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K-stability of cubic fourfolds
By Yuchen Liu at Evanston

Abstract. We prove that the K-moduli space of cubic fourfolds is identical to their GIT
moduli space. More precisely, the K-(semi/poly)stability of cubic fourfolds coincide to the
corresponding GIT stabilities, which was studied in detail by Laza. In particular, this implies
that all smooth cubic fourfolds admit Kähler–Einstein metrics. Key ingredients are local vol-
ume estimates in dimension three due to Liu and Xu, and Ambro–Kawamata’s non-vanishing
theorem for Fano fourfolds.

1. Introduction

K-stability is an algebro-geometric stability condition introduced by Tian [70] and later
reformulated algebraically by Donaldson [26] to detect the existence of Kähler–Einstein (KE)
metrics on Fano varieties. The Yau–Tian–Donaldson (YTD) Conjecture predicts that the exis-
tence of a KE metric on a Fano variety X is equivalent to the K-polystability of X . The
relatively easier direction of the YTD Conjecture that KE metrics implies K-polystability
was confirmed in [8]. When X is smooth, the YTD Conjecture was proved in the celebrated
works [20–22] and [72] using Cheeger–Colding–Tian theory. Later, a different approach to the
YTD Conjecture, namely the variational approach, has been developed. Combining the analytic
works [9,45,47] and the algebraic work [55], this approach gives a full proof of the YTD Con-
jecture for all (possibly singular) Fano varieties. However, it is often a challenging problem to
check K-(semi/poly)stability of an explicit Fano variety.

In recent years, the algebraic study of K-stability has successfully led to a new theory,
known as the K-moduli theory, that produces an algebraic construction of compact moduli
spaces of Fano varieties. The Fano K-moduli theorem, proved in a combination of works
[2,11,13,16,23,37,49,55,73–75], states that given dimension n and volume V , there exists an
Artin stack M

Kss
n;V of finite type parametrizing K-semistable Fano varieties, called the K-moduli

stack, and M
Kss
n;V admits a projective good moduli space M

Kps
n;V parametrizing K-polystable Fano

varieties, called the K-moduli space. In the Q-Gorenstein smoothable case, the Fano K-moduli
theorem was proved earlier in [48, 74] (see also [61, 67]) based on analytic results from the
works [20–22, 72].
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The K-moduli theory not only lays the foundation for these K-moduli spaces, but also
provides strong tools to verify K-stability for explicit Fano varieties (e.g. Fano hypersurfaces
or complete intersections). One notable strategy along this direction, namely the moduli conti-

nuity method, goes as follows. Using ˛-invariants and group actions, it is usually easy to find
a K-stable Fano manifold X in the given family (e.g. Fermat hypersurfaces [4, 71, 78]). Then
by openness of K-(semi)stability [12, 13, 55, 73], there exists an open neighborhood of ŒX� in
the parameter space which parametrizes K-stable Fano varieties Xt . By the Fano K-moduli
theorem, there exists a component M K of the K-moduli space M

Kps
n;V that parametrizes those

Xt and their K-polystable Q-Gorenstein limits, where n D dim.X/ and V D .�KX /n. Hence
the K-moduli space M K is birational to the GIT moduli space M GIT. Using the local-to-global
volume comparison in [53], if the global volume of X is relatively large, then we can often get
a good control of the singularities appearing in the boundary of M K. This enables us to give an
explicit description of the birational map M K

Ü M GIT, and in some cases to even show that
it is an isomorphism. This strategy first appeared implicitly in [68] where Tian showed that all
smooth del Pezzo surfaces with reductive automorphism groups are K-polystable. Later, it was
used to construct explicit K-moduli compactifications of del Pezzo surfaces of degree 4 in [58]
and of degree � 3 in [62] where the latter work was more focused on the stability study. In
higher dimensions, it is shown that M K is isomorphic to M GIT for complete intersections of
two quadric hypersurfaces in [66] (where smooth ones were shown to be K-stable earlier in [4])
and cubic threefolds in [54]. Some cases for log Fano pairs have been worked out as well, see
e.g. [5–7, 32, 35]. Despite these results, much less is known in higher dimensions.

In this paper, we carry out this strategy for cubic fourfolds by showing that their K-moduli
space is isomorphic to their GIT moduli space. In other words, the K-(semi/poly)stability of
cubic fourfolds are the same as their GIT (semi/poly)stability.

Theorem 1.1. Let X � P5 be a (possibly singular) cubic hypersurface. Then X is

K-(semi/poly)stable if and only if X � P5 is GIT (semi/poly)stable. In particular, the K-moduli

space M K parametrizing K-polystable Q-Fano varieties admitting Q-Gorenstein smoothings

to smooth cubic fourfolds is isomorphic to the GIT moduli space M GIT of cubic fourfolds.

The “only if” direction in Theorem 1.1 follows from the general fact in [63, 69] that
a K-(semi/poly)stable Fano hypersurface is always GIT (semi/poly)stable. On the other hand,
the “if” direction for general Fano hypersurfaces X � PnC1 is expected to be true only when
deg X D 3. In fact, if deg X � 4, there are non-reduced, hence K-unstable, GIT polystable
hypersurfaces X , e.g. a multiple of a smooth hyperquadric. In addition, the “if” direction can
also fail for non-hypersurface Fano varieties, e.g. quartic double solids [7, Theorem 1.4].

The GIT of cubic fourfolds was studied in detail by Laza [42] (see also [76]). As a conse-
quence, we have the following result which, together with [20–22,72], implies that any smooth
cubic fourfold admits a KE metric. We also obtain a result on singularities of GIT semistable
cubic fourfolds without involving direct GIT calculation, which answers affirmatively a ques-
tion of Spotti and Sun [66, Question 5.8] in dimension 4.

Corollary 1.2. The following statements hold:

(1) All smooth cubic fourfolds are K-stable.

(2) All cubic fourfolds with simple singularities are K-stable.
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(3) All GIT polystable cubic fourfolds are K-polystable. For a list of generic singularities of

GIT polystable cubic fourfolds with non-simple singularities, see [42, Theorem 1.2 and
Table 3].

(4) Any GIT semistable cubic fourfold has Gorenstein canonical singularities.

In particular, each cubic fourfold in (1), (2) or (3) admits a (weak) KE metric.

We note that combined Corollary 1.2 with [18, 19] and [31, Corollary 1.4] on K-stability
of smooth quintic fourfolds and the very recent result [1, Theorem 1.1] on K-stability of
smooth quartic fourfolds, we answer affirmatively the folklore conjecture that all smooth Fano
hypersurfaces have KE metrics in dimension 4.

In the process of proving Theorem 1.1, we confirm the ODP Gap conjecture of local
volumes [66, Conjecture 5.5] (see also Conjecture 2.10) for all local complete intersection
singularities. The proof uses the lower semicontinuity of local volumes [15]. We note that this
conjecture was confirmed in dimension at most 3 [46, 54].

Theorem 1.3 (= Theorem 2.12). Let .x 2 X/ be an n-dimensional non-smooth local

complete intersection klt singularity. Then

cvol.x; X/ � 2.n � 1/n;

and equality holds if and only if it is an ordinary double point.

Our proof of Theorem 1.1 starts from parallel arguments in [54] where the author and Xu
showed the similar result to Theorem 1.1 for cubic threefolds. Suppose X is an n-dimensional
K-semistable Q-Fano variety admitting a Q-Gorenstein smoothing to cubic hypersurfaces Xt .
Let L be the Q-Cartier Weil divisor on X as the limit of hyperplane sections of Xt . By the
moduli continuity method in [54, 66], the analogous result to Theorem 1.1 for cubic n-folds
would follow from showing X is a (possibly singular) cubic hypersurface. By [34] this reduces
to showing L is Cartier. Using the local-to-global volume comparison from [53], the divisor L

being Cartier would follow from the ODP Gap Conjecture of local volumes in dimension n

(see Conjecture 2.10), especially applied to the index 1 cover of a singular point x 2 X , where
L is not Cartier. In [54], the author and Xu verified the ODP Gap conjecture in dimension 3,
thus proving that K-(semi/poly)stability of cubic threefolds coincide with corresponding GIT
stabilities. Such an approach depends heavily on the classification of terminal and canonical
singularities in dimension 3, and is currently out of reach in dimension 4 or higher.

To overcome this difficulty, we study the explicit geometry of the linear systems jLj
and j2Lj on X under the assumption that L is not Cartier. Using the local-to-global vol-
ume estimates from [53, 54] and a Bertini-type result for local volumes (see Theorem 2.16),
we show that 2L is Cartier, and L is Cartier away from finitely many points. Then using
Ambro–Kawamata’s non-vanishing theorem for fundamental divisors on Fano varieties with
large Fano index [3, 38], we show that for general elements D 2 j2Lj and H 2 jLj, the com-
plete intersection .G D D \H; LjG/ is a polarized K3 surface with Du Val singularities of
degree 6. Then classical results on linear systems of K3 surfaces [59] implies that j2Lj is
base point free, and .G; LjG/ is either a complete intersection, hyperelliptic, or unigonal. In
the first case, we show that the index 1 cover of a non-Cartier point x 2 X of L must be
a local complete intersection which satisfies the ODP Gap Conjecture (see Theorem 1.3). Thus
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similar arguments to [54] show that X is K-unstable. In the last two cases, by analyzing the
rational map �jLj W X Ü P5 we show that ˛.X/ < 1

5
which implies that X is K-unstable

by [33, Theorem 3.5]. Given these contradictions, we conclude that L is Cartier on X , hence
proving Theorem 1.1.

Acknowledgement. I would like to thank Chenyang Xu and Ziquan Zhuang for fruit-
ful discussions and helpful comments on a draft, including Remark 4.8 and a simplification
of the proof of Proposition 4.6. I would like to thank Kento Fujita, Chen Jiang, Zhiyuan Li,
Linquan Ma, Yuji Odaka, Giulia Saccà, Cristiano Spotti, and Gang Tian for helpful discussions
and comments.

2. K-stability and local volumes

Throughout this paper, we work over the field C. We follow the standard convention
from [39,41]. A pair .X; �/ is a normal variety X together with an effective Q-divisor � such
that KX C� is Q-Cartier. A pair .X; �/ is called a log Fano pair if X is projective, .X; �/

is klt, and �KX �� is ample. We call X a Q-Fano variety if .X; 0/ is a log Fano pair. We
call X a lc Fano variety if X is normal projective with log canonical singularities, and �KX

is Q-Cartier ample. A klt singularity x 2 X is a closed point x on a normal variety X with klt
singularities.

2.1. Valuative criteria for K-stability.

Definition 2.1. Let X be a normal variety. A prime divisor E over X is a prime divisor
E on a normal variety Y together with a proper birational morphism � W Y ! X . The center
of E on X is �.E/. Moreover, if KX is Q-Cartier, then we define the log discrepancy of E as

AX .E/ WD 1C coeffE .KY � ��KX /:

From the definition we know that AX .E/ > 0 (resp. � 0) if X has klt (resp. log canonical)
singularities.

Definition 2.2. Let X be an n-dimensional Q-Fano variety. Let E be a prime divisor
over E. The pseudo-effective threshold of E is defined as

TX .E/ WD sup¹t 2 R j ��.�KX / � tE is bigº:

The S -invariant of E, first introduced in [14], is defined as

SX .E/ WD
1

.�KX /n

Z TX .E/

0

volY .��.�KX / � tE/ dt:

The ˇ-invariant of E, first introduced in [30], is defined as

ˇX .E/ WD AX .E/ � SX .E/:

The original definition of K-(poly/semi)stability introduced by [26, 70] is by checking
the sign of generalized Futaki invariants of test configurations. In this paper, we will use the
valuative criterion for K-(semi)stability invented by Fujita [30] and Li [43] with complementary
result by Blum and Xu [16].
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Let X be a Q-Fano variety (resp. a lc Fano variety) with �rKX Cartier for r 2 Z>0.
Recall from [49,50] that a test configuration .X; L/=A1 of .X;�rKX / is special (resp. weakly
special) if .X; X0/ is plt (resp. log canonical) and L �Q �rKX=A1 , and we say that X0 is
a special degeneration (resp. a weakly special degeneration) of X .

Theorem–Definition 2.3. Let X be a Q-Fano variety. Then:

(1) [30, 43] X is K-semistable if and only if ˇX .E/ � 0 for any prime divisor E over X ,

(2) [16] X is K-stable if and only if ˇX .E/ > 0 for any prime divisor E over X ,

(3) [49] X is K-polystable if and only if any K-semistable special degeneration of X is

isomorphic to itself,

(4) X is K-unstable if it is not K-semistable.

Definition 2.4. Let X be a Q-Fano variety. The ˛-invariant of X is defined as

˛.X/ D inf¹lct.X ID/ j 0 � D �Q �KXº:

By [14], we know that

˛.X/ D inf
E

AX .E/

TX .E/
;

where the infimum is taken over all prime divisors E over X .

Theorem 2.5 ([33, Theorem 3.5]). Let X be an n-dimensional K-semistable Q-Fano

variety. Then we have ˛.X/ � 1
nC1

.

2.2. Local volumes. In this subsection, we recall the concept of normalized volume
of valuations over a klt singularity first introduced by C. Li [44]. For simplicity, we restrict
ourselves to divisorial valuations.

Definition 2.6 ([44]). Let x 2 X be an n-dimensional klt singularity. For a prime divi-
sor E over X centered at x, we define (following [27]) the volume of E over .x 2 X/ to
be

volX;x.E/ WD lim
m!1

`.OX;x=am.E//

mn=nŠ
:

Here am.E/ WD ¹f 2 OX;x j ordE .f / � mº and ` denotes the length of an Artinian module.
The normalized volume of E over .x 2 X/ is defined as

cvolX;x.E/ WD AX .E/n � volX;x.E/:

The local volume of x 2 X is defined as

cvol.x; X/ WD inf
E

cvolX;x.E/;

where the infimum runs over all prime divisors E over X centered at x.

There are alternative characterizations of local volumes. We provide two of them using
ideals and Kollár components which are useful.
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Theorem 2.7 ([10, 53]). Let x 2 X be an n-dimensional klt singularity. Denote

.R; m/ WD .OX;x; mX;x/:

Then we have

cvol.x; X/ D inf
aW m-primary

lct.X I a/n � e.a/ D min
a�W m-primary

lct.X I a�/n � e.a�/:

Here a (resp. a�) represents an ideal (resp. a multiplicative graded sequence of ideals) of R,

and e denotes the Hilbert–Samuel multiplicity.

Definition 2.8. Let x 2 X be a klt singularity. We say that a proper birational morphism
� W Y ! X from a normal variety X provides a Kollár component S over .x 2 X/ if � is an
isomorphism over X n ¹xº, the preimage ��1.x/ D S is a Q-Cartier prime divisor on Y , the
pair .Y; S/ is plt, and �S is �-ample.

Theorem 2.9 ([52]). For any klt singularity x 2 X , we have

cvol.x; X/ D inf
S

cvolX;x.S/;

where the infimum runs over all Kollár components S over X centered at x.

The following conjecture was asked in [66]. It was confirmed in dimension 2 and 3 by
[46, Proposition 4.10] and [54, Theorem 1.3], respectively.

Conjecture 2.10 (ODP Gap Conjecture). Let .x 2 X/ be an n-dimensional non-smooth

klt singularity. Then
cvol.x; X/ � 2.n � 1/n;

and equality holds if and only if it is an ordinary double point.

Theorem 2.11. The following statements hold:

(1) [46, 54] Conjecture 2.10 holds when n � 3.

(2) [54, Theorem 1.6] Let x 2 X be an n-dimensional klt singularity. Then we have

cvol.x; X/ � nn;

and equality holds if and only if it is smooth.

The following result verifies Conjecture 2.10 for local complete intersection singularities.

Theorem 2.12. Conjecture 2.10 holds for all local complete intersection singularities.

Proof. Let x 2 X be an n-dimensional local complete intersection singularity. Since
Conjecture 2.10 holds in dimension� 3 by Theorem 2.11 (1), we may assume that n � 4. Then
there exists a locally closed immersion X ,! Z into a smooth variety Z of dimension nC r

such that X D V.f1; f2; : : : ; fr/ for some fi 2 OZ;x . We may assume that r achieves its min-
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imum, i.e. r WD edim.x; X/ � n, where edim.x; X/ WD `.mX;x=m
2
X;x/ denotes the embedding

dimension. In particular, ordx.fi / � 2 for any 1 � i � r . Since x 2 X is non-smooth, we
have r � 1.

If r � 2, we choose g1; g2 2m
2
Z;x and g3; : : : ; gn 2mZ;x , so that Ng1; Ng2 2m

2
Z;x=m

3
Z;x

and Ngi 2 mZ;x=m
2
Z;x are general for i � 3. Let Xt WD V.f1 C tg1; f2 C tg2; : : : ; fr C tgr/.

Then it is clear that .x 2 Xt /t2A1 is a Q-Gorenstein flat family of klt singularities. Moreover,
for a general t 2 A1 we know that x 2 Xt is a local complete intersection of two quadrics with
smooth projective tangent cone. Let St be the exceptional divisor of the ordinary blow up of
x 2 Xt for general t . Then simple calculation shows that

AXt
.St / D n � 2 and volXt ;x.St / D e.x; Xt / D 4:

Thus for general t we have

cvol.x; Xt / � AXt
.St /

n � volXt ;x.St / D 4.n � 2/n < 2.n � 1/n:

Thus the lower semicontinuity of local volumes [15] implies that

cvol.x; X/ � cvol.x; Xt / < 2.n � 1/n:

If r D 1, then x 2 X D V.f / is a hypersurface singularity for some f 2 OZ;x . By
[54, Lemma 3.1], we know that

cvol.x; X/ � .nC 1 � ordx f /n � ordx f � 2.n � 1/n:

If the equality holds, then we must have ordx f D 2. Assume to the contrary that x 2 X is not
an ordinary double point. By choosing a suitable algebraic coordinates .z0; : : : ; zn/ at x 2 Z,
we may assume that f � .z2

0 C � � � C z2
m/ 2 m

3
Z;x , where m < n. Let

g D z2
0 C � � � C z2

n�1 C z3
n 2 m

2
Z;x;

and let Xt WD V.f C tg/. Then by [15] we know that cvol.x; X/ � cvol.x; Xt / for general t .
Since the degree 2 part of f C tg has rank n for general t , we know that x 2 Xt is an
n-dimensional A2-singularity. Hence [44, Example 5.3] for n � 4 implies that

cvol.x; X/ � cvol.x; Xt / �
2nn.n � 2/n�1

.n � 1/n�1
< 2.n � 1/n:

Hence we get a contradiction. This finishes the proof.

The following result from [75, Theorem 1.3] on finite degree formula of local volumes
is very useful. Note that when X is a Gromov–Hausdorff limit of Kähler–Einstein Fano mani-
folds, such a result was proven earlier in [51, Theorem 1.7].

Theorem 2.13 ([75]). Let � W . Qx 2 eX/! .x 2 X/ be a finite quasi-étale Galois mor-

phism between klt singularities. Then

cvol. Qx; eX/ D deg.�/ �cvol.x; X/:

The following theorem is one of the key ingredients in the moduli continuity method. It is
a generalization of [29].
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Theorem 2.14 ([53]). Let X be an n-dimensional K-semistable Q-Fano variety. Then

for any closed point x 2 X we have

.�KX /n �

�
1C

1

n

�n

cvol.x; X/:

The following lemma is well known to experts.

Lemma 2.15. Let .x 2 X/ and .x0 2 X 0/ be two klt singularities that are analytically

isomorphic, that is, bOX;x Š 1OX 0;x0 . Then cvol.x; X/ D cvol.x0; X 0/.

Proof. Denote .R; m/ WD .OX;x; mX;x/ and .R0; m
0/ WD .OX 0;x0 ; mX 0;x0/. Denote by

� W bR! bR0 the ring isomorphism. Then any m-primary ideal a of R corresponds to a unique
m

0-primary ideal a
0 of R0 via a

0 D �.ba/ \R0. Under this correspondence, it is easy to see
e.a/ D e.a0/. By [24, Proposition 2.11] we know that lct.X I a/ D lct.X 0I a0/. Hence the state-
ment follows from Theorem 2.7.

2.3. Bertini-type result for local volumes. In this subsection, we prove the following
Bertini-type result for local volumes.

Theorem 2.16. Let x 2 X be a non-isolated n-dimensional klt singularity. Then there

exists a non-smooth .n � 1/-dimensional klt singularity y 2 Y such that

cvol.x; X/

nn
�

cvol.y; Y /

.n � 1/n�1
:

Moreover, Y can be chosen as a general hyperplane section of X .

Before presenting the proof of Theorem 2.16, we need the following result on the local
volume of fibrations.

Proposition 2.17. Let � WX!B together with a section � WB!X be a Q-Gorenstein

flat family of klt singularities over a smooth curve B . Then for a general point b 2 B we have

cvol.�.b/; X/

nn
D

cvol.�.b/; Xb/

.n � 1/n�1
:

Proof. By the adjunction of local volumes [57, Theorem 1.7], we always have

cvol.�.b/; X/

nn
�

cvol.�.b/; Xb/

.n � 1/n�1

for any b 2 B . Thus it suffices to show the reverse inequality for general b 2 B .
Denote by N� the geometric generic point of B . Then by [73] we know that there for a

general point b 2 B we have cvol.�.b/; Xb/ D cvol.�. N�/; X N�/. Let us fix an arbitrary � > 0. By
Theorem 2.9, there exists a Kollár component S N� over �. N�/ 2 X N� such that

(2.1) cvolX N�;�. N�/.S N�/ � cvol.�. N�/; X N�/C �:
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Denote by � N� W Y N� ! X N� the plt blow up extracting S N�. Hence there exists an étale morphism
eB ! B such that � N� extends over X �B

eB which provides a flat family of Kollár compo-
nents (see [54, Definition A.2]). Since the local volume is preserved under étale morphism
by Lemma 2.15, we may replace B by eB . Thus there is a birational morphism � W Y ! X

which provides a flat family S of Kollár components over X centered at �.B/. Denote by
bm WD ��OY.�mS/. Since �S is a �-ample Q-Cartier divisor, we know that bm is a flat fam-
ily of ideals over B for m� 1 (i.e. OX=bm is flat over B). After replacing B with a dense open
set, we may assume that bm is a flat family of ideals over B for any m 2 Z�0. For p 2 R�0, we
define bp WD bdpe D ��OY.�dpSe/. Let Sb and bp;b be the restriction of S and bp on Xb .
By flatness of S and b� over B , we have bp;b D ap.Sb/ for any b 2 B .

Next, we estimate the local volume cvol.�.b/; X/. Fix a general b 2 B . Let t 2 Ob;B be
its uniformizer. For any s 2 R>0, consider the ideal sequence I�;s as

Im;s WD bms C b.m�1/st C b.m�2/st2 C � � � C bstm�1 C .tm/:

By the definition of bp we know that I�;s is a multiplicative ideal sequence of OX;�.b/ cosup-
ported at �.b/. Then we know that

`.OX;�.b/=Im;s/ D

mX

iD1

`.OXb;�.b/=bis;b/:

Since `.OXb;�.b/=bp;b/ D 1
.n�1/Š

volXb;�.b/.Sb/pn�1 CO.pn�2/, we know that

`.OX;�.b/=Im;s/ D
1

nŠ
volXb;�.b/.Sb/sn�1mn CO.mn�1/:

This implies that

(2.2) e.I�;s/ D volXb;�.b/.Sb/sn�1:

Let vs be the valuation of C.X/ as the quasi-monomial combination of Yb and S of weight s

and 1, respectively. Then it is clear that

AX.vs/ D s C AX.S/ D s C AXb
.Sb/ and vs.Im;s/ � ms:

Hence we have

(2.3) lct.XI I�;s/ �
AX.vs/

vs.I�;s/
� 1C s�1AXb

.Sb/:

Combining Theorem 2.7, (2.2) and (2.3), we obtain

cvol.�.b/; X/ � lct.XI I�;s/n � e.I�;s/ � .1C s�1AXb
.Sb//n � volXb;�.b/.Sb/sn�1:

Since s is arbitrary, we may choose s D
AXb

.Sb/

n�1
which minimizes the right-hand-side of the

above inequality. Hence we have

cvol.�.b/; X/ �
nn

.n � 1/n�1
cvolXb;�.b/.Sb/ �

nn

.n � 1/n�1
.cvol.�. N�/; X N�/C �/:

Here the second inequality follows from (2.1) and

cvolXb;�.b/.Sb/ D cvolX N�;�. N�/.S N�/
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by flatness of S and b� over B . By [73] we know that

cvol.�. N�/; X N�/ D cvol.�.b/; Xb/

for general b. Hence by letting � ! 0, we prove the reverse inequality that

cvol.�.b/; X/

nn
�

cvol.�.b/; Xb/

.n � 1/n�1

for general b 2 B . The proof is finished.

Proof of Theorem 2.16. For simplicity, we assume that X is affine. Let C � Xsing be an
integral curve through x. Let � W X ! A1 be a general linear projection. Then �jC W C ! A1

is quasi-finite. Let y 2 C be a general point. Let Y be the fiber of � containing y. Then after
taking base change of � to the normalization of C , Lemma 2.15 and Proposition 2.17 implies
that

cvol.y; X/

nn
D

cvol.y; Y /

.n � 1/n�1
:

Since y 2 C is general, we have cvol.x; X/ � cvol.y; X/ by [15]. This finishes the proof.

Corollary 2.18. Let x 2 X be a non-smooth klt singularity of dimension n � 3. Assume

that dimx Xsing � n � 3. Then
cvol.x; X/

nn
�

16

27
:

In particular, Conjecture 2.10 holds for x 2 X .

Proof. We will focus on the first inequality bvol.x;X/
nn � 16

27
, as the statement on Con-

jecture 2.10 is a consequence of this inequality by a simple computation 16
27

nn < 2.n � 1/n

whenever n � 4, and the conjecture holds in dimension 3 by Theorem 2.11 (1).
We do induction on n � 3. When n D 3, the first inequality is precisely Theorem 2.11 (1).

Assume that the first inequality is true in dimension n � 1 with n � 4. Let x 2 X be a non-
smooth klt singularity of dimension n with dimx Xsing � n � 3. Let V be an irreducible compo-
nent of Xsing such that x 2 V and dim V � n � 3. Let C � V be an integral curve through x.
Then the proof of Theorem 2.16 implies that there exists a hyperplane section Y � X and
a closed point y 2 Y \ C such that

cvol.x; X/

nn
�

cvol.y; Y /

.n � 1/n�1
:

Furthermore, since Ysing � Xsing \ Y � V \ Y , we know that

dimy Ysing � dimy.V \ Y / � dimy V � 1 � n � 4:

By induction hypothesis, we have bvol.y;Y /

.n�1/n�1 �
16
27

. Hence we have

cvol.x; X/

nn
�

cvol.y; Y /

.n � 1/n�1
�

16

27
:

Thus the proof is finished.
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3. Local-to-global volume estimates

In order to prove our main result Theorem 1.1, we follow the strategy from [54, 66], that
is, to show that any K-semistable Q-Gorenstein limits of cubic hypersurfaces is again a cubic
hypersurface. The following result on K-semistable degeneration of higher dimensional cubic
hypersurfaces is an easy consequence of arguments therein.

Theorem 3.1. Let n � 4 be an integer. Let X ! B be a K-semistable Q-Fano family

over a smooth pointed curve 0 2 B such that over Bı WD B n ¹0º it is a smooth family of cubic

n-folds. Then there exists a Q-Cartier integral Weil divisor class L on X WD X0 such that the

following properties hold:

(1) OX .mL/ is Cohen–Macaulay for any m 2 Z.

(2) �KX � .n � 1/L and .Ln/ D 3.

(3) hi .X; OX .mL// D hi .Xb; OXb
.m// for any m 2 Z, i � 0, and b 2 Bı. Moreover, one

has h0.X; OX .L// D nC2, and hj .X; OX .mL// D 0 for any m 2 Z and 1 � j � n�1.

(4) Any Q-Cartier Weil divisor D on X satisfies that 2D is Cartier. In particular, 2L is

Cartier.

Proof. Denote by X
ı WD X nX0. By base change to a finite cover of B , we can find a

hyperplane section L
ı �B OXı.1/ and taking Zariski closure yields a Weil divisor L on X. It

is clear that
�KXı=Bı �Bı .n � 1/Lı:

Since X0 �B 0 is integral, we know that

�KX=B �B .n � 1/L

which implies that L is Q-Cartier. By assumption X has klt singularities, so [41, Corol-
lary 5.25] implies that OX.mL/ is Cohen–Macaulay for any m 2 Z. Thus L WD LjX0

is
a Q-Cartier Weil divisor satisfying that

OX0
.mL/ Š OX.mL/˝OX0

is Cohen–Macaulay for any m 2 Z, and�KX � .n � 1/L. The fact that .Ln/ D 3 comes from
.OXb

.1/n/ D 3 and L is Q-Cartier. Hence we have shown (1) and (2).
For part (3), notice that OX.mL/ is flat over B for any m 2 Z whose fiber over b

and 0 are OXb
.m/ and OX .mL/ respectively. If m � 2 � n, then mL �KX � .mC n � 1/L

and mLb �KXb
� OXb

.mC n � 1/ are both ample. Hence Kawamata–Viehweg vanishing
implies that

H i .X; OX .mL// D H i .Xb; OXb
.m// D 0 for any i � 1 and m � 2 � n.

By the flatness of OX.mL/, we know that

h0.X; OX .mL// D h0.Xb; OXb
.m// for any m � 2 � n.

On the other hand, by Serre duality for CM sheaves [41, Theorem 5.71], we know that

H i .X; OX .mL// D H i .Xb; OXb
.m// D 0 for any i � n � 1
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and hn.X; OX .mL// D hn.Xb; OXb
.m// whenever �mL and �mLb are ample, i.e. m � �1.

Thus part (3) is proven.
For part (4), we use the local volume estimates. Let x 2 X be a point where D is not

Cartier. Denote by ind.x; D/ the Cartier index of D at x. Then by Theorems 2.13, 2.11 (2),
and 2.14, we know that

3nn.n � 1/n

.nC 1/n
D

nn

.nC 1/n
.�KX /n � cvol.x; X/ �

nn

ind.x; D/
:

In particular, we get ind.x; D/ � .nC1/n

3.n�1/n < 3. This implies that ind.x; D/ D 2.

From now on, we restrict our focus to cubic fourfolds, i.e. n D 4. We will always denote
by X a K-semistable Q-Fano variety admitting a Q-Gorenstein smoothing to cubic fourfolds.
By [54, 66], to prove Theorem 1.1 the main challenge is to show that L is Cartier on X . This
would follow from Conjecture 2.10 in dimension 4 as indicated by Proposition 3.3. How-
ever, currently we are unable to confirm Conjecture 2.10 for n � 4. In the below, we provide
some partial results using the local volume estimates from Section 2. We will study the global
geometry of .X; L/ in Section 4.

Proposition 3.2. With the above notation, we have that L is Cartier away from a finite

subset † � X . Moreover, any x 2 † is an isolated singularity of X .

Proof. Let † be the closed subset of X , where L is not Cartier. Clearly, † � Xsing.
First of all, assume to the contrary that † contains a curve C . Let x 2 C be a point. Let
� W . Qx 2 eX/! .x 2 X/ be the index 1 cover with respect to L. Let eC WD ��1.C /. Then by
finite degree formula we know that

cvol. Qx0; eX/

44
�

2 � 35

54

for any Qx0 2 eC . If eX is singular along eC , then by Corollary 2.18 we know that

cvol. Qx0; eX/

44
�

16

27
:

This is a contradiction since 2�35

54 > 16
27

. Hence eX is smooth at the generic point of eC . This
implies that .x0 2 X/ is a quotient singularity of order 2 for a general point x0 2 C . Since
C is contained in the ramification locus of � , we know that .x0 2 X/ has type 1

2
.1; 1; 1; 0/

or 1
2
.1; 1; 0; 0/.

Next, we will show that neither quotient type is possible. The argument is similar to
[54, proof of Lemma 3.16]. If .x0 2 X/ has type 1

2
.1; 1; 1; 0/, we pick a general hyperplane

section H through x0 of X embedded in some projective space. Then clearly H0 D H \X

has a quotient singularity of type 1
2
.1; 1; 1/, while Hb D H \Xb is smooth for b 2 Bı. This

contradicts the rigidity theorem of Schlessinger [65]. If .x0 2 X/ has type 1
2
.1; 1; 0; 0/, then

we know that X has hypersurface singularities near x0, and so does X. We pick two general
hyperplane sections H1 and H2 through x0 of X. Then clearly .x0 2 H1 \H2/ is a normal
isolated hypersurface singularity of dimension 3. Since OX.L/ is Cohen–Macaulay, there is
a well-defined Q-Cartier Weil divisor class LjH1\H2

such that

OH1\H2
.LjH1\H2

/ Š OX.L/˝OH1\H2
:
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By the local Grothendieck–Lefschetz theorem [64], the local class group of .x0 2 H1 \H2/ is
torsion free which implies that LjH1\H2

is Cartier at x0. Hence this implies that L is Cartier
at x0, which implies L is also Cartier at x0. This is a contradiction.

Finally, we show that † consists only of isolated singularities. Assume to the contrary
that x 2 † is not isolated. Let C 0 � Xsing be a curve through x. Again, let . Qx 2 eX/ be the index
one cover of .x 2 X/ with respect to L. Since L is Cartier at the generic point of C 0, we know
that eC 0 WD ��1.C 0/ is contained in eX sing. Hence by Theorems 2.13, 2.14, and Corollary 2.18
we know that

2 � 35

54
�

cvol. Qx; eX/

44
�

16

27
;

again a contradiction.

Proposition 3.3. With the above notation, if L is not Cartier at x 2 X , then the index 1

cover Qx 2 eX violates Conjecture 2.10.

Proof. By Theorems 2.13 and 2.14, we have

35 � 44

54
D

44

54
.�KX /4 � cvol.x; X/ D

cvol. Qx; eX/

ind.x; L/
:

Since 2L is Cartier at x 2 X by Theorem 3.1, we know that ind.x; L/ D 2. Hence

cvol. Qx; eX/ �
2 � 35 � 44

54
> 2 � 34:

If Qx 2 eX is smooth, then Proposition 3.2 implies that � W eX ! X is ramified only at x which
implies that .x 2 X/ is an isolated quotient singularity of order 2 admitting a Q-Gorenstein
smoothing. This contradicts [65]. Hence Qx 2 eX violates Conjecture 2.10.

4. Ambro–Kawamata non-vanishing approach

In this section, we use the following non-vanishing theorem of Ambro [3, Main Theorem]
and Kawamata [38, Theorem 5.1] to study the geometry of K-semistable Q-Gorenstein limits
of cubic fourfolds.

Theorem 4.1 ([3,38]). Let .Y; �/ be a projective klt pair. Let M be a nef Cartier divisor

over Y such that M �KY �� is nef and big. Assume that there exists a rational number

r > dim.Y / � 3 � 0 such that �KY �� �Q rM . Then H 0.Y; M/ ¤ 0, and for a general

member D 2 jM j the pair .Y; �CD/ is plt.

In the rest of this paper, we adapt the notation of Theorem 3.1 and assume n D 4. In par-
ticular, X is a K-semistable Q-Gorenstein limit of cubic fourfolds, and L is an ample Q-Cartier
Weil divisor on X such that �KX � 3L. Denote by † the non-Cartier locus of L on X which
is a finite set by Proposition 3.2.

Next, we apply Ambro–Kawamata’s non-vanishing theorem to our study on the geometry
of linear systems j2Lj and jLj. Our goal is to show that L is Cartier on X .
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Proposition 4.2. Let D1; D2 be two general member of j2Lj on X . Then both Di

(i D 1; 2) and their complete intersection S WD D1 \D2 are Gorenstein canonical. Moreover,

Bs j2Lj is disjoint from †.

Proof. We first show that both Di and S are klt of Gorenstein index at most 2. By
Theorem 3.1, we know that 2L is Cartier and ample. By applying Theorem 4.1 to 2L on X ,
we see that �KX �Q

3
2
.2L/, so r D 3

2
> 1 D dim.X/ � 3 � 0. So we have that .X; Di / is

plt, hence Di is klt. Next, we apply Theorem 4.1 to 2LjDi
on Di . By adjunction it is clear

that �KDi
� LjDi

, so r D 1
2
� 0. Also, by Theorem 3.1 (3) we have an exact sequence

H 0.X; 2L/! H 0.Di ; 2LjDi
/! H 1.X; OX / D 0:

Hence the general divisor D2 2 j2Lj restricts to a general divisor S 2 j2LjD1
j. In particular, S

is also klt. By adjunction, we know that KS � LjS , so both Di and S have Gorenstein index
at most 2.

Next we show that S is Gorenstein. Assume to the contrary that x 2 S has Gorenstein
index 2. Then clearly x 2 †. Let � W . Qx 2 eX/! .x 2 X/ be the index 1 cover of L. Since eX
is Gorenstein, the preimage eS WD ��1.S/ is also Gorenstein as it is a complete intersection
in eX . Thus Qx 2 eS is a Du Val singularity. This implies that edim. Qx; eX/ � 5, i.e. Qx 2 eX is
a hypersurface singularity. But then the ODP conjecture holds for Qx 2 eX by Theorem 1.3, and
we get a contradiction to Proposition 3.3. This shows that S is Gorenstein.

Since both Di and S are Cohen–Macaulay, we know that

OX .L/˝OS Š OS .LjS / Š !S :

In particular, this implies that S \† D ;. It is clear that Bs j2Lj � S , so Bs j2Lj\† D ;.

Proposition 4.3. Let D 2 j2Lj and H 2 jLj be general divisors on X . Let G WD D\H

be their complete intersection. Then .G; LjG/ is a polarized K3 surface with Du Val singular-

ities of degree 6. Moreover, j2Lj is base point free, and the connected components of Bs jLj
have dimension 0 or 2.

Proof. By Proposition 4.2, we know that LjD � �KD is Cartier. Since OX .�L/ and
OX .L/ are both Cohen–Macaulay by Theorem 3.1 (1), we know that

OD.LjD/ Š OX .L/=OX .�L/:

Hence we have an exact sequence H 0.X; L/! H 0.D; LjD/! H 1.X;�L/ D 0 by Theo-
rem 3.1 (3). Hence G is a general divisor in jLjDj which implies that .D; G/ is plt by Theo-
rem 4.1. Since G � LjD is Cartier and D is Gorenstein canonical, we know that G has
Gorenstein canonical singularities as well. By adjunction, we have KG � 0. We claim that
H 1.G; OG/ D 0. Since LjD is Cartier, there is an exact sequence

H 1.D; OD/! H 1.G; OG/! H 2.D;�LjD/:

Thus it suffices to show that both H 1.D; OD/ and H 2.D;�LjD/ vanish. As D is Gorenstein
canonical, we have

OD.mLjD/ Š OX .mL/˝OD:
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Hence we have the following exact sequences for i D 1; 2:

0 D H i .X; mL/! H i .D; mLjD/! H iC1.X; .m � 2/L/ D 0:

Here we use Theorem 3.1 (3). Thus both H 1.D; OD/ and H 2.D;�LjD/ vanish, and the claim
follows. Hence G is a K3 surface with Du Val singularities. The polarization LjG has degree 6

since .Lj2G/ D .L2 �D �H/ D 2.L4/ D 6.
Since Bs j2Lj � Bs jLj, we know that Bs j2Lj � G. Moreover, we can show that

H 0.X; 2L/! H 0.G; 2LjG/

is surjective by tracing exact sequences as below and using Theorem 3.1 (3):

H 0.X; 2L/! H 0.D; 2LjD/! H 1.X; OX / D 0

and
H 0.D; 2LjD/! H 0.G; 2LjG/! H 1.D; LjD/ D 0:

Hence we have Bs j2Lj D Bs j2LjG j. By classical result on linear system of K3 surfaces (see
[36, Remark 3.4]), we know that 2LjG is always base point free. Hence j2Lj is also base
point free.

By similar argument on tracing exact sequences, we know that

H 0.X; 2L/! H 0.H; 2LjH /

is surjective. Since G is a general divisor of the ample base point free linear system j2LjH j

on H , we know that H is integral which implies that jLj has no fixed component. By tracing
exact sequences as above, we know that H 0.X; L/! H 0.H; LjH /! H 0.G; LjG/ are both
surjective. By Mayer’s theorem [59] (see also [36, Corollary 3.15]), we know that LjG is either
base point free or has a fixed component isomorphic to P1. Thus any connected component of
Bs jLj D Bs jLjH j is either an isolated point or a surface.

Proposition 4.4. Let H 2 jLj be a general divisor. Then H is Gorenstein log canonical.

Moreover, H admits a weakly special test configuration with central fiber isomorphic to the

projective cone Cp.G; 2LjG/.

Proof. By the proof of Proposition 4.3, we know that H is integral. Since the ideal
sheaf of H in X is OX .�L/, which is Cohen–Macaulay by Theorem 3.1 (1), we know that H

is Cohen–Macaulay as well. Since a general member G of the base point free linear system
j2LjH j is normal, we know that H is R1 hence normal as well. By adjunction, we have that
KH D .KX CH/jH � �2LjH is Cartier. Hence H is Gorenstein normal.

Next we construct the weakly special test configuration. The idea is by degeneration to the
normal cone of G. Let R D

L1
mD0 Rm WD H 0.H; 2mLjH / be the section ring of .H; 2LjH /.

Consider the N-filtration F on R (see e.g. [16, Section 2.3] for backgrounds) as

F
pRm WD H 0.H; 2mLjH � pG/ � H 0.H; 2mLjH / D Rm if p 2 Z�0:

For p 2 Z<0 we define F
pRm D Rm. Since G � 2LjH , it is clear that F

�R is a multiplica-
tive, linearly bounded, finitely generated N-filtration of R. Denote

H WD ProjA1

C1M

mD0

C1M

pD�1

t�p
F

pRm;
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where t is the parameter of A1, and the grading of F
pRm is m. Then .H ; OH .1//! A1 is

a test configuration of .H; 2LjH /. The central fiber H0 is given by

H0 D Proj
C1M

mD0

C1M

pD�1

F
pRm=F

pC1Rm:

It is clear that F
pRm=F

pC1Rm D 0 for p < 0. Hence to show H0 Š Cp.G; 2LjG/ it suf-
fices to show that F

pRm=F
pC1Rm Š H 0.G; 2.m � p/LjG/ for p � 0. By tracing the exact

sequence

0! H 0.H; 2mLjH � .p C 1/G/! H 0.H; 2mLjH � pG/! H 0.G; 2.m � p/LjG/

! H 1.H; 2mLjH � .p C 1/G/ Š H 1.H; 2.m � p � 1/LjH /;

it suffices to show that H 1.H; 2qLjH / D 0 for any q 2 Z. This follows from the following
exact sequence and Theorem 3.1 (3):

0 D H 1.X; 2qL/! H 1.H; 2qLjH /! H 2.X; .2q � 1/L/ D 0:

Hence we have shown H0 Š Cp.G; 2LjG/. Since G is a K3 surface with canonical singu-
larities, we know that Cp.G; 2LjG/ is log canonical by [39, Lemma 3.1]. By inversion of
adjunction, we know that .H ; H0/ is log canonical near H0, which implies that .H ; H0/ is log
canonical as H nH0 Š H � .A1 n ¹0º/. Hence H is log canonical, and H is a weakly special
test configuration of H . The proof is finished.

Next, we divide the argument into cases based on the geometry of the polarized K3
surface .G; LjG/, where G is a general complete intersection of D 2 j2Lj and H 2 jLj. By
Mayer’s theorem [59] (see also [36, Remark 3.8 and Corollary 3.15]), there are three cases
based on the behavior of the linear system jLjG j:

(1) (unigonal) jLjG j has a base curve C0 Š P1, jLjG � C0j is base point free, and the map
�jLjG�C0j W G ! P4 is an elliptic fibration over a quartic rational normal curve.

(2) (hyperelliptic) jLjG j is base point free, and �jLjG j W G ! P4 is a double cover onto
a non-degenerate rational surface of degree 3 in P4.

(3) (complete intersection) jLjG j is very ample, and the map �jLjG j W G ,! P4 embeds G as
a .2; 3/-complete intersection in P4.

The next result shows that .G; LjG/ cannot be unigonal.

Proposition 4.5. The polarized K3 surface .G; LjG/ is not unigonal. In particular,

Bs jLj is a finite set.

Proof. Assume to the contrary that .G; LjG/ is unigonal of degree 6. Then we know
that LjG � 4C1 C C0, where C0 Š P1 is a .�2/-curve, and C1 is a general fiber of the elliptic
fibration G ! P1 induced by jLjG � C0j. In the proof of Proposition 4.3 we have shown that
H 0.X; L/! H 0.H; LjH /! H 0.G; LjG/ are both surjective. Indeed, by the following exact
sequence

0 D H 0.H;�LjH /! H 0.H; LjH /! H 0.G; LjG/! H 1.H; OH / D 0;

we know that H 0.H; LjH / Š H 0.G; LjG/.
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Next, we resolve the birational map �jLj W X Ü P5 as follows:

X 0

X P5.

� �

�jLj

Here X 0 is the normalization of the graph of �jLj. From the above discussion, we know that for
a general divisor H 2 jLj, the image �.��1

� H/ is a general hyperplane section of W WD �.X 0/.
From the above surjectivity between H 0’s, we know that the restrictions of �jLj to H and G

are �jLjH j and �jLjG j respectively. We claim that �.��1
� H/ is a curve.

Assume to the contrary that dim.�.��1
� H// � 2. Denote by jLjH j D E CƒH , where E

is the base component and ƒH is movable. Then it is clear that �.��1
� H/ D �ƒH

.H/. Since
dim.�ƒH

.H// � 2, Bertini’s theorem implies that a general member F 2 ƒH is an integral
surface. Since G is ample on H , we know that F \G is connected. Since Bs jLjG j D C0 and
G is a general member of the base point free linear system j2LjH j, we know that EjG D C0.
Hence F jG is a general member of jLjG � C0j which is the sum of four distinct elliptic fibers.
In particular, F \G is disconnected. This is a contradiction. Thus the claim is proved.

Since �.��1
� H/ is a curve, it is the same as �jLjG j.G/ which is a rational normal curve

of degree 4 in P4. Since �.��1
� H/ is a hyperplane section of W , we know that W � P5 is

a non-degenerate surface of degree 4. By the classification of minimal degree varieties (see
e.g. [28]), we know that W is isomorphic to either P .1; 1; 4/ (cone over a quartic rational nor-
mal curve, �jO.4/j W P .1; 1; 4/ ,! P5), F2;1 (�j3f Cej W F2 ,! P5, where f and e are a fiber
and the negative section respectively), F0;2 (�jO.1;2/j W P

1 � P1 ,! P5), or the Veronese sur-
face V4 (�jO.2/j W P

2 ,! P5). In each case, there exists a family ¹Ctº of non-reduced divisors in
the linear system jOW .1/j that covers W . Choose a general divisor Ct , then we know ����

Ct

is a non-reduced divisor in jLj. Since �KX � 3L, we know that ˛.X/ � 1
6

which implies that
X is K-unstable by Theorem 2.5. This is a contradiction. The conclusion on Bs jLj follows
from the previous discussion since jLjG j is base point free in the non-unigonal cases.

Next we treat the hyperelliptic case.

Proposition 4.6. Assume .G; LjG/ is hyperelliptic. Then X is K-unstable.

Proof. We resolve the rational map �jLj D � ı ��1 by X
�
 � X 0

�
�! W , where X 0 is

the normalization of the graph of �jLj. Denote by ��jLj D 1
2
E Cƒ, where E is an effective

Weil divisor on X 0 and ƒ is base point free. Let L0 WD ��L � 1
2
E which is semiample on X 0.

Since �.��1
� H/ is a hyperplane section of W , and �jG0 is a double cover for general G and

G0 WD ��1.G/, we know that dim.W / � 3. We first show that dim.W / D 3.
Assume to the contrary that dim.W / D 4, i.e. � is generically finite. Since Bs jLj is

a finite set, we know that .��L �E/ D 0 as a 2-cycle. Hence

deg.W / � deg.�/ D .L04/ � .L03 � ��L/ D ..��L � 1
2
E/3 � ��L/ D ..��L/4/ D 3:

Since W is non-degenerate, we have deg.W / � 2 which implies that deg.�/ D 1, i.e. � is bira-
tional. Let H 0 WD ��1

� H be a general divisor in ƒ. Then we know that �jH 0 is also birational.
However, �jG0 has degree 2 for a general G0 in the base point free linear system .��j2Lj/jH 0 .
This is a contradiction. Thus we have dim.W / D 3.
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Next, we analyze the geometry of W . Notice that since .G; LjG/ Š .G0; .��L/jG0/ has
degree 6, the image �.G0/ is an integral surface of degree 3. Since dim.W / D 3, we know
that �.H 0/ is an integral surface for general H 0 2 ƒ, hence �.H 0/ D �.G0/ has degree 3. This
implies that deg.W / D 3 as well. Now W is a non-degenerate threefold in P5 of degree 3.
By [28], there are three possibilities of W : P .1; 1; 3; 3/ (a second iterated cone over a twisted
cubic curve, �jO.3/j W P .1; 1; 3; 3/ ,! P5), the cone over F1;1 (the cone over the image of
�j2f Cej W F1 ,! P4), or P1 � P2 (�jO.1;1/j W P

1 � P2 ,! P5). In the first two cases, W is
covered by non-reduced hyperplane sections, which implies that jLj contains a non-reduced
element by similar arguments to the proof of Proposition 4.5. This shows ˛.X/ � 1

6
which

implies that X is K-unstable by Theorem 2.5.
The only case left is when .W; OW .1// Š .P1 � P2; O.1; 1//. We will show that this

case cannot occur. Our argument is inspired by [25, Section 6].1) From the proof of Proposi-
tion 4.3, we see that �jLj restricted to D is the finite morphism �jLjD j W D ! W as a double
cover. Thus ��

jLjD j
W Pic.W / ,! Pic.D/ is an injection, which implies that

rk Pic.D/ � rk Pic.W / D 2:

Since X admits a Q-Gorenstein smoothing f W X ! B with X0 Š X , where Xb is a smooth
cubic fourfold for any b 2 Bı, we know that f�OX.2L/ is flat by Theorem 3.1 (3). Hence
after base change to a quasi-finite holomorphic map D ! B from the unit disc D � C, we can
find a Q-Gorenstein smoothing D ! D of D Š D0 such that Dt is a smooth .2; 3/-complete
intersection in P5 for any t 2 Dı WD D n ¹0º. By Proposition 4.2 we know that D0 is a Q-Fano
variety with Gorenstein canonical singularity. Hence by Kawamata–Viehweg vanishing we
have H i .D0; OD0

/ D 0 for any i > 0. Similarly, since D ! D is a Q-Gorenstein flat family
of Q-Fano varieites, we have H i .D ; OD/ D 0 for any i > 0. Hence from the exponential exact
sequence, we obtain the following isomorphisms:

Pic.D0/
Š
�! H 2.D0; Z/

Š
 � H 2.D ; Z/

Š
 � Pic.D/:

Here the middle isomorphism follows from the topological fact that D0 ,! D admits a defor-
mation retraction. In particular, we know that

rk Pic.D/ D rk Pic.D0/ � 2:

By Lefschetz hyperplane theorem, every fiber Dt of the smooth fibration D
ı ! Dı satisfies

that
Pic.Dt / D Z � Œ�KDt

�:

Hence [40, Conditions 12.2.1] hold for D ! D. By [40, Definitions 12.2.2, 12.2.4, and Propo-
sitions 12.2.3, 12.2.5], we know that there is a Q-local system GN

1.D=D/ on D satisfying
that

G N
1.D=D/.D/ Š Pic.D/˝Z Q and GN

1.D=D/jt Š Pic.Dt /˝Z Q

for a very general t 2 Dı. Since D is contractible, we know that GN
1.D=D/ is a trivial

Q-local system, and

2 � rk Pic.D/ D rk GN
1.D=D/ D rk Pic.Dt / D 1:

This is a contradiction. Thus the proof is finished.

1) This argument is suggested by Chenyang Xu.
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Finally, we treat the case of G being a complete intersection.

Proposition 4.7. Suppose L is not Cartier at x 2 X . Assume .G; LjG/ is a .2; 3/-com-

plete intersection in P4. Then the index 1 cover Qx 2 eX of x 2 X with respect to L is a local

complete intersection singularity.

Proof. It is clear that x 2 Bs jLj � H . By Proposition 4.4, we know that there exists
a weakly special test configuration H of H with central fiber H0 Š Cp.G; 2LjG/. Denote by
LH the Zariski closure of LjH � .A1 n ¹0º/ in H . Then it is clear that LH is a Gm-invariant
Q-Cartier Weil divisor on H . Let L0 be the restriction of LH on H0 which is also a Q-Cartier
Weil divisor. From the construction of H , we know that the Zariski closure G of G � .A1 n ¹0º/

in H is a trivial test configuration of G. Moreover, its central fiber G0 is precisely the section
at infinity in the projective cone Cp.G; 2LjG/. Thus we have L0jG0

Š LjG under the natural
identification of G0 Š G. Since L0 is Gm-invariant, we know that L0 is linearly equivalent to
the cone over LjG . In particular, we know that ind.o; L0/ D ind.o; LH / D 2, where o 2 H0

is the cone vertex. Besides, since LjG is Cartier, we know that o is the only non-Cartier point
of LH in H0.

From earlier discussions, we know that LjH is not Cartier at x. Thus LH is not Cartier
at .x; t/ for any t 2 A1 n ¹0º. This implies that the degeneration of .x; t/ in H as t ! 0 is
precisely o. Let �H W . Qo 2 eH /! .o 2 H / be the index 1 cover of LH . Then it is clear that
Qo 2 eH0 is isomorphic to the affine cone singularity Ca.G; LjG/. Since G is a global complete
intersection and LjG Š OG.1/, we know that Qo 2 eH0 is a local complete intersection singular-
ity. We denote by � W . Qx 2 eX/! .x 2 X/ the index 1 cover of L. Denote by eH WD ��1.H/.
Then it is clear that eH provides a Gm-equivariant degeneration of . Qx 2 eH/ to . Qo 2 eH0/ which
is a local complete intersection singularity. By [17, Theorem 2.3.4], we know that . Qx 2 eH/

is a local complete intersection singularity. Since eH is a Cartier divisor of eX , again using
[17, Theorem 2.3.4] we conclude that Qx 2 eX is also a local complete intersection. The proof
is finished.

Remark 4.8 (Communicated with Ziquan Zhuang). There is an alternative way to prove
Propositions 4.6 and 4.7 using higher codimensional ˛-invariants. Since X is K-semistable and
Bs jLj is finite, by [77, Theorem 1.1] we know that

˛.4/.X/ �
4

5
:

Since �KX � 3L, we know that

lct.X I jLj/ �
12

5
:

Hence .X; H1 CH2 C
2
5
H3/ is log canonical for general members Hi 2 jLj .1 � i � 3/.

Suppose x 2 † is a non-Cartier point of L with the index 1 cover � W . Qx 2 eX/! .x 2 X/.
Thus .eX; eH 1 C eH 2 C

2
5

eH 3/ is log canonical at Qx, where each eH i WD ��Hi is Cartier. Hence
by adjunction we know that .eH 1 \ eH 2; 2

5
eH 1 \ eH 2 \ eH 3/ is semi-log-canonical (slc). Hence

Qx 2 eH 1 \ eH 2 is a Gorenstein slc surface singularity without an isolated lc center. By the
classification of log canonical surface singularities (see e.g. [39, Section 3.3]), we know that
Qx 2 eH 1 \ eH 2 is either Du Val or nodal. In particular, the point Qx 2 eH 1 \ eH 2 is a hypersurface
singularity which implies that Qx 2 eX is also a hypersurface singularity. Then similar arguments
to the proof of Theorem 4.9 implies that X is K-unstable, a contradiction.
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To summarize, we have shown the following result which implies Theorem 1.1.

Theorem 4.9. Let .X; L/ be the K-semistable limit of cubic fourfolds as in Theorem 3.1.

Then L is a very ample Cartier divisor, and �jLj W X ,! P5 embeds X as a (possibly singular)

cubic fourfold.

Proof. Assume to the contrary that L is not Cartier at x 2 X . From the above discus-
sions, we see that .G; LjG/ is a polarized K3 surface with Du Val singularities of degree 6. If
.G; LjG/ is hyperelliptic or unigonal, then Propositions 4.5 and 4.6 imply that X is K-unstable,
a contradiction. If .G; LjG/ is a .2; 3/-complete intersection in P4, then Propositions 3.3
and 4.7 contradict each other since Conjecture 2.10 holds for local complete intersections
by Theorem 1.3. Hence L must be Cartier on X . The rest of the statement directly follows
from [34].

Proof of Theorem 1.1. The proof is almost the same as [54, proof of Theorem 1.1],
with the following small modifications. By [60, Theorem 6.1], [71, pp. 85–87], [4], [56, Theo-
rem 1.5], and [78, Corollary 1.4], there exists at least one smooth K-stable cubic fourfolds. We
also replace [54, Lemma 3.17] by Theorem 4.9. Then the proof proceeds exactly the same as
[54, proof of Theorem 1.1].

Proof of Corollary 1.2. For parts (1) and (2), by [42, Theorem 1.1] we know that cubic
fourfolds with simple singularities are GIT stable. Hence the statements follow from Theo-
rem 1.1. Part (3) follows directly from Theorem 1.1. For part (4), Theorem 1.1 implies that any
GIT semistable cubic fourfold is K-semistable, hence it has klt singularities. A hypersurface
with klt singularities must be Gorenstein canonical. The existence of (weak) KE metrics in
(1)–(3) follows from the Yau–Tian–Donaldson Conjecture in the smooth case [20–22, 72] and
the general case [9, 45, 47, 55]. Thus the proof is finished.
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