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Abstract

We prove that every smooth Fano threefold from the family N22.8 is K-stable. Such a Fano
threefold is a double cover of the blow-up of P at one point branched along an anti-canonical
divisor.

1 Introduction

Every smooth Fano threefold belongs to one of the 105 families according to the Iskovskikh-
Mori-Mukai classification, see [16, 20] for the complete list and labeling of the families. The
celebrated Calabi problem arised from differential geometry asks to find Kihler—Einstein
metrics on Fano manifolds. From the solutions to the Yau-Tian—Donaldson Conjecture [6-8,
21], the Calabi problem reduces to checking the algebraic condition, namely K-polystability,
for Fano manifolds. Recently there has been much progress on the study of K-stability
especially from an algebraic point of view, see [10] for a survey on this topic. Notably, the
Calabi problem for a general Fano threefold in each of the 105 families has been solved by
Araujo et al. in [1]. Nevertheless, there are still many families of Fano threefolds where the
Calabi problem remains open for all smooth members.

In this short note, we prove that every smooth member of the family N°2.8 is K-stable.
From now on, let X be a smooth Fano threefold from the family N22.8. Then X has Picard
rank 2 and degree 14. Let 7 : ¥ = BI pIPS — P3 be the blow-up of P? at a point p where
E C Y is the exceptional divisor of 7. Then X is a double cover o : X — Y branched along
a smooth anti-canonical divisor S C Y. According to [1, Section 5.1], a general member of
the family N22.8 is K-stable.

Theorem 1.1 Every smooth Fano threefold X from the family N°2.8 is K-stable hence admits
Kdhler-Einstein metrics.

Since Aut(X) is finite by [11], it suffices to show that X is K-polystable. From [12, 22, 24]
on K-stability of cyclic covers, we know that to show X is K-polystable it suffices to show
that (Y, %S) is K-polystable. By [3, Theorem 2.10] (see also [18, Corollary 1]) we know
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that (Y, (1 — €)S) is K-stable for 0 < € « 1. Thus using interpolation of K-stability [2,
Proposition 2.13] it suffices to show that (¥, ¢S) is K-semistable for some ¢ € (0, %). This is
done by finding a suitable special degeneration (Y, cS) ~ (Y, ¢Sp), showing (equivariant)
K-semistability of (¥, ¢So), and then using openness of K-semistability [5, 9].

The smooth members of the family N22.8 split into two subfamilies: N92.8(a) where SN E
is a smooth conic curve, and N22.8(b) where S N E is a union of two transversal lines. In
fact, if SN E is a double line then S cannot be smooth. We shall split the proof into two cases
accordingly.

Remark 1.2 There are two families of smooth Fano threefolds of Picard rank 2 and degree
14: N22.7 and N22.8. The family N22.7 are Fano threefolds as blow-up of a smooth quadric
hypersurface Q C P* at a complete intersection of two divisors in [Og(2)]. It is known
from [1, Section 4.5] that a general member of the family N°2.7 is K-stable. It is not known
whether every smooth member of the family N22.7 is K-stable.

Notation. Throughout the paper, we work over C. We follow the definitions and notation
from [1, 10].

2 N°2.8(a)

Recall that 7 : ¥ = Bl pIF’3 — 3 is the blow-up of IP? at a point p with exceptional divisor
E C Y.LetS C Y be a smooth anti-canonical surface. Let o : X — Y be the double cover
branched along S. Every smooth Fano threefold X of the family N22.8 arises this way. Our
goal is to show that (Y, ¢S) is K-semistable for some ¢ € (0, %) which would imply the
K-stability of X.

Throughout this section, we assume that X belongs to the subfamily N22.8(a). In this
case, the anti-canonical surface S of Y satisfies that S N E is a smooth conic. Denote by
S := m,.S a quartic surface in P>. Then the assumption that S N E being smooth is equivalent
to saying that S has an ordinary double point (equivalently, an A-singularity) at p. Choose
a projective coordinate [x, y, z, w] of P3 such that p = [0,0,0, 1]. Then the equation of S
is

S=(frx,y, 2w + f3(x, y, Dw + falx, y,2) = 0),

where f; is a degree i homogeneous polynomial in (x, y, z), and f is a quadratic form
of full rank. Let Cp := (fa(x,y,z2) = 0) C P? be a smooth conic curve. Consider the
1-PS 1 : G,, — PGL(4) given by A(¢) - [x, ¥, z, w] = [x, y, z, tw]. Then it is clear that
lim; g A(¢)4«S = Sy where

So = (fo(x, y, Dw?* = 0).

Let Sy = T, 15y. Then 7*A induces a special degeneration (Y, cS) ~» (¥, cSp) for ¢ €
O, 1).

3G

Proposition 2.1 The log Fano pair (Y, 15 So) is K-semistable.

Using T-log Fano pairs of complexity 1 (see e.g. Theorem 3.2), one can show that this
pair is indeed K-polystable, although K-semistability is enough in proving Theorem 1.1.

Proof We follow the computation of stability thresholds for projective bundles from [23]
(see Lemma 2.2). Let ¢ € (0, 1) be a rational number. Let ¢ : ¥ — P2 be the P!-bundle
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induced by central projection from p. Denote by (V, A) := (P%, ¢cCp) and Ay := ¢*A. Then
Y =Py (L~ @ Oy) where L = Op2(1). Letr =3 —2cso that L ~g —r~1(Ky + A). Let
Vs be the section of Y at infinity. Thus we have ¢Sy = Ay + 2¢Vs. By Lemma 2.2 with
a =0and b = 2c, we have

5(Y. ¢S = mi B —=20)8(V,A) 1 1—2¢ 21
(V. S0y = min § = e (o 2D
4 B3_A3 4 B3_A3 4 B3_A3
where A=r — (1 —a) =2 —2cand B =r + (1 — b) =4 — 4c¢. Thus we have
3B*—A* 15 15
- =—A=—2 —20¢). 2.2
4B A3 7 7220 (22)
Combining (2.1) and (2.2) yields
— . [28(33 —2¢) 28 28(1 — 2¢)
8(Y,cSp) =min{ ————=§(V, A), , . 2.3)
4512 — 2¢) 172 —2¢) 112 —2¢)

Suppose we take ¢ = 13—7 then it is easy to see that

283 —2¢) 28 _28(1—2¢)
452 —=2¢) 172 —=2¢) 112 =2¢)

Since ¢ < %, by [19, Theorem 1.5] (see also [15]) the log Fano pair (V, A) = (P2?, cCp)
is K-polystable, which implies §(V, A) = 1. Thus (2.3) becomes (Y, %Eo) = 1 which
implies K-semistability of (¥, 13—730) by [4, 13]. O

Lemma 2.2 (cf. [23, Theorem 1.3]) Let (V, A) be a log Fano pair of dimension n. Let
L be an ample line bundle on V such that L ~q —r~ YKy + A) Sfor some r € Q.
Let¢ : Y = Py(L™' @ Oy) — V be a P'-bundle. Denote by Ay := ¢*A. Let Vy
and Vs be sections of Y at zero and infinity respectively, so that Oy (Voy)|y, = L~ and
Oy (Voo)lvy = L. Let a, b be rational numbers such that0 <a < 1,0 <b < 1 ifr > 1,
andl —r <a<1,0<b<1if0<r <1. Then

, r8(V, A) l—a 1—b
§(Y, Ay +aVp + bVo) = min L B An ] Bt oani 0 e gl pritani? [
n+2 BrHl_Antl 42 Bntl_pntl — T n+2 Brrl_pAn+l

where A=r — (1 —a)and B=r + (1 —b).

Proof The proof is the same as [23, Section 3] after replacing V and Y therein by (V, A)
and (Y, Ay) respectively. ]

Corollary 2.3 Assume the smooth anti-canonical surface S of Y satisfies that SN E is a
smooth conic. Then (Y, %S) is K-semistable.

Proof Since rr*A induces a special degeneration (Y, %E) ~ (Y, %fo), the statement fol-
lows from Proposition 2.1 and the openness of K-semistability [5, 9]. O
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3 N22.8(b)

We adapt the notation from the first paragraph of Section 2.

Throughout this section, we assume that X belongs to subfamily N22.8(b). In this case,
the anti-canonical surface S of Y satisfies that S N E is a union of two transversal lines.
Denote by S := .S a quartic surface in P3. Choose a projective coordinate [x, y, z, w] of
3 such that p = [0, 0, 0, 1] and the equation of S is

S = (xyw? + f3(x, y, Dw + fi(x, y,2) = 0),

where f; is a degree i homogeneous polynomial in (x, y, 2).

Claim The polynomial f3 has a non-zero z3-term. This is equivalent to saying that S has an
Aj-singularity at p.

We choose an affine coordindate [x, y, z, 1] on 3 and an affine coordinate (x0, X1, X2) on
Y suchthat (x, y, z) = (xox2, x1x2, x2). Then the equation of § in the coordinate (xgp, x1, x2)
becomes

xox1 + f3(x0, x1, Dx2 + fa(xo, x1, 1)x3 = 0.

Since S is smooth at the origin of the coordinate (x¢, x1, x2), we conclude that f3(0,0, 1) # 0
which implies that f3 has a non-zero z3-term. The claim is proved.

Next, after rescaling of z we may assume that the z3-term has coefficient 1 in f3. Let
A : G, — PGL(4) be a 1-PS given by X' (¢) - [x, y, z, w] = [x, v, rz, f>w]. Then it is clear
that lim; .o A(#)+S = S|, where

S(/) = ()cyw2 + 2w = 0).

Let Ea =T, 1S(/). Then 7*) induces a special degeneration (Y, cS) ~ (Y, cglo) for ¢ €
O, 1).

Proposition 3.1 The log Fano pair (Y, %EE)) is K-polystable.

Proof Let u bea 1-PS in PGL(4) given by u(¢) - [x, v, z, w] = [tx, t’ly, z, w]. Then clearly
A" and p generates a T = G2 -action on (P?, S{)) which lifts through 7* to a T-action on
(Y, Ea). Since the T-action on Y is of complexity 1, by Theorem 3.2 we only need to check
We first show that 8 .2 36)(1: ) > 0 for every T-invariant prime divisor F on Y. In fact,
’9
all T-invariant prime divisors on Y are vertical from the following classification. Denote by
H,,H,, H,, Hy the strict transform of the coordinate hyperplanes of P3 to Y. A straightfor-
ward analysis of the T-action on IP? shows that every T-invariant prime divisor on ¥ belongs
to one of the following classes:
0 E;
G) Hu:
(i) Hy, Hy, Hz;
@iv) Ty := n*_] Ts where T, := (xyw + sz22=0) c P fors # 0.
Next, we split into four cases according to the above classes. We will frequently use the
equality

Sy, ep)(F) = (1 —¢)Sy(F)
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for an anti-canonical surface D C Y and ¢ € (0, 1) which follows from —Ky — c¢D ~q
(1 —¢)(—Ky) and [4, Lemma 3.7(i)].

(i) It is clear that A

(ii)

(iii)

(r.2%, )(E) = Ay(E) = 1. Next we compute Sy(E). We know that

—Ky ~4H, —2E where H, ~ 7*Op3(1). The pseudoeffectlve cone of Y is generated
by Hy ~ H,, — E and E. The nef cone of Y is generated by H,, and H . Thus we have
—Ky —tE ~4H, — (2 +t)E isnefif 0 < ¢ < 2, and not bigif + > 2. Thus

Sy(E) = (—Il(iy)S/O vol(—Ky — tE)dt
1 (2 3
_ %/0 @H, — Q+DE)di

_ ! /243—2+t3dt—
—%0( @+0)7dt =

As a consequence,
5 (E) =1 7 17 1 0
- = _— = — = — >
(. 550) 9 14 18
‘We have A(Y!%%)(ﬁw) =Ay(Hy) — % ordﬁw (Eé)) = %. Next we compute Sy (H ). It
is clear that —Ky — tH,, = (4 —t)H,, — 2E isnefif 0 < ¢ < 2, and not bigifr > 2.
Thus

_ 1 o0 _
Sy(Hy) = m/o vol(—Ky — tHy)dt

1 2 —
= 7/ (4—1)H, —2E)3dt

11
/ (4—1)P—2%dt = 7R
Asa consequence,
— 7 7 11 1
PoigspHw) =5 =5 74760

Since H, ~ Hy ~ H_, their S-invariants are the same. As neither of these three divisors
is contained in Supp(fz)), their log discrepancies with respect to (Y, %Eg) are the same

which is 1. It suffices to show that B(H,) > 0 as these three divisors have the same 8-
invariant. Next we compute Sy (H ). The divisor — Ky —tH, = (4—t)Hy, — (2—1t)E is
nefif 0 <t <2andnotbigifs > 4. When2 < ¢ < 4, it admits a Zariski decomposition

—Ky—tH,=@—-1H, + (t —2)E,
which implies that vol(—Ky — tH ) = ((4 — t)H,)> when 2 < r < 4. Thus we have

o0
Sy(Hy) = 7/ vol(—Ky — tH ,)dt
- 0

2 4
= i </ (4—0)Hy— 2 —1)E)dt +/ (4 — t)ﬁw)3dt>

3 B 3 15
56</ G-0"—-Q2—-1) )dt+/(4 1) dt) 7R
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As a consequence,

T)—1 715 1 0
Pogsyfo=1=5"13=6>"
(iv) Since Ty ~ 3H,, — 2E for every s # 0, their S-invariant are the same. We also have
ordx (Sg) < 1, which implies A v ggé])(Tx) > %. Next we compute Sy (T’ ). The divisor
K o o i)
—Ky —tTy =4 —-3t)Hy — (2 —2t)E isnefif 0 <t < 1 and not big ift > %. When
l<t< %, it admits a Zariski decomposition

—Ky —tTy =@ —=3)H, + 2t —2)E,

which implies that vol(—Ky — tHy) = (4 — 3t)H,,)* when | <t < . Thus we have

— 1 o0 —
SY(TS) = m/(; VOl(—KY — th)dl

1 4
_ (/ (4=30H, — (2 -20E)dt + / N(4— 3t)Hw)3dt>
56 0 1

- L /1((4—303 - (2—2t)3)dt+/§(4—3t)3dt _ 2
56 \Jo 1 T84

Asa consequence,

5 T = 7 7 29 55
—/ —_—e,—— — T —_—,—— >
Y550 =9 9 84 108

So far we verified that ﬁ(Y ;%)(F ) > 0 for every T-invariant prime divisor F on Y. It
9

remains to show that Fut .25 = 0 on the cocharacter lattice N = Hom(G,,, T) of T. Let
5
Ao and A1 be two 1-PS in PGL(4) given by

ro() - [x, v, z, wl =[x, y, tz,w] and Aq(0) - [x, y, 2z, w] = [x, £y, 1z, w].

Then it is not hard to see that Ao and 1| form a basis of Ng := N ®z Q. Meanwhile, the

involution 7 : P3 — P3 defined by [x, v, z, w] — [y, x, z, w] induces an involution 7*7 €

Aut(Y, 32)) such that TAgr ™! = A;. Thus it suffices to show that Fut(y gE(/))(ﬂ*)\.()) = 0as
°9

this implies Fut (¥.25)) (*A1) = 0 and hence the vanishing of Fut on the entire Ng.
'9

(*,550)

Let v be the monomial divisorial valuation on P3 centered at (x = z = 0) such that
v(x) = 3 and v(z) = 1. Then itis clear that 1 is the 1-PS induced by v. As abuse of notation
we also denote by v the lifting valuation 7*v on Y. According to [14, Theorem 5.1], we
have Fut(Y,%E{,)()‘O) = ,B(Y’%%)(v). Thus it suffices to show g(v) = 0. Since 7 : ¥ — P3is

isomorphic at the generic point of the center of v, we know that

2 y 2 10
A(Y’%E:))(v) = A(P37%56)(v) = Aps(v) — 5 v(Sy) =4 — 5 3= 3 3.1
Next, we compute Sy (v). Let Fj be the exceptional divisor of the (3, 0, 1)-weighted blow
up in the affine (x,y,z) with w = 1. Then it is clear that v = ordg,. Thus we have

vol(—Ky — tv) = vol(Op3 (4) — 2E — tFp). As both E and Fj are toric divisors over P3,
we have

vol(Op3 (4) —2E — tFy) = 3! - vol(P;),
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where
Py = {(ug, ur.uz) € R2) |2 <o+ uy +up < 4and 3ug + up > t}.
Let
Q: = {(uo, ur, u2) € RSZO | uo +ur +up < 1 and 3ug + up > t}.
Then it is clear that vol(P,) = 43 vol(Q1) — 23 vol(Q ). Using convex geometry it is not

hard to show that

L=l 28 ifo<r<1;
vol(Q)) = { 1553 — 1)’ if1 <1<3;

0 ift > 3.

Computation shows that f03 vol(Q,)dt = %. Thus we have
o0 o¢]
/ vol(—Ky — tv)dt :/ 6 vol(Py)dt
0 0
12 6
:/ 6 - 4% vol(Q 1 )dt —/ 6-23vol(Q1)dt
0 4 0 2

3
=6-@4*—2% / vol(Q,)dt = 240.
0

As a result, we have

7 1 [
- — vol(—Ky — tv)dt =

1 10
956 /o

2240 = —. (32
56 3 (3-2)

Ol

7
Combining (3.1) and (3.2), we get ﬂ(y 25, v) = 13—0 — % = 0. Thus the proofis finished. O
.5 3

The following theorem is a logarithmic version of a result in [1] which originated from
[17]. There is little change to the proof so we omit it.

Theorem 3.2 (cf. [1, Theorem 1.3.9]) Let (X, A) be a log Fano pair with an algebraic torus
T-action of complexity 1. Then (X, A) is K-polystable if and only if all of the following
conditions hold.

(1) Bx,a)(F) > 0 for every vertical T-invariant prime divisor F on X;
(2) Bx,a)(F) =0 for every horizontal T-invariant prime divisor F on X;
(3) Fut(x,a) = 0 on the cocharacter lattice of T.

Corollary 3.3 Assume the smooth anti-canonical surface S of Y satisfies that SN E is a union
of two transversal lines. Then (Y, %S) is K-semistable.

Proof Since *1 induces a special degeneration (Y, 2§) ~ (Y, %Eg), the statement follows
from Proposition 3.1 and the openness of K-semistability [5, 9]. O

Proof of Theorem 1.1 Let o : X — Y be the double cover branched along a smooth anti-
canonical surface S C Y. By [12, Theorem 1.3], [22, Theorem 1.2], and [24, Corollary 4.13],
it suffices to show K-stability of (Y, %3) as Aut(X) is finite according to [11, Lemma 12.4].
By [3, Theorem 2.10] (see also [18, Corollary 1]), we know that (Y, (1 — €)S) is K-stable for
0 < € < 1. Combining Corollaries 2.3 and 3.3, we know that (Y, ¢S) is K-semistable for
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some ¢ € (0, %) (more precisely, ¢ = % in family N22.8(a) or ¢ = % in family N22.8(b)).
Thus the interpolation of K-stability [2, Proposition 2.13] implies that (Y, %E) is K-stable.
The existence of Kéhler-Einstein metrics follows from [6-8, 21]. Thus the proof is finished.

O

Remark 3.4 Our arguments can give some K-polystable and K-semistable singular members
in the family N22.8 as well. If a quartic surface S C P3 has an A; or Aj-singularity at
p and is canonical (resp. semi-log-canonical) elsewhere, then similar arguments show that
(Y, 15) is K-stable (resp. K-semistable) which implies that the double cover X — (Y, £5)
is K-polystable (resp. K-semistable).

It is an interesting problem to describe the boundary of the K-moduli compactification of
all smooth Fano threefolds in the family N°2.8. For comparison, see [3, Theorem 1.4] where
a complete description of the K-moduli compactification of quartic double solids is given.
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