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The oriented swap process is a natural directed random walk on the sym-
metric group that can be interpreted as a multispecies version of the totally
asymmetric simple exclusion process (TASEP) on a finite interval. An open
problem from a 2009 paper of Angel, Holroyd, and Romik asks for the lim-
iting distribution of the absorbing time of the process as the number of par-
ticles goes to infinity. We resolve this question by proving that this random
variable satisfies GOE Tracy—Widom asymptotics. As a central ingredient of
our proof, we reexamine a distributional identity relating the behavior of the
oriented swap process to last passage percolation, conjectured in a recent pa-
per of Bisi, Cunden, Gibbons, and Romik. We use a shift-invariance principle
for multispecies TASEPs, obtained by exploiting recent results of Borodin,
Gorin, and Wheeler for the stochastic colored six-vertex model, to prove a
weakened form of the Bisi et al. conjectural identity, that is nonetheless suf-
ficient for proving the asymptotic result for the absorbing time.

1. Introduction. A sorting network is a shortest path between the identity permutation
12...N and the reverse permutation N ... .21 in the Cayley graph of the symmetric group Sy
associated with the swaps t(i), 1 <i < N — 1, of adjacent letters at positions i and i + 1.
Equivalently, a sorting network can be encoded as a sequence of (g/ ) indices

(s13s25~--9sN)a sl€{192’N_1}a
(2)

such that

T(sy)-7(s2)---7(s,ny) =N...21.
(2)

We are interested in the asymptotic behavior of random sorting networks as N — oco. There
are at least two natural ways to introduce randomness here. One way is to consider a uniformly
random sorting network (out of the finite set of those for fixed N). The rich asymptotic
behavior of that model has been discussed in great detail in [2, 3, 5, 6, 16, 18, 20, 23].
Another natural way to introduce randomness was suggested in [4] under the name “oriented
swap process’”’; it has a natural interpretation as an interacting particle system equivalent to a
multispecies version of the totally asymmetric simple exclusion process (TASEP). We follow
this last way and we now describe it.

In addition to the sequence of swap indices {s;}, we consider a growing sequence of ran-
dom numbers

O<ti<t <---<t,pn,.
(2)

We interpret ¢; as the time when the swap 7 (s;) happens: shortly before the time #; we observe
the permutation 7(s1) - T(s2)---7(s;—1) and we write it as a word o (1), 0 (2),...,0(n); at
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FIG. 1. One possible sorting network or evolution of the particles in the oriented swap process. Here N =4,
and Uy is the vector (14, tg, t5).

time #; we swap adjacent numbers o (s;) and o (s; + 1), which means that t(s;) is appended to
the product on the right. As a result, we get a permutation-valued, continuous-time, process
(01)r=0, which can be interpreted as the evolution of a system of particles with labels (or
colors) 1,..., N interacting on the discrete interval [N] = {1, ..., N}, where o;(k) is the
label of the particle in position & at time ¢. The initial condition oy is the identity permutation
12...N.

The random pair of sequences {s;} (swap positions) and {#;} (swap times) are generated
inductively as follows: let I1x, k =1, ..., N — 1 denote N — 1 independent exponential clocks
(rate 1 Poisson point processes), and let i = 1 and #9p = 0. When the clock Iy is the first
among the clocks for which oy, | (k) < o;,_,(k + 1) to ring at some time ¢ > f; _1, we set f;
equal to ¢, set s; = k, and increase i by 1.

The particle system interpretation of this definition is: whenever one of the Poisson clocks
[Ty rings, check the current labels of the particles at positions k& and k + 1. If the one at
k + 1 has a smaller label, then nothing happens. Otherwise, swap the labels of the particles
at positions k and k + 1. Clearly, after an almost surely finite time we will make all possible
swaps and arrive at the reverse permutation N. .. 21.

The authors of [4] proved many results about the oriented swap process and its asymptotic
behavior as the size N of the system goes to infinity. Among the quantities they considered
were certain random times at which different aspects of the process terminate. Specifically,
define the (N — 1)-dimensional vector Uy = (Un (1), ..., Uny(N — 1)), where for each 1 <
k < N —1, Un(k) is the last time #; at which the swap s; = k happens. We refer to this random
variable as the last swap time associated with positions &, k + 1; see Figure 1.

THEOREM 1.1 ([4]). Let a sequence k =k(N), N =1,2,..., be given such that ¢ <
k/N <1 — ¢ for some fixed ¢ > 0 and all sufficiently large N. Denote yy =1+2/y(1 —y),
and let F> denote the B = 2 Tracy-Widom distribution. Then we have the convergence in
distribution
Un(k)— N
(D) N (k) Yk/N d

N3 (w3 (p (1= ) ~1/6 N—oo

We recall that the distribution F> is the universal scaling limit for the largest eigenvalues
of random complex Hermitian matrices of growing sizes.

We proceed further by considering the kth particle finishing time Zy(k), which is the last
time at which the particle with label £ moved. It can be related to last swap times through

Zy(k)y =max(Uy(k —1),Uy(k)), 1<k<N,

with the convention that Uy (0) = Uy (N) = 0. [4], Theorem 1.6, shows that (1.1) implies
exactly the same limiting behavior for Zy (k).
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Among the times U, (k) and Z, (k), perhaps the most important one is the absorbing time:
OSP _
N7 = ey

Un(k) = max Zy(k) =1y,
1 1<k<N (5)

which is the time at which the very last swap in the oriented swap process occurs and we
reach the reverse permutation N . ..21. Theorem 1.1 implies that TJS,)SP ~2N as N — oo (the
maximum is attained for k ~ N /2, since y > y, takes its maximum value of 2 at y = 1/2).
However, the authors of [4] could not identify the size of the fluctuations of TA9 SP around 2N
or their distributional limit; they stated this as an open problem in [4], Section 8. The problem
is also mentioned as a “five coffee cup” exercise in [22], Exercise 5.22(e), page 331.

The following theorem settles this problem, and is our main result.

THEOREM 1.2. Let F| be the 8 =1 Tracy—Widom distribution. We have

TSP —2N 4

(1.2) 2IBN13 Nooo

F.

We recall that the distribution Fj is the universal scaling limit for the largest eigenvalues
of random real symmetric matrices of growing sizes.

Our proof of Theorem 1.2 belongs to a recent circle of ideas (see [8, 10, 14, 17, 19]) on
the hidden symmetries in models of integrable probability and their universal limits. In this
text we demonstrate how these ideas can be efficiently used to answer asymptotic questions
about complicated stochastic systems.

A starting point for the current work is a distributional identity conjectured recently in
[8], which relates the random vector Uy to a certain random statistic defined in terms of the
last passage percolation model with exponential weights. Specifically one defines a random
vector Vy = (Vy(1), ..., VN (N — 1)) of last passage times in an oriented percolation model
(the definition is given in (3.6) below), which turns out to be related to Uy .

CONJECTURE 1.3 ([8]). We have the equality in distribution of random vectors

(1.3) UvZVvy (N>2).

We remark that the interplay between particle systems and passage times in percolation is

well known; in particular, the equality in distribution of one-dimensional marginals Uy (k) 4
Vy (k) for any 1 <k < N — 1 follows easily from standard facts, and it was precisely that
connection that enabled the authors of [4] to deduce Theorem 1.1 through an application of
asymptotic results due to Johansson [21] on the limiting behavior of last passage percolation
times. However, Conjecture 1.3 goes much further than this well-understood connection, and
does not seem to follow in a straightforward way from any known bijections. In addition to
formulating the conjecture, the authors of [8] gave a computer-assisted verification of the
distributional identity (1.3) for the initial values 2 < N < 6, which provides good evidence of
its validity for general values of N.

Simultaneously, [8] observed that Conjecture 1.3 can be combined with known asymptotic
results to yield (1.2). We do not prove Conjecture 1.3 in this text, as the generality of our
present method seems to go in a slightly different direction.

Instead, we consider the maximal coordinate of the vector V y:

LPP
Ty = 1521531\7;_1 Vi (k).
Below we represent TIIGPP in terms of a multicolored version of the TASEP, use the ideas of
[4], which relate the TASEP dynamics on finite and infinite lattices, and add to them a recently
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discovered shift-invariance phenomenon [14] for the colored six-vertex model (which can
be degenerated into multispecies/colored TASEP and thereby related to the oriented swap
process). The ultimate result is the following equality in distribution of random variables for
any N > 2:

(1.4) TSP L TP,

The identity (1.4), which can be thought of as a weakened version of Conjecture 1.3, allows
us to use the known asymptotic results for Tl{;PP to deduce Theorem 1.2.

2. Shift invariance. An important technical ingredient of our proof is the shift-
invariance for the colored (or multispecies) TASEP, which we now describe.

We deal with the colored TASEP on Z. By definition, this is a time-dependent assignment
¢, of integer labels (or colors) to points of Z. At time 0 we have (i) =i, i € Z. Further,
each edge (k, k 4 1) has an independent exponential clock (rate 1 Poisson process) attached
to it. Whenever the clock rings at time ¢, we check whether ¢;_(k + 1) < &_ (k). If so, then
nothing happens. Otherwise, we swap the colors at k and k+ 1 by setting ;. (k+ 1) := & (k)
and ¢4 (k) := &—(k + 1). Then the clock is restarted and we proceed further. We refer to
[4], Section 3, for the description of how the process ¢;, ¢ > 0 can be constructed using the
graphical representation.

Let us remark that if we fix some k and identify the colors < k calling them “particles” and
identify the colors > k calling them “holes” by setting v,k (x) = 1¢,(x)<k, then vtk becomes the
usual TASEP with particles jumping to the right at rate 1. The initial configuration vlg x) =
1<k is then known as the step initial condition. In this way, the colored TASEP becomes a
coupling of a countable system of ordinary TASEPs, each one started from a (shifted) step
initial condition.

We study ¢; through its height functions, which are a collection of random variables pa-
rameterized by A, B € Z. We define

(2.1) heass>p(t):=#{x€Z:x>Band {(x) <A}, A,BeL.

In words, h<4—,>p counts the number of colors < A at positions > B at time ¢. Note that
h<a—>>p can take arbitrary large (but almost surely finite) values.

Let us also introduce another set of height functions for the convenience of matching the
notation of [14]:

1
TASEP(t y):=#{x €Z:x <yand {(x) > i}, tzO,yeZ—i—E.

LEMMA 2.1. We have an almost sure identity

(2.2) heassp(t) = Hindep(t, B —1/2) + (A — B+ 1).

PROOF. At time O with the notation ()4 = max(u, 0), we have
heasz30)=(A—B+1y,  Hildep©, B—1/2)=(B—-A—-1).

Hence, (2.2) holds at t = 0. Next, note that both <4, > p(¢) and H%Q;EIP t,B—1/2)+(A—
B + 1) are monotone functions of ¢ > 0. They both increase by 1 whenever at time ¢ we have

a swap, interchanging a color < A at B — 1 with a color > (A + 1) at B. We conclude that
(2.2) holds at all times. [

We can now state the shift-invariance result for the colored TASEP.
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THEOREM 2.2. Choose an index ¢ > 1, color cutoff levels ki ..., k, € Z, a time t > 0
and a collection of observation points y1, ..., yn € Z + % Set

P LA SR DA
ok +1, =y, oy +1, =0
Assume that
ki <ky <--- <k, Ky <khy<.-..<k
VZV2Z =y VZm o=,

Then the distribution of the vector of height functions

>k >k >k,

(2.3) (’HTAISEP(I, 1), ,HTAZSEP(L 2)s s ,H'I"ASEP(I’ yn))

coincides with the distribution of a similar vector with shifted th point and cutoff
>k} >k’ >k},

(2.4) (Hrasep(t: ¥1)s Hrasep(ts ¥2). - - Hynspp(t, yn))-

PROOF. By shifting the coordinate system, if necessary, we can assume without loss of
generality that k1 > 0. Then a version of Theorem 2.2 for the colored stochastic six-vertex
model was proven in [14], Theorem 1.2 (see also [19], Theorem 1.5). The latter model is
an assignment of configurations (six types of vertices) to the points of the positive quad-
rant Z=o x Zxo by a sequential stochastic rule, which can be thought of as a multiparameter
discrete time asymmetric simple exclusion process. There exists a limit transition from the
stochastic vertex model to TASEP, which was noticed for the colorless model in [11], Sec-
tion 2.2, and proved in detail and greater generality in [1], see also [15], Section 12.3, for the
colored case.

Let us explain how the limit transition works in the situation of our interest. In the notation
of [14], Figure 4, we assume that the hopping probabilities b; and b, are homogeneous (do
not depend on the lattice point) and set

b1 =¢, by =0.

In this situation the colored stochastic six-vertex model on the (x, y) plane (see [14], Figure 3)
turns into a discrete version of the colored TASEP, in which t = x + y takes the role of time
and z = y — x is the space coordinate. We now recast the stochastic update rule of [14],
Section 1.2, in (7, z) coordinate system. At fixed time t the configuration of the model is
a configuration of particles of the colors 1,2,3,... on the lattice Z (there is one particle
for each color, except for color 0, which we treat as an absence of any particles). At time 0
the particle of color i is at position i for each i > 0 and all other positions are occupied by
particles of color 0. The transition from time t to time 7 4+ 1 depends on the oddity of .
If 7 is even then for each even z < t we make the following procedure: If both z and z + 1
are occupied with particles of color 0, then we do nothing. Otherwise, suppose that there is
a particle of color i at z and a particle of color j at z + 1. If i > j, then we do nothing. If
i < j, then we swap these two particles with probability ¢ and do nothing with probability
1 — ¢ (all the choices are independent over z). For odd times T we do the same procedure for
all odd positions z < t.

The above description makes it immediate that in the limit as ¢ — 0 and T — o0 in such
a way that 2et — t we converge to the colored TASEP (in which we glued all negative
colors into color 0, which is not important for the heights function (2.3) and (2.4), since we
assumed k; > 0). In particular, returning to the notation of [14], the height function of the
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colored stochastic six-vertex model, which we denote by 7—[25 (-, -), converges in distribution
to that of a TASEP height function:

2.5) Hes (e ), [7'1] + 3) =" Hihgpp(t, ).

This is to be understood in the sense that the convergence in (2.5) holds for the distributions
of finite (arbitrary) collections of values of (k, ¢, y). Given this relation, the statement of
Theorem 2.2 is a direct consequence of [14], Theorem 1.2. [J

REMARK 2.3. At first, it might seem that [14], Theorem 1.2, ought to imply a more
general statement than the one we formulated: indeed, that theorem allowed shifts in the
situation when the observation points (x;, y;) are not restricted to a single line—in the case
of the TASEP, an analogous statement would mean accessing the heights at different values
of the time parameter ¢. However, [14], Theorem 1.2, required certain ordering inequalities
for the points (x;, y;), and the only way for these inequalities to be satisfied in the limit
(2.5) is by making all times equal, as in (2.3)—(2.4). That is one reason why at this point
we are unable to give a full proof of Conjecture 1.3—we will only prove in the next section
its particular case corresponding to all equal times in TASEP. At the same time, since the
results of [8] support the full validity of the conjecture in its stronger form, one can wonder
if Theorem 2.2 might also have as yet unknown extensions involving unequal times.

We end this section by restating a particular case of Theorem 2.2 in terms of the height
functions h<4_,>p(t) of (2.1).

COROLLARY 2.4. Fix N € Z>1. We have a distributional identity of (N — 1)-dimensional
vectors
(h<issN(@), h<osn—1(t), ..., h<n—_152(1))
(2.6) 4
=(h<n—1>32N-2(1), h<n_1552N—4(1), ..., h<n—1-552(1)).

PROOF. Given the identity (2.2), this follows by repeated applications of Theorem 2.2
with n = N — 1. Indeed, the (N — 1)st coordinates of the vectors in (2.6) are the same.
The (N — 2)nd coordinate is h<y_2—>3(¢) for the left-hand side and h<y_1-,>4(¢) for the
right-hand side. Hence, we can shift one into another by Theorem 2.2 with t =n — 1 =
N — 2. Next, we apply Theorem 2.2 twice for t =n —2 = N — 3, shifting 7 <y_3-.>4(¢) into
h<n—_1->6(t). Continuing in this way for smaller values of ¢, we reach (2.6). [

3. The oriented swap process. In this section we prove Theorem 1.2.

3.1. Coupling of TASEPs on different spaces. We need to gather some facts from [4]
about the connection between the oriented swap process and the colored TASEP on Z.

We start by defining the colored TASEP on the finite set [N] = {1, 2, ..., N}. It is defined
in exactly the same way as the colored TASEP on Z, but all the particles stay in [N]: the
swaps (0, 1) and (N, N + 1) are prohibited. Clearly, this is just a particular representation of
the oriented swap process from the Introduction. In particular, the system stops at the random
absorbing time t(N) = Tlf,)SP.

Following [4],2Secti0n 3, we introduce a coupling of the colored TASEP on Z (which
we continue to denote by ¢; as in Section 2) with its counterpart on [N], which we will
denote by QN (x). The coupling proceeds as follows: in order to construct the process on Z
we need clocks (Poisson processes) attached to each edge (k, kK + 1)—whenever the clock
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rings, particles at k and k + 1 attempt to swap (and succeed only if the particle at k 4+ 1 had a

larger label). For the process on [ N] we are going to use exactly the same N — 1 clocks as the

N — 1 clocks of the process on Z corresponding to the edges (1,2), (2,3),..., (N — 1, N).
Now consider, for fixed k € Z,

koo )b G(x) <k,
v’(x)_{o, £ (x) > k.

Then vf is a realization of the usual TASEP on 7Z (with particles given by 1’s and jumping
to the right) started from a step initial condition: at time O the particles are at (..., k — 2,k —
1,k).

Similarly, we can define

v 1 gV <k,
K (x)_{o, (N >k,

and observe that vf ‘N is a realization of a TASEP on [N], with no particles entering from the
left and particles prohibited from exiting on the right, that is, swaps along both edges (0, 1)
and (N, N + 1) are blocked. Assuming 1 <k < N, in vg’N the particles occupy positions
1,2,...,k.

Note that all of the processes v/ for different values of k almost surely take values in the
subset € of the space of colorless TASEP configurations {0, 1}Z consisting of configurations
with only a finite number of 1°s to the right of the origin. We make use of the following result.

PROPOSITION 3.1 ([4], Lemma 3.3). Define two combinatorial operators acting on 2:
the “cutoff” operator Ry keeps only the rightmost k particles in a (potentially infinite) system
of particles. The “push-back” operator B, pushes all the particles into the ray (—oo, n],
preserving their order (and moving all particles by the minimal possible distances to the
left). Then we have an almost sure identity

3.1 viN = By Rk,

holding simultaneously forall 1 <k < N,and all t.

3.2. The colored TASEP on Zy and its height functions. Define
hepassp(t):=#{x€Z:x>Band ) (x) <A}, 1<A,B<N,

and note that these are the height functions associated with the colored TASEP on Zy .

PROPOSITION 3.2. Under the coupling of colored TASEPs on different subsets of 7 of

Section 3.1, we have an almost sure identity holding for all ty, ..., ty—1 > 0:
(flgl_@N(tl), haysn_1(t2), ..., }AlsN—l—>22(tN—l))
(3.2) = (min(h<i>n (1), 1), min(h<o—>n-1(12),2), ...,

min(h<y_1->2(tn—1), N — 1)).

PROOF. For an ordinary colorless TASEP v,k (or vtk N ), let H(x; v,k) (resp. H (x; vf ’N))

denote the number of the particles strictly to the right of x; this is a deterministic function of
k k,N
v; (resp. v; ). Then we have

(3.3) heimsnii—i@)=H(N —i;vY), i=1,2,....N—1.
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Simultaneously (cf. [4], equations (4) and (5)),

min(h<;>n41-i (), i) = H(N —i, Riv))
3.4) .
=H(N —i,ByRiv;), i=1,2,....N—1.

For the first equality in the last formula, notice that since we deal with min(-,7), we can
ignore all the particles beyond the first i; for the second equality, notice that for i-particle
configurations, By does not change the number of particles to the right of N — i, since we
have i free spots to the right from N —i;theseare N+1—-i, N +2 —i,..., N.

Applying (3.3), (3.4), and (3.1) to each coordinate of the vector (3.2), we get the desired
identity. [

Let T,\C,)SP be the absorbing time, that is, the time when the colored TASEP on [N] stops.
The definition, identity (3.2), and Corollary 2.4 imply that

Prob(Tls,)SP <t)
=Prob(h<i=n(t) =1, hayon_1(1) =2,..., han_1-52() =N — 1)
(3.5) =Prob(h<i>n(t) > 1, haassn_1(1) =2, ..., hey_1552(t) > N — 1)
=Prob(h<ny—1->>2nv—2(t) = 1, h<y_1>5on—4(t) =2, ...,
han—15>2(t) > N — 1)-

3.3. Proof of Theorem 1.2. Using the coupling from Section 3.1, the event
AN = (hey_1mson—2() = 1 hay 1 5on-4(t) =2, ..., h<y_1552(1) = N — 1)

appearing on the right-hand side of (3.5) has the following interpretation: given a colorless
TASEP started from the step initial condition with particles occupying the positions N —
I,N—-2,N—3,...attime 0, Afv_l is the event that at time ¢ the first particle is at or to the
right of position 2N — 2, the second particle is at or to the right of position 2N — 4, ..., the
(N — 1)th particle is at or to the right of position 2.

We can now reinterpret this event in terms of last passage percolation (LPP) with expo-
nential weights, using the well-known correspondence between the TASEP and LPP with
such weights. We summarize this relationship between the two processes; for a more detailed
explanation, see, for example, the discussion around Figure 4 in [13], or [22], Section 4.7.
In short, we treat the configuration of the TASEP as a broken line interface with particles
representing segments of slope —1 and holes (i.e., the absence of a particle at some location)
representing segments of slope 1, as in Figure 2. Then the time evolution of the TASEP be-
comes the growth of the line interface, and the growth follows the rule that each inner corner

FIG. 2. Left panel: a step initial condition in the TASEP corresponds to the wedge-type broken line interface.
The shape of the interface after time t can be computed using last passage times: the time when a box (i, j) is
added to the interface is L(i, j). In particular, L(2,2) = max(w] + w2 + w2, w1 + wo| + wyp). Right panel:
by flipping the picture we can get the TASEP with a flat initial condition.
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is filled with a unit square after an exponential waiting time (independent of all other waiting
times). These waiting times, in turn, form the array of weights for the last passage percolation
model.

Making the idea more precise and applying it to our particular situation, we take a quadrant
filled with i.i.d. exponential mean 1 random variables w;;, i, j = 1,2,... and draw it in
Russian notation, as on the left panel of Figure 2. For i, j > 1, we define the last passage time
L(i, j) associated with the square with coordinates (i, j) by

L@, j)= Z Wkl

(1,H= b[l]—)b[2]—> -—b[m]=(,j )k 1

where m =i + j — 1 and the maximum is taken over all monotone lattice paths joining (1, 1)
with (7, j) (i.e., paths with b[k + 1] — b[k] € {(0, 1), (1,0)} for all k). The last passage time
L(i, j) represents the time when the unit square with coordinates (i, j) was filled; in the
TASEP picture (with our particular step initial condition offset by N — 1 units from the usual
one), this corresponds to the time it took the particle that started out in position N — i to
arrive at position N —i + j.

Now, the vector Vy appearing in (1.3) was defined in [8] in terms of the last passage
percolation times as

(3.6) Vy=(L(,N—=1),LQ2,N—2),....,L(N —1,1)).

Moreover, with the correspondence described above, we now see that the event Afv ~!is the
same as the event

(LA, N—-1)<t,L2,N—-2)<t,...,L(N—1,1) <1).

Hence, we conclude that (3.5) implies the equality in law

(3.7) OSPimax(L(l,N—1),L(2,N—2),...,L(N—1,1))=1}Cna]zlc Vi (k) = TP,
5<

proving (1.4).
Finally, the asymptotics of T,{;PP were established in [9], Theorem 1.1, (one needs to re-
place 2N + 1 by N and take y = 1/2 there), which, in view of (1.4), gives precisely (1.2).

REMARK 3.3. An alternative way to derive the asymptotics of (3.7) is by flipping the
picture vertically and computing instead the maximum

max(L((2, N) - (N,N)),L(3,N —1) = (N, N)),..., L((N,2) = (N, N))),

where L((i, j) — (i’, j’)) now denotes a more general last passage percolation time

LG, )= (. )") = Z Wh(k]»

(i,j)= b[l]—)b[2]—> -—b[m]=(",j /)k 1

with 1 <i <i’, 1 < j <j’, and the maximum being taken over all monotone lattice paths
joining (i, j) to (i, j'). Using the correspondence between TASEP and last passage percola-
tion again, one can then identify the latter maximum with the first time the height at O for the
TASEP started from a so-called flat initial condition reaches the value N; see the right panel
of Figure 2. From this perspective, the asymptotic computation leading to the Tracy—Widom
distribution F; goes back to [24], [12]. In a wider context, the first appearance of the F}
distribution in a closely related framework dates to [7].
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