢ # 0, and each linear factor in g(x, y) has multiplicity
at most a. Thus we obtain the GIT semistability of g. The proof of the ‘only if’ part is finished.
Finally, we show that any hypersurface X C P(1, 1, a, a) of degree 2a is not K-stable. If X were
K-stable, then it would have equation z2 + w? + g(x,y) = 0, or equivalently the equation zw +
g(x,y) = 0. Itis clear that ¢ - (z,w) = (tz, t~'w) defines an effective action of G, on X. Thus X is
not K-stable by definition. O

Proof of Corollary 2. 1t is clear that X is quasi-smooth if and only if, up to an automorphism of
P(1,1, a, a), X has the equation z> + w? + g(x,y) = 0 where g has no multiple linear factors. Thus
by Theorem 1 we conclude that X is K-polystable and not K-stable. The existence of KE metrics
on X follows from [31]. O

Remark 5. For a = 2, the del Pezzo surface X admits an embedding into P*asa complete inter-
section of two hyperquadrics. This is induced by the linear system | — K| which is very ample.

For a = 4,X (as a double cover of P(1,1,4)) appeared in [42] where it lies in the exceptional
divisor of Kirwan blow-up of the GIT moduli space. Hence X admits a Q-Gorenstein smoothing
to degree 2 smooth del Pezzo surfaces.

Therefore, in both cases (a = 2 or a = 4) our K-moduli space M K introduced in the proof of
Theorem 1, form a divisor in the K-moduli spaces of Q-Gorenstein smoothable del Pezzo surfaces
of degree S studied in [37, 42]. We will see in Proposition 6 what happens fora =3 ora > 5.

Proposition 6. If a =3 or a > 5, then the locus of K-polystable degree 2a hypersurfaces in

P(1,1,a, a) is a connected component ofM;{g;a.

Proof. We denote by I' the connected component of Migja containing K-polystable degree 2a
hypersurfaces in P(1, 1, a, a). In the proof of Theorem 1 we showed that the locus of K-polystable
degree 2a hypersurfaces in P(1,1, a, a) is closed in T this locus is denoted by M K We need to
prove that MX coincides with T. We will achieve this by a dimension count. Using the notation of

the proof of Theorem 1, there is a finite surjective morphism ¢ : M®'T — M¥X. Thus we have
dim M¥ = dim M%'T = dim P — dim SL, = 2a — 3.

Let us now compute the dimension of I' by analysing the deformation theory of the K-polystable
toric del Pezzo surface Y introduced in Proposition 3. Note that a similar study was discussed in
[38].

Let T, 19 denote the sheaf of derivations on Y, that is, the dual of Q%, Let PI;’GJ denote the sheaf
of first-order Q-Gorenstein deformations of Y. The singular locus of Y, which consists of four
points, contains the set-theoretic support of 97;1(}’1.

Since Y is a toric Fano, we have H'(7,)) = H*(7,)) = 0 by [43, Section 4.3]. Via a standard
argument about the local-to-global spectral sequence for Ext, we deduce that the tangent space
of the Q-Gorenstein deformation functor of Y is H O(P/“;IGJ). The Q-Gorenstein deformation func-
tor of Y is unobstructed because Y is a del Pezzo surface with cyclic quotient singularities [1,
Lemma 6]. Therefore, the germ at the origin of the vector space HO(F/“;IGJ) is the base of the
miniversal (Kuranishi) Q-Gorenstein deformation of Y.
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Consider the torus Ty = N ®, G, acting on the toric variety Y. There is an action of Ty on the
vector space H (’(P/”;IG’l ), hence H 0(9‘;(;’1) splits into the direct sum of irreducible representations
(characters) of the torus T .

‘We observe that the singularities of Y are

* 2 points of type %(1, —1) = A,_;, which correspond to the cones in X spanned by

(1) =)

* 2 points of type %(1, 1), which correspond to the cones in X spanned by

+ al _ (O
=) F\ )
Since a = 3 or a > 5, the surface singularity %(1, 1) is @-Gorenstein rigid, so it does not con-

tribute to H 0(97;}&1). One can see that the T)y-representation H 0(57}9&1) is the direct sum of the
one-dimensional representation of T, associated to the characters

(0,+2),(0,+3),...,(0,+a) € M. 2)

In particular dim H(7, ;]G’l) = 2a — 2, so the base of the miniversal Q-Gorenstein deformation of
Y is a smooth germ of dimension 2a — 2.

Since the weights in (2) are contained in a rank 1 sublattice of M, there exists a one-dimensional
subtorus of Ty which acts trivially on H 0(9“;1(;’1). More precisely one can prove that the affine
quotient H 0(57;(3’1) /T has dimension 2a — 3.

Since every facet of the polytope P° has no interior lattice points, by [26, Proposition 2.6] the
automorphism group of Y is Ty X Aut(P), where Aut(P) C GL(N) is the finite group consisting
of the lattice automorphisms which keep the polytope P invariant. Since the difference between
Ty and Aut(Y) is just a finite group, we deduce that the affine quotient the affine quotient
H 0(97}9(}’1) / Aut(Y) has dimension 2a — 3. By the local structure of the K-moduli space [2, 3] we
know that the completion of the local ring of T at [Y] coincides with the completion at the origin
of HO(Q“QGJ) / Aut(Y). This proves that I has dimension 2a — 3 at [Y]. Since dim M¥ = 2a — 3,
we know that M¥ is an irreducible component of T.

Moreover, since all K-polystable del Pezzo surfaces in M¥ have cyclic quotient singularities by
Theorem 1, they have unobstructed Q-Gorenstein deformations by [1, Lemma 6]. Thus, the stack
Mfsgs is smooth in an open neighbourhood of MX. In particular, this implies that T is normal in

an open neighbourhood of M¥. Since M¥ is an irreducible component of T', we have MX =T. [
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