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Abstract
We prove that every smooth Fano threefold from the family No2.8 is K-stable. Such a Fano
threefold is a double cover of the blow-up of P3 at one point branched along an anti-canonical
divisor.

1 Introduction

Every smooth Fano threefold belongs to one of the 105 families according to the Iskovskikh-
Mori-Mukai classification, see [16, 20] for the complete list and labeling of the families. The
celebrated Calabi problem arised from differential geometry asks to find Kähler–Einstein
metrics on Fano manifolds. From the solutions to the Yau–Tian–Donaldson Conjecture [6–8,
21], the Calabi problem reduces to checking the algebraic condition, namely K-polystability,
for Fano manifolds. Recently there has been much progress on the study of K-stability
especially from an algebraic point of view, see [10] for a survey on this topic. Notably, the
Calabi problem for a general Fano threefold in each of the 105 families has been solved by
Araujo et al. in [1]. Nevertheless, there are still many families of Fano threefolds where the
Calabi problem remains open for all smooth members.

In this short note, we prove that every smooth member of the family No2.8 is K-stable.
From now on, let X be a smooth Fano threefold from the family No2.8. Then X has Picard
rank 2 and degree 14. Let π : Y = BlpP

3 → P
3 be the blow-up of P3 at a point p where

E ⊂ Y is the exceptional divisor of π . Then X is a double cover σ : X → Y branched along
a smooth anti-canonical divisor S ⊂ Y . According to [1, Section 5.1], a general member of
the family No2.8 is K-stable.

Theorem 1.1 Every smooth Fano threefold X from the family No2.8 is K-stable hence admits
Kähler-Einstein metrics.

Since Aut(X) is finite by [11], it suffices to show that X is K-polystable. From [12, 22, 24]
on K-stability of cyclic covers, we know that to show X is K-polystable it suffices to show
that (Y , 1

2 S) is K-polystable. By [3, Theorem 2.10] (see also [18, Corollary 1]) we know
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that (Y , (1 − ε)S) is K-stable for 0 < ε � 1. Thus using interpolation of K-stability [2,
Proposition 2.13] it suffices to show that (Y , cS) is K-semistable for some c ∈ (0, 1

2 ). This is
done by finding a suitable special degeneration (Y , cS) � (Y , cS0), showing (equivariant)
K-semistability of (Y , cS0), and then using openness of K-semistability [5, 9].

The smoothmembers of the family No2.8 split into two subfamilies: No2.8(a) where S∩ E
is a smooth conic curve, and No2.8(b) where S ∩ E is a union of two transversal lines. In
fact, if S ∩ E is a double line then S cannot be smooth. We shall split the proof into two cases
accordingly.

Remark 1.2 There are two families of smooth Fano threefolds of Picard rank 2 and degree
14: No2.7 and No2.8. The family No2.7 are Fano threefolds as blow-up of a smooth quadric
hypersurface Q ⊂ P

4 at a complete intersection of two divisors in |OQ(2)|. It is known
from [1, Section 4.5] that a general member of the family No2.7 is K-stable. It is not known
whether every smooth member of the family No2.7 is K-stable.

Notation. Throughout the paper, we work over C. We follow the definitions and notation
from [1, 10].

2 No2.8(a)

Recall that π : Y = BlpP
3 → P

3 is the blow-up of P3 at a point p with exceptional divisor
E ⊂ Y . Let S ⊂ Y be a smooth anti-canonical surface. Let σ : X → Y be the double cover
branched along S. Every smooth Fano threefold X of the family No2.8 arises this way. Our
goal is to show that (Y , cS) is K-semistable for some c ∈ (0, 1

2 ) which would imply the
K-stability of X .

Throughout this section, we assume that X belongs to the subfamily No2.8(a). In this
case, the anti-canonical surface S of Y satisfies that S ∩ E is a smooth conic. Denote by
S := π∗S a quartic surface in P3. Then the assumption that S ∩ E being smooth is equivalent
to saying that S has an ordinary double point (equivalently, an A1-singularity) at p. Choose
a projective coordinate [x, y, z, w] of P3 such that p = [0, 0, 0, 1]. Then the equation of S
is

S = ( f2(x, y, z)w2 + f3(x, y, z)w + f4(x, y, z) = 0),

where fi is a degree i homogeneous polynomial in (x, y, z), and f2 is a quadratic form
of full rank. Let C0 := ( f2(x, y, z) = 0) ⊂ P

2 be a smooth conic curve. Consider the
1-PS λ : Gm → PGL(4) given by λ(t) · [x, y, z, w] = [x, y, z, tw]. Then it is clear that
limt→0 λ(t)∗S = S0 where

S0 = ( f2(x, y, z)w2 = 0).

Let S0 := π−1∗ S0. Then π∗λ induces a special degeneration (Y , cS) � (Y , cS0) for c ∈
(0, 1).

Proposition 2.1 The log Fano pair (Y , 3
17 S0) is K-semistable.

Using T-log Fano pairs of complexity 1 (see e.g. Theorem 3.2), one can show that this
pair is indeed K-polystable, although K-semistability is enough in proving Theorem 1.1.

Proof We follow the computation of stability thresholds for projective bundles from [23]
(see Lemma 2.2). Let c ∈ (0, 1) be a rational number. Let φ : Y → P

2 be the P
1-bundle
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induced by central projection from p. Denote by (V ,�) := (P2, cC0) and�Y := φ∗�. Then
Y ∼= PV (L−1 ⊕OV ) where L = OP2(1). Let r = 3− 2c so that L ∼Q −r−1(KV + �). Let
V∞ be the section of Y at infinity. Thus we have cS0 = �Y + 2cV∞. By Lemma 2.2 with
a = 0 and b = 2c, we have

δ(Y , cS0) = min

⎧
⎨

⎩

(3 − 2c)δ(V ,�)

3
4

B4−A4

B3−A3

,
1

3
4

B4−A4

B3−A3 − A
,

1 − 2c

B − 3
4

B4−A4

B3−A3

⎫
⎬

⎭
, (2.1)

where A = r − (1 − a) = 2 − 2c and B = r + (1 − b) = 4 − 4c. Thus we have

3

4

B4 − A4

B3 − A3 = 15

7
A = 15

7
(2 − 2c). (2.2)

Combining (2.1) and (2.2) yields

δ(Y , cS0) = min

{
28(3 − 2c)

45(2 − 2c)
δ(V ,�),

28

17(2 − 2c)
,
28(1 − 2c)

11(2 − 2c)

}

. (2.3)

Suppose we take c = 3
17 , then it is easy to see that

28(3 − 2c)

45(2 − 2c)
= 28

17(2 − 2c)
= 28(1 − 2c)

11(2 − 2c)
= 1.

Since c < 3
4 , by [19, Theorem 1.5] (see also [15]) the log Fano pair (V ,�) = (P2, cC0)

is K-polystable, which implies δ(V ,�) = 1. Thus (2.3) becomes δ(Y , 3
17 S0) = 1 which

implies K-semistability of (Y , 3
17 S0) by [4, 13]. ��

Lemma 2.2 (cf. [23, Theorem 1.3]) Let (V ,�) be a log Fano pair of dimension n. Let
L be an ample line bundle on V such that L ∼Q −r−1(KV + �) for some r ∈ Q>0.
Let φ : Y = PV (L−1 ⊕ OV ) → V be a P

1-bundle. Denote by �Y := φ∗�. Let V0

and V∞ be sections of Y at zero and infinity respectively, so that OY (V0)|V0
∼= L−1 and

OY (V∞)|V∞ ∼= L. Let a, b be rational numbers such that 0 ≤ a < 1, 0 ≤ b < 1 if r > 1,
and 1 − r < a < 1, 0 ≤ b < 1 if 0 < r ≤ 1. Then

δ(Y ,�Y + aV0 + bV∞) = min

⎧
⎨

⎩

rδ(V ,�)

n+1
n+2

Bn+2−An+2

Bn+1−An+1

,
1 − a

n+1
n+2

Bn+2−An+2

Bn+1−An+1 − A
,

1 − b

B − n+1
n+2

Bn+2−An+2

Bn+1−An+1

⎫
⎬

⎭
,

where A = r − (1 − a) and B = r + (1 − b).

Proof The proof is the same as [23, Section 3] after replacing V and Y therein by (V ,�)

and (Y ,�Y ) respectively. ��

Corollary 2.3 Assume the smooth anti-canonical surface S of Y satisfies that S ∩ E is a
smooth conic. Then (Y , 3

17 S) is K-semistable.

Proof Since π∗λ induces a special degeneration (Y , 3
17 S) � (Y , 3

17 S0), the statement fol-
lows from Proposition 2.1 and the openness of K-semistability [5, 9]. ��
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3 No2.8(b)

We adapt the notation from the first paragraph of Section 2.
Throughout this section, we assume that X belongs to subfamily No2.8(b). In this case,

the anti-canonical surface S of Y satisfies that S ∩ E is a union of two transversal lines.
Denote by S := π∗S a quartic surface in P

3. Choose a projective coordinate [x, y, z, w] of
P
3 such that p = [0, 0, 0, 1] and the equation of S is

S = (xyw2 + f3(x, y, z)w + f4(x, y, z) = 0),

where fi is a degree i homogeneous polynomial in (x, y, z).

Claim The polynomial f3 has a non-zero z3-term. This is equivalent to saying that S has an
A2-singularity at p.

We choose an affine coordindate [x, y, z, 1] on P3 and an affine coordinate (x0, x1, x2) on
Y such that (x, y, z) = (x0x2, x1x2, x2). Then the equation of S in the coordinate (x0, x1, x2)
becomes

x0x1 + f3(x0, x1, 1)x2 + f4(x0, x1, 1)x22 = 0.

Since S is smooth at the origin of the coordinate (x0, x1, x2), we conclude that f3(0, 0, 1) �= 0
which implies that f3 has a non-zero z3-term. The claim is proved.

Next, after rescaling of z we may assume that the z3-term has coefficient 1 in f3. Let
λ′ : Gm → PGL(4) be a 1-PS given by λ′(t) · [x, y, z, w] = [x, y, t z, t3w]. Then it is clear
that limt→0 λ′(t)∗S = S′

0 where

S′
0 = (xyw2 + z3w = 0).

Let S
′
0 := π−1∗ S′

0. Then π∗λ′ induces a special degeneration (Y , cS) � (Y , cS
′
0) for c ∈

(0, 1).

Proposition 3.1 The log Fano pair (Y , 2
9 S

′
0) is K-polystable.

Proof Letμ be a 1-PS in PGL(4) given byμ(t) · [x, y, z, w] = [t x, t−1y, z, w]. Then clearly
λ′ and μ generates a T = G

2
m-action on (P3, S′

0) which lifts through π∗ to a T-action on

(Y , S
′
0). Since the T-action on Y is of complexity 1, by Theorem 3.2 we only need to check

β
(Y , 29 S

′
0)

(F) and Fut
(Y , 29 S

′
0)
.

We first show that β
(Y , 29 S

′
0)

(F) > 0 for every T-invariant prime divisor F on Y . In fact,

all T-invariant prime divisors on Y are vertical from the following classification. Denote by
H x , H y, H z, Hw the strict transform of the coordinate hyperplanes ofP3 to Y . A straightfor-
ward analysis of the T-action on P3 shows that every T-invariant prime divisor on Y belongs
to one of the following classes:

(i) E ;
(ii) Hw;
(iii) H x , H y , H z ;
(iv) T s := π−1∗ Ts where Ts := (xyw + sz3 = 0) ⊂ P

3 for s �= 0.

Next, we split into four cases according to the above classes. We will frequently use the
equality

S(Y ,cD)(F) = (1 − c)SY (F)

123



K-stability of Fano threefolds of rank 2 and degree 14... Page 5 of 9 38

for an anti-canonical surface D ⊂ Y and c ∈ (0, 1) which follows from −KY − cD ∼Q

(1 − c)(−KY ) and [4, Lemma 3.7(i)].

(i) It is clear that A
(Y , 29 S

′
0)

(E) = AY (E) = 1. Next we compute SY (E). We know that

−KY ∼ 4Hw −2E where Hw ∼ π∗OP3(1). The pseudoeffective cone of Y is generated
by H x ∼ Hw − E and E . The nef cone of Y is generated by Hw and H x . Thus we have
−KY − t E ∼ 4Hw − (2 + t)E is nef if 0 ≤ t ≤ 2, and not big if t ≥ 2. Thus

SY (E) = 1

(−KY )3

∫ ∞

0
vol(−KY − t E)dt

= 1

56

∫ 2

0
(4Hw − (2 + t)E)3dt

= 1

56

∫ 2

0
(43 − (2 + t)3)dt = 17

14
.

As a consequence,

β
(Y , 29 S

′
0)

(E) = 1 − 7

9
· 17
14

= 1

18
> 0.

(ii) We have A
(Y , 29 S

′
0)

(Hw) = AY (Hw) − 2
9 ordHw

(S
′
0) = 7

9 . Next we compute SY (Hw). It

is clear that −KY − t Hw = (4 − t)Hw − 2E is nef if 0 ≤ t ≤ 2, and not big if t ≥ 2.
Thus

SY (Hw) = 1

(−KY )3

∫ ∞

0
vol(−KY − t Hw)dt

= 1

56

∫ 2

0
((4 − t)Hw − 2E)3dt

= 1

56

∫ 2

0
((4 − t)3 − 23)dt = 11

14
.

As a consequence,

β
(Y , 29 S

′
0)

(Hw) = 7

9
− 7

9
· 11
14

= 1

6
> 0.

(iii) Since H x ∼ H y ∼ H z , their S-invariants are the same. As neither of these three divisors

is contained in Supp(S
′
0), their log discrepancies with respect to (Y , 2

9 S
′
0) are the same

which is 1. It suffices to show that β(H x ) > 0 as these three divisors have the same β-
invariant. Next we compute SY (H x ). The divisor−KY − t H x = (4− t)Hw −(2− t)E is
nef if 0 ≤ t ≤ 2 and not big if t ≥ 4. When 2 < t < 4, it admits a Zariski decomposition

−KY − t H x = (4 − t)Hw + (t − 2)E,

which implies that vol(−KY − t H x ) = ((4 − t)Hw)3 when 2 ≤ t ≤ 4. Thus we have

SY (H x ) = 1

(−KY )3

∫ ∞

0
vol(−KY − t H x )dt

= 1

56

(∫ 2

0
((4 − t)Hw − (2 − t)E)3dt +

∫ 4

2
((4 − t)Hw)3dt

)

= 1

56

(∫ 2

0
((4 − t)3 − (2 − t)3)dt +

∫ 4

2
(4 − t)3dt

)

= 15

14
.
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As a consequence,

β
(Y , 29 S

′
0)

(H x ) = 1 − 7

9
· 15
14

= 1

6
> 0.

(iv) Since T s ∼ 3Hw − 2E for every s �= 0, their S-invariant are the same. We also have
ordT s

(S
′
0) ≤ 1, which implies A

(Y , 29 S
′
0)

(T s) ≥ 7
9 . Next we compute SY (T s). The divisor

−KY − tT s = (4 − 3t)Hw − (2 − 2t)E is nef if 0 ≤ t ≤ 1 and not big if t ≥ 3
4 . When

1 < t < 3
4 , it admits a Zariski decomposition

−KY − tT s = (4 − 3t)Hw + (2t − 2)E,

which implies that vol(−KY − t H x ) = ((4 − 3t)Hw)3 when 1 ≤ t ≤ 4
3 . Thus we have

SY (T s) = 1

(−KY )3

∫ ∞

0
vol(−KY − tT s)dt

= 1

56

(∫ 1

0
((4 − 3t)Hw − (2 − 2t)E)3dt +

∫ 4
3

1
((4 − 3t)Hw)3dt

)

= 1

56

(∫ 1

0
((4 − 3t)3 − (2 − 2t)3)dt +

∫ 4
3

1
(4 − 3t)3dt

)

= 29

84
.

As a consequence,

β
(Y , 29 S

′
0)

(T s) ≥ 7

9
− 7

9
· 29
84

= 55

108
> 0.

So far we verified that β
(Y , 29 S

′
0)

(F) > 0 for every T-invariant prime divisor F on Y . It

remains to show that Fut
(Y , 29 S

′
0)

= 0 on the cocharacter lattice N = Hom(Gm,T) of T. Let

λ0 and λ1 be two 1-PS in PGL(4) given by

λ0(t) · [x, y, z, w] = [t3x, y, t z, w] and λ1(t) · [x, y, z, w] = [x, t3y, t z, w].
Then it is not hard to see that λ0 and λ1 form a basis of NQ := N ⊗Z Q. Meanwhile, the
involution τ : P3 → P

3 defined by [x, y, z, w] �→ [y, x, z, w] induces an involution π∗τ ∈
Aut(Y , S

′
0) such that τλ0τ

−1 = λ1. Thus it suffices to show that Fut
(Y , 29 S

′
0)

(π∗λ0) = 0 as

this implies Fut
(Y , 29 S

′
0)

(π∗λ1) = 0 and hence the vanishing of Fut
(Y , 29 S

′
0)
on the entire NQ.

Let v be the monomial divisorial valuation on P
3 centered at (x = z = 0) such that

v(x) = 3 and v(z) = 1. Then it is clear that λ0 is the 1-PS induced by v. As abuse of notation
we also denote by v the lifting valuation π∗v on Y . According to [14, Theorem 5.1], we
have Fut

(Y , 29 S
′
0)

(λ0) = β
(Y , 29 S

′
0)

(v). Thus it suffices to show β(v) = 0. Since π : Y → P
3 is

isomorphic at the generic point of the center of v, we know that

A
(Y , 29 S

′
0)

(v) = A(P3, 29 S′
0)

(v) = AP3(v) − 2

9
· v(S′

0) = 4 − 2

9
· 3 = 10

3
. (3.1)

Next, we compute SY (v). Let F0 be the exceptional divisor of the (3, 0, 1)-weighted blow
up in the affine (x, y, z) with w = 1. Then it is clear that v = ordF0 . Thus we have
vol(−KY − tv) = vol(OP3(4) − 2E − t F0). As both E and F0 are toric divisors over P3,
we have

vol(OP3(4) − 2E − t F0) = 3! · vol(Pt ),
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where

Pt := {(u0, u1, u2) ∈ R
3≥0 | 2 ≤ u0 + u1 + u2 ≤ 4 and 3u0 + u2 ≥ t}.

Let

Qt := {(u0, u1, u2) ∈ R
3≥0 | u0 + u1 + u2 ≤ 1 and 3u0 + u2 ≥ t}.

Then it is clear that vol(Pt ) = 43 vol(Q t
4
) − 23 vol(Q t

2
). Using convex geometry it is not

hard to show that

vol(Qt ) =

⎧
⎪⎨

⎪⎩

1
6 − 1

6 t2 + 2
27 t3 if 0 ≤ t ≤ 1;

1
108 (3 − t)3 if 1 ≤ t ≤ 3;
0 if t ≥ 3.

Computation shows that
∫ 3
0 vol(Qt )dt = 1

6 . Thus we have
∫ ∞

0
vol(−KY − tv)dt =

∫ ∞

0
6 vol(Pt )dt

=
∫ 12

0
6 · 43 vol(Q t

4
)dt −

∫ 6

0
6 · 23 vol(Q t

2
)dt

= 6 · (44 − 24)
∫ 3

0
vol(Qt )dt = 240.

As a result, we have

S
(Y , 29 S

′
0)

(v) = 7

9
SY (v) = 7

9
· 1

56

∫ ∞

0
vol(−KY − tv)dt = 7

9
· 1

56
· 240 = 10

3
. (3.2)

Combining (3.1) and (3.2), we get β
(Y , 29 S

′
0)

(v) = 10
3 − 10

3 = 0. Thus the proof is finished. ��

The following theorem is a logarithmic version of a result in [1] which originated from
[17]. There is little change to the proof so we omit it.

Theorem 3.2 (cf. [1, Theorem 1.3.9]) Let (X ,�) be a log Fano pair with an algebraic torus
T-action of complexity 1. Then (X ,�) is K-polystable if and only if all of the following
conditions hold.

(1) β(X ,�)(F) > 0 for every vertical T-invariant prime divisor F on X;
(2) β(X ,�)(F) = 0 for every horizontal T-invariant prime divisor F on X;
(3) Fut(X ,�) = 0 on the cocharacter lattice of T.

Corollary 3.3 Assume the smooth anti-canonical surface S of Y satisfies that S ∩ E is a union
of two transversal lines. Then (Y , 2

9 S) is K-semistable.

Proof Since π∗λ′ induces a special degeneration (Y , 2
9 S) � (Y , 2

9 S
′
0), the statement follows

from Proposition 3.1 and the openness of K-semistability [5, 9]. ��
Proof of Theorem 1.1 Let σ : X → Y be the double cover branched along a smooth anti-
canonical surface S ⊂ Y . By [12, Theorem 1.3], [22, Theorem 1.2], and [24, Corollary 4.13],
it suffices to show K-stability of (Y , 1

2 S) as Aut(X) is finite according to [11, Lemma 12.4].
By [3, Theorem 2.10] (see also [18, Corollary 1]), we know that (Y , (1− ε)S) is K-stable for
0 < ε � 1. Combining Corollaries 2.3 and 3.3, we know that (Y , cS) is K-semistable for
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38 Page 8 of 9 Y. Liu

some c ∈ (0, 1
2 ) (more precisely, c = 3

17 in family No2.8(a) or c = 2
9 in family No2.8(b)).

Thus the interpolation of K-stability [2, Proposition 2.13] implies that (Y , 1
2 S) is K-stable.

The existence of Kähler-Einstein metrics follows from [6–8, 21]. Thus the proof is finished.
��

Remark 3.4 Our arguments can give some K-polystable and K-semistable singular members
in the family No2.8 as well. If a quartic surface S ⊂ P

3 has an A1 or A2-singularity at
p and is canonical (resp. semi-log-canonical) elsewhere, then similar arguments show that
(Y , 1

2 S) is K-stable (resp. K-semistable) which implies that the double cover X → (Y , 1
2 S)

is K-polystable (resp. K-semistable).
It is an interesting problem to describe the boundary of the K-moduli compactification of

all smooth Fano threefolds in the family No2.8. For comparison, see [3, Theorem 1.4] where
a complete description of the K-moduli compactification of quartic double solids is given.
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