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K-stability of cubic fourfolds

By Yuchen Liu at Evanston

Abstract. We prove that the K-moduli space of cubic fourfolds is identical to their GIT
moduli space. More precisely, the K-(semi/poly)stability of cubic fourfolds coincide to the
corresponding GIT stabilities, which was studied in detail by Laza. In particular, this implies
that all smooth cubic fourfolds admit Kdhler—Einstein metrics. Key ingredients are local vol-
ume estimates in dimension three due to Liu and Xu, and Ambro—Kawamata’s non-vanishing
theorem for Fano fourfolds.

1. Introduction

K-stability is an algebro-geometric stability condition introduced by Tian [70] and later
reformulated algebraically by Donaldson [26] to detect the existence of Kéhler—Einstein (KE)
metrics on Fano varieties. The Yau-Tian—Donaldson (YTD) Conjecture predicts that the exis-
tence of a KE metric on a Fano variety X is equivalent to the K-polystability of X. The
relatively easier direction of the YTD Conjecture that KE metrics implies K-polystability
was confirmed in [8]. When X is smooth, the YTD Conjecture was proved in the celebrated
works [20-22] and [72] using Cheeger—Colding—Tian theory. Later, a different approach to the
YTD Conjecture, namely the variational approach, has been developed. Combining the analytic
works [9,45,47] and the algebraic work [55], this approach gives a full proof of the YTD Con-
jecture for all (possibly singular) Fano varieties. However, it is often a challenging problem to
check K-(semi/poly)stability of an explicit Fano variety.

In recent years, the algebraic study of K-stability has successfully led to a new theory,
known as the K-moduli theory, that produces an algebraic construction of compact moduli
spaces of Fano varieties. The Fano K-moduli theorem, proved in a combination of works
[2,11,13,16,23,37,49,55,73-75], states that given dimension n and volume V, there exists an
Artin stack M }Ifsf, of finite type parametrizing K-semistable Fano varieties, called the K-moduli
stack, and :M,If*f, admits a projective good moduli space M ,If l;ﬁ parametrizing K-polystable Fano
varieties, called the K-moduli space. In the Q-Gorenstein smoothable case, the Fano K-moduli
theorem was proved earlier in [48, 74] (see also [61, 67]) based on analytic results from the
works [20-22,72].
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The K-moduli theory not only lays the foundation for these K-moduli spaces, but also
provides strong tools to verify K-stability for explicit Fano varieties (e.g. Fano hypersurfaces
or complete intersections). One notable strategy along this direction, namely the moduli conti-
nuity method, goes as follows. Using «-invariants and group actions, it is usually easy to find
a K-stable Fano manifold X in the given family (e.g. Fermat hypersurfaces [4,71, 78]). Then
by openness of K-(semi)stability [12, 13,55, 73], there exists an open neighborhood of [X] in
the parameter space which parametrizes K-stable Fano varieties X ;. By the Fano K-moduli
theorem, there exists a component M X of the K-moduli space M,f’ I;ﬁ that parametrizes those
X and their K-polystable Q-Gorenstein limits, where n = dim(X) and V = (—Kx)". Hence
the K-moduli space M ¥ is birational to the GIT moduli space M S'T. Using the local-to-global
volume comparison in [53], if the global volume of X is relatively large, then we can often get
a good control of the singularities appearing in the boundary of MX. This enables us to give an
explicit description of the birational map M® —-> MSIT and in some cases to even show that
it is an isomorphism. This strategy first appeared implicitly in [68] where Tian showed that all
smooth del Pezzo surfaces with reductive automorphism groups are K-polystable. Later, it was
used to construct explicit K-moduli compactifications of del Pezzo surfaces of degree 4 in [58]
and of degree < 3 in [62] where the latter work was more focused on the stability study. In
higher dimensions, it is shown that M ¥ is isomorphic to MS™T for complete intersections of
two quadric hypersurfaces in [66] (where smooth ones were shown to be K-stable earlier in [4])
and cubic threefolds in [54]. Some cases for log Fano pairs have been worked out as well, see
e.g. [5-7,32,35]. Despite these results, much less is known in higher dimensions.

In this paper, we carry out this strategy for cubic fourfolds by showing that their K-moduli
space is isomorphic to their GIT moduli space. In other words, the K-(semi/poly)stability of
cubic fourfolds are the same as their GIT (semi/poly)stability.

Theorem 1.1. Let X C P> be a (possibly singular) cubic hypersurface. Then X is
K-(semi/poly)stable if and only if X C P> is GIT (semi/poly)stable. In particular, the K-moduli
space MX parametrizing K-polystable Q-Fano varieties admitting Q-Gorenstein smoothings
to smooth cubic fourfolds is isomorphic to the GIT moduli space M S of cubic fourfolds.

The “only if” direction in Theorem 1.1 follows from the general fact in [63, 69] that
a K-(semi/poly)stable Fano hypersurface is always GIT (semi/poly)stable. On the other hand,
the “if” direction for general Fano hypersurfaces X C P"*! is expected to be true only when
deg X = 3. In fact, if deg X > 4, there are non-reduced, hence K-unstable, GIT polystable
hypersurfaces X, e.g. a multiple of a smooth hyperquadric. In addition, the “if”” direction can
also fail for non-hypersurface Fano varieties, e.g. quartic double solids [7, Theorem 1.4].

The GIT of cubic fourfolds was studied in detail by Laza [42] (see also [76]). As a conse-
quence, we have the following result which, together with [20-22,72], implies that any smooth
cubic fourfold admits a KE metric. We also obtain a result on singularities of GIT semistable
cubic fourfolds without involving direct GIT calculation, which answers affirmatively a ques-
tion of Spotti and Sun [66, Question 5.8] in dimension 4.

Corollary 1.2. The following statements hold:
(1) All smooth cubic fourfolds are K-stable.

(2) All cubic fourfolds with simple singularities are K-stable.
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(3) All GIT polystable cubic fourfolds are K-polystable. For a list of generic singularities of
GIT polystable cubic fourfolds with non-simple singularities, see [42, Theorem 1.2 and
Table 3].

(4) Any GIT semistable cubic fourfold has Gorenstein canonical singularities.

In particular, each cubic fourfold in (1), (2) or (3) admits a (weak) KE metric.

We note that combined Corollary 1.2 with [18,19] and [31, Corollary 1.4] on K-stability
of smooth quintic fourfolds and the very recent result [1, Theorem 1.1] on K-stability of
smooth quartic fourfolds, we answer affirmatively the folklore conjecture that all smooth Fano
hypersurfaces have KE metrics in dimension 4.

In the process of proving Theorem 1.1, we confirm the ODP Gap conjecture of local
volumes [66, Conjecture 5.5] (see also Conjecture 2.10) for all local complete intersection
singularities. The proof uses the lower semicontinuity of local volumes [15]. We note that this
conjecture was confirmed in dimension at most 3 [46,54].

Theorem 1.3 (= Theorem 2.12). Let (x € X) be an n-dimensional non-smooth local
complete intersection kit singularity. Then

vol(x, X) <2(n — 1)",

and equality holds if and only if it is an ordinary double point.

Our proof of Theorem 1.1 starts from parallel arguments in [54] where the author and Xu
showed the similar result to Theorem 1.1 for cubic threefolds. Suppose X is an n-dimensional
K-semistable Q-Fano variety admitting a Q-Gorenstein smoothing to cubic hypersurfaces X;.
Let L be the Q-Cartier Weil divisor on X as the limit of hyperplane sections of X;. By the
moduli continuity method in [54, 66], the analogous result to Theorem 1.1 for cubic n-folds
would follow from showing X is a (possibly singular) cubic hypersurface. By [34] this reduces
to showing L is Cartier. Using the local-to-global volume comparison from [53], the divisor L
being Cartier would follow from the ODP Gap Conjecture of local volumes in dimension n
(see Conjecture 2.10), especially applied to the index 1 cover of a singular point x € X, where
L is not Cartier. In [54], the author and Xu verified the ODP Gap conjecture in dimension 3,
thus proving that K-(semi/poly)stability of cubic threefolds coincide with corresponding GIT
stabilities. Such an approach depends heavily on the classification of terminal and canonical
singularities in dimension 3, and is currently out of reach in dimension 4 or higher.

To overcome this difficulty, we study the explicit geometry of the linear systems |L|
and |2L| on X under the assumption that L is not Cartier. Using the local-to-global vol-
ume estimates from [53, 54] and a Bertini-type result for local volumes (see Theorem 2.16),
we show that 2L is Cartier, and L is Cartier away from finitely many points. Then using
Ambro—Kawamata’s non-vanishing theorem for fundamental divisors on Fano varieties with
large Fano index [3, 38], we show that for general elements D € |2L| and H € |L|, the com-
plete intersection (G = D N H, L|g) is a polarized K3 surface with Du Val singularities of
degree 6. Then classical results on linear systems of K3 surfaces [59] implies that |2L] is
base point free, and (G, L|g) is either a complete intersection, hyperelliptic, or unigonal. In
the first case, we show that the index 1 cover of a non-Cartier point x € X of L must be
a local complete intersection which satisfies the ODP Gap Conjecture (see Theorem 1.3). Thus
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similar arguments to [54] show that X is K-unstable. In the last two cases, by analyzing the
rational map ¢z : X --> P> we show that a(X) < % which implies that X is K-unstable
by [33, Theorem 3.5]. Given these contradictions, we conclude that L is Cartier on X, hence
proving Theorem 1.1.

Acknowledgement. I would like to thank Chenyang Xu and Ziquan Zhuang for fruit-
ful discussions and helpful comments on a draft, including Remark 4.8 and a simplification
of the proof of Proposition 4.6. I would like to thank Kento Fujita, Chen Jiang, Zhiyuan Li,
Linquan Ma, Yuji Odaka, Giulia Sacca, Cristiano Spotti, and Gang Tian for helpful discussions
and comments.

2. K-stability and local volumes

Throughout this paper, we work over the field C. We follow the standard convention
from [39,41]. A pair (X, A) is a normal variety X together with an effective Q-divisor A such
that Kx + A is Q-Cartier. A pair (X, A) is called a log Fano pair if X is projective, (X, A)
is klIt, and — Ky — A is ample. We call X a QQ-Fano variety if (X, 0) is a log Fano pair. We
call X alc Fano variety if X is normal projective with log canonical singularities, and — Ky
is Q-Cartier ample. A kit singularity x € X is a closed point x on a normal variety X with kit
singularities.

2.1. Valuative criteria for K-stability.

Definition 2.1. Let X be a normal variety. A prime divisor £ over X is a prime divisor
E on a normal variety Y together with a proper birational morphism p : ¥ — X. The center
of E on X is w(E). Moreover, if Ky is Q-Cartier, then we define the log discrepancy of E as

Ax(E) := 1 + coeffg (Ky — u* Kx).
From the definition we know that Ay (E) > 0 (resp. > 0) if X has kit (resp. log canonical)
singularities.
Definition 2.2. Let X be an n-dimensional Q-Fano variety. Let E be a prime divisor
over E. The pseudo-effective threshold of E is defined as
Tx(E) :=sup{t € R | u*(—Kx) — tE is big}.
The S-invariant of E, first introduced in [14], is defined as

1 Tx (E)

The B-invariant of E, first introduced in [30], is defined as
Bx(E) := Ax(E) — Sx(E).

Sx(E) =

The original definition of K-(poly/semi)stability introduced by [26, 70] is by checking
the sign of generalized Futaki invariants of test configurations. In this paper, we will use the
valuative criterion for K-(semi)stability invented by Fujita [30] and Li [43] with complementary
result by Blum and Xu [16].
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Let X be a Q-Fano variety (resp. a Ic Fano variety) with —rKy Cartier for r € Z~y.
Recall from [49,50] that a test configuration (X, £)/A! of (X, —rKy) is special (resp. weakly
special) if (X, Xo) is plt (resp. log canonical) and £ ~q —rKx /a1, and we say that X is
a special degeneration (resp. a weakly special degeneration) of X .

Theorem—Definition 2.3. Let X be a Q-Fano variety. Then:
(1) [30,43] X is K-semistable if and only if Bx (E) > 0 for any prime divisor E over X,
(2) [16] X is K-stable if and only if Bx (E) > 0 for any prime divisor E over X,

(3) [49] X is K-polystable if and only if any K-semistable special degeneration of X is
isomorphic to itself,

(4) X is K-unstable if it is not K-semistable.
Definition 2.4. Let X be a Q-Fano variety. The a-invariant of X is defined as
a(X) =inf{let(X; D) |0 < D ~g —Kx}.

By [14], we know that

. Ax(E)
a(X) = 1gf Te(E)'

where the infimum is taken over all prime divisors £ over X.

Theorem 2.5 ([33, Theorem 3.5]). Let X be an n-dimensional K-semistable Q-Fano

variety. Then we have a(X) > n—}-l‘

2.2. Local volumes. In this subsection, we recall the concept of normalized volume
of valuations over a klt singularity first introduced by C. Li [44]. For simplicity, we restrict
ourselves to divisorial valuations.

Definition 2.6 ([44]). Let x € X be an n-dimensional klt singularity. For a prime divi-
sor E over X centered at x, we define (following [27]) the volume of E over (x € X) to

be
Lo E
Voly () = lim_-(OXx/am(E))
’ m—>00 m”/n'
Here a;, (E) :={f € Ox,x | ordg(f) > m} and £ denotes the length of an Artinian module.
The normalized volume of E over (x € X) is defined as

voly x(E) 1= Ax (E)" - voly x (E).
The local volume of x € X is defined as
vol(x, X) := igvacﬂX,x(E),
where the infimum runs over all prime divisors £ over X centered at x.

There are alternative characterizations of local volumes. We provide two of them using
ideals and Kolldr components which are useful.
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Theorem 2.7 ([10,53]). Let x € X be an n-dimensional klt singularity. Denote
(R’ m) = ((9X,X9 mX,x)-
Then we have

vol(x,X) = inf let(X;a)"-e(a) = min lct(X;ae)” - e(ae).

a: m-primary Qo M-primary

Here a (resp. ae) represents an ideal (resp. a multiplicative graded sequence of ideals) of R,
and e denotes the Hilbert—Samuel multiplicity.

Definition 2.8. Letx € X be aklt singularity. We say that a proper birational morphism
WY — X from a normal variety X provides a Kollar component S over (x € X) if u is an
isomorphism over X \ {x}, the preimage u~!(x) = S is a Q-Cartier prime divisor on Y, the
pair (Y, S) is plt, and —S is p-ample.

Theorem 2.9 ([52]). For any kit singularity x € X, we have

vol(x. X) = infvoly x(5).
where the infimum runs over all Kolldr components S over X centered at x.

The following conjecture was asked in [66]. It was confirmed in dimension 2 and 3 by
[46, Proposition 4.10] and [54, Theorem 1.3], respectively.

Conjecture 2.10 (ODP Gap Conjecture). Let (x € X) be an n-dimensional non-smooth
klt singularity. Then
vol(x, X) <2(n—1)",

and equality holds if and only if it is an ordinary double point.

Theorem 2.11. The following statements hold:
(1) [46,54] Conjecture 2.10 holds when n < 3.

(2) [54, Theorem 1.6] Let x € X be an n-dimensional kit singularity. Then we have
\751()6, X) <n",
and equality holds if and only if it is smooth.
The following result verifies Conjecture 2.10 for local complete intersection singularities.

Theorem 2.12. Conjecture 2.10 holds for all local complete intersection singularities.

Proof. Let x € X be an n-dimensional local complete intersection singularity. Since
Conjecture 2.10 holds in dimension < 3 by Theorem 2.11 (1), we may assume that n > 4. Then
there exists a locally closed immersion X < Z into a smooth variety Z of dimension n + r
such that X = V(f1, f2,..., fr) forsome f; € Oz x. We may assume that r achieves its min-
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imum, i.e. r := edim(x, X) — n, where edim(x, X) := é(mx,x/m)znx) denotes the embedding
dimension. In particular, ordx(f;) > 2 for any 1 <i <r. Since x € X is non-smooth, we
have r > 1.

If r > 2, we choose g1, g2 € mZZ’x and g3,...,gn €mgz x,sothat g1,82 € mZZ’x/m%,x
and g; € mz,x/mzz,x are general fori > 3. Let X; := V(f1 +1g1, f2 +1g2,.... fr +1gr).
Then it is clear that (x € X;);c41 is a Q-Gorenstein flat family of kit singularities. Moreover,
for a general ¢ € A! we know that x € X, is a local complete intersection of two quadrics with
smooth projective tangent cone. Let S; be the exceptional divisor of the ordinary blow up of
x € X; for general ¢. Then simple calculation shows that

Ax,(S;) =n—2 and voly, x(S;) =e(x, X;) = 4.
Thus for general r we have
‘751()6, X1) < Ax,(S1)" - volx, x(Sy) = 4(n —2)" <2(n —1)".
Thus the lower semicontinuity of local volumes [15] implies that
vol(x, X) < vol(x, X;) < 2(n — ).

If r =1, then x € X = V(f) is a hypersurface singularity for some f € Oz . By
[54, Lemma 3.1], we know that

vol(x, X) < (n + 1 —ordy f)" -ordy f <2(n—1)".

If the equality holds, then we must have ord, f = 2. Assume to the contrary that x € X is not
an ordinary double point. By choosing a suitable algebraic coordinates (zg, ..., z,) at x € Z,
we may assume that f — (zg +otz2) € m3Z > Where m < n. Let

2 2 2
gt b emd,,

and let X; := V(f 4 tg). Then by [15] we know that \70\1()6, X) < \781(x, X;) for general ¢.
Since the degree 2 part of f + tg has rank n for general 7, we know that x € X; is an
n-dimensional A,-singularity. Hence [44, Example 5.3] for n > 4 implies that

P P ol ) n—1
olx. X) < vol(x. Xp) < 2 =2 o 1y,
(n—1)n=1
Hence we get a contradiction. This finishes the proof. |

The following result from [75, Theorem 1.3] on finite degree formula of local volumes
is very useful. Note that when X is a Gromov—Hausdorff limit of Kdhler—Einstein Fano mani-
folds, such a result was proven earlier in [51, Theorem 1.7].

Theorem 2.13 ([75]). Lett: (X € 55) — (x € X) be a finite quasi-étale Galois mor-
phism between kit singularities. Then

vol(%, X) = deg(t) - vol(x, X).

The following theorem is one of the key ingredients in the moduli continuity method. It is
a generalization of [29].
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Theorem 2.14 ([53]). Let X be an n-dimensional K-semistable Q-Fano variety. Then
for any closed point x € X we have

1\" ~
(—Kx)" < (1 + —) vol(x, X).
n
The following lemma is well known to experts.

Lemma 2.15. Let (xeX ) and (x' € X') be two kit singularities that are analytically
isomorphic, that is, (9Xx o (9X/ x'- Then Vol(x X) = Vol(x X).

Progf.  Denote (R, m) := (Ox,x, mx,x) and (R, ') := (Ox’ x, mx/ x). Denote by

: R — R’ the rlng 1som0rph1sm Then any mi-primary ideal a of R corresponds to a unique
m’-primary ideal a’ of R’ via a’ = ((a) N R’. Under this correspondence, it is easy to see
e(a) = e(a’). By [24, Proposition 2.11] we know that Ict(X; a) = lct(X’; a’). Hence the state-
ment follows from Theorem 2.7. O

2.3. Bertini-type result for local volumes. In this subsection, we prove the following
Bertini-type result for local volumes.

Theorem 2.16. Let x € X be a non-isolated n-dimensional kit singularity. Then there
exists a non-smooth (n — 1)-dimensional kit singularity y € Y such that

vol(x, X) _ vol(y.Y)
n" T (n—1rl

Moreover, Y can be chosen as a general hyperplane section of X.

Before presenting the proof of Theorem 2.16, we need the following result on the local
volume of fibrations.

Proposition 2.17. Let v : X — B together with a section o : B — X be a Q-Gorenstein
flat family of kit singularities over a smooth curve B. Then for a general point b € B we have

vol((b), X) _ vol(a(h), Xp)

n” - (n—1nt

Proof. By the adjunction of local volumes [57, Theorem 1.7], we always have

vol(a(b), X) _ vol(a(b), Xp)
n" ~ (n—1nt

for any b € B. Thus it suffices to show the reverse inequality for general b € B.

Denote by 7 the geometric generic point of B. Then by [73] we know that there for a
general point b € B we have \T&(G(b), Xp) = \7(;1(0(77), X7). Let us fix an arbitrary € > 0. By
Theorem 2.9, there exists a Kolldr component &5 over o(77) € X5 such that

2.1 volxg, (i) (87) < Vol(a (7). Xz) + €.
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Denote by p7 : Y53 — Xj the plt blow up extracting &75. Hence there exists an étale morphism
B — B such that i extends over X xg B which prov1des a flat family of Kollar compo-
nents (see [54, Definition A.2]). Since the local volume is preserved under étale morphism
by Lemma 2.15, we may replace B by B. Thus there is a birational morphism y : ¥ — X
which provides a flat family § of Kollar components over X centered at o(B). Denote by
by = uxOy(—ms). Since —§ is a p-ample Q-Cartier divisor, we know that by, is a flat fam-
ily of ideals over B form > 1 (i.e. O /by, is flat over B). After replacing B with a dense open
set, we may assume that by, is a flat family of ideals over B forany m € Z>¢. For p € R>¢, we
define by := by, = uxOy(—[p8&]). Let 8 and b, ;, be the restriction of § and b, on Xp.
By flatness of & and b, over B, we have Bﬁ,\b = a,(8p) forany b € B.

Next, we estimate the local volume vol(o (b), X). Fix a general b € B. Lett € O p be
its uniformizer. For any s € R~ ¢, consider the ideal sequence Jo 5 as

Jlm,s = Bms + B(m—l)sl + B(m—z)st2 +- Bstm_l + (tm)

By the definition of b, we know that J, s is a multiplicative ideal sequence of O x () cosup-
ported at o (b). Then we know that

m
LOx.o)/Im,s) = Z LOx,. o)/ bisp)-
i=1

Since L(Ox;,.ob)/p,p) = ﬁ Volxl”(,(l,)(é’b)p"_1 + O(p"?), we know that

1
LOx. o)/ Im.s) = Vleb,o(b)(”Sb)Sn Im" + Om" ).
This implies that

(2.2) e(da,s) = Volx, ob)(8p)s" !

Let vy be the valuation of C(X) as the quasi-monomial combination of ¥ and § of weight s
and 1, respectively. Then it is clear that

Ax(vs) =5+ Ax(8) =5+ Ax,(8p) and  vs(dp,s) = ms.

Hence we have

(2.3) Ict(X; do5) < X( s) <l+s leb (8p).

Vs (Jays)
Combining Theorem 2.7, (2.2) and (2.3), we obtain

vol(0 (), X) < 1et(X: dos)" - e(das) < (1457 Ax;, (85))" - vola, o (b) (8p)s™

Since s is arbitrary, we may choose s = A%, (1 ») which minimizes the right-hand-side of the

above inequality. Hence we have

n n

\70\1(0(19), X) < (n_nTVleh,U(b) (8p) < (

#(vﬁ(o(ﬁ), X7) + €).

Here the second inequality follows from (2.1) and

volog, o(b)(86) = Vola, o) (87)
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by flatness of § and be over B. By [73] we know that
vol(0 (7). X5) = vol(a(b), Xp)
for general b. Hence by letting ¢ — 0, we prove the reverse inequality that

vol(a(b), %) _ vol(a(b), Xp)
n" - (m—1r1

for general b € B. The proof is finished. O

Proof of Theorem 2.16.  For simplicity, we assume that X is affine. Let C C Xjjpe be an
integral curve through x. Let 7 : X — A! be a general linear projection. Then 7|¢c : C — A!
is quasi-finite. Let y € C be a general point. Let Y be the fiber of & containing y. Then after
taking base change of 7 to the normalization of C, Lemma 2.15 and Proposition 2.17 implies
that e -

vol(y, X)  vol(y,Y)
nn (n—1nl

Since y € C is general, we have \751()6, X) < \751()/, X) by [15]. This finishes the proof. O

Corollary 2.18. Let x € X be a non-smooth kit singularity of dimension n > 3. Assume
that dimy Xgne > n — 3. Then .
vol(x,X) 16
- < —
nn 27
In particular, Conjecture 2.10 holds for x € X.

Proof. We will focus on the first inequality % < ;—g, as the statement on Con-
jecture 2.10 is a consequence of this inequality by a simple computation %n” <2(n—1)"
whenever n > 4, and the conjecture holds in dimension 3 by Theorem 2.11 (1).

We do induction onn > 3. When n = 3, the first inequality is precisely Theorem 2.11 (1).
Assume that the first inequality is true in dimension n — 1 with n > 4. Let x € X be a non-
smooth kIt singularity of dimension n with dimy Xgne > 1 — 3. Let V' be an irreducible compo-
nent of Xy, such that x € V anddim V' > n — 3. Let C C V be an integral curve through x.
Then the proof of Theorem 2.16 implies that there exists a hyperplane section ¥ C X and
a closed point y € Y N C such that

vol(x, X) _ vol(y,¥)
nn ~ (n— 1)1

Furthermore, since Yging 2 Xsing VY 2 V' NY, we know that

dimy Ysing > dimy(V N Y) > dimy, V —1 > n — 4.

vol(y,¥)
(n_l)n—l

vol(x, X) - vol(y,Y) _16
n"  — (mn—1Dr"1 T 27

By induction hypothesis, we have

< %. Hence we have

Thus the proof is finished. m)
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3. Local-to-global volume estimates

In order to prove our main result Theorem 1.1, we follow the strategy from [54, 66], that
is, to show that any K-semistable (Q-Gorenstein limits of cubic hypersurfaces is again a cubic
hypersurface. The following result on K-semistable degeneration of higher dimensional cubic
hypersurfaces is an easy consequence of arguments therein.

Theorem 3.1. Let n > 4 be an integer. Let XX — B be a K-semistable Q-Fano family
over a smooth pointed curve 0 € B such that over B°® := B \ {0} it is a smooth family of cubic
n-folds. Then there exists a Q-Cartier integral Weil divisor class L on X := X such that the
following properties hold:

(1) Ox(mL) is Cohen—Macaulay for any m € Z.
2) =Ky ~(n—1)L and (L") = 3.

(3) hi(X,Ox(mL)) = h' (X, Ox, (m)) foranym € Z, i > 0, and b € B°. Moreover, one
has h°(X, Ox (L)) = n+2, and h’ (X, Ox (mL)) = Oforanym € Zand1 < j <n—1.

(4) Any Q-Cartier Weil divisor D on X satisfies that 2D is Cartier. In particular, 2L is
Cartier.

Proof. Denote by X° := X \ Xo. By base change to a finite cover of B, we can find a
hyperplane section £° ~g O (1) and taking Zariski closure yields a Weil divisor &£ on X. It
is clear that

—Koygo ~po (n — 1)&£°.

Since Xo ~p 0 is integral, we know that
—Kx/p ~p (n— 1L

which implies that &£ is Q-Cartier. By assumption X has kit singularities, so [41, Corol-
lary 5.25] implies that @ x (m&£) is Cohen—Macaulay for any m € Z. Thus L := &£|x, is
a Q-Cartier Weil divisor satisfying that

@xo(mL) ~Ox(mL) ® (9x0

is Cohen—Macaulay for any m € Z, and —Kx ~ (n — 1)L. The fact that (L") = 3 comes from
(Ox, (1)") = 3 and &£ is Q-Cartier. Hence we have shown (1) and (2).

For part (3), notice that Oy (mL) is flat over B for any m € Z whose fiber over b
and 0 are O x;, (m) and Ox (mL) respectively. If m > 2 —n, thenmL — Kx ~ (m +n — 1)L
and m&€p — K, ~ Ox, (m + n — 1) are both ample. Hence Kawamata—Viehweg vanishing
implies that

H'(X,0x(mL)) = H (Xp,0x,(m)) =0 foranyi > landm >2—n.
By the flatness of O x (m£), we know that
h°(X,Ox(mL)) = h°(Xp. Ox,(m)) foranym >2—n.
On the other hand, by Serre duality for CM sheaves [41, Theorem 5.71], we know that
H'(X,0x(mL)) = H'(Xp,Ox,(m)) =0 foranyi <n—1
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and " (X, Ox (mL)) = h"(Xp, Ox, (m)) whenever —mL and —mdL}, are ample,ie.m < —1.
Thus part (3) is proven.

For part (4), we use the local volume estimates. Let x € X be a point where D is not
Cartier. Denote by ind(x, D) the Cartier index of D at x. Then by Theorems 2.13, 2.11 (2),
and 2.14, we know that

B M Kx)" Vel X) £
(n+ 1" (n+ 1" ind(x, D)

In particular, we get ind(x, D) < % < 3. This implies that ind(x, D) = 2.

O

From now on, we restrict our focus to cubic fourfolds, i.e. n = 4. We will always denote
by X a K-semistable (Q-Fano variety admitting a Q-Gorenstein smoothing to cubic fourfolds.
By [54,66], to prove Theorem 1.1 the main challenge is to show that L is Cartier on X. This
would follow from Conjecture 2.10 in dimension 4 as indicated by Proposition 3.3. How-
ever, currently we are unable to confirm Conjecture 2.10 for n > 4. In the below, we provide
some partial results using the local volume estimates from Section 2. We will study the global
geometry of (X, L) in Section 4.

Proposition 3.2. With the above notation, we have that L is Cartier away from a finite
subset ¥ C X. Moreover, any x € X is an isolated singularity of X.

Proof. Let X be the closed subset of X, where L is not Cartier. Clearly, ¥ C Xjjpg.
First of all, assume to the contrary that ¥ contains a curve C. Let x € C be a point. Let
t:(x € f) — (x € X) be the index 1 cover with respect to L. Let C:= 7~ 1(C). Then by
finite degree formula we know that

vol(#,X) 2-3°
44 = 54
for any X’ € C.If X is singular along C, then by Corollary 2.18 we know that

vol (%, X) _16
4 o7
This is a contradiction since 25—345 > %. Hence X is smooth at the generic point of C. This
implies that (x’ € X) is a quotient singularity of order 2 for a general point x’ € C. Since
C is contained in the ramification locus of 7, we know that (x’ € X) has type %(1, 1,1,0)
or 2(1,1,0,0).
Next, we will show that neither quotient type is possible. The argument is similar to
[54, proof of Lemma 3.16]. If (x” € X) has type %(1, 1,1,0), we pick a general hyperplane
section J through x” of X embedded in some projective space. Then clearly o = H N X
has a quotient singularity of type %(1, 1, 1), while #; = H N X is smooth for b € B°. This
contradicts the rigidity theorem of Schlessinger [65]. If (x” € X)) has type %(1, 1,0,0), then
we know that X has hypersurface singularities near x’, and so does X. We pick two general
hyperplane sections 1 and #, through x" of X. Then clearly (x’ € J1 N H>) is a normal
isolated hypersurface singularity of dimension 3. Since @y (£) is Cohen—Macaulay, there is
a well-defined Q-Cartier Weil divisor class &£| 5, g, such that

Og,n36, (Llge,ne,) = Ox (L) @ Oge, 3¢,
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By the local Grothendieck—Lefschetz theorem [64], the local class group of (x” € Jy N H5) is
torsion free which implies that £, g, is Cartier at x’. Hence this implies that £ is Cartier
at x’, which implies L is also Cartier at x’. This is a contradiction.

Finally, we show that 3 consists only of isolated singularities. Assume to the contrary
that x € ¥ is notisolated. Let C’' C X sing be a curve through x. Again, let (X € X ) be the index
one cover of (x € X) with respect to L. Since L is Cartier at the generic point of C’, we know
that C' := 7! (C’) is contained in fsing. Hence by Theorems 2.13, 2.14, and Corollary 2.18
we know that

2:35  vol(x,X) 16
< < —,
54~ 44 - 27
again a contradiction. |

Proposition 3.3. With the above notation, if L is not Cartier at x € X, then the index 1
cover X € X violates Conjecture 2.10.

Proof. By Theorems 2.13 and 2.14, we have

35.44  4# —~ vol(%, X)
= (—Kx)* <vol(x, X) = 2202
s = Ky = vl X0 = e T

Since 2L is Cartier at x € X by Theorem 3.1, we know that ind(x, L) = 2. Hence

o~ 2.35 .44
vol(%, X) = —5— > 2-3%,
If ¥ € X is smooth, then Proposition 3.2 implies that 7 : X — X is ramified only at x which
implies that (x € X) is an isolated quotient singularity of order 2 admitting a Q-Gorenstein
smoothing. This contradicts [65]. Hence X € X violates Conjecture 2.10. o

4. Ambro-Kawamata non-vanishing approach

In this section, we use the following non-vanishing theorem of Ambro [3, Main Theorem]
and Kawamata [38, Theorem 5.1] to study the geometry of K-semistable QQ-Gorenstein limits
of cubic fourfolds.

Theorem 4.1 ([3,38]). Let (Y, A) be a projective kit pair. Let M be a nef Cartier divisor
over Y such that M — Ky — A is nef and big. Assume that there exists a rational number
r > dim(Y) —3 > 0 such that —Ky — A ~q rM. Then H°(Y, M) # 0, and for a general
member D € |M| the pair (Y, A + D) is plt.

In the rest of this paper, we adapt the notation of Theorem 3.1 and assume n = 4. In par-
ticular, X is a K-semistable Q-Gorenstein limit of cubic fourfolds, and L is an ample QQ-Cartier
Weil divisor on X such that —Ky ~ 3L. Denote by X the non-Cartier locus of L on X which
is a finite set by Proposition 3.2.

Next, we apply Ambro—Kawamata’s non-vanishing theorem to our study on the geometry
of linear systems |2L| and |L|. Our goal is to show that L is Cartier on X.
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Proposition 4.2. Let Dy, Dy be two general member of |2L| on X. Then both D;
(i = 1,2)and their complete intersection S := D1 N Dy are Gorenstein canonical. Moreover,
Bs |2L]| is disjoint from X.

Proof. We first show that both D; and S are klt of Gorenstein index at most 2. By
Theorem 3.1, we know that 2L is Cartier and ample. By applying Theorem 4.1 to 2L on X,
we see that —Kx ~q %(ZL), sor = % > 1 = dim(X) — 3 > 0. So we have that (X, D;) is
plt, hence D; is klt. Next, we apply Theorem 4.1 to 2L|p, on D;. By adjunction it is clear

that —Kp, ~ L|p;,sor = % > 0. Also, by Theorem 3.1 (3) we have an exact sequence

H(X.2L) — H%(D;.2L|p,) - H'(X.0x) = 0.

Hence the general divisor D, € |2L| restricts to a general divisor S € [2L|p,|. In particular, S
is also klt. By adjunction, we know that Kg ~ L|g, so both D; and S have Gorenstein index
at most 2.

Next we show that S is Gorenstein. Assume to the contrary that x € S has Gorenstein
index 2. Then clearly x € X. Let 7 : (X € f) — (x € X) be the index 1 cover of L. Since X
is Gorenstein, the prelmage S:=r1 ~1(S) is also Gorenstein as it is a complete intersection
in X. Thus ¥ € S is a Du Val singularity. This implies that edlm(x X ) <5,ie. X € X is
a hypersurface singularity. But then the ODP conjecture holds for X € X by Theorem 1.3, and
we get a contradiction to Proposition 3.3. This shows that S is Gorenstein.

Since both D; and S are Cohen—Macaulay, we know that

Ox(L)® Os =~ Os(L|s) =~ ws.

In particular, this implies that S N = @. Itis clear that Bs [2L| C S,soBs|2L|NX =@. o

Proposition4.3. Let D € |2L|and H € |L| be general divisorson X. Let G := DNH
be their complete intersection. Then (G, L|g) is a polarized K3 surface with Du Val singular-
ities of degree 6. Moreover, |2L| is base point free, and the connected components of Bs |L]|
have dimension 0 or 2.

Proof. By Proposition 4.2, we know that L|p ~ —Kp is Cartier. Since Ox (—L) and
Ox (L) are both Cohen—Macaulay by Theorem 3.1 (1), we know that

Op(L|p) = Ox(L)/Ox(=L).

Hence we have an exact sequence H%(X,L) — H%(D, L|p) - H'(X,—L) = 0 by Theo-
rem 3.1 (3). Hence G is a general divisor in |L|p| which implies that (D, G) is plt by Theo-
rem 4.1. Since G ~ L|p is Cartier and D is Gorenstein canonical, we know that G has
Gorenstein canonical singularities as well. By adjunction, we have Kg ~ 0. We claim that
H'(G,0O¢g) = 0. Since L|p is Cartier, there is an exact sequence

HY(D,0p) - H(G,0g) - H*(D,—L|p).

Thus it suffices to show that both H1(D, @p) and H*>(D,—L|p) vanish. As D is Gorenstein
canonical, we have
Op(mL|p) = Ox(mL) ® Op.
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Hence we have the following exact sequences fori = 1, 2:
0=H (X,mL)— H' (D,mL|p) - H'"TY(X,(m —2)L) = 0.

Here we use Theorem 3.1 (3). Thus both H (D, Op) and H?(D, —L|p) vanish, and the claim
follows. Hence G is a K3 surface with Du Val singularities. The polarization L|g has degree 6
since (L|5) = (L*- D - H) =2(L*) = 6.

Since Bs|2L| C Bs|L|, we know that Bs |2L| C G. Moreover, we can show that

H°(X,2L) - H%G,2L|g)
is surjective by tracing exact sequences as below and using Theorem 3.1 (3):
H°(X,2L) - H°(D,2L|p) - HY(X,0x) =0

and
H°(D,2L|p) - H°(G,2L|g) - HY (D, L|p) = 0.

Hence we have Bs |2L| = Bs|2L|g|. By classical result on linear system of K3 surfaces (see
[36, Remark 3.4]), we know that 2L|g is always base point free. Hence |2L| is also base
point free.

By similar argument on tracing exact sequences, we know that

H%(X,2L) - H°(H,2L|x)

is surjective. Since G is a general divisor of the ample base point free linear system |2L | |
on H, we know that H is integral which implies that | L| has no fixed component. By tracing
exact sequences as above, we know that H%(X, L) — H°(H, L|g) — H°(G, L|g) are both
surjective. By Mayer’s theorem [59] (see also [36, Corollary 3.15]), we know that L|g is either
base point free or has a fixed component isomorphic to P!. Thus any connected component of
Bs|L| = Bs|L|g]| is either an isolated point or a surface. |

Proposition4.4. Let H € |L| be a general divisor. Then H is Gorenstein log canonical.
Moreover, H admits a weakly special test configuration with central fiber isomorphic to the
projective cone C,(G,2L|g).

Proof. By the proof of Proposition 4.3, we know that H is integral. Since the ideal
sheaf of H in X is Oy (—L), which is Cohen—Macaulay by Theorem 3.1 (1), we know that H
is Cohen—Macaulay as well. Since a general member G of the base point free linear system
|2L|g| is normal, we know that H is R; hence normal as well. By adjunction, we have that
Ky = (Kx + H)|g ~ —2L|g is Cartier. Hence H is Gorenstein normal.

Next we construct the weakly special test configuration. The idea is by degeneration to the
normal cone of G. Let R = @5, Rm := HO(H,2mL|p) be the section ring of (H,2L|g).
Consider the N-filtration ¥ on R (see e.g. [16, Section 2.3] for backgrounds) as

FPRy := HY(H,2mL|g — pG) C H°(H,2mL|g) = Ry if p € Zso.

For p € Z o we define F?R,, = Ry,. Since G ~ 2L|g, it is clear that ¥ °* R is a multiplica-
tive, linearly bounded, finitely generated N-filtration of R. Denote

+o0 +oo

H 1= Projai @ @ t PFPR,,,

m=0 p=—00
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where 7 is the parameter of A!, and the grading of F ? R, is m. Then (#, Oz (1)) — Al is
a test configuration of (H,2L|g). The central fiber J is given by

oo +oo
Ho=Proj P O FPRn/F?"' Rn.
m=0p=—0o0
It is clear that FP Ry, /FPT1R,;, = 0 for p < 0. Hence to show #¢ == C,(G,2L]|g) it suf-
fices to show that F P R,,/F PT1R,, = H°(G,2(m — p)L|g) for p > 0. By tracing the exact
sequence

0— H°H,2mL|g —(p + 1)G) - H*(H,2mL|g — pG) — H*(G,2(m — p)L|g)
— H'(H,2mL|g — (p + 1)G) =~ H'(H,2(m — p — 1)L|p),

it suffices to show that H'(H,2qL|g) = 0 for any ¢ € Z. This follows from the following
exact sequence and Theorem 3.1 (3):

0=HY(X,2qL) - H'(H,2qL|g) — H*(X,(2q — 1)L) = 0.

Hence we have shown #o = C,(G,2L|g). Since G is a K3 surface with canonical singu-
larities, we know that C,(G,2L|g) is log canonical by [39, Lemma 3.1]. By inversion of
adjunction, we know that (#, #) is log canonical near #,, which implies that (#, #p) is log
canonical as # \ Ho == H x (A \ {0}). Hence H is log canonical, and J# is a weakly special
test configuration of H. The proof is finished. m)

Next, we divide the argument into cases based on the geometry of the polarized K3
surface (G, L|g), where G is a general complete intersection of D € |2L| and H € |L|. By
Mayer’s theorem [59] (see also [36, Remark 3.8 and Corollary 3.15]), there are three cases
based on the behavior of the linear system |L|g]|:

(1) (unigonal) |L|g| has a base curve Co = P!, |L|g — Co| is base point free, and the map
DlLig-Col - G — P4 is an elliptic fibration over a quartic rational normal curve.

(2) (hyperelliptic) |L|g| is base point free, and ¢, : G — P# is a double cover onto
a non-degenerate rational surface of degree 3 in P4.

(3) (complete intersection) |L|g| is very ample, and the map ¢z, : G — P4 embeds G as
a (2, 3)-complete intersection in P4,

The next result shows that (G, L|g) cannot be unigonal.

Proposition 4.5. The polarized K3 surface (G, L|g) is not unigonal. In particular,
Bs | L] is a finite set.

Proof. Assume to the contrary that (G, L|g) is unigonal of degree 6. Then we know
that L|g ~ 4C1 + Cop, where Co = P! isa(—2)-curve, and C; is a general fiber of the elliptic

fibration G — P! induced by |L|g — Co|. In the proof of Proposition 4.3 we have shown that
HO%X,L)— H°H, L|yg) — H°(G, L|g) are both surjective. Indeed, by the following exact
sequence

0=HH,~L|g) - H°(H,L|g) - H°(G, L|g) - H'(H,05) = 0,
we know that H°(H, L|g) = H%(G, L|g).
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Next, we resolve the birational map ¢z : X --> P> as follows:

Here X is the normalization of the graph of ¢|z|. From the above discussion, we know that for
a general divisor H € |L|, the image p(r, ' H) is a general hyperplane section of W := p(X’).
From the above surjectivity between H?’s, we know that the restrictions of ¢ to H and G
are ¢|r,|,,| and ¢|1|;| respectively. We claim that p(r, LH) is a curve.

Assume to the contrary that dim(p(7; ' H)) > 2. Denote by |L|g| = E + Ay, where E
is the base component and A g is movable. Then it is clear that p(r; 1 H) = ¢ , (H). Since
dim(¢a,, (H)) > 2, Bertini’s theorem implies that a general member F € A g is an integral
surface. Since G is ample on H, we know that F N G is connected. Since Bs |L|g| = Cp and
G is a general member of the base point free linear system |2L|g |, we know that E'|g = Cp.
Hence F|g is a general member of |L|g — Cp| which is the sum of four distinct elliptic fibers.
In particular, F N G is disconnected. This is a contradiction. Thus the claim is proved.

Since p(7r; ' H) is a curve, it is the same as ®|L|;(G) which is a rational normal curve
of degree 4 in P#. Since p(n; ! H) is a hyperplane section of W, we know that W C P2 is
a non-degenerate surface of degree 4. By the classification of minimal degree varieties (see
e.g. [28]), we know that W is isomorphic to either P (1, 1, 4) (cone over a quartic rational nor-
mal curve, ¢|94) : P(1,1,4) — P>), Fa,1 (P3fte| - F2 — PS5, where f and e are a fiber
and the negative section respectively), Fo2 (§j0(1,2)) : P! x P! < P9), or the Veronese sur-
face V4 (102 : P2 < IP°). In each case, there exists a family {€,} of non-reduced divisors in
the linear system |Qy (1)| that covers W. Choose a general divisor €;, then we know 74 p*€;
is a non-reduced divisor in |L|. Since —Ky ~ 3L, we know that a(X) < é which implies that
X is K-unstable by Theorem 2.5. This is a contradiction. The conclusion on Bs |L| follows
from the previous discussion since |L|g| is base point free in the non-unigonal cases. ]

Next we treat the hyperelliptic case.
Proposition 4.6. Assume (G, L|g) is hyperelliptic. Then X is K-unstable.

Proof. We resolve the rational map ¢z = po 7 lby X Zx 2 W, where X' is
the normalization of the graph of ¢7,|. Denote by 7*|L| = %E + A, where E is an effective
Weil divisor on X’ and A is base point free. Let L' := 7*L — %E which is semiample on X’.
Since p(rr; ' H) is a hyperplane section of W, and p|g- is a double cover for general G and
G’ := 77 1(G), we know that dim(W) > 3. We first show that dim(W) = 3.

Assume to the contrary that dim(W) = 4, i.e. p is generically finite. Since Bs|L| is
a finite set, we know that (7*L - E) = 0 as a 2-cycle. Hence

deg(W) -deg(p) = (L") < (L”-7*L) = ((x*L — 3E)* - n*L) = (x*L)*) = 3.

Since W is non-degenerate, we have deg(W) > 2 which implies that deg(p) = 1, i.e. p is bira-
tional. Let H' := m; ' H be a general divisor in A. Then we know that p|g- is also birational.
However, p|g has degree 2 for a general G’ in the base point free linear system (7 *|2L|)|g-.
This is a contradiction. Thus we have dim(W) = 3.
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Next, we analyze the geometry of W . Notice that since (G, L|g) = (G’, (7*L)|g’) has
degree 6, the image p(G’) is an integral surface of degree 3. Since dim(W) = 3, we know
that p(H’) is an integral surface for general H’ € A, hence p(H’) = p(G’) has degree 3. This
implies that deg(W) = 3 as well. Now W is a non-degenerate threefold in P> of degree 3.
By [28], there are three possibilities of W: IP(1, 1, 3, 3) (a second iterated cone over a twisted
cubic curve, ¢z : P(1,1,3,3) — IP°), the cone over [F1,1 (the cone over the image of
P2ftel - F1 — P#), or P! x P2 (Doa,1) - P! x P2 < P%). In the first two cases, W is
covered by non-reduced hyperplane sections, which implies that |L| contains a non-reduced
element by similar arguments to the proof of Proposition 4.5. This shows a(X) < % which
implies that X is K-unstable by Theorem 2.5.

The only case left is when (W, Ow (1)) = (P! x P2, 0(1, 1)). We will show that this
case cannot occur. Our argument is inspired by [25, Section 6]." From the proof of Proposi-
tion 4.3, we see that ¢ restricted to D is the finite morphism ¢,r,(,,| : D — W as a double
cover. Thus ¢|*L|D| : Pic(W) — Pic(D) is an injection, which implies that

rk Pic(D) > rk Pic(W) = 2.

Since X admits a Q-Gorenstein smoothing f : X — B with Xy = X, where X, is a smooth
cubic fourfold for any b € B°, we know that f. Oy (2L) is flat by Theorem 3.1 (3). Hence
after base change to a quasi-finite holomorphic map D — B from the unit disc D C C, we can
find a Q-Gorenstein smoothing & — D of D = Dy such that O; is a smooth (2, 3)-complete
intersection in P> forany ¢ € D° := D \ {0}. By Proposition 4.2 we know that Dy is a Q-Fano
variety with Gorenstein canonical singularity. Hence by Kawamata—Viehweg vanishing we
have H'(Dy, © Do) = 0 forany i > 0. Similarly, since & — D is a Q-Gorenstein flat family
of Q-Fano varieites, we have H (D, O p) = 0foranyi > 0. Hence from the exponential exact
sequence, we obtain the following isomorphisms:

Pic(Do) — H2(Do, Z) < H2(D,7) < Pic(D).

Here the middle isomorphism follows from the topological fact that Do < D admits a defor-
mation retraction. In particular, we know that

rk Pic(D) = rk Pic(Dy) > 2.

By Lefschetz hyperplane theorem, every fiber O; of the smooth fibration D° — D° satisfies
that
Pic(D;) = Z - [-Kp,].

Hence [40, Conditions 12.2.1] hold for & — D. By [40, Definitions 12.2.2, 12.2.4, and Propo-
sitions 12.2.3, 12.2.5], we know that there is a Q-local system §N (D /D) on D satisfying
that

SNY(D/D)(D) = Pic(D) ®z Q and EN(D/D)|; = Pic(D;) ®7 Q

for a very general ¢ € D°. Since D is contractible, we know that §N (D/D) is a trivial
Q-local system, and

2 < tk Pic(D) = tk N1 (D/D) = rkPic(D;) = 1.

This is a contradiction. Thus the proof is finished. O

1) This argument is suggested by Chenyang Xu.
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Finally, we treat the case of G being a complete intersection.

Proposition 4.7. Suppose L is not Cartier at x € X. Assume (G, L|g) is a (2, 3)-com-
plete intersection in P*. Then the index 1 cover X € X of x € X with respect to L is a local
complete intersection singularity.

Proof. 1t is clear that x € Bs|L| C H. By Proposition 4.4, we know that there exists
a weakly special test configuration # of H with central fiber #o =~ C,(G,2L|g). Denote by
£ 3 the Zariski closure of L|g x (A!\ {0}) in J. Then it is clear that £ g is a G,,-invariant
Q-Cartier Weil divisor on #. Let &£ be the restriction of &£ g on J#y which is also a Q-Cartier
Weil divisor. From the construction of J¢, we know that the Zariski closure § of G x (Al \ {0})
in J is a trivial test configuration of G. Moreover, its central fiber §y is precisely the section
at infinity in the projective cone C,(G,2L|g). Thus we have £o|g, = L|c under the natural
identification of §y =~ G. Since £ is G,,-invariant, we know that &£ is linearly equivalent to
the cone over L|g. In particular, we know that ind(o, £9) = ind(o, £ 5) = 2, where 0 € K
is the cone vertex. Besides, since L|g is Cartier, we know that o is the only non-Cartier point
of £ 7 in c%().

From earlier discussions, we know that L|g is not Cartier at x. Thus &£ g is not Cartier
at (x,t) for any t € A\ {0}. This implies that the degeneration of (x,¢) in # as t — 0 is
precisely o. Let tg : (0 € e7(’) — (0 € H) be the index 1 cover of £ g. Then it is clear that
o€ JHois isomorphic to the affine cone singularity C, (G, L|g). Since G is a global complete
intersection and L|g = O¢g (1) we know that & € J 0 is alocal complete intersection singular-
ity. We denote by 7 : (X € X ) = (x € X) the index 1 cover of L. Denote by H:= r_l(H ).
Then it is clear that J# provides a G,,-equivariant degeneration of (X € H )to (0 € Je 0) which
is a local complete intersection singularity. By [17, Theorem 2.3.4], we know that (X € H )
is a local complete intersection singularity. Since H is a Cartier divisor of X, again using
[17, Theorem 2.3.4] we conclude that ¥ € X is also a local complete intersection. The proof
is finished. O

Remark 4.8 (Communicated with Ziquan Zhuang). There is an alternative way to prove
Propositions 4.6 and 4.7 using higher codimensional «-invariants. Since X is K-semistable and
Bs | L] is finite, by [77, Theorem 1.1] we know that

a®(X) >

AL

Since —Kx ~ 3L, we know that
12
let(X; |L]) > 5

Hence (X, H1 + H, + H3) is log canonical for general members H; € [L| (1 =i < 3).
Suppose xeXisa non Cartler point of L with the index 1 cover 7 : (X € X ) —> (x € X).
Thus (X H 1+ H 2+ H 3) is log canonlcal at x Where each H; ; = ™ H; is Cartier. Hence
by adjunction we know that (H 1N H 2, % 2g 1N H 2N H 3) is semi-log-canonical (slc). Hence
%€ HyN Hy is a Gorenstein slc surface singularity without an isolated Ic center. By the
classification of log canonical surface singularities (see e.g. [39, Sectlon 3 3]), we know that
feH 1N H 2 is either Du Val or nodal. In particular, the point X € H 1N H 2 is a hypersurface
singularity which implies that X € X is also a hypersurface singularity. Then similar arguments
to the proof of Theorem 4.9 implies that X is K-unstable, a contradiction.
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To summarize, we have shown the following result which implies Theorem 1.1.

Theorem 4.9. Let (X, L) be the K-semistable limit of cubic fourfolds as in Theorem 3.1.
Then L is a very ample Cartier divisor, and ¢\ : X — P> embeds X as a (possibly singular)
cubic fourfold.

Proof. Assume to the contrary that L is not Cartier at x € X. From the above discus-
sions, we see that (G, L|g) is a polarized K3 surface with Du Val singularities of degree 6. If
(G, L|g) is hyperelliptic or unigonal, then Propositions 4.5 and 4.6 imply that X is K-unstable,
a contradiction. If (G, L|g) is a (2,3)-complete intersection in P#, then Propositions 3.3
and 4.7 contradict each other since Conjecture 2.10 holds for local complete intersections
by Theorem 1.3. Hence L must be Cartier on X. The rest of the statement directly follows
from [34]. O

Proof of Theorem 1.1. The proof is almost the same as [54, proof of Theorem 1.1],
with the following small modifications. By [60, Theorem 6.1], [71, pp. 85-871, [4], [56, Theo-
rem 1.5], and [78, Corollary 1.4], there exists at least one smooth K-stable cubic fourfolds. We
also replace [54, Lemma 3.17] by Theorem 4.9. Then the proof proceeds exactly the same as
[54, proof of Theorem 1.1]. O

Proof of Corollary 1.2.  For parts (1) and (2), by [42, Theorem 1.1] we know that cubic
fourfolds with simple singularities are GIT stable. Hence the statements follow from Theo-
rem 1.1. Part (3) follows directly from Theorem 1.1. For part (4), Theorem 1.1 implies that any
GIT semistable cubic fourfold is K-semistable, hence it has kit singularities. A hypersurface
with klt singularities must be Gorenstein canonical. The existence of (weak) KE metrics in
(1)—(3) follows from the Yau—Tian—Donaldson Conjecture in the smooth case [20-22,72] and
the general case [9,45,47,55]. Thus the proof is finished. O
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