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Abstract
This paper establishes a universality result for scaling limits of uniformly random
lozenge tilings of large domains. We prove that whenever the boundary of the domain
has three adjacent straight segments inclined under 120 degrees (measured in the
direction internal to the domain) to each other, the asymptotics of tilings near the
middle segment is described by the GUE–corners process of random matrix theory.
An important step in our argument is to show that fluctuations of the height function
of random tilings on essentially arbitrary simply-connected domains of diameter N
have magnitude smaller than N 1/2.
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1 Introduction

Random lozenge tilings attracted substantial interest in the recent years following a
25 years old mathematical discovery that they exhibit highly non-trivial limit shapes
with flat “frozen” facets; see [4, 7, 24, 29] for the pioneer results, [12] for an extensive
review of the area, and Figs. 1 and 4 for simulations.

One intriguing feature of random tilings is their link to random matrix theory. The
definitionof the random tilingsmodel does not have anyobviousmatrices involved, yet,
the answers to the asymptotic questions about tilings turn out to involve distributions
which are also encountered in the studies of eigenvalues of random matrices. In this
paper we concentrate on the most direct of such connections and discuss how local
limits near straight boundaries of tilings of general domains are described by theGUE–
corners process—a multilevel version of the celebrated Gaussian Unitary Ensemble.

Definition 1 Let X = [Xi j ]∞i, j=1 be an infinite matrix of i.i.d. complex Gaussian

randomvariables of the form N (0, 1)+iN (0, 1) and set M = X+X∗
2 to be itsHermitian

part. Define ξ k
1 ≤ ξ k

2 ≤ · · · ≤ ξ k
k to be the eigenvalues of the principal k × k top-left

corner of M as in (1.1). The array {ξ k
i }1≤i≤k is called the GUE–corners process.

⎛
⎜⎜⎝

M11 M12 M13 M14
M21 M22 M23 M24
M31 M32 M33 M34
M41 M42 M43 M44

⎞
⎟⎟⎠ (1.1)

Let us explain the connections between tilings and the GUE–corners process on the
example of uniformly random tilings of a hexagon, where it was first proved in [14,
22]. Consider a regular hexagon of side length N drawn on the triangular grid. We tile

N = 5

2

0

4

0

2

6

y

x

Fig. 1 Left panel: A lozenge tiling of a regular hexagon and coordinates of horizontal lozenges along the
left boundary: y11 = 2 on the first vertical, (y21 , y22 ) = (0, 4) on the second vertical, (y31 , y32 , y33 ) = (0, 2, 6)
on the third vertical. Right panel: A uniformly random tiling of the hexagon for N = 50 and a point where
we see the GUE–corners process. Three types of lozenges are shown in three different colors
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Gaussian unitary ensemble in random... 1141

the hexagon with three types of lozenges (rhombuses) obtained by gluing two adjacent
triangles on the grid; one possible tiling for N = 5 is shown in the left panel of Fig. 1.
For fixed N there are finitely many such tilings and we are interested in a uniformly
random lozenge tiling of the hexagon. A fascinating feature of random tilings is how
their boundary conditions lead to inhomogeneous density profiles for three types of
lozenges. The right panel of Fig. 1 shows a simulation for a large hexagon, where this
aspect is clearly visible. In particular, one sees that inside the inscribed circle all three
types of lozenges are present, while outside it there are six regions with only one type
of lozenges in each. The points where the circle is tangent to the sides of the hexagon
serve as the most drastic exemplification of this phenomenon since, even locally, the
density of tiles there is maximally inhomogeneous. Simultaneously, these are the only
points through which the tilings non-trivially interact with boundaries. Therefore, a
question of interest is to mathematically understand these special points and to figure
out the conditions of their appearance.

Let us distinguish one type of lozenge, say, we focus on the horizontal lozenges
shown in gray in Fig. 1 and trace their positions near the left vertical boundary of
the hexagon. Due to combinatorics of the model, there will be one horizontal lozenge
with coordinate y11 on the first vertical line (in our coordinate system shown in left
panel of Fig. 1, a lozenge at the lower boundary of the hexagon has coordinate 0).
Further, there will be two horizontal lozenges with coordinates y21 < y22 on the second
vertical line, three horizontal lozenges with coordinates y31 < y32 < y33 on the third
line, etc. Since the tiling is random, yk

i are random variables. We are interested in their
asymptotic behavior as N → ∞. [14, 22] showed that the limit is governed by the
object of Definition 1:

lim
N→∞

(
yk

i − m N√
N

)

1≤i≤k

= (
σξ k

i

)
1≤i≤k, where m N = N

2 and σ =
√

3
8 ,

(1.2)
in the sense of convergence of finite-dimensional distributions (jointly over all i and
k such that 1 ≤ i ≤ k). In particular, (1.2) implies that y11 is asymptotically Gaussian
as N → ∞ and its variance grows proportionally to

√
N . In words, (1.2) says that

discontinuity in densitites of lozenges near a boundary leads to the appearance of a
random matrix object.

Beyond tilings of the hexagon, convergence to the GUE–corners process near the
boundaries, generalizing (1.2), was proven for several classes of domains; see [13, 21,
23, 25, 27]. The only necessary change is the expression for the constants m N and σ .
Simultaneously, Okounkov and Reshetikhin [25] explained that if the scaling limit of
tilings near a boundary exists and satisfies certain very natural assumptions, then by
invoking a classification theorem for Gibbs measures on interlacing arrays [26], one
can conclude that the only possible candidate is the GUE–corners process. Hence, a
universality prediction arose in [14, 25]: whenever a domain’s boundary has a straight
segment, the GUE–corners process should asymptotically arise near this segment.

Our main result, Theorem 4, proves this prediction.While a possible path to a proof
might have been through checking that the assumptions of [25] always hold, we did
not know how to make such a check and found another approach. In our proof, we rely
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1142 A. Aggarwal, V. Gorin

on the results of [13, 23] which show that the GUE–corners process always appears in
tilings of a special class of domains called trapezoids. We further observe that locally,
near a straight segment of the boundary, any planar domain looks like a trapezoid.
However (in contrast to the setting of [13, 23]) one boundary of the trapezoid is random
and its fluctuations could a priori spoil the GUE–corners asymptotic. To resolve this
issue, it must be shown that these fluctuations are o(N 1/2), that is, they have smaller
scale than the GUE–corners limit—while widely expected,1 such a bound for tilings
of general domains has not been rigorously proven up to now. Known concentration
estimates on arbitrary domains only apply on scale O(N 1/2); proving the improved
o(N 1/2) estimate occupies a substantial portion of the manuscript. This is done by
first using a (known) interpretation for the height variance through the double-dimer
model, and then by patching together multiple instances of bulk local limit results of
[1] for random lozenge tilings of arbitrary domains.

We expect that universal appearance of the GUE–corners process extends beyond
lozenge tilings with the first candidates for probing the extensions given by the domino
tilings and the six-vertex model, see [9–11, 14] for partial results in this direction. An
interesting and important project for a futurework is to figure outwhether our approach
can be helpful beyond lozenges.

Notations

Throughout the text, we let |u − v| denote the Euclidean distance between any two
points u, v ∈ R

2; we also let dist(S,S ′) = infs∈S infs′∈S′ |s − s′| denote the distance
between any sets S,S ′ ⊂ R

2. We adopt a convention to write C > 1 for constants
which are large and c > 0 for constants which are small. In general, these constants
change from statement to statement.

2 Setup andmain results

2.1 Tilings and height functions

Let us introduce the coordinate systemon the triangular grid.Weuse x and y coordinate
axes, which are inclined to each other by 120 degrees: y–coordinate grows up and x–
coordinate grows in down-right direction, as in the left panel of Fig. 1. The triangular
lattice T in this coordinate system becomes a graph whose vertex set is Z2 and whose
edge set consists of edges connecting (x, y), (x ′, y′) ∈ Z

2 if and only if (x ′ − x, y′ −
y) ∈ {

(1, 0), (−1, 0), (0, 1), (0,−1), (1, 1), (−1,−1)
}
. The faces of T are therefore

triangles with vertices of the form
{
(x, y), (x+1, y), (x+1, y+1)

}
or
{
(x, y), (x, y+

1), (x + 1, y + 1)
}
. A domain R ⊆ T is a simply-connected2 induced subgraph of T.

The boundary ∂ R ⊆ R is the set of all vertices v ∈ R adjacent to a vertex in T \ R.

1 See Lectures 11-12 in [12] for the heuristics explaining that the fluctuations should grow logarithmically
in the size of the domain.
2 Tilings of multiply-connected regions in T can give rise to height functions that are multi-valued; hence,
making sense of a limit shape (see Lemma 15 below) in this context requires some additional effort. This
has been done recently in [19], so our methods should also extend to the multiply-connected setting as well,
but we do not address this here.
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Gaussian unitary ensemble in random... 1143

A pair of adjacent triangular faces of T forms a parallelogram, which we refer
to as a lozenge or tile. Lozenges can be oriented in one of three ways; see the left
panel of Fig. 2 for all three orientations. We refer to the topmost lozenge there (that
is, one with vertices of the form

{
(x, y), (x, y + 1), (x + 1, y + 2), (x + 1, y + 1)

}
)

as a type 1 lozenge. Similarly, we refer to the middle (with vertices of the form{
(x, y), (x + 1, y), (x + 2, y + 1), (x + 1, y + 1)

}
) and bottom (vertices of the form{

(x, y), (x, y+1), (x +1, y+1), (x +1, y)
}
) ones there as type 2 and type 3 lozenges,

respectively. The horizontal lozenges discussed in the introduction are of type 2. We
deal with tilings of R by lozenges of types 1, 2, and 3. Let �(R) denote the set of all
tilings of R; if �(R) is nonempty, we say that R is tileable.

A height function3 H : R → Z is a function on the vertices of R that satisfies

H(v) − H(u) ∈ {0, 1}, whenever u = (x, y)and

v ∈ {
(x + 1, y), (x, y + 1), (x + 1, y + 1)

}
, (2.1)

for some (x, y) ∈ Z
2. We refer to the restriction h = H |∂ R as a boundary height

function. For a fixed vertex v ∈ R and integer m ∈ Z, one can associate with any tiling
of R a height function H : R → Z as follows. First, set H(v) = m, and then define H
at the remaining vertices of R in such a way that the height functions along the four
vertices of any lozenge in the tiling are of the form depicted on the left panel of Fig.
2. In particular, we require that H(x + 1, y) − H(x, y) = 1 if and only if (x, y) and
(x +1, y) are vertices of the same type 1 lozenge, and that H(x, y +1)− H(x, y) = 1
if and only if (x, y) and (x, y + 1) are vertices of the same type 2 lozenge. Since R is
simply-connected, a height function on R is uniquely determined by these conditions
and the value of H(v) = m.

We refer to the right panel of Fig. 2 for an example of a height function; there we
chose v to be the bottom–left corner of the hexagon and m = 0. We can also view
a lozenge tiling as a projection of a stepped surface in three-dimensional space: the
three types of lozenges then become three types of faces of a unit cube, as shown in the
middle panel of Fig. 2. The height function then counts the (signed) distance between
a given point in three-dimensional space and coordinate plane corresponding to type
3 lozenges. In particular, the group of vertices with height 0 around the left corner of
the right panel of Fig. 2 lies in this plane.

One important observation is that, if there exists a tiling M of R associated with
some height function H , then the boundary height function h = H |∂ R is independent
of M and is uniquely determined by R (except for a global shift, which was above
fixed by the value of H(v) = m).

It will be useful to introduce continuum analogs of the above notions. So, set
T = {

(s, t) : 0 < s + t < 1
} ⊂ R

2 and its closure T = {
(s, t) : 0 ≤ s + t ≤ 1

}
. We

interpret T as the set of possible gradients, also called slopes, for a continuum height
function; T is then the set of liquid slopes, whose associated tilings still “appear
random.” For any simply-connected domain R ⊂ R

2, we say that a function H :
3 There are other definitions of the height function; see, e.g., [12, Section 1.4] for a more symmetric
one. All definitions contain the same information, because they differ from each other by explicit affine
transformations.
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Fig. 2 Left panel: three types of lozenges and corresponding changes of the height function. Middle panel:
a tiled unit hexagon can be viewed as a projection of three faces of a unit cube in 3D. Right panel: a lozenge
tiling and corresponding values of the height function

R → R is admissible if H is 1-Lipschitz and ∇H(z) ∈ T for almost all (with respect
to Lebesgue measure) z ∈ R. We further say a function h : ∂R → R admits an
admissible extension to R if Adm(R; h), the set of admissible functions H : R → R

with H|∂R = h, is not empty.

2.2 Approximation of domains

Let us now explain the sense in which a sequence of discrete domains “converges” to
a continuum one. To that end, for any connected subset S ⊆ R

2 and points x1, x2 ∈ S,
let dS(x1, x2) = infγ |γ |, where γ ⊆ S is taken over all paths in S connecting x1 and
x2, and |γ | denotes the length of γ . Next, we say that a sequence of connected subsets
R1,R2, . . . ⊂ R

2 converges to R ⊂ R
2, and write limN→∞ RN = R, if for any

δ > 0 there exists an integer N0 = N0(δ) > 1 such that the following two properties
hold whenever N > N0. First, for any x ∈ R, there exist xN ∈ RN and x ′ ∈ R∩RN

such that

max
{
dR(x, x ′), dRN (xN , x ′)

}
< δ. (2.2)

Second, for any xN ∈ RN , there exist x ∈ R and x ′ ∈ R ∩ RN such that (2.2) again
holds.

In this case,wemoreover say that a sequence ofLipschitz functionshN : ∂RN → R

converges to h : ∂R → R, and write limN→∞ hN = h, if for every real number δ > 0
there exists an integer N0 = N0(δ) > 1 such that the following two properties hold
whenever N > N0. First, for each x ∈ ∂R, there exist xN ∈ ∂RN and x ′ ∈ R ∩ RN

such that (2.2) and
∣∣hN (xN ) − h(x)

∣∣ < δ both hold. Second, for each xN ∈ ∂RN ,
there exist x ∈ ∂R and x ′ ∈ R ∩ RN such that the same inequalities are satisfied.

Definition 2 Supposewe are given a sequence R1, R2, . . . ⊂ T of domains and bound-
ary height functions hN : ∂ RN → Z, N = 1, 2, . . . . For each integer N ≥ 1, define
the domain RN = 1

N RN ⊂ R
2. We also define the function hN : ∂RN → R by
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Gaussian unitary ensemble in random... 1145

setting hN (x) = 1
N hN ( 1

N x) for any point x on the lattice 1
N ∂ RN , and by linear inter-

polation to all of ∂RN . We say that (RN ; hN ) converges to (R; h), for someR ⊂ R
2

and h : ∂R → R, if limN→∞ RN = R and limN→∞ hN = h.

Example 3 LetR be a tileable polygon drawn on T. Taking any tiling ofR and using
definitions of Section 2.1, we get the corresponding boundary height function h :
∂R → Z. For N = 1, 2, . . . , let RN = N · R. It is straightforward to check that
RN is tileable; let hN be the corresponding boundary height function. In this situation
(RN ; hN ) converges to (R; h), because we can choose x = x ′ = xN in (2.2).

Another point of view on this example is that a polygonR is fixed and we are tiling
it with lozenges of smaller and smaller side lengths 1/N .

2.3 Convergence to the GUE–corners: statements

We are now ready to state our main theorem about convergence of random tilings to
the GUE–corners process. We first explain a simpler version of the theorem, and then
proceed to the most general setting.

Throughout this section we fix a sequence of tileable domains RN ⊂ T with
corresponding boundary height functions hN , N = 1, 2, . . . and assume that they
converge to (R; h). We are going to choose a specific straight segment in the boundary
of each RN and assume that there are two adjacent straight segments inclined to it
under an angle of 120 degrees in the internal direction of the domain: There are six
options depending on the orientation of the straight segment, as shown in Fig. 3. In each
of these six situations we trace a particular type of lozenges (whose shorter diagonal
is parallel to the straight segment of interest) and get an interlacing configuration of
lozenges, in the same way as in Fig. 1 we were tracing horizontal lozenges near a
vertical segment of the boundary. We investigate the coordinates of these lozenges
counted in the direction parallel to the straight segment of interest; in this way in Fig.
1 the segment was vertical and, hence, we were studying the vertical coordinates yk

i .
For notational simplicity, we state the next theorem for the vertical boundaries, as in
the top-left panel of Fig. 3; applying rotations, exactly the same statement holds for
other five orientations.

Theorem 4 Take a sequence of tileable simply-connected domains RN ⊂ R and cor-
responding boundary height functions hN . Suppose that (RN , hN ) converges to some
(R, h), where R ⊂ R

2 is a simply-connected, bounded domain with piecewise smooth
boundary. Further, suppose that the boundary of each RN has a distinguished vertical
segment IN with two adjacent segments I (l)

N , I (r)
N inclined by 120 degrees to IN in

the internal direction of the domain, as in the top-left panel of Fig. 3. Assume that as
N → ∞, rescaled by N, the positions and lengths of IN , I (l)

N , and I (r)
N converge to

positions and lengths (which must remain positive) of straight segments of the bound-
ary of R. Let {yk

i (N )}1≤i≤k denote the interlacing array of the vertical coordinates of
horizontal lozenges adjacent to IN in uniformly random tiling of RN . Then there exist
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1146 A. Aggarwal, V. Gorin

Fig. 3 Six possible orientations of a straight segment and corresponding types of lozenges that we trace

constants m N ∈ R and σ ≥ 0, such that

lim
N→∞

(
yk

i (N ) − m N√
N

)

1≤i≤k

= (
σξ k

i

)
1≤i≤k, (2.3)

in the sense of convergence of finite-dimensional distributions (jointly over all i and
k such that 1 ≤ i ≤ k), and where {ξ k

i } is the GUE–corners process of Definition 1.

Remark 5 There are two ways to think about the constants m N and σ . First, we can

set m N = Ey11(N ) and σ = limN→∞ N−1/2
√
Var(y11(N )), i.e. they are the mean and

asymptotic standard deviation of y11 . Second, σ and the leading order4 behavior of
m N can be reconstructed through the limit shape (Law of Large Numbers) for tilings:
informally,m N is the average vertical coordinate of horizontal lozenges along a vertical
slice of domain on small, but macroscopic distance to the right from the boundary
segment of interest, while σ is a properly defined “variance” of these coordinates,

4 Subleading terms, i.e. m N − N ·[limN→∞ m N
N

]
might depend on the exact way (RN , hN ) approximates

(R, h), and there is no way to reconstruct them only from (R, h) and the corresponding tiling limit shape.
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Embedded trapezoid

Fig. 4 Left panel: Sample of a uniformly random lozenge tiling of a large S-shaped domain. Three types
of tiles are shown in three colors. Right panel: Theorem 4 covers convergence to eight instances of the
GUE–corners process shown in green circles. It does not cover four other instances shown by pink crosses.
One embedded trapezoid is shown in red. The simulations are taken from [15] and we are grateful to the
authors of that paper for allowing us to use their software (color figure online)

see Lemma 24 below for the precise formulas. We also mention that there might be
degenerate situations, such as frozen domains, in which σ = 0.

Figure 4 illustrates Theorem 4 by showing the situations in which it applies. The
same figure contains several situations where Theorem 4 does not apply because there
are no three adjacent straight segments of the boundary inclined by 120 degrees to
each other; yet, we believe that the GUE–corners process still appears asymptotically
in those situations as well. The reason is that the system creates the straight boundaries
on its own inside the frozen regions containing with high probability only one type of
lozenges; once we know that an auxiliary straight boundary is there, we can apply a
version of Theorem 4 again. Let us state this version.

Definition 6 Take a lozenge tiling L ∈ �(R) of a domain R ⊂ T. We say that a
trapezoid with straight sides I (l), I , I (r) is embedded in L, if:

• I (l), I , I (r) are three segments drawn on the triangular grid and inclined to each
other by 120 degrees in one of the six configurations of Fig. 3; and

• I (l), I , and I (r) are inside (or on the boundary) of R; and
• No lozenges of L intersect I (l), I , and I (r). In other words, these segments are
formed by unions of various sides of lozenges of the tiling.

We refer to the right panel of Fig. 4 for an example of the embedded trapezoid.

Theorem 7 Take a sequence of tileable simply-connected domains RN ⊂ R and cor-
responding boundary height functions hN . Suppose that (RN , hN ) converges to some
(R, h), where R ⊂ R

2 is a simply-connected, bounded domain with piecewise smooth
boundary. Further, suppose that with probability tending to 1 as N → ∞, each tiling
of RN has an embedded trapezoid (which depends on N, but not on the tiling) with
straight sides I (l)

N , IN , I (r)
N , oriented as in top-left panel of Fig. 3; in particular, IN
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1148 A. Aggarwal, V. Gorin

is vertical. Assume that as N → ∞, rescaled by N, the lengths of IN , I (l)
N , and I (r)

N
converge to positive constants. Let {yk

i (N )}1≤i≤k denote the interlacing array of the
vertical coordinates of horizontal lozenges adjacent to IN in uniformly random tiling
of RN . Then there exist constants m N ∈ R and σ ≥ 0, such that

lim
N→∞

(
yk

i (N ) − m N√
N

)

1≤i≤k

= (
σξ k

i

)
1≤i≤k, (2.4)

in the sense of convergence of finite-dimensional distributions (jointly over all i and
k such that 1 ≤ i ≤ k), and where {ξ k

i } is the GUE–corners process of Definition 1.

Remark 8 We stated Theorem 7 for the orientation of the top-left panel of Fig. 3.
Applying rotations, we conclude that it also applies for five other orientations.

Theorem 4 is a particular case of Theorem 7: indeed, in this situation the embedded
trapezoid is formed by three straight segments of the boundary of the domain. This
trapezoid is embedded in each tiling of RN with probability 1, because lozenges are
never allowed to cross the boundary of the domain.

The conditions of Theorem 7 are not only sufficient, but, in a sense, they are almost
necessary: the only part which can be potentially weakened is the linear (in N ) growth
of the lengths of I (l)

N , IN , and I (r)
N ; there might be situations in which these lengths

grow sublinearly and convergence to the GUE–corners process still holds.5 Let us
explain necessity of the existence with high probability of the embedded trapezoid.

Imagine that we expect convergence of lozenge tilings to the GUE–corners process
in a certain situation (still near a straight segment of a boundary of a domain). The
eigenvalues ξ k

i from Definition 1 almost surely interlace, see e.g., [12, Lecture 20],
which means that

ξ k
i < ξ k+1

i < ξ k+1
i+1 , 1 ≤ i ≤ k.

Hence, convergence to the GUE–corners process implies the existence of a similarly
interlacing configuration of lozenges. Combinatorially, once we see an interlacing
configuration of horizontal lozenges near a vertical segment of the boundary, far up
and down along this boundary we should observe only lozenges of types 1 and 3,
respectively, cf. the left panel of Fig. 5. In turn, the presence of lozenges of only one
type far up and far down, readily leads to the appearance of an embedded trapezoid.

The conditions under which families of domains have the property that they admit
embedded trapezoids are quite subtle. In general, such conditions cannot be read off
of the macroscopic shapeR; indeed, as indicated by the right panel of Fig. 5, a single
microscopic defect along the boundary has the capacity to destroy this embedded

5 However, in some situations it fails. For instance, consider N ×�Nα�×�Nα� hexagon with 0 < α < 1; it

obviously has an embedded trapezoid with I (l)
N = I (r)

N = �Nα�. For this domain, as N tends to∞, we need

to rescale the positions of lozenges near the longer side by factor N1−α/2 in order to see the GUE–corners
process in the limit, as can be shown by analyzing explicit formulas of [7] and [22, Section 4]. Hence, if
we rescale by

√
N , as in Theorems 4 and 7, the convergence fails. One can also design more complicated

examples, in which there is no way to adjust rescaling factors to restore the GUE convergence.
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Gaussian unitary ensemble in random... 1149

Fig. 5 Left panel: Interlacing configuration of horizontal lozenges near a vertical segment of the boundary
automatically leads to the appearance of an embedded trapezoid. Right panel: A microscopic defect in the
boundary can prevent the GUE–corners asymptotics, because we would no longer have an interlacing array
of horizontal lozenges

trapezoid property entirely. Therefore, we make no attempt in this paper (beyond
Theorem 4) to classify under what circumstances this property holds. However, let us
mention that the situation for polygonal domains, as in Example 3 and Fig. 4, seems
promising: one could hope to find embedded trapezoids near most of the straight
segments of the boundaries. On the technical level, proving this fact requires a careful
analysis of the frozen regions of tilings and showing that with high probability the
region occupied by lozenges of one type has not just a small amount, but actually no
lozenges of other two types.Wewill not address this point here; for domains satisfying
a technical assumption (conjecturally, this assumption is generic in side lengths of the
polygonal domain; in particular it applies to the domain of Fig. 4) it follows as a
consequence of [2].

3 Concentration estimate

3.1 Statement of the concentration bound

An important step in our proof of Theorems 4 and 7 is the following concentration
estimate (possibly of independent interest) for height functions of random tilings on
general simply-connected domains.
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Proposition 9 Fix a simply-connected, bounded domain R ⊂ R
2 with piecewise

smooth boundary; a function h : ∂R → R possessing an admissible extension to
R; and any real number ε > 0. Let R1, R2, . . . denote a family of simply-connected,
tileable domains of T, and for each integer N ≥ 1 let hN : ∂ RN → Z denote an
associated boundary height function; assume that (RN ; hN ) converges to (R, h) in
the sense of Definition 2. For each integer N ≥ 1, let HN : RN → Z denote the height
function of a uniformly random tiling from �(RN ). Then there exists a constant C > 1
(depending on all the above data) such that for any integer N ≥ C and any vertex
v ∈ RN , we have Var HN (v) < εN.

Remark 10 [5, Theorem 21] implies that Var HN (v) ≤ cN for a certain explicit con-
stant c > 0. Our results shows that this constant can, in fact, be chosen to be arbitrarily
small as long as N is large enough.

We deduce Proposition 9 from the following statement, which is proven in the rest
of this section.

Proposition 11 In the setting of Proposition 9, let H ′
N denote the height function of

another uniformly random tiling from �(RN ), independent of HN . For N > C, we
have Var

[
HN (v) − H ′

N (v)
]

< εN for any v ∈ RN .

Proof of Proposition 9 assuming Proposition 11 Since HN and H ′
N are independent, we

have that 2Var HN (v) = Var
[
HN (v) − H ′

N (v)
]

< εN , where Proposition 11 was
applied to deduce the inequality. ��

Throughout the remainder of this section, we adopt the setting of Proposition 11;
abbreviate H := HN and H ′ := H ′

N ; define F : RN → Z by F(v) = H(v) − H ′(v);
and also set F(v) = 0 for any v ∈ T \ RN . Observe from (2.1) that

F(u) − F(v) ∈ {−1, 0, 1}, whenever u, v ∈ T are adjacent. (3.1)

We refer to the left side of Fig. 6 for an example.

3.2 Distance graphs

AfamilyS = (S1, S2, . . . , Sm)ofmutually disjoint, connected subsetswith
⋃m

i=1 Si =
RN is called a level set decomposition of RN with respect to F if the following hold.

1. If v, v′ ∈ Si for some 1 ≤ i ≤ m, then F(v) = F(v′).
2. If v ∈ Si and v′ ∈ S j for some 1 ≤ i < j ≤ m, and if v and v′ are adjacent, then

F(v) �= F(v′).
We then set F(Si ) = F(v) for any v ∈ Si . We further say that Si , S j ∈ S are adjacent
if i �= j and there exist v ∈ Si and v′ ∈ S j such that v and v′ are adjacent in T. In
particular, observe from (3.1) that

∣∣F(Si ) − F(S j )
∣∣ = 1, whenever Si and S j are adjacent. (3.2)

We additionally say that S j is exterior adjacent to Si if S j is contained in the infinite
connected component of T \ Si ; we otherwise call S j interior adjacent to Si .
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Fig. 6 Left panel: an example for the difference function F on a hexagonal domain (the original associated
height functions H and H ′ are not shown). Right panel: the associated distance graph

Lemma 12 For any i ∈ [1, m], there is at most one element of S that is exterior
adjacent to Si .

Proof Let C denote the (unique) infinite connected component of T \ Si ; set ∂C =
{v1, v2, . . . , vK }. Since Si is connected, we may order the {vk} such that vk is adjacent
to vk+1 for each k ∈ [1, K ], where vK+1 = v1. Then, since each vk is not in Si but is
adjacent to a vertex in Si , (3.2) implies that

∣∣F(vk) − F(Si )
∣∣ = 1 for each k ∈ [1, K ].

In particular, all of the F(vk) are of the same parity, and so
∣∣F(vk) − F(vk+1)

∣∣ �= 1
for each k. Since {vk, vk+1} are adjacent it follows again from (3.2) that vk and vk+1
reside in the same S j . Hence, each vk ∈ C belongs to the same S j , meaning that there
is at most one element of S that is exterior adjacent to Si . ��

Observe by Lemma 12 that dist(Si , ∂ RN ) > dist(S j , ∂ RN )whenever S j is exterior
adjacent to Si (since any path connecting ∂ RN to Si must intersect S j ). In particular, if
S j is exterior adjacent to Si , then Si is interior adjacent to S j . Given the above notation
and Lemma 12, we define the distance graph.

Definition 13 Define the (random) distance graph G = GS, which is a rooted, directed
tree with m vertices that are indexed by the elements of S, such that Si is a child of S j

if and only if S j is exterior adjacent to Si . The root of the tree is the unique element
of S that contains the boundary ∂ RN of RN .

Observe that GS is a (deterministic) function of S. An example is depicted on the
right side of Fig. 6. In what follows, we let distG(Si , S j ) denote the distance between
Si and S j under G, and let distG(u, v) = distG(Si , S j ) whenever v ∈ Si and u ∈ S j .

The use of these notions is provided by the following lemma.

Lemma 14 For any u, v ∈ RN , we have Var
[
F(u) − F(v)

∣∣S] = distG(u, v).

Proof Conditional on S, the law of F is uniform on the set of all integer-valued
functions on S satisfying the two conditions:

1. The value of F on the root of GS is 0. (Because F |∂ RN = H |∂ RN − H ′|∂ RN = 0.)
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2.
∣∣F(Si ) − F(S j )

∣∣ = 1 holds whenever Si is adjacent to S j (by (3.2)).

This description follows from the uniformity of the measure on lozenge tilings that we
started from. Because GS is a tree, we can sample F as follows: Associate with each
edge e of G a Bernoulli random variable Be such that P[Be = 1] = 1

2 = P[Be = −1].
Then, letting Si ∈ S denote the level set containing v, set F(v) = F(Si ) equal to∑

e∈P Be, where P is the unique path of edges from the root of G to Si . Taking
variances in this equality, we deduce the lemma. ��

In view of Lemma 14, to show Proposition 11 it suffices to boundE
[
distG(u, v)

] =
o(N ); let us mention that the bound E

[
distG(u, v)

] = O(N ) follows from the (deter-
ministic) fact that distG(u, v) ≤ |u − v|.

3.3 Preliminary results

In this section we recall several known results from [1, 3, 6, 8] that will assist in the
proof of the improved o(N ) estimate on E

[
distG(u, v)

]
. We start from the results

concerning the limiting height function and local statistics of random tilings. To that
end, for any x ∈ R≥0 and (s, t) ∈ T , set

L(x) = −
∫ x

0
log |2 sin z|dz; σ(s, t) = 1

π

(
L(πs) + L(π t) + L

(
π(1 − s − t)

))
.

For any F ∈ Adm(R), define

E(F) =
∫
R

σ
(∇F(z)

)
dz.

Letting H ∈ Adm(R; h) denote the maximizer of E on Adm(R) with boundary
data h, the following result of [6] claims that H converges to H with high probability.

Lemma 15 ([6, Theorem 1.1]). In the setting of Proposition 9, for any ε > 0, there
exists a constant C > 1 such that if N > C then

P

[
max

v∈RN ∩NR

∣∣ 1
N HN (v) − H( 1

N v)
∣∣ > ε

]
< ε.

Wewill later use the following lemma from[8] that provides a deterministic property
for the limit shapeH concerning the discontinuities of its gradient. It essentially states
that at any discontinuity of ∇H there is a path to ∂R, parallel to an axis of T, along
which ∇H is mimimal or maximal.

Lemma 16 ([8, Theorem 1.3]). For any z ∈ R, we either have that ∇H is continuous
at z or there exists some z′ ∈ ∂R, with z′ − z = tw for some t ∈ R>0 and w ∈{
(1, 0), (0, 1), (1, 1)

}
, such that the following holds. If w ∈ {

(1, 0), (0, 1)
}
, then

H(z + sw) = H(z) for each s ∈ [0, t]. If w = (1, 1), then H(z + sw) = H(z) + s for
each s ∈ [0, t].
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Next, although in this paper we are primarily interested in uniformly random
lozenge tilings of finite domains, it will be useful to state several properties about
certain infinite-volume measures on tilings of T that will arise as limit points of local
statistics for our model. Therefore, let us briefly recall a two-parameter family of such
measures from [16, 24, 28] (see also [17, Section 5] and [12, Lecture 13]). To that
end, letP(R) denote the space of probability measures on the set �(R) of all lozenge
tilings of some domain R ⊆ T. We say that μ ∈ P(T) is a Gibbs measure if it satis-
fies the following property for any finite domain R ⊂ T. The probability under μ of
selecting any M ∈ �(T), conditional on the restriction ofM to T \ R, is uniform.

Moreover, for any w ∈ Z
2, define the translation map Sw : Z2 → Z

2 by setting
Sw(v) = v −w for any v ∈ Z

2. ThenSw induces an operator onP(T) that translates
a tiling by −w; we also refer it to bySw. A measure μ ∈ P(T) is called translation-
invariant if Swμ = μ, for any w ∈ Z

2. We further call a Gibbs translation-invariant
measure μ ∈ P(R) ergodic if, for any p ∈ (0, 1) and Gibbs translation-invariant
measures μ1, μ2 ∈ P(R) such that μ = pμ1 + (1 − p)μ2, we have μ1 = μ = μ2.

Let μ ∈ P(T) be a translation-invariant measure, and let Hμ denote the height
function associated with a randomly sampled lozenge tiling under μ, such that
Hμ(0, 0) = 0. Setting s = E

[
Hμ(1, 0)− Hμ(0, 0)

]
and t = E

[
Hμ(0, 1)− Hμ(0, 0)

]
,

the slope of μ is defined to be the pair (s, t). We must then have (s, t) ∈ T , since s,
t , and 1 − s − t denote the probabilities of a given lozenge in a random tiling (under
μ) being of types 1, 2, and 3, respectively.

It was shown in [28, Theorem 9.1.1] that, for any (s, t) ∈ T , there exists a unique
ergodic Gibbs translation-invariant measure μ = μs,t ∈ P(T) of slope (s, t). We
then have the following two results concerning this measure; the first one bounds
the variance of the height function under any such μs,t , and the second one shows
convergence of local statistics of H to μs,t .

In the below, we let M denote the law of the tiling of RN associated with H and,
for any v ∈ T and D ∈ Z≥0, we let BD(v) = {

u ∈ T : |u − v| ≤ D} denote the disk
centered at v with radius D. ByM|BD(v) we mean the law of the tiling inside the disk
BD(v). Moreover, for any ε > 0, we let Tε = {

(s, t) ∈ R
2
>0 : ε < s + t < 1 − ε

}
,

which describes the set of slopes that are “uniformly liquid.” Additionally, for any
measures μ and ν on a probability space � with σ–algebra A, we let

dTV(μ, ν) = max
A∈A

∣∣μ(A) − ν(A)
∣∣

denote the total variation distance between μ and ν.

Lemma 17 ([3, Proposition 4.1]). There exists a constant C > 1 such that the following
holds. For any (s, t) ∈ T and u, v ∈ T we have under μ = μs,t that Var

(
Hμ(u) −

Hμ(v)
) ≤ C log |u − v|.

Let us mention that a logarithmic variance bound as in Lemma 17 was also estab-
lished as Theorem 4.5 of [18], but there the uniformity in the slope (s, t) was not
mentioned. [3] did not mention lozenge tilings explicitly, but the discrete sine process
studied there is another face of the same object, see [24, Section 3.1.1] or [12, Section
13.4].
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Lemma 18 ([1]). In the setting of Proposition 9, for any real numbers ε, ω > 0 and
D > 1, there exists a constant C > 1 such that the following holds for any N > C.
Let v ∈ RN be a vertex such that v = 1

N v ∈ R satisfies dist(v, ∂R) ≥ ε and
(s, t) = ∇H(v) ∈ Tε. Then, dTV

(
M|BD(v), μs,t |BD(v)

)
< ω.

Remark 19 The uniformity in v (and v) of the constant C stated in Lemma 18 was not
directly claimed in (Theorem 1.5 of) [1] but follows from its proof. We outline this in
Appendix 4.2 below.

3.4 Proof of Proposition 11

In this section we establish Proposition 11. We begin with the following lemma that
bounds distG(u, v) = o

(|u − v|) when u − v are nearby.

Lemma 20 There exists a constant C1 > 1 such that for any real numbers ε ∈ (0, 1)
and D > 2, there is another constant C2 > 1 (depending on all the data) and
the following holds for any N ≥ C2: Fix u, v ∈ RN with |u − v| ≤ D satisfying
dist( 1

N v, ∂R) ≥ ε and ∇H( 1
N u) ∈ Tε. Then

P
[
distG(u, v) > C1(log D)2

] ≤ (log D)−1.

Proof Letω = D−1 and set (s, t) = ∇H( 1
N u). LettingM andM′ denote the tilings of

RN associated with H and H ′, respectively, Lemma 18 implies (see [20, Proposition
4.7]) that M and M′ can be coupled with μs,t such that they all coincide on BD(v)

with probability at least 1 − 2ω for sufficiently large N . Hence, using the fact that H
is 1-Lipschitz, Lemma 17 implies the existence of a constant C > 1 such that, for any
fixed D > 2 and sufficiently large N , we have

Var
[
H(u) − H(v)

]
< C log D + 2ωD, and Var

[
H ′(u) − H ′(v)

]
< C log D + 2ωD,

whenever |u − v| ≤ D. Adding these bounds, using the independence of H and H ′,
and ω = D−1, we obtain

E
[
distG(u, v)

] = Var
[
F(u) − F(v)

]
< 2C log D + 4,

where to deduce the first equality we used Lemma 14. It remains to use the Markov’s
inequality. ��

The next step is to deduce a lemma bounding distG(u, v) = o(N ) on global scales
in the liquid region; it will follow from applying Lemma 20 on all bounded intervals
on a path between u and v.

Lemma 21 For any ε ∈ (0, 1), there exist constants C = C(ε) > 1 and C ′ > 1
(depending on all the data) such that the following holds for any N ≥ C ′: Fix u, v ∈
RN with |u − v| > C, such that dist( 1

N u, ∂R) ≥ ε and dist( 1
N v, ∂R) ≥ ε. Further
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suppose that there exists an open diskU ⊂ R containing 1
N u and 1

N v, with ∇H(z) ∈ Tε

for each z ∈ U. Then, P
[
distG(u, v) > ε|u − v|] ≤ ε.

Proof Let D > 2 denote some integer, which will only depend on ε andR, and will be
fixed later. Since dist( 1

N u, ∂R) ≥ ε; dist( 1
N v, ∂R) ≥ ε; and the disk U ⊂ R contains

1
N u and 1

N v, it follows that the line segment 
0 connecting 1
N u and 1

N v is of distance
at least ε from ∂ R. Hence, for sufficiently large N , the line segment N
0 connecting u
and v is contained inside RN and of distance at least εN

2 from ∂ RN . Thus, there exists
a sequence u = v0, v1, . . . , vk = v ∈ NU ∩ RN such that |vi − vi−1| ≤ D for each
i ∈ [1, k] and k ≤ ⌈

2D−1|u − v|⌉ (for example, one may take the v j to be k equally
spaced points on N
0, rounded to the nearest lattice points in RN ). Recall the constant
C1 > 1 from Lemma 20, and define for each i ∈ [1, k] the event

Ei = {
distG(vi−1, vi ) > C1(log D)2

}
.

Then, Lemma 20 implies P
[
Ei
] ≤ (log D)−1. So, since denoting by Ec the com-

plement of any event E we have

distG(u, v) ≤
k∑

i=1

(|vi − vi+1|1Ei + C1(log D)21Ec
i

)
,

it follows that

E
[
distG(u, v)

] ≤
k∑

i=1

DP[Ei ] + C1k(log D)2

≤ k D(log D)−1 + C1k(log D)2

≤ D(log D)−1⌈2D−1|u − v|⌉ + C1(log D)2
⌈
2D−1|u − v|⌉

≤ 4|u − v|((log D)−1 + C1D−1(log D)2
)
,

whenever |u−v| ≥ D. LettingC = C(ε) > 1 so that 4(logC)−1+4C1C−1(logC)2 <

ε2, we deduce by taking D = C that E
[
distG(u, v)

]
< ε2|u − v|, and so the lemma

follows from the Markov’s inequality. ��
The next lemma will be used in settings complimentary to Lemma 21. The claim is

that if u, v ∈ RN are such that v−u is parallel to an axis ofT and H has approximately
maximal or minimal slope along v − u, then distG(u, v) is small.

Lemma 22 Let δ ∈ (0, 1) be a real number, and let u, v ∈ RN denote vertices such
that v − u = tw for some t ∈ Z≥0 and w ∈ {

(1, 0), (0, 1), (1, 1)
}
. Define the events

F1 = F1(u, v; δ) =
{

H(v) − H(u) ≤ δt
}

∩
{

H ′(v) − H ′(u) ≤ δt
}
;

F2 = F2(u, v; δ) =
{

H(v) − H(u) ≥ (1 − δ)t
}

∩
{

H ′(v) − H ′(u) ≥ (1 − δ)t
}
.

(3.3)
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On F1 ∪ F2, we have distG(u, v) ≤ 2δt .

Proof In this proof, let us only assume that F1 holds, for the verification in the case
when F2 holds is entirely analogous. Set u j = u + jw ∈ RN for each j ∈ [0, t], so
that ut = v. Note that both H(u j ) and H ′(u j ) depend on j in a monotone way by our
definition of the height function and the choice of w. Hence, using (3.3), we conclude
that there exist at most δt indices i ∈ [1, t] such that H(ui ) − H(ui−1) �= 0 and at
most δt indices i ∈ [1, t] such that H ′(ui ) − H ′(ui−1) �= 0. Thus, there exist at most
2δt indices i ∈ [1, t] for which F(ui ) = H(ui ) − H ′(ui ) �= H(ui−1) − H ′(ui−1) =
F(ui−1). Hence, for all but (1 − 2δ)t indices i ∈ [1, t], we must have that ui and
ui−1 are in the same connected component, which implies that at most 2δt connected
components separate u from v. ��

Using the above results, the following proposition bounds the (graph) distance
between any vertex in RN and the root of G.

Proposition 23 For any real number ε > 0, there exists a constant C > 1 such that
for any N > C, we have that P

[
distG(v, ∂ R) > εN

]
< ε for each v ∈ RN .

Proof Fix a real number δ > 0 with δ < ε
25 (1 + diamR)−1, and let Rδ = {

z ∈ R :
d(z, ∂R) > δ

}
. Let v = 1

N v. We may assume that v ∈ Rδ , for otherwise for large N
we have a deterministic bound

distG(v, ∂ RN ) ≤ d(v, ∂ RN ) ≤ 2δN < εN .

Our plan is to define a path {ζ0, ζ1, . . . , ζk} ⊂ R∩ 1
N RN from v = ζ0 to ζk ∈ R\Rδ ,

so that6 distG(Nζi−1, Nζi ) ≤ 2δN |ζi −ζi−1|with high probability, for each i ∈ [1, k].
To that end, for each z ∈ R, we define an open subset U(z) ⊂ R as follows. If ∇H is
continuous at z then let U(z) denote a disk, of radius at most δ

2 , centered at z such that∣∣∇H(z′) − ∇H(z)
∣∣ < δ for each z′ ∈ U(z). If ∇H is discontinuous at z, then Lemma

16 implies that there exists z′ ∈ ∂R such that the conditions there hold; then let U(z)
denote the δ-neighborhood of the segment connecting z and z′.

Because
⋃

z∈Rδ
U(z) is an open cover of the compact domainRδ , it admits a finite

subcover
⋃K

i=1 U(zi ) (where K depends on R but is bounded independently of N ).
We call z = zi of type 1 if∇H is discontinuous at zi ; of type 2 if∇H(z) ∈ T2δ and∇H
is continuous at z; and of type 3 if ∇H(z) /∈ T2δ and ∇H is continuous at z. If z is of
type 3, then ∇H(z) is of distance at most 2δ from either the segment

[
(0, 0), (1, 0)

]
,[

(0, 0), (0, 1)
]
, or

[
(1, 0), (0, 1)

]
on ∂T ; we call z of types 3(a), 3(b), and 3(c) in these

cases, respectively.
Now we define the sequence v = ζ0, ζ1, ζ2, . . . , ζk ∈ R ∩ 1

N RN inductively as
follows. First set ζ0 = v, and suppose ζi is defined for some i ≥ 0. If ζi ∈ R \ Rδ ,
then set k = i and stop. If otherwise ζi ∈ Rδ , then there exists some z j = z j(i) such
that ζi ∈ U(z j ). We will define ζi+1 depending on the type of z j .

6 The points Nζi in distG (·, ·) need to be vertices in T, i.e., they should be confined to the integer lattice.
Hence, we formally should write distG (�Nζi−1�, �Nζi �). For notational convenicence we are going to
omit the integer parts throughout this proof; this will not affect the validity of the argument.
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1. If z j is of type 1, then let z′ ∈ ∂R and w ∈ {
(1, 0), (0, 1), (1, 1)

}
be the point and

vector corresponding to z = z j under Lemma 16, respectively. Set k = i + 1 and
ζ = ζk = z′ − δ

2w.
2. If z j is of type 2, then let ζi+1 ∈ ∂U(z j ) denote the point such that ζi+1 − ζi is a

positive multiple of (1, 1).
3. Suppose z j is of type 3.

(a) If z j is of type 3(a), then let ζi+1 ∈ ∂U(z j ) denote the point such that ζi+1 − ζi

is a positive multiple of (0, 1).
(b) If z j is of type 3(b), then let ζi+1 ∈ ∂U(z j ) denote the point such that ζi+1 − ζi

is a positive multiple of (1, 0).
(c) If z j is of type 3(c), then let ζi+1 ∈ ∂U(z j ) denote the point such that ζi+1 − ζi

is a positive multiple of (1, 1).

Let us make three comments about this definition. First, observe when z j is of type 3
that ζi+1 is chosen so that ζi+1 − ζi is approximately orthogonal to ∇H(zi ), namely,
H(ζi ) ≈ H(ζi+1). Second, we have ζi+1 /∈ U

(
z j(i)

)
(since U

(
z j(i)

)
is open), so ζi+1 �=

ζi . In particular, since ζi+1 − ζi ∈ R
2≥0, this implies that the process described above

to define the sequence {ζ0, ζ1, . . . , ζk} eventually ends. Third, as can be verified by
induction on j , we have dist(ζ j , ∂Rδ) ≥ δ

2 for each j ∈ [0, k], so that Nζk ∈ RN = R
for sufficiently large N .

Next, fix some i ∈ [0, k − 1], and set ũ = Nζi and ṽ = Nζi+1; further denote
z j = z j(i). We claim that

P
[
distG (̃u, ṽ) > 4δN (diamR + 1)

]
< δk−1, if z j is of type 1;

P
[
distG (̃u, ṽ) > 8δ|̃u − ṽ|] < δk−1, if z j is of type 2 or 3.

(3.4)

Before proving (3.4), let us show how it implies the statement of Proposition 23.
To that end, since k = i + 1 whenever z j(i) is of type 1, there is at most one index i
such that z j = z j(i) is of type 1. Hence, applying (3.4) and a union bound, we deduce

P
[
distG(v, ∂ RN ) > εN

] ≤ P
[
distG(v, Nζk) > (ε − 2δ)N

]

≤
k−1∑
i=1

P
[
distG(Nζi−1, Nζi ) > 8δ|ζi − ζi−1|N

]

+ P
[
distG(Nζk−1, Nζk) > 4δN (diamR + 1)

]
< δ < ε.

(3.5)

Here, for the first inequality, we used the fact that

distG(v, ∂ RN ) ≤ distG(v, Nζk) + distG(Nζk, ∂ RN ) ≤ distG(v, Nζk) + 2δN ,
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which holds for large N since ζk ∈ R \ Rδ . For the second estimate, we used the
union bound and the fact that

k−1∑
i=1

8δ|ζi − ζi−1| + 4δ(diamR + 1) ≤ 16|ζk−1 − ζ0|

+ 4δ(diamR + 1) ≤ 20δ(diamR + 1) ≤ ε − 2δ,

where the first bound holds since ζi −ζi−1 is for each i ∈ [1, k −1] a positive multiple
of some vector among

{
(1, 0), (0, 1), (1, 1)

}
; the second holds since |ζk−1 − ζ0| ≤

diamR; and the third holds since 25δ(diamR + 1) < ε. Since (3.5) verifies the
proposition, it remains to establish (3.4), which we do by analyzing each case for z j

individually.
Case 1: z j is of type 1, meaning that U(z j ) is the δ-neighborhood of the line


 = 
(z j , ζi+1) connecting z j to the point z′ ∈ ∂R, and that z′ − δ
2w = ζi+1 = 1

N ṽ.
Here the analysis is based on Lemma 22.

Denoting z′−z j = tw for some t ∈ R>0 andw ∈ {
(1, 0), (0, 1), (1, 1)

}
, Lemma16

implies thatH(ζi+1)−H(z j ) = 0 ifw ∈ {
(1, 0), (0, 1)

}
andH(ζi+1)−H(z j ) = t − δ

2
if w = (1, 1). Let z̃ = z j + sw ∈ 
, for some s ∈ [0, t], denote the point on 
 closest
to 1

N ũ. Then, Lemma 15 implies for sufficiently large N that

P

[∣∣H (̃v) − NH(ζi+1)
∣∣ ≤ δN

]
> 1 − δ

4k
; P

[∣∣H(N z̃) − NH(̃z)
∣∣ ≤ δN

]
> 1 − δ

4k
;

P

[∣∣H ′(̃v) − NH(ζi+1)
∣∣ ≤ δN

]
> 1 − δ

4k
; P

[∣∣H ′(N z̃) − NH(̃z)
∣∣ ≤ δN

]
> 1 − δ

4k
.

It follows from a union bound that

P

[∣∣∣H (̃v) − H(N z̃) − N
(
H(ζi+1) − H(̃z)

)∣∣∣ ≤ 2δN

]
> 1 − δ

2k
;

P

[∣∣∣H ′(̃v) − H ′(N z̃) − N
(
H(ζi+1) − H(̃z)

)∣∣∣ ≤ 2δN

]
> 1 − δ

2k
.

So, since z′ is given through Lemma 16 and ζi+1 = z′ − δ
2 , we deduce from a union

bound that

P
[
F1(N z̃, ṽ; 2δ) ∪ F2(N z̃, ṽ; 2δ)] > 1 − δk−1,

where we recall the events F1 and F2 from (3.3). Hence, Lemma 22 gives

P
[
distG(N z̃, ṽ) ≤ 4δN |̃z − ζi+1|

] ≥ P
[
distG(N z̃, ṽ) ≤ 4δs N

]
> 1 − δk−1. (3.6)

Since 1
N ũ = ζi ∈ U(z j ), we have |̃z − 1

N ũ| < δ. So,

distG (̃u, ṽ) ≤ distG (̃u, N z̃) + distG(N z̃, ṽ) ≤ |̃u − N z̃| + distG(N z̃, ṽ) ≤ distG(N z̃, ṽ) + Nδ,
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which together with (3.6) (and the bound |̃z − ζi+1| ≤ diamR) implies the first
statement of (3.4).

Case 2: z j is of type 2, in which case∇H(z) ∈ Tδ for each z ∈ U(z j ). Here Lemma
21 applies directly. Indeed, because ζi , ζi+1 ∈ U(z j ) and |̃u−ṽ| = N |ζi −ζi+1| ≥ c1N
for some constant c1 = c1(R, h) > 0, we deduce the second statement of (3.4) from
Lemma 21 applied with the ε there equal to δk−1.

Case 3: z j is of type 3. In this situation we again rely on Lemma 22. Without loss
of generality we assume that z j is of type 3(a), as the cases when it is of type 3(b) or
type 3(c) are very similar. Then, ∇H(z) is of distance at most 3δ from the segment[
(0, 0), (1, 0)

] ⊂ ∂T for any z ∈ U(z j ). Hence, since ζi+1 − ζi is a multiple of (0, 1),
we have

∣∣(ζi+1 − ζi ) · ∇H(z)
∣∣ ≤ 3δ for each z ∈ U(z j ). Integrating z from ζi to

ζi+1 thus gives
∣∣H(ζi ) − H(ζi+1)

∣∣ < 3δ|ζi − ζi+1|. Hence, Lemma 15 implies for
sufficiently large N that

P
[
H (̃v) − H (̃u) < 4δ|̃u − ṽ|] ≥ 1 − δ

2k
; P

[
H ′(̃v) − H ′ (̃u) ≤ 4δ|̃u − ṽ|] ≥ 1 − δ

2k
.

Recalling the eventF1 from (3.3), it follows fromaunionbound thatP
[
F1(̃u, ṽ; 4δ)] ≥

1− δk−1, and so the second statement of (3.4) follows from Lemma 22. This verifies
(3.4) in all cases; as mentioned above, this implies the proposition. ��

We have now collected all the ingredients for the proof of Proposition 11.

Proof of Proposition 11 Fix δ > 0 such that δ(1 + diamR) = ε
2 , and fix a vertex

u ∈ ∂ RN closest to v. Then, for sufficiently large N we have

Var
[
F(v)

] = E
[
distG(u, v)

] ≤ δN + P
[
distG(u, v) > δN

]
diam RN

≤ δN + δ diam RN ≤ δN (1 + diamR) + δN

4
< εN .

Here, the first statement holds by Lemma 14 and the deterministic fact that F(u) = 0
(asu ∈ ∂ RN ); the secondby thedeterministic bounddistG(u, v) ≤ |u−v| ≤ diam RN ;
the third by Proposition 23; the fourth by the fact that 1

N diam RN ≤ diamR+ δ
4 holds

for sufficiently large N (since limN→∞ 1
N RN = R); and the fifth by the definition of

δ. This establishes the proposition. ��

4 Convergence to the GUE–corners process: proof

4.1 Tilings of fixed trapezoids

While the first ingredient of our proof of Theorem7 is Proposition 9, the second equally
important component is the asymptotic analysis of lozenge tilings of trapezoids from
[13, 23]. Let us recall the result from these texts which we need. By a fixed trapezoid
we mean a domain of Fig. 7: it is parameterized by the width L , the length A of the
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Fig. 7 A tiling of a fixed
trapezoid and corresponding
triangular array of coordinates of
horizontal lozenges
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vertical boundary, and by L–tuple of integers 0 ≤ λ1 < λ2 < · · · < λL < A + L ,
which encodes the positions of the horizontal lozenges along the right boundary of the
domain. We refer to these L lozenges as dents. The lozenge tilings of a fixed trapezoid
are in bijection with triangular arrays (yk

i )1≤i≤k≤L of L(L + 1)/2 integers, which
satisfy:

yk+1
i ≤ yk

i < yk+1
i+1 , 1 ≤ i ≤ k < L, and (yL

1 , . . . , yL
L ) = (λ1, . . . , λL).

(4.1)
The integers of the array encode positions of horizontal lozenges, as shown in
Fig. 7. The role of the parameter A for the array is very limited: it only appears
in the inequality λL < A + L . However, this parameter becomes more important
when we want to reconstruct a tiling: the same array can lead to slightly different
tilings depending on the value of A.

We are interested in the behavior of uniformly random lozenge tilings of a
fixed trapezoid with dents λ1, . . . , λL as L and A tend to infinity. In this situation
(yk

i )1≤i≤k≤L become random variables and we would like to understand their asymp-
totics. For finite i and k the limiting behavior is summarized in the following lemma,
which is a slight reformulation of results from [13] and [23].

Lemma 24 ([13, Theorem 1.7],[23, Theorem 1]). Suppose that λ = (λ1, . . . , λL) and
A depend on L, with 0 ≤ λ1 < λ2 < · · · < λL < A + L. Then, in the sense of
convergence in finite-dimensional distributions, we have

lim
L→∞

yk
i − m(λ)

σ (λ)
√

L
= ξ k

i , jointly over 1 ≤ i ≤ k, (4.2)

where ξ k
i is the GUE–corners process of Definition 1,

m(λ) =
[

L∑
i=1

λi

L

]
− L

2
, σ (λ)2 = 1

L

L∑
i=1

(
λi

L

)2

−
(
1

L

L∑
i=1

λi

L

)2

− 1

12
, (4.3)

and the convergence is uniform over A such that A/L stays bounded as L → ∞ and
λ such that σ(λ) stays bounded away from 0 as L → ∞. If instead σ(λ) tends to 0
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as L → ∞, then (4.2) should be interpreted as convergence of
yk

i −m(λ)√
L

to the zero
vector.

Remark 25 The minimal value that σ(λ)2 can take is achieved when (λ1, . . . , λL) =
(B, B + 1, . . . , B + L − 1). In this situation the lozenge tiling is completely frozen
(i.e. there exists only one array satisfying (4.1)) and

σ(λ)2 = L(L − 1)(2L − 1)

6L3 −
(

L(L − 1)

2L2

)2

− 1

12
= L − 1

L

(
2L − 1

6L
− L − 1

4L

)

− 1

12
L→∞−→ 0.

On the other hand, if we assume that the empirical measures 1
L

∑L
i=1 δλi /L converge

as L → ∞ to a probability measure7 other than a uniform measure on an interval of
length one, then σ 2 converges to a positive constant.

4.2 Proof of Theorem 7

In Lemma 24 we dealt with fixed trapezoids, which means that the L–tuples of dents
(λ1, . . . , λL) were deterministic. Let us now introduce a notion of fluctuating trape-
zoid: this is a trapezoid in which the dents are allowed to be random.When we discuss
tilings of a fluctuating trapezoid, we assume that the law of the dents can be arbitrary,
but conditionally on the positions of the dents, the probability distribution on lozenge
tilings inside the trapezoid is uniform.

For each N = 1, 2, . . . , let us look at the embedded trapezoid of Theorem 7. With
probability tending to 1 as N → ∞, each tiling of RN gives a rise to a lozenge tilings
of the (embedded) fluctuating trapezoid. Let us denote the width of this trapezoid
through L = L(N ) and its dents through λi = λi (N ), 1 ≤ i ≤ L . We would like to
set m N = Em(λ) and σ 2 = limN→∞ σ(λ)2, as given by (4.3), and apply Lemma 24
to get (2.4) (note that A/L in Lemma 24 is uniformly bounded, since all the domains
involved inTheorem7 and the ratio N/L are bounded). The caveat is that (4.2) involves
random m(λ) and σ(λ), rather than deterministic m N and σ of (2.4). Hence, we need
to prove the following two claims:

Claim I: lim
N→∞

m(λ) − Em(λ)√
N

= 0, in probability.

Claim II: There exists a deterministic limit in probability lim
N→∞ σ(λ)2.

For Claim I we need to rewrite m(λ) in terms of the height function. Let HL(y)

denote the height function of the tiling along the vertical line passing through the
dents of the embedded trapezoid. In more detail, following the notation of Sect. 2.1,
we choose the origin of the coordinate system to be in the bottom–right corner of the
embedded trapezoid and set HL(y) := H(0, y). As the local rules of Fig. 2 show,
this function starts as a constant C at the bottom of the trapezoid and as we move up
it grows by 1 whenever we cross a horizontal lozenge and stays constant otherwise.

7 λi+1 − λi ≥ 1 implies that the Lebesgue density of the limiting measure is at most one.
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Hence, we can write

L∑
i=1

λi =
A+L−1∑

y=0

y
(
HL(y + 1)− HL(y)

) = (A + L − 1)HL(A + L)−
A+L−1∑

y=1

HL(y).

(4.4)
Because HL(A + L) is deterministic, we conclude that

m(λ) − Em(λ) = 1

L

(
L∑

i=1

λi − E

L∑
i=1

λi

)
= − 1

L

A+L−1∑
y=1

(
HL(y) − EHL(y)

)
(4.5)

Using a bound on the variance of a sum of arbitrary random variables

Var(α1 + α2 + · · · + αK ) ≤ K
(
Var α1 + Var α2 + · · · + Var αK ),

the result of Proposition 9, and (4.5), we get as N → ∞

E
(
m(λ) − Em(λ)

)2 ≤ A + L − 1

L2

A+L−1∑
y=1

Var HL(y) ≤ (A + L − 1)2

L2 o(N ).

Because both L and A linearly depend on N , the last bound and theMarkov’s inequality
imply Claim I.

For Claim II we notice that (4.4) together with Lemma 15 implies that
∑L

i=1 λi can
be approximated using the limit shape given by the variational principle. Recalling
that we have (without loss of generality) assumed that the origin of the coordinate
system is at the bottom-right corner of the embedded trapezoid, we have8

1

L

L∑
i=1

λi

L
= N (A + L − 1)

L2 H
(
0, A+L

N

) − N

L2

A+L−1∑
y=1

H
(
0, i

N

) + o(1), (4.6)

where H is the limit shape and o(1) is random asymptotically vanishing term as
N → ∞. The first term in the right-hand side of (4.6) has a straightforward N → ∞
limit, while the second one is a Riemann sum, approximating the integral of H along
the right boundary of the embedded trapezoid as N → ∞. We conclude that (4.6)
converges to a deterministic constant as N → ∞. A very similar computation shows
that

1

L

L∑
i=1

(
λi

L

)2

8 In (4.6) we implicitly assumed that the entire segment (0, 0)−(0, A+L
N ) lies inR. This segment has to be

inside RN by definition, butRmight be slightly different from RN ; this can introduce at most o(N ) = o(L)

additional terms λi to the sum on the left side of (4.6). Since each λi < A + L , the total contribution of
these extra terms is at most o(L) · 1

L · A+L
L = o(1), meaning that this difference only introduces another

o(1) error, which we can ignore.
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also has a deterministic limit as N → ∞, which can be directly expressed through
the limit shape H. We conclude that all terms in the definition of σ(λ)2 converge as
N → ∞, which is the desired statement of Claim II.

The proof of Theorem 7 is finished.

A uniformity in convergence of local statistics

In this section we explain how Lemma 18 is a consequence of results from [1]. In
what follows, we let BR(z) = {

z′ ∈ R
2 : |z′ − z| = R

}
denote the disk of radius R

centered at z ∈ R
2.

Proof of Lemma 18 Asmentioned in Remark 19, Lemma 18 essentially coincides with
Theorem 1.5 of [1], except that the uniformity of the constant C > 1 in the vertex
v ∈ RN was not explicitly claimed there. On the other hand, it was stated in [1] that
such uniformity holds if RN is a disk containing v. More specifically, suppose that
there exists some vertex u ∈ T such that the following holds.

1. RN approximates a disk BN (u) centered at u. That is, we have RN = BN (u) ∩T.
2. We have BεN (v) ⊂ RN (that is, RN contains a disk centered at v).
3. For each z ∈ Bε(

1
N v), we have ∇H(z) ∈ Tε (that is, ∇H is uniformly liquid on

that disk).

Then, Theorem 3.15 (see also Assumption 3.5) of [1] states that Lemma 18 holds,
with C uniform in v. Let us mention that Theorem 3.15 of [1] does not require RN

to be tileable. If it is not, then HN is a uniformly random height function on RN with
(some) boundary height function hN defined on ∂ RN , andM is the unique free tiling
associated with HN , in which tiles are permitted to extend beyond the boundary of
RN .

Although in Lemma 18 the domain RN does not have to approximate a disk, we
may apply the above result on a subdisk of it containing v in the following way. Since
∇H(v) ∈ Tε, [8, Proposition 4.1] implies that ∇H is continuous in a neighborhood
of v = 1

N v ∈ R. Letting κ = κ(ε) > 0 denote a sufficiently small real number to be
fixed later, there then exists ρ = ρ(ε, κ,R) ∈ (0, ε) such that Bρ(v) ⊂ R ∩ 1

N RN

and

∣∣∇H(z) − ∇H(v)
∣∣ < κ, for each z ∈ Bρ(v). (A.1)

Let R̃N = BρN (v)∩T and R̃N = 1
N R̃N , and condition on the restrictionMN |RN \R̃N

of

the random tilingMN to RN \ R̃N . This induces (random) boundary data h̃N : ∂R̃N →
R defined by setting h̃N (z) = 1

N HN (N z) for each z ∈ ∂R̃N . Let H̃ ∈ Adm(R̃N ; h̃N )

denote the maximizer of E on R̃N with boundary data h̃N . In order to apply Theorem
3.15 of [1] on the domain R̃N with boundary data h̃N , we must verify that ∇H̃ is
likely uniformly liquid around v (for example, ∇H̃(z) ∈ Tε/2 for z ∈ Bρ/4(v) with
high probability).
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To that end, observe for any fixed δ = δ(ε, ω, D) > 0 that the variational principle,
Lemma 15, yields a constant C0 = C0(δ,R, h) > 1 such that for N > C0 we have

P[EN ] > 1 − δ, where EN = EN (δ) =
{

sup
z∈∂R̃N

∣∣̃hN (z) − H(z)
∣∣ < δ

}
.

(A.2)

Next, for sufficiently small κ = κ(ε) > 0, (A.1) and Proposition 2.13 of [1] together
yield a constant C1 = C1(ε) > 1 such that

1E sup
z∈Bρ/4(v)

∣∣∇H̃(z) − ∇H(z)
∣∣ < C11E sup

z∈∂R̃N

∣∣̃hN (z) − H(z)
∣∣ < C1δ. (A.3)

Hence, if δ = δ(ε, ω, D) > 0 and κ = κ(ε) are chosen sufficiently small so that
C1δ < ε

4 and κ < ε
4 , then it follows from (A.1) and (A.3) that ∇H̃(z) ∈ Tε/2 for each

z ∈ Bρ/4(v) (since ∇H(v) ∈ Tε).
In particular, Theorem 3.15 of [1] applies. Denoting (̃s, t̃) = ∇H̃(v), it yields a

constant C2 = C2(ε, ω, D,R, h) > 1 such that for N > C2 we have

1EdTV
(
M|BD(v), μs̃,t̃ |BD(v)

)
<

ω

2
. (A.4)

By (A.3), we have for sufficiently small δ = δ(ε, ω, D) > 0 that

1EdTV(μs̃,t̃ |BD(v), μs,t |BD(v)) <
ω

4
. (A.5)

Thus, by (A.2), (A.4), (A.5), and further imposing that δ < ω
4 , we have for N >

max{C0, C2} that

dTV(M|BD(v), μs,t |BD(v)) ≤ 1EdTV(M|BD(v), μs,t |BD(v)) + P[Ec]
< 1EdTV(M|BD(v), μs̃,t̃ |BD(v)) + dTV(μs̃,t̃ |BD(v), μs,t |BD(v))

+ ω

4
< ω,

which implies the lemma. ��
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