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Cities are dramatically different in many dimensions from the
non-urban environments they replace, including structure, spe-
cies composition, and climate, yet like non-urban environments,
they still host a diverse suite of organisms that interact with each
other and the abiotic and biotic environment (Szulkin, Munshi-
South, & Charmantier, 2020). Cities have unique characteristics
compared to even other anthropogenic landscapes and are typ-
ically characterized by constructed materials, warmer tempera-
tures than the surrounding non-urban environment, and dense
human populations, although there are also green spaces, such as
parks and gardens, and landscape features such as rivers and lakes
(Johnson & Munshi-South, 2017; Szulkin, Garroway, et al., 2020;
Venter et al., 2016). Some species are filtered out of the urban
ecosystem whereas others are able to persist (McDonnell &
Hahs, 2015; McKinney, 2002), leading to a range of interacting
ecological and evolutionary responses (Alberti, 2015; Alberti
et al., 2020). In urban ecosystems, the interaction of human so-
ciety (e.g., cultural, social, economic, political, and technological)
with nature generates complex socio-eco-evolutionary dynamics
across heterogeneous and novel landscapes (Alberti, 2015; Des
Roches et al., 2021; McPhearson et al., 2016; Pincetl, 2015; Rivkin
et al., 2019; Schell et al., 2020). We are only beginning to under-
stand how the increased frequency of direct and indirect human
influences impacts eco-evolutionary dynamics as well as the abil-
ity of researchers to study them (Miles et al., 2021).
Accumulating evidence to evaluate adaptation—an evolution-
ary response to natural selection—is challenging in any environ-
ment. Difficulties in identifying adaptive evolution stem from the
complexity of the processes facilitating or impeding responses:
mutation, gene flow, genetic drift, and natural selection (Kawecki
& Ebert, 2004). These processes are dependent on life history,
habitat use, and movement throughout the landscape, with vari-
able influence and interaction across spatial and temporal scales
(Hoban et al., 2016; Levin, 1992; Olson-Manning et al., 2012).
Challenges to adaptation research in general have been exten-
sively treated elsewhere (e.g., Blanquart et al., 2013; Endler, 1986;
Kawecki & Ebert, 2004). In addition, a number of reviews of
urban evolutionary ecology have provided excellent syntheses
on eco-evolutionary processes, including adaptation, in urban
ecosystems (Alberti, 2015; Des Roches et al., 2021; Diamond
et al,, 2022; Diamond & Martin, 2021; Donihue & Lambert, 2015;
Johnson & Munshi-South, 2017; Lambert et al., 2021; McDonnell &

discuss how urban environments also offer unique opportunities and applications for
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Hahs, 2015; Miles et al., 2019; Rivkin et al., 2019; Szulkin, Munshi-
South, & Charmantier, 2020). However, what is missing from this
discourse is an overall reflection on how conducting adaptation re-
search is challenged by the human dimension of socio-cultural and
ecological influence in urban ecosystems.

The aim of this perspective is to highlight challenges in urban ad-
aptation research, and outline strategies to move forward, including
the discussion of opportunities generated by this fascinating field of
research. Our unique perspective brings these ideas together in a
framework that provides both conceptual and practical advice with
the goal of providing guidance to researchers, especially those in
early career positions, regarding the pitfalls that can hinder success
in urban adaptation research. In not considering these challenges,
urban researchers may unintentionally propagate misconceptions -
inaccurate conclusions as a result of faulty information - regarding
adaptation. These misconceptions can include the commonality, na-
ture, and strength of adaptive responses, and can influence expecta-
tions based on non-urban ecosystems or suggest methods that may
not be applicable across diverse habitats and taxa.

We explore four challenges commonly encountered when con-
ducting adaptation research and which can be further compounded
by the human dimension in urban environments: (1) methodological
approaches, (2) trait-environment relationships and natural history,
(3) agents and targets of natural selection, and (4) habitat heteroge-
neity. For each challenge, we employ a four-point framework to bring
together ideas from the fields of urban ecology and evolutionary
biology, adaptation research more generally, and urban adaptation
research specifically. We first note how each challenge applies to
adaptation research in any ecosystem, and explore how the human
dimension in urban areas can play a specific role in adaptation. We
then summarize the misconceptions that can arise and potential
ways to move forward using examples from the urban evolutionary
ecology literature. We conclude by emphasizing the opportunities
and applications of conducting research on urban adaptation. We
recognize that many of these ideas have been addressed through-
out the literature and that they may not all be novel to every urban
environment. In the coming decades with predicted novel research
directions in urban evolutionary ecology incorporating technology,
sustainability, climate change, and socio-political considerations
(Verrelli et al., 2022), we see our perspective as providing a valuable
primer to those entering this burgeoning field from many different
disciplines.
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1 | CHALLENGE 1: METHODOLOGICAL
APPROACHES

1.1 | General application

Studies of adaptation have historically relied on a mix of observa-
tional and experimental methods. Adaptation research often fo-
cuses on divergent habitats, although clines across environmental
transitions have also been instrumental in studying local adaptation
(Endler, 1986; Hereford, 2009; Kawecki & Ebert, 2004). Yet it can be
difficult to define the boundaries of habitats and populations in het-
erogeneous landscapes (see Challenge 4) and environmental varia-
tion may present as mosaics rather than gradients. Certain organisms
may be more tractable for the quantification of natural selection be-
cause of their reproductive cycle, demography, generation time, and
geography, which may bias the organisms we choose to study. In par-
ticular, approaches requiring the movement of organisms between
habitats, such as reciprocal transplantation, are not feasible for all
organisms, can be prohibitively expensive and time-consuming, may
require unattainably large numbers of replicates to obtain sufficient
statistical power, can facilitate the spread of diseases and para-
sites, and may be impossible for ethical or legal reasons (Blanquart
et al.,, 2013; Cunningham, 1996; Johnson et al., 2021; Kawecki &
Ebert, 2004). Common approaches for adaptation research, such as
mark-recapture and long-term monitoring, which have been crucial
in disentangling the temporal dynamics of adaptive evolution (e.g.,
Grant & Grant, 2014), may be compromised by external factors such
as natural disasters and logistics of carrying out such projects (e.g.,
funding and researcher continuity). Genomic approaches to identi-
fying local adaptation are becoming increasingly common and may
be valuable complements to field research methods, yet genomic
approaches come with their own methodological limitations as well
(Hoban et al., 2016; Perrier et al., 2020). Lastly, interpersonal inter-
actions between researchers and local community members in any
environment can be friendly and educational—offering opportuni-
ties for broader impacts of research activities—but can also pose
safety risks for researchers (Demery & Pipkin, 2021).

1.2 | Human dimension

Some methods that may be relatively easy to employ in non-urban
settings may be untenable in urban environments (or vice versa).
Urban adaptation can be influenced by factors related to increased
human activity that are difficult to control using traditional manipu-
lative experiments or may be difficult to predict. Direct and indirect
human interactions with wildlife can shape behavioral responses and
adaptations (e.g., pedestrian behavior, Bateman & Fleming, 2014) and
human activities can drastically transform urban environments even
on short timescales (see Challenge 3). Rapid or unanticipated anthro-
pogenic modifications in cities limit the establishment and success
of studies that involve repeated sampling and long-term monitoring
(McPhearson et al., 2016). The mosaic of private and public lands
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in urban environments intersecting with human and wildlife activity
adds additional complexity to the methods that can be employed
to conduct urban adaptation research. For example, mark-recapture
methods to estimate selection gradients can be challenging because
marked individuals can move into inaccessible anthropogenic spaces
that dominate urban landscapes, such as restricted-access private
property (e.g., backyards or inside homes). Similarly, a random sam-
ple of the environment for population genomic analyses could be
hampered by private property access in non-random ways across
the urban landscape. Some methods, such as reciprocal transplants,
may also unintentionally facilitate human-wildlife conflict (Kansky
et al., 2016; Schell et al., 2020; Treves et al., 2006), disease trans-
mission between urban wildlife and domesticated animals and hu-
mans (Bradley & Altizer, 2007; Brearley et al., 2013), and biological
invasion (Borden & Flory, 2021; Hufbauer et al., 2012). Community
members tend to be more concerned and vocal about these poten-
tial threats when they occur near their homes (Dickman et al., 2014;
Drake et al., 2020). Additionally, urban areas are characterized by
a higher human density, which increases interactions between re-
searchers and the public and law enforcement, both positive and
negative, and can be problematic when urban sites are repeatedly
accessed (Des Roches et al., 2021; Dyson et al., 2019).

1.3 | Misconceptions

A misconception perpetuated by methodological challenges to
urban adaptation research is that only specific approaches, such
as reciprocal transplants, provide strong support for local adapta-
tion (e.g., Diamond et al., 2022; Donihue & Lambert, 2015; Lambert
et al., 2021). Although common garden and reciprocal transplant
studies are informative for evaluating evidence of local adaptation
in some taxa, such as invertebrates or plants (Chick et al., 2020;
Diamond et al., 2022; Gorton et al., 2018; Tiziin & Stoks, 2020;
Yakub & Tiffin, 2017; Yilmaz et al., 2020), they are not informa-
tive or feasible for all taxa and informativeness may depend on
gene flow or other natural history characteristics (see Challenges
2 and 3). Advocating broadly for “gold standard” methods might
lead to an overrepresentation in urban adaptation research of or-
ganisms, microhabitats, or geographic regions most amenable to
these approaches. Extrapolating findings based on a restricted set
of methods or taxa could lead to incorrect conclusions regarding the

generalizability and prevalence of urban adaptive responses.

1.4 | Moving forward

To address the methodological challenges associated with human
presence and activity in urban landscapes, research efforts that
employ complementary and innovative methods will provide
different pieces of the adaptation puzzle (Figure 1). As in non-
urban environments, multifaceted approaches will be most ro-

bust for detecting and characterizing local adaptation (Barrett &
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FIGURE 1 Completing the puzzle. Just as the picture on a puzzle cannot be fully understood from a single piece, no single method can tell
us all we need to learn about adaptation in any environment, including urban environments, and each piece can tell us something uniquely
important. When pieced together, we obtain a more comprehensive picture of adaptation. Employing complementary approaches that
account for both taxonomic and environmental variation provides different pieces of evidence to better understand evolutionary processes
and patterns in general and may help move adaptation research in urban ecosystems forward productively.

Hoekstra, 2011; Kawecki & Ebert, 2004). As a result of increased
human interactions in urban areas, collaborations among di-
verse disciplines can become more commonplace and bring new
technology and methodology into urban adaptation research
(McPhearson et al., 2016). Interdisciplinary approaches may be
particularly valuable in urban ecosystems, where both empirical
and applied science involve human activities and have the po-
tential to promote human well-being (McPhearson et al., 2016).
Inclusion of local communities in urban and non-urban systems
alike can improve the success of methodological approaches
via the incorporation of local knowledge (Camacho et al., 2021;
Uprety et al., 2012) and will help improve researcher outcomes
in terms of safety, access, and study continuity (e.g., continued
or repeated access, reduced vandalism). There are several exam-
ples where integrated approaches have been used to build a more
comprehensive picture of urban adaptation: research on Anolis
lizards has incorporated behavioral, phenotypic, experimental,
and genomic analyses to understand adaptation to thermal and
structural habitats (Avilés-Rodriguez & Kolbe, 2019; Campbell-
Staton et al., 2020; Winchell et al., 2016); work on white clover
(Trifolium repens) has involved the global community in sampling
efforts complemented with experimental, phenotypic, and whole
genome sequencing analyses to test for parallelism (Santangelo
et al.,, 2022; Santangelo, Thompson, et al,, 2020; Thompson
et al., 2016); research on Galapagos finches (Geospiza spp.) has
employed morphometrics and behavioral approaches to under-
stand how access to human foods alter historical patterns of diet-
based selection on beak shape (De Ledn et al., 2011, 2018); and a
combination of reciprocal transplants, phenotypic variation, and

mate choice experiments in Tungara frogs (Engystomops pustulo-

sus) has revealed adaptive sexual selection (Halfwerk et al., 2019).

2 | CHALLENGE 2: TRAIT-ENVIRONMENT
RELATIONSHIPS AND THE NATURAL
HISTORY OF ORGANISMS

2.1 | General application

Understanding the natural history of an organism, including how it
interacts with the environment, provides the foundation for con-
ducting hypothesis-driven adaptation research (Greene, 1986;
Tewksbury et al., 2014). Conducting research on trait-environment
relationships and natural history is challenging because it requires
time-consuming and detailed studies of how organisms utilize en-
vironmental spaces, which may differ on spatial and temporal
scales and may be difficult to accomplish for cryptic or elusive taxa
(Morris, 1987). Adaptation research can benefit from museum
collections to understand historical and contemporary selective
landscapes (Shultz et al., 2020; Wandeler et al., 2007), although
geographic, taxonomic, and temporal bias in specimen collection
limit our ability to universally rely on this resource (Vawda, 2019).
One benefit of museum specimens is in potential genomic analyses,
which can be challenged by obtaining high-quality DNA yet new
methods applied to ancient DNA (e.g., Castafeda-Rico et al., 2020)
are promising and open up new opportunities for exploring temporal
trends. In addition, plasticity can modify trait-environment relation-
ships on local scales (Lajoie & Vellend, 2015, 2018), and thus, can
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make it difficult to make generalizations about trait-environment

relationships across populations and taxa.

2.2 | Human dimension

Urban organisms are relatively understudied, in part because of a
historical perspective that urban populations provided little value in
understanding “natural” selection due to their proximity to humans,
or because of their perceived lack of potential for novel research
(McPhearson et al., 2016; Sukopp, 1998). Evolutionary ecology has
only experienced a recent, but growing, appreciation of urban eco-
systems (Rivkin et al., 2019; Szulkin, Garroway, et al., 2020), rely-
ing on decades of natural history research in non-urban systems to
develop hypotheses of urban adaptation. Importantly, the human
biases in organism focus, specimen collection, and deposition into
museum collections have resulted in a paucity of historical resources
for many urban organisms, making urban retrospective analyses
more difficult, particularly for human commensal species (Shultz
etal., 2020; but see Major & Parsons, 2010; Meineke & Davies, 2019).
Although many environments and taxa have been historically under-
studied, urban environments and their associated organisms have
been systemically understudied until recently. Consequently, rela-
tively little urban historical data exists across taxonomic and geo-
graphic extents compared to other globally distributed habitats (e.g.,
tropical rainforests) or global non-urban taxa (e.g., stickleback fish).
Framing contemporary adaptations in a historical context is impor-
tant because species may evolve through novel adaptations in the
contemporary and changing selective landscape or through filtering,
or adaptive modification of existing traits (i.e., exaptations; Gould &
Vrba, 1982; McDonnell & Hahs, 2015; Rivkin et al., 2019).

2.3 | Misconceptions

A misconception perpetuated by knowledge gaps in the natural his-
tory of urban organisms is that non-urban or historic populations are
always appropriate baselines in a comparative framework. Although
such comparisons are often informative, if we do not know how
trait-environment relationships differ within and between urban en-
vironments then we may be misled about the nature of adaptation
by employing an inappropriate baseline. Inaccurate inference of pre-
sent interactions between traits and urbanization hinders our ability
to make informed predictions about urban adaptation. These gaps
in natural history knowledge are particularly consequential for spe-
cies that are more common in urban areas than in non-urban areas,
such as rats and pigeons. For example, urban rats (Rattus norvegicus
and R. rattus) have been placed in historical contexts mainly from
archeological collections because museum collections lack speci-
mens of the species that commonly cohabitate with humans (Guiry
& Buckley, 2018), and so we might not know the true ancestral state
to urban adaptive responses. In extreme circumstances where we

have no contrast at all with non-urban populations, such as with
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the common bedbug (Cimex lectularius), we might reach incorrect
conclusions about how they have adapted specifically to urban en-
vironments based solely on their present adapted state (Gould &
Lewontin, 1979).

2.4 | Moving forward

To address gaps in knowledge regarding the natural history and
trait-environment relationships in urban organisms, integrated re-
search that combines observational studies (e.g., natural history and
behavioral research) with experimental data of species living in cities
is important. One approach to building a foundation of natural his-
tory information for urban organisms that have been successful in
non-urban environments (Fontaine et al., 2021; Sforzi et al., 2018)
is to incorporate community-sourced data collection into research.
For example, Puckett et al. (2020) used museum specimens to study
changes in brown rat cranial shape over time, and Cosentino and
Gibbs (2022) used community-sourced data to demonstrate the
parallel evolution of clines in melanic Eastern gray squirrels (Sciurus
carolinensis). However, community-sourced data is often limited as
a result of socioeconomic biases of regions sampled or as a result
of limited sampling of overlooked, camouflaged, or microscopic
species that are less charismatic (Shirey et al., 2021). Although we
cannot go back in time to improve historical collections, moving
forward we can deliberately start prioritizing collecting the types
of data in urban ecosystems that we will need in future, including
museum specimens (Shultz et al., 2020). Community partnerships
in overlooked geographic regions can provide a more comprehen-
sive sampling of the urban landscape (Shirey et al., 2021), while also
augmenting museum collections with urban organisms and building
stronger relationships with local communities. Moreover, equitable
community partnerships provide benefits to both visiting scientists
and local communities, facilitate access to research products, reduce
the potential for conflict, and provide valuable outreach opportuni-
ties (Haelewaters et al., 2021; Sforzi et al., 2018; Shirey et al., 2021;
Shultz et al., 2020).

3 | CHALLENGE 3: AGENTS AND TARGETS
OF SELECTION

3.1 | General application

Quantifying the agents and targets of natural selection is essen-
tial for understanding local adaptation (Kawecki & Ebert, 2004) in
any environment, yet is inherently difficult (Endler, 1986). Targets
of selection may be misidentified or confounded in both pheno-
typic and genomic approaches due to a poor understanding of the
relationships between genotype, phenotype, and environment
(Bierne et al., 2011; Hoban et al., 2016; Linnen & Hoekstra, 2009).
Disentangling selection on single versus multiple correlated traits
can be particularly difficult because of genetic, developmental, and
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functional constraints (Hill & Robertson, 1966; Lande & Arnold, 1983;
Price, 1970). The genetic architecture of a phenotype can also com-
plicate genomic tests for local adaptation as selection on polygenic
traits may be more difficult to detect in genomic scans compared to
single locus traits (Hoban et al., 2016). Given the suspected preva-
lence and importance of polygenic adaptation and that rapid adapta-
tion may involve soft rather than hard selective sweeps, identifying
genomic targets of selection may be difficult for many complex phe-
notypes (Messer & Petrov, 2013; Rockman, 2011). In addition, large
sample sizes and complex statistical methods may be required to de-
tect changes in genotype in what are typically small selection coeffi-
cients (Kingsolver et al., 2001), and episodic or age-specific selection
may not be discernable as to when selection has occurred (Grant &
Grant, 2014). The signatures of past and contemporary selection can
be difficult to differentiate (Haller & Hendry, 2014) as phenotypes
may arise in response to selective pressures in the contemporary
environment but also may have arisen under ancestral selective
regimes (i.e., are exaptations) or as a consequence of nonadaptive
processes (e.g., gene flow). Lastly, in any environment humans can
directly or indirectly change factors affecting selection and adapta-
tion such as resource availability, resource distribution, population

connectivity, and habitat size.

3.2 | Human dimension

The urban environment is human-built, thus many of the agents of
selection are anthropogenic and not previously encountered by or-
ganisms or researchers in non-urban environments (Alberti, 2015;
Lugo et al., 2018). For example, extensive impervious surfaces (e.g.,
asphalt) within cities can impact local climate because they absorb
and radiate solar energy differently than natural substrates (the
“urban heat island” effect, Oke, 1973), and high concentrations of
anthropogenic pollutants in urban habitats could accelerate mu-
tation rates (Johnson & Munshi-South, 2017; Somers et al., 2004;
Yauk et al., 2000). Understanding these anthropogenic pressures
may require cross-disciplinary collaboration (e.g., engineering,
physics, chemistry, governance, and urban planning; McPhearson
et al., 2016). Moreover, teasing apart the relative importance of local
adaptation, exaptation, and nonadaptive (e.g., gene flow) origins of
urban phenotypes can be particularly challenging in urban environ-
ments. For example, as a consequence of human-associated popula-
tion connectivity, pigeons (Columba livia) in the Northeastern United
States form a large continuous genetic metapopulation spanning city
centers separated by over 800km (Carlen & Munshi-South, 2020).
In fact, due to human-mediated movement, some organisms have a
higher probability, frequency, and distance of dispersal in somewhat
predictable ways (e.g., intercity translocations; Bennett et al., 2019;
Gotzek et al., 2015). For example, urban areas act as hubs to increase
connectivity among populations of the Western black widow spider
(Latrodectus hesperus), including among historically and geographi-
cally distinct populations locally adapted to desert environments
(Miles, Dyer, & Verrelli, 2018; Miles, Johnson, et al., 2018).

3.3 | Misconceptions

A misconception perpetuated by poorly understood agents and tar-
gets of selection is that selection in urban environments is strong
primarily as a consequence of humans and human activities as
agents. Although rates of phenotypic change have been demon-
strated to be elevated in response to some anthropogenic agents
(Alberti, 2015; Hendry et al., 2008; Whitehead et al., 2012), many
studies rely on environmental proxies such as impervious surface
cover rather than identifying causal relationships. Researchers may
conflate environmental proxies with drivers of selection if the se-
lective agents are unclear, multicollinear, or correlated with general
environmental features—a problem that plagues adaptation research
in any environment (Endler, 1986; Kawecki & Ebert, 2004; Mitchell-
Olds & Shaw, 1987). For example, in urban crested anoles (A. cris-
tatellus), limb length differences can be connected to shifts in the
structural environment directly related to locomotion (Winchell
et al.,, 2016, 2018), although this trait shift could also be explained
by the proxy variable of impervious surface cover correlated with
the structural environment. In addition, contemporary movement
patterns of urban organisms influenced directly and indirectly by
human activities can obscure the selective landscape that shaped
phenotypes. For example, populations of the mosquito Culex pipiens
were presumed to be locally adapted to living in subway stations
in London, yet a recent review instead supports exaptive origins of
these underground-adapted populations, with adaptive phenotypes
previously present in the ancestral populations outside of Europe
(Haba & McBride, 2022). As in any environment, if we fail to first
characterize patterns of gene flow and genetic drift, we may incor-
rectly conclude local adaptation to urban environments (e.g., Gould
& Lewontin, 1979; Hoban et al., 2016).

3.4 | Moving forward

To address the challenges of understanding novel anthropogenic
selective pressures, connecting phenotypes to selective agents and
accounting for nonadaptive processes is crucial (Miles et al., 2019;
Santangelo et al., 2018). Research that connects adaptive urban phe-
notypes to selective agents through performance or fitness quantifi-
cation (e.g., Chick et al., 2020; Ttiziin & Stoks, 2020) will provide more
informative evidence of urban adaptation and reduce the conflation
of environmental proxies (e.g., general urban characteristics) with
drivers of phenotypic change. Genomic approaches may be particu-
larly valuable to examine adaptive responses while accounting for
underlying population structure. For example, Salmén et al. (2021)
used genotype-environment association tests to identify adaptation
in the great tit (Parus major) across multiple cities, interpreting results
in light of population structure analyses suggesting widespread gene
flow across city centers. When populations are highly connected, it
can be unclear if adaptive phenotypes arose repeatedly or swept
across urban populations, a subtle distinction in the evolutionary
mechanism underlying adaptation. Teasing apart these mechanisms
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is possible: Oziolor et al. (2019) used a model developed by Lee and
Coop (2019) to determine how both de novo mutation and adap-
tive introgression contributed to pollution tolerance in Gulf killifish
(Fundulus grandis). Lastly, long-term datasets, including building mu-
seum resources (see Challenge 2) and research on ancient DNA will
provide an important context for understanding urban adaptation
by addressing temporal variation and timescales in natural selection.
For example, in non-urban ecosystems, the selection of beak size
in Galapagos finches (Geospiza spp.) fluctuates from year to year in
variable directions, and by building a multidecadal data set, Grant
and Grant (2014) were able to quantify these dynamics.

4 | CHALLENGE 4: HABITAT
HETEROGENEITY

4.1 | General application

The scale at which adaptation research is conducted must consider
the breadth of habitats in an environment (Castillo & De Leén, 2021;
Levin, 1992), across which the strength and nature of selection may
vary. Qualitative habitat categorizations (e.g., montane and lowland)
may not capture the habitat features underlying selection and ad-
aptation, particularly at organismally relevant (e.g., microhabitat)
spatial scales (Castillo & De Ledn, 2021). Quantifying habitat at local
spatial scales is important because similar habitat use (e.g., thermal
niche) can impede adaptive divergence between populations oc-
cupying divergent macrohabitats (e.g., cool montane versus warm
lowland; Mufioz & Losos, 2018). In addition, quantifying the extent
of environmental divergence across habitat contrasts establishes
the premise that similar selective forces underlie the covariation
between phenotype and fitness, without which the selective land-
scape may be oversimplified, and proxies (e.g., macrohabitat ele-
ments) may erroneously appear to be the main drivers of selection
(see Challenge 3). For example, macroclimatic variables (e.g., tem-
perature and precipitation) were weak predictors of niche evolution
in plethodontid salamanders in contrast to microhabitat variables
(e.g., air temperature, soil temperature, leaf litter depth; Farallo
et al., 2020). In addition to spatial variation, all habitats change over
time as a consequence of natural processes (e.g., hurricanes, succes-
sion) as well as human activity (e.g., land management tied to social
and political priorities; lan Perry & Ommer, 2003). Adaptation re-
search that considers temporal variation in the selective landscape
may help with minimizing disruption of experiments (e.g., increased
community collaboration, see Challenge 1) and identifying appro-
priate temporal windows of selection (e.g., better understanding of
when selection is operating, see Challenge 3).

4.2 | Human dimension

Modern urbanization represents a significant shift in the complex-
ity, speed, and scope of human modification of the environment on
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both temporal and spatial scales (United Nations Center for Human
Settlement (HABITAT), 2001). Examples of anthropogenic habitat
transformation include expansion or contraction of infrastructure,
landscaping, and extreme disturbances that radically and rapidly
obliterate entire metropolitan areas (such as the recent war con-
flict in Ukraine). Anthropogenic environmental transformations
have long-lasting effects on evolutionary processes in urban envi-
ronments by altering habitat characteristics and connectivity (Des
Roches et al., 2021; Pincetl, 2015; Schell et al., 2020). For example,
railways in German cities facilitated movement in admixed lineages
of wall lizards (Podarcis muralis) derived from populations in other
European cities (Beninde et al., 2018). In addition, socio-cultural
aspects of urban environments, including the legacy of urban de-
velopment and discriminatory practices that promote structural rac-
ism (e.g., restrictive and discriminatory property sales), generate a
heterogeneous landscape and idiosyncratic variation within and be-
tween urban centers (Des Roches et al., 2021; Pincetl, 2015; Schell
et al.,, 2020; United Nations Department of Economic and Social
Affairs & Population Division, 2018; Yigitcanlar, 2009). For example,
wealthy communities often have more green space with abundant
domesticated and invasive vegetation compared to poorer com-
munities (Aronson et al., 2014). In addition, modern urbanization in
North and South America is more recent than in Asia and Europe
(Fox & Goodfellow, 2016), leading to less time for urban adaptation
to have occurred in American cities. It might be the case that given
the relatively recent age of most cities on Earth (a large proportion of
which emerged or radically expanded after the Industrial Revolution
and are less than 200vyears old), adaptation may occur primarily from
standing genetic variation rather than de novo mutation and resultin
primarily soft sweeps that are more difficult to detect using classic
genomic approaches (Messer & Petrov, 2013). However, the impor-
tance of standing genetic variation for urban adaptation, and how
this relates to variation among cities, remains understudied. Even
in urban regions that have existed for centuries, human interests
and needs (e.g., roads and energy infrastructure) can lead to drasti-
cally different selective landscapes at different points in time. For
example, Paris was radically transformed in the 19th century by de-
molishing overcrowded medieval neighborhoods and building new
parks and squares (Kirkland, 2013) indicating that urban landscapes
continue to dynamically change over time.

4.3 | Misconceptions

A misconception perpetuated by our nascent understanding of the
heterogeneity of cities is that urban environments represent repli-
cated natural experiments with parallel environmental conditions and
selective pressures within as well as across cities globally (Diamond &
Martin, 2021; Santangelo et al., 2022; Santangelo, Miles, et al., 2020;
Santangelo, Thompson, et al., 2020; Szulkin, Garroway, et al., 2020).
Although accumulating evidence suggests urban environments
do converge on multiple environmental variables (e.g., Santangelo

et al., 2022), the majority of urban adaptation research to date focuses
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on single geographic and established study regions (Santangelo, Miles,
etal., 2020). However, we now recognize that replication within a single
city, as well as contrasts of urban versus non-urban habitats or across
urban to non-urban gradients, may ignore the complex mosaic of an-
thropogenically impacted landscapes that vary within and among cit-
ies (Szulkin, Garroway, et al., 2020). Although we have many operative
definitions of “urban” environments, there is not a universal consensus
on what defines a city. For example, variation in biotic (e.g., ecological
dynamics), abiotic (e.g., temperature), and social factors (e.g., political
structures) within and across urban environments may be underappre-
ciated because of the North American and Western European focus of
much of urban evolutionary ecology research (Des Roches et al., 2021;
Johnson & Munshi-South, 2017; Schell et al., 2020). Therefore, we may
reach incorrect conclusions about the generalizability of urban adapta-

tions globally based on this biased sample of urbanization.

4.4 | Moving forward

To address the challenges presented by the inherent heterogeneity
within and among urban environments, it could benefit research-
ers to move past a simplified assumption of cities as replicates to
incorporate heterogeneity and scale more explicitly. Accomplishing
this might involve quantification of urbanization at multiple spatial
scales and replication across diverse cities globally (Pincetl, 2015;
Szulkin, Garroway, et al., 2020). For example, Merckx et al. (2018)
employed spatially hierarchical sampling to capture the regional and
local variation of temperature and fragmentation in three city cent-
ers to understand adaptive patterns of invertebrate body size. When
assessing multiple spatial scales is not feasible (e.g., remote-sensing
data of appropriate resolution is unavailable or access to field lo-
cations is restricted), a biologically-justified scale that reflects local
organismal interactions with their environment (e.g., dispersal or
home range) can be used as a proxy (Jackson & Fahrig, 2015; Szulkin,
Garroway, et al., 2020). Critically, such decisions rely on natural his-
tory and trait-environment information that may not yet be avail-
able for urban organisms (see Challenge 2), and different methods
may be more appropriate (e.g., depending on spatial and temporal
variation), requiring flexibility in experimental designs and inter-
disciplinary collaborations (see Challenge 1). In addition to a more
guantitative assessment of urban environments, the global study of
cities that vary in the intensity, age, and characteristics of urbani-
zation will help shed light on the process of urban adaptation and
aid in our ability to generalize findings. For example, Cosentino and
Gibbs (2022) were able to disentangle selective agents contributing
to parallel and non-parallel clines in Eastern Gray Squirrel (S. carolin-
ensis) melanic coat color associated with urbanization by comparing
43 North American cities that differed in size, age, and geographic
location. In a global sample, Santangelo et al. (2022) collected data
on white clover (Trifolium repens) from over 160 cities worldwide to
demonstrate that urbanization can lead to parallel adaptation de-

spite considerable environmental variation among cities.

5 | CLOSING REMARKS

Here, we have addressed some of the challenges researchers face
when embarking on adaptation research in urban environments re-
lated to four themes: methodological approaches, trait-environment
relationships and natural history, agents and targets of natural selec-
tion, and habitat heterogeneity (Figure 2). Although these challenges
are not unique to urban environments, there are unique aspects
that stem from the human dimension in these ecosystems. When
researchers study urban evolutionary processes without consider-
ing these challenges, erroneous conclusions can arise regarding the
nature and strength of selection, as well as the generalizability of
findings across taxa and cities. Developing an understanding and ap-
preciation of the human dimension and how it challenges adaptation
research has broad applications to the diverse socio-cultural aspects
of urban ecosystems, including the evolution of urban organisms. As
government and other agencies align their funding roadmaps with
urban research, we believe outlining these challenges from biologi-
cal, methodological, theoretical, and socio-cultural perspectives is
critical to the success of the field.

Although we have focused on the challenges of conducting
urban adaptation research, we also recognize that urban areas are
rapidly evolving environments that are globally distributed, and thus
are powerful opportunities for contemporary adaptation research
(Diamond & Martin, 2021; Donihue & Lambert, 2015; Szulkin,
Munshi-South, & Charmantier, 2020). This is not to say that urban
ecosystems are qualitatively “good,” nor are they more appropriate
than non-urban systems for adaptation research. In fact, how hu-
mans interact with and influence nature cannot be extricated from
wildlife conservation practices (Bergey & Whipkey, 2020; Egerer &
Buchholz, 2021; McKinney, 2006). Even so, cities provide the oppor-
tunity to study ecological interactions and evolutionary outcomes
that may uniquely result from the dynamic interactions that include
humans. In addition, adaptation research can utilize aspects of urban
ecosystems to carry out research that would otherwise be chal-
lenging or not possible in non-urban systems. For example, habitat
fragmentation and the frequent and ongoing management actions in
cities can be leveraged to test hypotheses about connectivity with-
out needing to actively modify the habitat. Indirect consequences
of human activities also offer natural “laboratories” for addressing
some of the most pressing issues of the Anthropocene. For example,
cities can be viewed as experimental arenas to study adaptation to
climate change because of the urban heat island effect (Oke, 1973),
which in some ways is a spatial analogy of climate change (a temporal
trend, Verheyen et al., 2019), and allows for a broader perspective
on adaptation to warming than would be possible with laboratory
experiments (Lahr et al., 2018). Similarly, cities increase the scope for
the study of adaptation to anthropogenic materials such as plastic or
other solid waste found in the environment, for example when these
are used as replacement materials in biological structures. This can
be best illustrated in nest building, viewed as an extended pheno-

type, when natural nest-building elements such as fur and feathers
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FIGURE 2 Urban adaptation research may be challenging as a consequence of increased interactions with and influence of humans in
urban environments. We discuss challenges and ways to move forward from these main themes: Methodology, natural history, agents and

targets of selection, and habitat heterogeneity.

are replaced by anthropogenic solid waste pollutants such as plastic
or paper (Jagiello et al., 2022).

Finally, the generation and application of ecological and evolu-
tionary information in urban areas may be facilitated because these
ecosystems are intimately integrated with human societies. For
some types of data such as historical land use and aerial imagery, re-
searchers may find more resources for urban areas than non-urban
areas, although there may be geographic biases in the quality and
temporal extent of these resources. Urban environments also pro-
vide an opportunity to learn about the ecosystems where we live
and within which we have a vested interest. Community applica-
tions follow naturally from urban research via: regular interactions
with the public while conducting fieldwork; museum exhibitions
highlighting urban ecosystems (e.g., Carnegie Museum of Natural
History's 2017 “We are Nature” exhibit); community science ini-
tiatives that involve urban communities in research activities (e.g.,
iNaturalist, BioBlitzes, SquirrelMapper: Cosentino & Gibbs, 2022)
and interdisciplinary projects in urban spaces involving policymak-
ers, artists, educators, and researchers (Sexton et al., 2015; Vega
et al., 2021; Wallis et al., 2021). By conducting research on how
the organisms around us are adapting to human modifications
of the environment, we celebrate the diversity of where we live
and engage communities to discover and celebrate this diversity.
Ultimately, these initiatives expose those who live within cities to
the excitement of evolutionary ecology and foster a sense of envi-

ronmental stewardship.
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