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Abstract
For every integer 𝑎 ⩾ 2, we relate the K-stability
of hypersurfaces in the weighted projective space
ℙ(1, 1, 𝑎, 𝑎) of degree 2𝑎 with the GIT stability of binary
forms of degree 2𝑎. Moreover, we prove that such
a hypersurface is K-polystable and not K-stable if it
is quasi-smooth.
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1 INTRODUCTION

It is an important problem in algebraic geometry and in differential geometry to decide if a
given Fano variety 𝑋 admits a Kähler–Einstein (KE) metric. The Yau–Tian–Donaldson (YTD)
conjecture predicts that the existence of a KE metric on 𝑋 is equivalent to the K-polystability
of 𝑋. Using Cheeger–Colding–Tian theory, the YTD conjecture was first proved when 𝑋 is
smooth [7, 17, 46], when 𝑋 is ℚ-Gorenstein smoothable [33, 44], or when 𝑋 has dimension
2 [31]. Later, a different method, namely the variational approach, was introduced in [6]. The
analytic side of the variational approach was completed in [29, 32] which shows that a ℚ-Fano
variety 𝑋, that is, a Fano variety with klt singularities, admits a KE metric if and only if 𝑋
is reduced uniformly K-stable, a concept introduced in [23] as an equivariant version of uni-
form K-stability (see also [49]). Recently, using purely algebro-geometric methods, the work
[35] establishes the equivalence between K-polystability and reduced uniform K-stability. This
work, combining with the variational approach, proves the YTD conjecture for all ℚ-Fano
varieties.
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K-stability of del Pezzo surfaces which are quasi-smooth hypersurfaces in weighted projec-
tive 3-spaces has been studied extensively. Johnson and Kollár [25] classified those which are
anticanonically polarised (that is, have Fano index 1) and decided the existence of a KE met-
ric on many of these, using Tian’s criterion which relates KE metrics to global log canoni-
cal thresholds (also called 𝛼-invariants) [13, 19, 20, 40, 41, 45]. This method was applied to
most of these del Pezzo surfaces by Araujo [4], Boyer–Galicki–Nakamaye [12], and Cheltsov–
Park–Shramov [15]. One case was missing and was finally solved in [14] using delta invariants
(see [9, 22]).
The (non-)existence of KE metrics on many del Pezzo surfaces which are quasi-smooth hyper-

surfaces in weighted projective 3-spaces with Fano index ≥2 has been studied in [14–16, 27].
In this paper, we studyK-polystability of quasi-smooth degree 2𝑎 hypersurfaces in theweighted

projective space ℙ(1, 1, 𝑎, 𝑎). When 𝑎 ∈ {2, 4}, such del Pezzo surfaces are ℚ-Gorenstein smooth-
able, and their K-polystability was determined by Mabuchi–Mukai [37] and Odaka–Spotti–Sun
[42] (see Remark 5). To the authors’ knowledge it is not known if they are K-polystable for an
integer 𝑎 = 3 or 𝑎 ⩾ 5. In [27], Kim and Won conjecture that these surfaces are K-polystable and
not K-stable.
Our main result relates the K-polystability (respectively, K-semistability) of degree 2𝑎 hyper-

surfaces in ℙ(1, 1, 𝑎, 𝑎) to GIT polystability (respectively, GIT semistability) of degree 2𝑎 binary
forms (see [39, Chapter 4]).

Theorem 1. Let 𝑎 ⩾ 2 be an integer and let ℙ(1, 1, 𝑎, 𝑎) be the weighted projective space with coor-
dinates [𝑥, 𝑦, 𝑧, 𝑤] with weights deg 𝑥 = deg 𝑦 = 1 and deg 𝑧 = deg𝑤 = 𝑎. Let 𝑋 be a hypersurface
of degree 2𝑎 in ℙ(1, 1, 𝑎, 𝑎).
Then 𝑋 is K-semistable (respectively, K-polystable) if and only if, after an automorphism of

ℙ(1, 1, 𝑎, 𝑎), the equation of 𝑋 is given by 𝑧2 + 𝑤2 + g(𝑥, 𝑦) = 0 where g ≠ 0 is GIT semistable
(respectively, GIT polystable) as a degree 2𝑎 binary form. Moreover, 𝑋 is not K-stable.

As a consequence we prove the K-polystability of quasi-smooth hypersurfaces in ℙ(1, 1, 𝑎, 𝑎) of
degree 2𝑎, hence partially confirming [27, Conjecture 1.3].

Corollary 2. Let 𝑎 ⩾ 2 be an integer and let 𝑋 be a degree 2𝑎 quasi-smooth hypersurface in
ℙ(1, 1, 𝑎, 𝑎). Then 𝑋 is K-polystable and not K-stable. Moreover, 𝑋 admits a KE metric.

Recently, the result of this corollary has been independently announced by Viswanathan using
different methods.
It is possible to give a proof of K-polystability for a general hypersurface inℙ(1, 1, 𝑎, 𝑎) of degree

2𝑎, when 𝑎 is odd, by analysing the deformation theory of the toric surface appearing in Proposi-
tion 3 similar to [26] and without using Theorem 1.

Notation and conventions

We always work over ℂ. A del Pezzo surface is a normal projective surface whose anticanonical
divisor is ℚ-Cartier and ample. Every toric variety we consider is normal. We do not even try to
write down the definitions of K-(poly/semi)stability of Fano varieties and of log Fano pairs: we
refer the reader to the excellent survey [47], the paper [5], and to the references therein.
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ON K-STABILITY OF SOME DEL PEZZO SURFACES OF FANO INDEX 2 519

2 PROOFS

In what follows 𝑎 is a fixed integer greater than 1. We consider the weighted projective space
ℙ(1, 1, 𝑎, 𝑎) with coordinates [𝑥, 𝑦, 𝑧, 𝑤] with weights deg 𝑥 = deg 𝑦 = 1 and deg 𝑧 = deg𝑤 = 𝑎.

Proposition 3. If𝑌 is the hypersurface in ℙ(1, 1, 𝑎, 𝑎) defined by the equation 𝑧𝑤 − 𝑥𝑎𝑦𝑎 = 0, then
𝑌 is a K-polystable toric del Pezzo surface.

Proof. We fix the lattice 𝑁 = ℤ2 and its dual 𝑀 = Homℤ(𝑁,ℤ). Elements of 𝑁 will be columns
and elements of𝑀 will be rows.
Let 𝑄 be the convex hull of the points

(0, 0), (0, 1), (𝑎−1, 0), (−𝑎−1, 1)

in𝑀ℝ. Let Σ be the inner normal fan of 𝑄; thus Σ is the complete normal fan in𝑁 whose rays are
generated by the vectors (

𝑎

1

)
,

(
0

1

)
,

(
−𝑎

−1

)
,

(
0

−1

)
. (1)

We want to show that 𝑌 is the toric variety associated to the fan Σ.
Provisionally, let TV(Σ) denote the toric variety associated to Σ. Consider the cone 𝜏 in𝑀 ⊕ℤ

spanned by𝑄 × {1}. Consider the finitely generated monoid 𝜏 ∩ (𝑀 ⊕ ℤ) and the semigroup alge-
bra ℂ[𝜏 ∩ (𝑀 ⊕ ℤ)], which is ℕ-graded via the projection 𝑀 ⊕ℤ ↠ ℤ. Toric geometry says that
TV(Σ) = Proj ℂ[𝜏 ∩ (𝑀 ⊕ ℤ)]. One can see that the minimal set of generators of the semigroup
𝜏 ∩ (𝑀 ⊕ ℤ) is made up of the vectors

(0, 0, 1), (0, 1, 1), (1, 0, 𝑎), (−1, 𝑎, 𝑎);

these vectors satisfy a unique relation:

𝑎(0, 0, 1) + 𝑎(0, 1, 1) = (1, 0, 𝑎) + (−1, 𝑎, 𝑎).

Hence, the ℕ-graded ring ℂ[𝜏 ∩ (𝑀 ⊕ ℤ)] coincides with ℂ[𝑥, 𝑦, 𝑧, 𝑤]∕(𝑧𝑤 − 𝑥𝑎𝑦𝑎), where
deg 𝑥 = deg 𝑦 = 1 and deg 𝑧 = deg𝑤 = 𝑎. Therefore 𝑌 = TV(Σ).
The vectors in (1) are the vertices of a polytope 𝑃 in𝑁. This implies that𝑌 is a del Pezzo surface,

that is, −𝐾𝑌 is ℚ-Cartier and ample.
Let 𝑃◦ be the polar of 𝑃; thus 𝑃◦ is the convex hull of (0, ±1) and ±( 2

𝑎
, −1) in𝑀ℝ. The polygon

𝑃◦ is the moment polytope of the toric boundary of 𝑌, which is an anticanonical divisor. Since 𝑃
is centrally symmetric, also 𝑃◦ is centrally symmetric, thus the barycentre of 𝑃◦ is the origin. By
[7] 𝑌 is K-polystable. □

Remark 4.

(i) Another way to show K-polystability of 𝑌 is by realising 𝑌 ≅ (ℙ1 × ℙ1)∕(ℤ∕𝑎ℤ), where the
ℤ∕𝑎ℤ-action on ℙ1 × ℙ1 is given by

𝜁 ⋅ ([𝑢0, 𝑢1], [𝑣0, 𝑣1]) ∶= ([𝜁𝑢0, 𝑢1], [𝜁
−1𝑣0, 𝑣1]) with 𝜁 = 𝑒2𝜋𝑖∕𝑎.
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520 LIU and PETRACCI

Since the above action is free away from finitely many points, and it preserves the product
of Fubini–Study metrics on ℙ1 × ℙ1, we know that 𝑌 admits a KE metric and hence is K-
polystable by [7].

(ii) A degree 2𝑎 hypersurface in ℙ(1, 1, 𝑎, 𝑎) is defined by an equation

𝑞(𝑧, 𝑤) + 𝑓(𝑥, 𝑦)𝑧 + ℎ(𝑥, 𝑦)𝑤 + g(𝑥, 𝑦) = 0,

where 𝑞 is a quadratic form, 𝑓 and ℎ are forms of degree 𝑎, and g is a form of degree 2𝑎. With
an automorphism of ℙ(1, 1, 𝑎, 𝑎)which is induced by a linear change of the coordinates 𝑧, 𝑤,
we can diagonalise the quadratic form 𝑞, so that the term 𝑧𝑤 disappears. Furthermore, if 𝑞
has full rank, with an automorphism of ℙ(1, 1, 𝑎, 𝑎) induced by 𝑧 ↦ 𝑧 +

𝑓

2
and 𝑤 ↦ 𝑤 + ℎ

2
,

the equation becomes

𝑧2 + 𝑤2 + g(𝑥, 𝑦) = 0

Proof of Theorem 1. We start from the ‘if’ part. Suppose 𝑋 ⊂ ℙ(1, 1, 𝑎, 𝑎) is defined by the equa-
tion 𝑧2 + 𝑤2 + g(𝑥, 𝑦) = 0with g ≠ 0. Then the ‘if’ part states that𝑋 is K-semistable (respectively,
K-polystable) if g is GIT semistable (respectively, GIT polystable).
By forgetting the 𝑤-coordinate, we obtain a double cover 𝜋 ∶ 𝑋 → ℙ(1, 1, 𝑎) with branch

locus 𝐷 = (𝑧2 + g(𝑥, 𝑦) = 0). Thus by [36, 51] we know that 𝑋 is K-semistable (respectively, K-
polystable) if and only if (ℙ(1, 1, 𝑎), 1

2
𝐷) is K-semistable (respectively, K-polystable).

Let us assume for the moment that g is an arbitrary degree 2𝑎 binary form. Denote by
𝐷0 ∶= (𝑧2 = 0) as a divisor on ℙ(1, 1, 𝑎). It is clear that ℙ(1, 1, 𝑎) is the projective cone over
ℙ1 with polarisation ℙ1(𝑎), and

1

2
𝐷0 is the section at infinity. Since ℙ1 is KE, [30, Proposi-

tion 3.3] shows that (ℙ(1, 1, 𝑎), (1 − 𝑟

2
) 1
2
𝐷0) admits a conical KE metric, where 𝑟 ∈ ℚ>0 satis-

fiesℙ1(𝑎) ∼ℚ −𝑟−1𝐾ℙ1 , that is, 𝑟 =
2

𝑎
. By computation, (1 − 𝑟

2
) 1
2
= 𝑎−1

2𝑎
. Thus (ℙ(1, 1, 𝑎), 𝑎−1

2𝑎
𝐷0)

admits a conical KE metric and hence is K-polystable. It is clear that under the 𝔾𝑚-action 𝜎 on
ℙ(1, 1, 𝑎) given by 𝜎(𝑡) ⋅ [𝑥, 𝑦, 𝑧] = [𝑥, 𝑦, 𝑡𝑧], the log Fano pair (ℙ(1, 1, 𝑎), 𝑎−1

2𝑎
𝐷) specially degen-

erates to (ℙ(1, 1, 𝑎), 𝑎−1
2𝑎

𝐷0) as 𝑡 → 0. Thus by openness of K-semistability [10, 48] we know that
(ℙ(1, 1, 𝑎), 𝑎−1

2𝑎
𝐷) is K-semistable.

Next, we assume that g ≠ 0 is GIT semistable. By GIT of binary forms, we know that each
linear factor in g(𝑥, 𝑦) has multiplicity at most 𝑎. In other words, the curve 𝐷 has only 𝐴𝑘−1-
singularities (that is, locally analytically given by 𝑥2 + 𝑦𝑘 = 0) where 𝑘 ⩽ 𝑎. Thus we have that
lct(ℙ(1, 1, 𝑎); 𝐷) ⩾ 1

2
+ 1

𝑎
= 𝑎+2

2𝑎
. This implies that (ℙ(1, 1, 𝑎), 𝑎+2

2𝑎
𝐷) is a log canonical log Calabi–

Yau pair. Thus interpolation for K-stability [5, Proposition 2.13] implies that (ℙ(1, 1, 𝑎), 1
2
𝐷) is K-

semistable.
Next, we assume that g ≠ 0 is GIT polystable. There are two cases: g is strictly GIT polystable

(that is, GIT polystable but not GIT stable), or g is GIT stable. In the first case, under a suit-
able coordinate we may write g(𝑥, 𝑦) = 𝑥𝑎𝑦𝑎. Thus the double cover 𝑋 is toric, and as shown in
Proposition 3 𝑋 is K-polystable. In the second case, we know that each linear factor in g(𝑥, 𝑦) has
multiplicity at most 𝑎 − 1. Thus the curve 𝐷 has only 𝐴𝑘−1-singularities where 𝑘 ⩽ 𝑎 − 1. Thus
we have that lct(ℙ(1, 1, 𝑎); 𝐷) ⩾ 1

2
+ 1

𝑎−1
> 𝑎+2

2𝑎
, which implies that (ℙ(1, 1, 𝑎), 𝑎+2

2𝑎
𝐷) is a klt log

Calabi–Yaupair. Thus interpolation forK-stability [5, Proposition 2.13] implies that (ℙ(1, 1, 𝑎), 1
2
𝐷)

is K-stable. This finishes the proof of the ‘if’ part.
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Next, we treat the ‘only if’ part. In fact, this follows from moduli comparison arguments as
in [5]. Let 𝐀 ∶= 𝐻0(ℙ1,ℙ1(2𝑎)) be the affine space parametrising degree 2𝑎 binary forms. Let
𝐀ss ⊂ 𝐀 ⧵ {0} be the open subset of GIT semistable binary forms. Consider the universal family of
weighted hypersurfaces  → 𝐀ss where  ⊂ ℙ(1, 1, 𝑎, 𝑎) × 𝐀ss has fibre (𝑧2 + 𝑤2 + g(𝑥, 𝑦) = 0)

over each g ∈ 𝐀ss. By the ‘if’ part we know that each fibre of  → 𝐀ss is K-semistable. Consider
the (𝔾𝑚 × SL2)-action 𝜆 on 𝐀 given by 𝜆(𝑡, 𝐴) ⋅ g(𝑥, 𝑦) = 𝑡2g(𝐴−1(𝑥, 𝑦)). It is clear that 𝐀ss is a
(𝔾𝑚 × SL2)-invariant open subset. Then there is a (𝔾𝑚 × SL2)-action 𝜆̃ on  as a lifting of 𝜆 given
by

𝜆̃(𝑡, 𝐴) ⋅ ([𝑥, 𝑦, 𝑧, 𝑤], g) ∶= ([𝐴(𝑥, 𝑦), 𝑡𝑧, 𝑡𝑤], 𝜆(𝑡, 𝐴) ⋅ g).

Denote by GIT ∶= [𝐀ss∕(𝔾𝑚 × SL2)] and 𝑀GIT ∶= 𝐏∕∕SL2 where 𝐏 ∶= ℙ(𝐀). It is clear that
𝑀GIT is the good moduli space ofGIT. Taking quotient of the family  → 𝐀ss by 𝜆̃, we obtain
a ℚ-Gorenstein flat family of K-semistable ℚ-Fano varieties overGIT, where fibres over closed
points are precisely K-polystable fibres.
From a series of important recent works [2, 8, 10, 11, 18, 24, 34, 35, 48–50], we know that there

exists an Artin stack of finite type Kss
2,8∕𝑎

parametrising K-semistable (possibly singular) del

Pezzo surfaces of degree 8∕𝑎. Moreover, Kss
2,8∕𝑎

admits a projective good moduli space 𝑀Kps

2,8∕𝑎

parametrising K-polystable ones. Let K be the Zariski closure (with reduced structure) of the
locally closed substack inKss

2,8∕𝑎
parametrising K-semistable degree 2𝑎 weighted hypersurfaces

𝑋 ⊂ ℙ(1, 1, 𝑎, 𝑎). Let𝑀K be the goodmoduli space ofK as a closed algebraic subspace of𝑀Kps

2,8∕𝑎
.

Then the above construction and the ‘if’ part produces a morphism Φ ∶ GIT → K which
descends to a morphism 𝜙 ∶ 𝑀GIT → 𝑀K. Since a general weighted hypersurface 𝑋 has the form
𝑧2 + 𝑤2 + g(𝑥, 𝑦) = 0 in a suitable coordinatewhere g ≠ 0has nomultiple linear factors, we know
that Φ is dominant. The ‘if’ part shows that Φ sends closed points to closed points. Since𝑀GIT is
projective, we know that 𝜙 is proper and dominant, which implies that 𝜙 is surjective. Moreover,
since SL2 has no non-trivial characters, we have injections

Pic(𝑀GIT) = Pic(𝐏∕∕SL2) ↪ PicSL2(𝐏
ss) ↪ Pic(𝐏ss)

by [28, Proposition 4.2 and Section 2.1]. It is clear that𝐏 ⧵ 𝐏ss has codimension at least 2 in𝐏. Thus
we have Pic(𝐏ss) ≅ Pic(𝐏) ≅ ℤ. In particular, the GIT quotient𝑀GIT has Picard rank 1. It is clear
that 𝑀K is not a single point. Thus 𝜙 ∶ 𝑀GIT → 𝑀K is a finite surjective morphism by Zariski’s
main theorem.
Next, we show that K-poly/semistability implies GIT poly/semistability. Since 𝜙 is surjec-

tive, a K-polystable hypersurface 𝑋 ⊂ ℙ(1, 1, 𝑎, 𝑎) satisfies that [𝑋] = 𝜙([g]) ∈ 𝑀K for some GIT
polystable binary form g ∈ 𝐀 ⧵ {0}. Thus 𝑋 has the form 𝑧2 + 𝑤2 + g(𝑥, 𝑦) = 0 with g ≠ 0 being
GIT polystable. If 𝑋 ⊂ ℙ(1, 1, 𝑎, 𝑎) is K-semistable, then it specially degenerates to a K-polystable
point [𝑋0] ∈ 𝑀K by [34]. Clearly 𝑋0 has the form 𝑧2 + 𝑤2 + g0(𝑥, 𝑦) = 0 with g0 ≠ 0 being GIT
polystable. Since the rank of quadratic forms cannot jump up under degeneration, the quadratic
terms in (𝑧, 𝑤) of the equation of 𝑋 has rank 2, which implies that 𝑋 = (𝑧2 + 𝑤2 + g(𝑥, 𝑦) = 0)

for some g . By [21, Corollary 1.7], we know that (ℙ(1, 1, 𝑎), 1
2
𝐷) is K-semistable where 𝐷 =

(𝑧2 + g(𝑥, 𝑦) = 0). Since 𝑋 carries a ℤ∕2ℤ-action given by 𝑤 ↦ −𝑤, we may assume that the
special degeneration from 𝑋 to 𝑋0 is ℤ∕2ℤ-equivariant by [36, 51]. In particular, this shows
that (ℙ(1, 1, 𝑎), 1

2
𝐷) specially degenerates to (ℙ(1, 1, 𝑎), 1

2
𝐷0), where 𝐷0 = (𝑧2 + g0(𝑥, 𝑦) = 0).
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522 LIU and PETRACCI

By the lower semi-continuity of lct (see, for example, [19]), we know that lct(ℙ(1, 1, 𝑎); 𝐷) ⩾
lct(ℙ(1, 1, 𝑎); 𝐷0) ⩾

𝑎+2

2𝑎
where the latter inequality was proven in the ‘if’ part due to the fact that

g0 is GIT polystable. Thus this shows that g ≠ 0, and each linear factor in g(𝑥, 𝑦) has multiplicity
at most 𝑎. Thus we obtain the GIT semistability of g . The proof of the ‘only if’ part is finished.
Finally, we show that any hypersurface 𝑋 ⊂ ℙ(1, 1, 𝑎, 𝑎) of degree 2𝑎 is not K-stable. If 𝑋 were

K-stable, then it would have equation 𝑧2 + 𝑤2 + g(𝑥, 𝑦) = 0, or equivalently the equation 𝑧𝑤 +

g(𝑥, 𝑦) = 0. It is clear that 𝑡 ⋅ (𝑧, 𝑤) = (𝑡𝑧, 𝑡−1𝑤) defines an effective action of 𝔾m on 𝑋. Thus 𝑋 is
not K-stable by definition. □

Proof of Corollary 2. It is clear that 𝑋 is quasi-smooth if and only if, up to an automorphism of
ℙ(1, 1, 𝑎, 𝑎), 𝑋 has the equation 𝑧2 + 𝑤2 + g(𝑥, 𝑦) = 0where g has nomultiple linear factors. Thus
by Theorem 1 we conclude that 𝑋 is K-polystable and not K-stable. The existence of KE metrics
on 𝑋 follows from [31]. □

Remark 5. For 𝑎 = 2, the del Pezzo surface 𝑋 admits an embedding into ℙ4 as a complete inter-
section of two hyperquadrics. This is induced by the linear system | − 𝐾𝑋| which is very ample.
For 𝑎 = 4, 𝑋 (as a double cover of ℙ(1, 1, 4)) appeared in [42] where it lies in the exceptional

divisor of Kirwan blow-up of the GIT moduli space. Hence 𝑋 admits a ℚ-Gorenstein smoothing
to degree 2 smooth del Pezzo surfaces.
Therefore, in both cases (𝑎 = 2 or 𝑎 = 4) our K-moduli space 𝑀K, introduced in the proof of

Theorem 1, form a divisor in the K-moduli spaces ofℚ-Gorenstein smoothable del Pezzo surfaces
of degree 8

𝑎
studied in [37, 42]. We will see in Proposition 6 what happens for 𝑎 = 3 or 𝑎 ⩾ 5.

Proposition 6. If 𝑎 = 3 or 𝑎 ⩾ 5, then the locus of K-polystable degree 2𝑎 hypersurfaces in
ℙ(1, 1, 𝑎, 𝑎) is a connected component of𝑀Kps

2,8∕𝑎
.

Proof. We denote by Γ the connected component of 𝑀Kps

2,8∕𝑎
containing K-polystable degree 2𝑎

hypersurfaces in ℙ(1, 1, 𝑎, 𝑎). In the proof of Theorem 1 we showed that the locus of K-polystable
degree 2𝑎 hypersurfaces in ℙ(1, 1, 𝑎, 𝑎) is closed in Γ; this locus is denoted by 𝑀K. We need to
prove that𝑀K coincides with Γ. We will achieve this by a dimension count. Using the notation of
the proof of Theorem 1, there is a finite surjective morphism 𝜙 ∶ 𝑀GIT → 𝑀K. Thus we have

dim𝑀K = dim𝑀GIT = dim𝐏 − dimSL2 = 2𝑎 − 3.

Let us now compute the dimension ofΓ by analysing the deformation theory of theK-polystable
toric del Pezzo surface 𝑌 introduced in Proposition 3. Note that a similar study was discussed in
[38].
Let𝒯0

𝑌
denote the sheaf of derivations on 𝑌, that is, the dual ofΩ1

𝑌
. Let𝒯qG,1

𝑌
denote the sheaf

of first-order ℚ-Gorenstein deformations of 𝑌. The singular locus of 𝑌, which consists of four
points, contains the set-theoretic support of𝒯qG,1

𝑌
.

Since 𝑌 is a toric Fano, we have 𝐻1(𝒯0
𝑌
) = 𝐻2(𝒯0

𝑌
) = 0 by [43, Section 4.3]. Via a standard

argument about the local-to-global spectral sequence for Ext, we deduce that the tangent space
of theℚ-Gorenstein deformation functor of 𝑌 is𝐻0(𝒯qG,1

𝑌
). Theℚ-Gorenstein deformation func-

tor of 𝑌 is unobstructed because 𝑌 is a del Pezzo surface with cyclic quotient singularities [1,
Lemma 6]. Therefore, the germ at the origin of the vector space 𝐻0(𝒯qG,1

𝑌
) is the base of the

miniversal (Kuranishi) ℚ-Gorenstein deformation of 𝑌.
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Consider the torus 𝑇𝑁 = 𝑁 ⊗ℤ 𝔾m acting on the toric variety𝑌. There is an action of 𝑇𝑁 on the
vector space𝐻0(𝒯qG,1

𝑌
), hence𝐻0(𝒯qG,1

𝑌
) splits into the direct sum of irreducible representations

(characters) of the torus 𝑇𝑁 .
We observe that the singularities of 𝑌 are

∙ 2 points of type 1

𝑎
(1, −1) = 𝐴𝑎−1, which correspond to the cones in Σ spanned by

±

(
𝑎

1

)
, ±

(
0

1

)
;

∙ 2 points of type 1

𝑎
(1, 1), which correspond to the cones in Σ spanned by

±

(
𝑎

1

)
, ∓

(
0

1

)
.

Since 𝑎 = 3 or 𝑎 ⩾ 5, the surface singularity 1

𝑎
(1, 1) is ℚ-Gorenstein rigid, so it does not con-

tribute to 𝐻0(𝒯qG,1
𝑌

). One can see that the 𝑇𝑁-representation 𝐻0(𝒯qG,1
𝑌

) is the direct sum of the
one-dimensional representation of 𝑇𝑁 associated to the characters

(0, ±2), (0, ±3), … , (0, ±𝑎) ∈ 𝑀. (2)

In particular dim𝐻0(𝒯qG,1
𝑌

) = 2𝑎 − 2, so the base of the miniversalℚ-Gorenstein deformation of
𝑌 is a smooth germ of dimension 2𝑎 − 2.
Since the weights in (2) are contained in a rank 1 sublattice of𝑀, there exists a one-dimensional

subtorus of 𝑇𝑁 which acts trivially on 𝐻0(𝒯qG,1
𝑌

). More precisely one can prove that the affine
quotient𝐻0(𝒯qG,1

𝑌
)∕𝑇𝑁 has dimension 2𝑎 − 3.

Since every facet of the polytope 𝑃◦ has no interior lattice points, by [26, Proposition 2.6] the
automorphism group of 𝑌 is 𝑇𝑁 ⋊ Aut(𝑃), where Aut(𝑃) ⊆ GL(𝑁) is the finite group consisting
of the lattice automorphisms which keep the polytope 𝑃 invariant. Since the difference between
𝑇𝑁 and Aut(𝑌) is just a finite group, we deduce that the affine quotient the affine quotient
𝐻0(𝒯qG,1

𝑌
)∕Aut(𝑌) has dimension 2𝑎 − 3. By the local structure of the K-moduli space [2, 3] we

know that the completion of the local ring of Γ at [𝑌] coincides with the completion at the origin
of 𝐻0(𝒯qG,1

𝑌
)∕Aut(𝑌). This proves that Γ has dimension 2𝑎 − 3 at [𝑌]. Since dim𝑀K = 2𝑎 − 3,

we know that𝑀K is an irreducible component of Γ.
Moreover, since all K-polystable del Pezzo surfaces in𝑀K have cyclic quotient singularities by

Theorem 1, they have unobstructed ℚ-Gorenstein deformations by [1, Lemma 6]. Thus, the stack
Kss

2, 8
𝑎

is smooth in an open neighbourhood ofK. In particular, this implies that Γ is normal in

an open neighbourhood of𝑀K. Since𝑀K is an irreducible component of Γ, we have𝑀K = Γ. □
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