GAUSSIAN FLUCTUATIONS FOR PRODUCTS OF RANDOM MATRICES

VADIM GORIN AND YI SUN

ABSTRACT. We study global fluctuations for singular values of M-fold products of several right-unitarily
invariant N X N random matrix ensembles. As N — oo, we show the fluctuations of their height functions
converge to an explicit Gaussian field, which is log-correlated for M fixed and has a white noise component
for M — oo jointly with N. Our technique centers on the study of the multivariate Bessel generating
functions of these spectral measures, for which we prove a central limit theorem for global fluctuations via
certain conditions on the generating functions. We apply our approach to a number of ensembles, including
square roots of Wishart, Jacobi, and unitarily invariant positive definite matrices with fixed spectrum, using
a detailed asymptotic analysis of multivariate Bessel functions to verify the necessary conditions.
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1. INTRODUCTION

1.1. Overview of the results. Let Yy,...,Y¥ beiid. N x N random matrices which are right-unitarily
invariant, and let Yy := Y]\l, S ij‘,/[ be their product. The (squared) singular values u{v > > ,u% >0of Yy
occur classically in the study of ergodic theory of non-commutative random walks, and the corresponding
Lyapunov exponents have a limit as M — oo by Oseledec’s multiplicative ergodic theorem (see [Ose68,
Rag79]). These Lyapunov exponents for various ensembles of matrices have been the object of extensive
study in the dynamical systems literature, beginning with the pioneering result of Furstenberg-Kesten in
[FK60] for matrices with positive entries. In an applied context, singular values for similar models have
appeared in the study of disordered systems in statistical physics as described in [CPV93], in the study of
polymers as in [CMR17], and in the study of dynamical isometry for deep neural networks as the Jacobians
of randomly initialized networks (see [SMG14, PSG17, PSG18, CPS18, XBSD*18, TWJ*18, LQ18]).

The goal of this work is to study the global fluctuations of the squared singular values . The distribution
of u¥ depends only on the distribution of X% := (Y})*Y}, and we study it for a variety of different
distributions for X%, including Wishart matrices, Jacobi matrices, and unitarily invariant positive definite
matrices with fixed spectrum. In each of these cases, we study the normalized log-spectrum

1

N ._
AV =

log 1"

via the height function

Hu(t) = #{N <t}
We study limit shapes and fluctuations for the height function in two limit regimes, one where N — oo
with M fixed, and one where N, M — oo simultaneously. Note that in the main text we will use a slightly
different notation for the log-spectrum and height function for M fixed which removes the normalization by
M, but we keep this uniform notation in the introduction for clarity of exposition.

When M is fixed, results from free probability of Voiculescu and Nica-Speicher in [Voi87, NS97] imply
that the empirical measure dAY of A converges to a deterministic measure dA>, which implies that H n(t)
concentrates around a deterministic limit shape, a result we refer to as a law of large numbers. In Theorems
4.8, 4.12, and 4.13 and Corollary 4.9, we show that the fluctuations of the height function around its mean
converge to explicit Gaussian fields. In Corollary 4.11, we show that these fields are log-correlated under a
technical condition on the smoothness of the limit shape. Namely, this means that for polynomials f, g, we
have

lim Cov (/(HN(t) —E[HN(t)])f(t)dt,/(HN(s) — IE[’HN(S)])g(s)ds> = //K(Ls)f(t)g(s)dtds

N—o0

for an explicit covariance kernel K (¢, s) which satisfies
1
K(t,s) = ——=log|t —s| + O(1)
272

for |t — s| — 0.

When M, N — oo simultaneously, the AN are the Lyapunov exponents studied by Newman and Isopi-
Newman in [New86a, New86b, IN92] and mentioned by Deift in [Deil7]. Again, their empirical measure
converges to the deterministic measure

672

-1 _ _(0)dz
1, _. [—log Sz (—1),— log S;(0)] 4=,
Sa(55 (e7%)) " :

where S is the limiting S-transform of the spectral measure of (Y3)*Y; we give a more detailed treatment
in Sections 4.4 and 4.5. This yields concentration of the height function around a deterministic limit shape.
In Theorems 4.14, 4.16, and 4.17, we show that the rescaled fluctuations of the height function around its
mean

MV%HMQ—EmNmD
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again converge to explicit Gaussian fields. However, in these cases, we find that the field has a white noise
component, meaning that for |t — s| — 0 the covariance satisfies

K(t,s) =6(t —s) + O(1),

where ¢ denotes the Dirac delta function. In particular, as M — oo, we see a transition from a log-correlated
Gaussian field to a Gaussian field with a white noise component. For this result, the relative growth rates of
N and M are not important; in particular, we observe the same white noise component both for M growing
to infinity much faster than N and much slower than N. This behavior is very different from that seen in
recent work of Akemann-Burda-Kieburg and Liu-Wang-Wang in [ABK18, LWW18], where the local limit
for the singular values of the products of Ginibre matrices depends on the ratio M/N.

1.2. Comparison with fluctuations for sums of random matrices. We may naturally compare our
results to analogous results for sums of random matrices. For ¢ = 1,..., M, let Ay = U;AU; be N x N
matrices with U; i.i.d. Haar unitary and A deterministic diagonal with spectrum p. Define

X3 = An+- + AY

and the height function of the spectrum AN of X319, by Hy ar(t) := #{ANM <} If M is finite and

fixed and the empirical measures of u’¥ converge to a measure dy, results from free probability show that
Hn, wm (t) converges as N — oo to a deterministic limit shape. It is further known that the random variables

{Hnm(t) — E[HN m ()] Feer

converge to an explicit log-correlated Gaussian field given by Collins—Mingo—Sniady—SpeiCher in [CMSS07]
and Pastur-Vasilchuk in [PVO07].
On the other hand, if we take M — oo, then we have the convergence

1 a
MXNdi/[ - % (Zuz )

of the average 77X j{,d 4, of the matrices A% to a deterministic matrix. In contrast to the multiplicative case,
this averaging retalns only the first moment of the empirical measure of the original spectrum. Furthermore,
by the ordinary central limit theorem, as M — oo with IV fixed, the random matrix

—— (X3, — Bx)

converges in distribution to a Gaussian random matrix which we verify in Appendix A to have distribution
N N

1 1 2

N Z(MN)? - m(ZMﬁO
i=1 i=1

where GUE y 1= 4 x Tr(X) - Idy for X 4 GUEy being an N x N matrix drawn from the Gaussian
Unitary Ensemble. The results of Johansson in [Joh98] on the GUE then suggest that as N — oo slowly
compared with M, fluctuations of the corresponding height function remain a log-correlated Gaussian field.

One may ask why white noise shows up for M — oo in the multiplicative setting but not in the additive
setting. One intuitive explanation comes from comparing the decompositions

X3 = EIXR] + (X34, — EX34])

N

S S - GUE N y—0,
(N—1)(N +1) =0

log Xmult _ E[log Xmult] (10g Xmult . E[log Xmult])

in the additive and multiplicative settings, where XUt := (Yy -+ YA/ )*(Yy - Y3©).
In the additive setting, note that E[X3%},] is a constant multiple of the identity, and therefore the [¢tN |
eigenvalue of X3f add admits the approximate representation

)\T?J%J ~ MCl + VMOQ "YI_tNJ

for constants C; and Cs, where ~; is the i*" eigenvalue of LGUE N, Tr=0- In particular, all fluctuations of

the height function come from fluctuations of the height functlon for Xadd, IE[X}‘{;%%].
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In contrast, in the multiplicative setting, E[log XI‘{}‘R/}] has non-trivial spectrum, and the ordinary central

limit theorem does not directly apply to log X]r{,‘ujlv} — Ellog X}{;“Al/t[] Together, these two effects imply the
analysis of the additive case does not apply in the multiplicative setting. It would be interesting to find other
geometric qualitative arguments explaining the appearance of the white noise component in the products
without relying on the exact formulas that we use. We will not pursue this direction here, only mentioning
that the viewpoint of Reddy in [Red16] for fixed N seems relevant for such a potential development.
Another heuristic explanation for the appearance of the white noise and for the difference between additive
and multiplicative cases can be obtained by comparing our model to Dyson Brownian Motion (DBM) started
from a deterministic initial condition®. In this approach, we should treat the number of terms or factors
as inverse time, ¢ = M~!. For addition, such an identification is possible because of the invariance of the

Brownian motion with respect to the time inversion By 4 t~'B,, t > 0. For multiplication, this is more
speculative. However, for the special case when the factors are drawn from the square Ginibre ensemble (i.e.
with i.i.d. Gaussian entries), one can compare the contour integral formulas for the correlation kernel for
products given by Akemann-Kieburg-Wei and Kuijlaars-Zhang in [AKW13, KZ14] with the formulas given
by Brézin-Hikami in [BH96, BHI7] for the 8 = 2 Dyson Brownian Motion started from deterministic initial
condition and notice their striking similarity upon making the identification t = M ~!. In addition, in this
case Akemann-Burda-Kieburg found in [ABK18] that when N, M — oo with N/M limiting to a value in
(0, 00), the local statistics for products of square Ginibre matrices coincide with those of Dyson Brownian
motion started from an evenly spaced initial condition as studied by Johansson in [Joh04].

For general products of matrices, this suggests that we should start the DBM from the initial condition
given by the Lyapunov exponents. The transition between white noise (small ¢, corresponding to M — o0)
and log-correlated (finite ¢, corresponding to finite M) statistics was studied in detail for 5 = 2 DBM by
Duits—Johansson in [DJ18], for general § DBM by Huang-Landon in [HL16], and for a finite-temperature
version of the GUE ensemble by Johansson-Lambert in [JL18]. In contrast, for the sums, the initial condition
for the DBM is a diagonal matrix with all equal eigenvalues; hence, the global fluctuations are the same as
those of the GUE, and we see log-correlated structure for the local statistics at all positive times. It would
be extremely interesting to find a conceptual explanation for this analogy between products of matrices and
Dyson Brownian Motion.

1.3. Central limit theorems for multivariate Bessel generating functions. Our technique is based
on the study of multivariate Bessel generating functions for log-spectral measures, which are continuous
versions of the Schur generating function defined and studied by Bufetov-Gorin in [BG15b, BG18a, BG18b].

Recall that for sets of variables a = (a1,...,an) and b = (by,...,by), the multivariate Bessel function is
defined by
det(e®i%)N._,
B(a,b) == A(p) ————2I=—
(a’ ) (p) A(G)A(b) I
where p = (N —1,...,0) and A(a) := [[,<,.;<ny(a; — a;) denotes the Vandermonde determinant. For an
N-tuple xy = (xn,1 > -+ > Xn,N), the multivariate Bessel generating function of a measure duy(x) on

N-tuples z = (x1 > --- > x ) with respect to yy is defined by

b= [ Frehdn(a).

We say that the measure duy is x-smooth if the defining integral of ¢, n(s) converges absolutely and
uniformly on a neighborhood of [xn n,x1,n]". For a sequence of N-tuples yn € {z € RN |21 > -+ > oy}

for which % Ziil dyn/N — dx for a measure dy, we define a family of CLT-appropriate measures for xn
by the following condition, which governs the behavior of their multivariate Bessel generating functions near
s = xn. For asubset I C {1,..., N}, define

i,N(S) = ¢X1N(s)|sj:XN,j1j¢I’

where we note that ¢§<7N(s) is a function of (s;);cs alone. For a function f(s) on C and some r € CV, we

will adopt the notation that 0, f(r) = =2 f(s)

We thank Maurice Duits for communicating this point of view to us.
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Definition 2.3. We say that the measures duy are LLN-appropriate for yuy if they are yn-smooth and
there exist a compact set V,, C R and a holomorphic function ¥ on an open complex neighborhood U of V,
such that xn,/N € V, for all N and for each fixed integer k£ > 0, uniformly in I with |I| =k, ¢ € I, and
rI e Ul we have
1
Jim |0 flog 6]y (rN)] — ¥(r:)| = 0.
Definition 2.4. We say that measures duy are CLT-appropriate for xy if they are LLN-appropriate for
X~ with respect to some function ¥ and sets V,, C R with neighborhood U and there exists a holomorphic
function A on U? such that for each fixed integer k > 0, uniformly in I with |I| = k, r! € U!I, and distinct
i,7 € I, we have
NliinOO |8,.,i8,.j [log ¢)I<7N(7"N)] — A(ry, rj)| =0.

Our first technical tools are Theorems 2.5 and 2.6 giving a law of large numbers and central limit theorem
for the moments py := [ xFdu of CLT-appropriate measures. Define the Cauchy transform of dy by

=(u) ::/ L (@),

uUu—2x

Theorem 2.5 (Law of large numbers). If the measures duy are LLN-appropriate for yy, then we have the
following convergence in probability

k+1 dy
2mi’

lim Cpe(e) = Jim ()] = pi = b (S(w) + ¥(w)

where the u-contour encloses V,, and lies within U. In addition, the random measures % Zfil 0z, with o

distributed according to duy converge in probability to a deterministic compactly supported measure du
with [z*dpu(z) = py.

Theorem 2.6. If the measures duy are CLT-appropriate for xn, then the collection of random variables

{pr(z) — Elpr(2)]}ren

converges in the sense of moments to the Gaussian vector with zero mean and covariance

k

Jim Cov(pa(a).m(a) = oo = b b (2 + ¥w)) (5w) + v(w))

(s awn)

(u—w) 2mi 2mi’
where the v and w-contours enclose V,, and lie within U, and the u-contour is contained inside the w-contour.

Theorems 2.5 and 2.6 are parallel to results of [BG18a] for Schur generating functions. However, their
proofs are significantly different. In [BG18a], the Schur functions are normalized by their evaluation at
xv = (1,...,1), while we allow general N-tuples xy; in particular, for matrix products, we will choose
xnN = p. Due to this feature, adapting the proofs requires several new ideas. In particular, our analysis
hinges on the asymptotics of derivatives of log ¢, n(s) in at most two variables s;, s; evaluated at the point
s = xn- In our setting, such derivatives acquire a dependence on the choice of indices i, j from the fact that
XnN,; may be non-constant, which did not exist in the setting of [BG18a]. Handling this in the asymptotics
gives rise to the integrals along contours surrounding V,, in Theorem 2.6.

We derive a similar statement in Theorem 2.15 for the case where the form of the multivariate Bessel
function changes with N. Let M, N — oo simultaneously, and suppose there exists a sequence of measures
dXy with multivariate Bessel generating function ¢, ~N(s)M. Let d\x be the pushfoward of d\y under the
map \ — ﬁ)\’ . We obtain a similar law of large numbers and central limit theorem for the moments of
dAn, though we require a different scaling.

Theorem 2.14. If duy is LLN-appropriate for xn, then if x is distributed according to dAy, in probability

we have
1 1 d
lim —pi(a) = lim ~E[p(2)] = pj == yﬁa(u)\y(u)ki

N—o0 N—o0 27 ’
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where the u-contour encloses V, and lies within U. In addition, the random measures % Zfil 0z, with x
distributed according to dAy converge in probability to a deterministic compactly supported measure dA
with [z*d\(z) = p}.

Theorem 2.15. If the measures duy are CLT-appropriate for x y, then if = is distributed according to d\y,
the collection of random variables

{M"?(pi(z) — E[pr(2)]) bren

converges in the sense of moments to the Gaussian vector with zero mean and covariance

lim Cov(Ml/ka(x), Ml/QPl(@)

N —oco
du dw

du
27l 27

=kl yﬁ §£ Z(w)ZE(w) W (u) 1 (w) A (u, w) ki ;ﬁ E(u) U (u) 20 (u) 5

where the u and w-contours enclose V,, and lies within U, and the u-contour is contained inside the w-contour.

1.4. Asymptotics of multivariate Bessel generating functions for matrix products. To apply The-
orems 2.6 and 2.15 to products of random matrices, we choose xy = p = (N —1,...,0) as the N-tuples
for our multivariate Bessel generating functions. For a positive definite matrix X, denote by ¢x(s) the
multivariate Bessel generating function of its log-spectral measure for the N-tuple p. Here, it is the log-
spectral measure instead of the spectral measure itself which will behave nicely with respect to multivariate
Bessel generating functions; moreover, considering the log-spectral measure is necessary in our later study
of Lyapunov exponents.

We then use the key property shown in Lemma 4.2 that if X; = Y*Y7 and Xy = Y'Y are unitarily
invariant random matrices, then the multivariate Bessel generating function for X5 = (Y1Y2)*(Y1Y2) is given
by

Px,(5) = Ox,(s)Px, ()
We conclude that the multivariate Bessel generating function of the log-spectral measure for Xy :=
(Y- YO *(YY - VM) is given by
on(s) = x(s)™,
where 1 x (s) is the generating function of the log-spectral measure of X} := (Yx)*Yy.

Our second key step is an asymptotic analysis in Theorems 3.9 and 3.4 of the ratio gg;i; near s = p, which
allow us to check in Theorem 4.5 that the measures we study are CLT-appropriate for p. This analysis hinges
on the following new integral representation of this ratio at s = pqp = (a, N —1,... ,3, ...,0) motivated by

the main integral formula in [GP15], where b means that b is omitted from the expression.
Theorem 3.2. For any a € C and b € {N —1,...,0}, we have that

Blass N) _ _yyv-p1 DV =B)0(b+ DI (a — N + 1)(a—b)§l§ ﬁ?g dw  zfw ﬁ w— et
{ {

B(p,\) (=1) I'(a+1) iy 2mi Jio oy 271 2w T2 — eri’

where the z-contour encloses the poles at e and avoids the negative real axis and the w-contour encloses
both 0 and the z-contour.

In the previous works [GP15, Cuel8a, Cuel8b, Cuel8¢] of Gorin-Panova and Cuenca, representations of
normalized symmetric polynomials as single contour integrals were used for the asymptotic analysis. We were
not able to find such a representation for the normalized version of the multivariate Bessel functions that we
need in this text. Nevertheless, it turns out that we can increase the dimension of the integration cycle and
instead use a double contour integral, which remains well-suited for asymptotic analysis. We also remark
that our double contour integral in Theorem 3.2 has certain similarities with Okounkov’s representation of
the correlation kernel for the Schur measure in [Oko01, Theorem 2].

1.5. Multivariate Bessel generating functions and the Cholesky decomposition. When applied to
the log-spectral measure of a positive definite Hermitian unitarily invariant random matrix X, the multi-
variate Bessel generating function for p has an interpretation in terms of the Cholesky decomposition of X.
Recall that the Cholesky decomposition of a positive definite Hermitian matrix X is a factorization X = R*R
of X into the product of an upper triangular matrix R and its conjugate transpose. In Proposition B.3 we
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relate the multivariate Bessel generating function ¢x(s) for the log-spectral measure of X to the Mellin
transform of the diagonal elements of R via

(1.1) ¢x(s) =E

N
H Rigjk_pk)] .
k=1

This is a translation of [KK16b, Lemma 5.3] of Kieburg-Kosters to our language, and we view it as an
analogue of the fact that the distribution of any unitarily-invariant random matrix X is determined by the
joint distribution of the diagonal entries (Xgg)1<k<n which was recently applied by Matsumoto-Novak in
[MN18] to the study of sums of random matrices, among other things, and which is implicit in the works
[OV96, Gorl4] of Olshanski-Vershik and Gorin.

We may apply this connection to give an intuitive explanation for the multiplicative property of multivari-
ate Bessel generating functions over products of matrices. If X; = Y*Y; and Xy = Y5'Y5 are independent
unitarily invariant random matrices with Cholesky decompositions X; = (R')*R! and X, = (R?)*R?, then
for X3 = (Y1Y2)*Y1Ys with Cholesky decomposition X3 = (R3)*R3, we give in Proposition B.2 a direct
geometric argument that

Ry, £ Riy. - By,
Combined with (1.1), this gives another proof that ¢x,(s) = ¢x, (s)Px,(s).

We also apply this result to give a geometric interpretation of Voiculescu’s S-transform. Let dA be a
compactly supported measure on (0, c0), and let AN be N-tuples whose empirical measures converge weakly

to d\. Then we have the following expression for the S-transform of dX in terms of the limiting Cholesky
decompositions of unitarily invariant random matrices with fixed spectra A™N.

Corollary B.4. Let Xy be the N x N unitarily invariant Hermitian random matrix with spectrum A,
For t € [0, 1], the log-S-transform of the measure dA\ is given by

—1 —1)= lim E |21
og Sax(t —1) i [21og RN, eny] »
where Xy = R*R is the Cholesky decomposition of Xy.

1.6. Relation to the literature. Our results relate to several different lines of work in the literature. In
many cases, we are able to prove more general results than those previously known in the same settings,
though some of the papers we mention are focused on different applications. We now summarize these
connections, beginning with relations to previous results in the random matrix theory literature.

e Global fluctuations for sums and products of finitely many unitarily-invariant random matrices with
fixed spectrum were previously studied in some cases using techniques from the Stieltjes transform,
free probability, and Schwinger-Dyson equations. For sums, a central limit for global fluctuations
was proven using Stieltjes transform techniques in the works [PV07, PS11] of Pastur-Vasilchuk and
Pastur-Shcherbina and follows from the theory of second-order freeness in free probability (see the
papers [MS06, MSS07, CMSS07] of Mingo-Speicher, Mingo-Sniady-Speicher, and Collins-Mingo-
Sniady—Speicher) as described in [MS17, Chapter 5]. A limiting case of our methods recovers the
case of sums of random matrices; this approach was followed by Bufetov-Gorin in [BG18a, Section
9.4] and shown to recover the results of [PS11].

For products, a central limit theorem was shown using Stieltjes transform techniques for the
product of two unitary matrices with fixed spectrum by Vasilchuk in [Vas16]. For products of positive
definite matrices, second-order freeness yields a CLT without an expression for the covariance via
the results of Collins—Mingo—Sniady—SpeiCher in [CMSS07, Theorem 7.9 and Theorem 8.2] and with
non-explicit combinatorial formula for the covariance via the results of Arizmendi-Mingo in [AMI18].
In [GN15], Guionnet-Novak show that all polynomial linear statistics are asymptotically Gaussian
using the Schwinger-Dyson equations, though no explicit formula for the covariance is given and the
same techniques do not extend to the log-spectrum. Finally, the recent paper [CO18] of Coston-
O’Rourke gives a CLT for linear statistics of eigenvalues of products of Wigner matrices. From
this perspective, our Theorem 4.8 yields the first explicit formula for the covariance of the CLT
for products of positive definite matrices. Simultaneously, this is the first result showing that this
covariance grows logarithmically on short scales.
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e Global fluctuations for some classes of matrix models amenable to our techniques have been studied
extensively in the literature. For Wigner, Wishart, and Jacobi ensembles, it was shown in the general
B setting in the works [DP12, Jial3, Borl4a, Borldb, BG15a, DP18] of Dumitriu-Paquette, Jiang,
Borodin, and Borodin-Gorin that the multilevel eigenvalue structure of these ensembles has Gaussian
free field fluctuations. For separable covariance matrices, namely matrices of the form AX B with
A, B deterministic and X rectangular Ginibre, a CLT for global fluctuations was shown by Bai-Li-Pan
in [BLP16] via Stieltjes transform techniques. Our Theorems 4.12 and 4.13 recover the single level
versions of these results. Finally, for a product of finitely many complex Ginibre matrices, the paper
[KZ14] of Kuijlaars-Zhang interprets the process of singular values as a biorthogonal ensemble with
explicit recurrence relation, which satisfies a global CLT by the results of Breuer-Duits in [BD17].

e In the setting of the M-fold product of N x N random matrices, the law of large numbers for
Lyapunov exponents as M — oo and then N — oo was originally studied by Newman and Isopi-
Newman in [New86a, New86b, IN92]. It was then obtained in a free probability context by Kargin
and Tucci in [Kar08, Tucl0]. Our techniques recover these law of large numbers results.

In the more recent works [Forl3, ABK14] of Forrester and Akemann-Burda-Kieburg, a LLN and
CLT were shown for square Ginibre ensembles with fixed N and M — oo, and Forrester studied
in [Forl5] their asymptotics as N — oo. In [Red16], Reddy showed a general LLN and CLT for
Lyapunov exponents of unitarily invariant ensembles at fixed N. Finally, in [KK16b], Kieburg-
Kosters gave a different proof for a subset of these ensembles which they call polynomial ensembles
of derivative type (which corresponds to cases where the multivariate Bessel generating function is
multiplicative). However, none of these papers studies the CLT in our regime, where M, N — oo
simultaneously.

e Local statistics of Lyapunov exponents for products of square Ginibre matrices are studied for
M,N — oo simultaneously by Akemann-Burda-Kieburg and Liu-Wang-Wang in [ABK18] and
[LWW18]. The local limits are shown to have picket fence statistics when M/N — oo, sine ker-
nel statistics when M/N — 0, and an interpolation between the two in the intermediate regime
when M ~ N. In particular, their results imply that the limits N — oo and M — oo do not com-
mute on the local scale for Ginibre matrices, as earlier predicted heuristically by the same authors
in [ABK14, Section 5.

Their methods rely an expression for the process of squared singular values as a determinantal
point process with explicit correlation kernel, and we believe this expression may be modified to
obtain similar results for rectangular Ginibre matrices. When compared to our Theorem 4.17, this
yields a transition between the sine kernel on local scales and a Gaussian process with white noise
on the global scale.

e In the study of dynamical isometry for deep neural networks, singular values of products of many
i.i.d. copies of large random matrices appear as Jacobians of newly initialized networks in the work
of many researchers in the papers [SMG14, PSG17, PSG18, CPS18, XBSD*18, TWJT18, LQ18§],
which study different network architectures which lead to singular values closely clustered around
1. We mention also the recent paper [HN18] of Hanin-Nica, which proves Gaussianity for the first
exponential moment of the Lyapunov exponents for a specific family of matrix products originating
in the study of deep neural networks. While these works consider orthogonally-invariant or general
real matrix ensembles (as opposed to unitarily-invariant complex matrix ensembles), it is believed
that the structure of fluctuations is similar in both cases, allowing us to make predictions for the
behavior of fluctuations in this setting.

Our technique via multivariate Bessel generating functions also has many relations to the literature, which
we now discuss.

e The idea that products of unitarily-invariant random matrices are related to products of the corre-
sponding multivariate Bessel functions dates back to at least Macdonald and Zinn-Justin in [Mac95,
Section VIL.4] and [ZJ99], where it was used to give an heuristic proof of the multiplicativity of
Voiculescu’s S-transform. Our work may be viewed as a rigorous realization and generalization of
this approach. It rests on the analytic continuation of the key functional equation for characters
of gly used in Lemma 4.2, which holds for any compact group and whose analytic continuation
was studied by Berezin-Gelfand in [BG56] and Helgason in [Hel84]. We mention also the recent
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work [BGS18] of Borodin-Gorin-Strahov, where the eigenvalues of products of Jacobi ensembles
were shown to form a continuous limit of a Schur process with certain specializations.

When applied to log-spectral measures of unitarily invariant random matrix ensembles, our multi-
variate Bessel generating functions correspond after a change of variables to the spherical transform
as surveyed in [Hel84]. The spherical transform is used by Kieburg-Kosters in [KK16a, KK16b]
to derive correlation kernels for products of random matrices drawn from so-called polynomial en-
sembles and to obtain a CLT for Lyapunov exponents of fixed size matrices when the polynomial
ensembles are of derivative type. In our language, this is an analogue of Theorem 2.15 in the special
case where N is fixed, M — oo, and the multivariate Bessel generating function is multiplicative
and hence A(u,w) = 0. In the general § setting, the paper [GM17] of Gorin-Marcus uses the fact
that such spherical transforms are scaling limits of discrete versions originating from the theory of
Macdonald symmetric functions.

e Our main technical tools Theorems 2.6 and 2.15 are in the spirit of the previous works [BG15b,
BG18a, BG18b, Hualg] of Bufetov-Gorin and Huang which together established similar results on
law of large numbers and central limit theorems for measures whose Schur/Jack generating functions
admit nice expansions near the point (1,1,...,1). Our theorems may be interpreted as a partial
generalization of the (continuous limit of) the Schur case of these results to expansions near arbitrary
N-tuples x, although this introduces significant complications in the proofs. In particular, the log-
derivatives of the multivariate Bessel generating function evaluated at this point may depend on the
variables in which the derivatives were taken, which was not true for evaluation of Schur functions
at (1,1,...,1). Accounting for this in the computation of moments and covariance in Theorems 2.6
and 2.15 leads to the integrals along contours around the support V, of dx in their statements.

We mention also the series of papers [BL17, Lil8a, Lil8b] by Boutillier-Li and Li which
give analogues of these results for expansions of Schur generating functions near a point
(1, o, Tpy T1y e oy Ty e o+, X1, - - -, Ty ) With periodic coordinates, though we note that those papers
obtain asymptotics of Schur generating functions using different techniques.

e The integral formula (3.2) in Theorem 3.2 for evaluations of multivariate Bessel functions near p
and its Schur analogue (3.11) were inspired by the alternate proof of [GP15, Theorem 3.6] discussed
in the remark immediately after its statement. The Schur version of this formula is also used by
Cuenca-Gorin in [CG18, Theorem 3.4] to study the g-analogue of the Gelfand-Tsetlin branching
graph.

1.7. Organization of the paper. The remainder of this paper is organized as follows. In Section 2, we
introduce the multivariate Bessel generating functions and prove our main technical results, Theorems 2.6
and 2.15, which give central limit theorems for global fluctuations of measures with nice multivariate Bessel
generating functions. In Section 3, we give a new contour integral formula for certain multivariate Bessel
functions in Theorem 3.2 and use it to analyze their asymptotics in Theorems 3.9 and 3.4. In Section 4,
we apply the results of the previous two sections to prove our main results, Theorems 4.8, 4.14, 4.16, and
4.17 on the convergence of height functions to Gaussian random fields. Finally, in Section 5, we present
an extension of our technique to obtain a 2-D Gaussian field from products of different numbers of random
matrices in Theorem 5.1. For the convenience of the reader, all definitions and notations will be given again
in the following sections.

Acknowledgments. We would like to thank Andrew Ahn, Alexei Borodin, Maurice Duits, Octavio Ariz-
mendi Echegaray, Alice Guionnet, Victor Kleptsyn, James Mingo, Roland Speicher, and Alex Zhai for useful
discussions. Both authors were supported by the NSF grants DMS-1664619 and DMS-1664650. V. G. was
partially supported by the NEC Corporation Fund for Research in Computers and Communications and by
the Sloan Research Fellowship. Y. S. was supported by a Junior Fellow award from the Simons Foundation
and NSF Grant DMS-1701654,/2039183. The authors also thank the organizers of the Park City Mathemat-
ics Institute research program on Random Matrix Theory and the MATRIX workshop “Non-Equilibrium
Systems and Special Functions,” where part of this work was completed.

2. CENTRAL LIMIT THEOREM VIA MULTIVARIATE BESSEL GENERATING FUNCTIONS

2.1. Multivariate Bessel generating functions. For a set of variables a = (a1,...,an), we denote the
Vandermonde determinant by A(a) := [],;;<y(ai — a;). For sets of complex variables a = (a1,...,an)
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and b = (by,...,by) with all {a;} and {b;} distinct, the multivariate Bessel function is given by

2.1 Blab) i A(p) ST i

(2.1) (a,b) :== (P)W7

where p = (N — 1,...,0), and it admits analytic continuation to all values of a and b. For a probability
measure duy on WY = {(zy,...,2y) € RV | 2y > .- > zn} and an N-tuple x € WP, define its
multivariate Bessel generating function ¢, n(s) := &y n(s1,...,5n5) by

(22) b9 = [ Do)

Definition 2.1. We say that a measure duy is X—smooth if the defining integral of ¢, n(s) converges
absolutely and uniformly on a complex neighborhood of [y, x1]V

Remark. In our applications in later sections, we will take y = p. For convenience, in those applications
we will omit the x’s in the notation and write simply ¢n(s) and smooth instead of ¢, n(s) and p-smooth.

Define the operators

N
(2.3) Dy :=A(s) "'oY 0 oA
=1

and the moments py () := x’f 4+ xﬁ[ We show now that repeated applications of the operators Dy, yield
mixed moments of a smooth measure.

Lemma 2.2. For any ky,...,k > 1, if duy is x-smooth and «x is duy-distributed, then E[pg, (z) - - - pk, ()]
is finite and equals

E[pk1 (‘T) © Pl (:L‘)] = Dk’l e DleSX,N(X)'

Proof. Choose § > 0 small so that for s in a neighborhood of [xn,x1]", the defining integral of ¢, n is
convergent at s + d¢ for all 2V choices of vector & with entries in {£1}. We therefore see that on this
neighborhood we have

N
Z A(s + 5€)¢X N(s+ 55 / det eXwLJ Z Z 0 Hesizo(i)+65i$g(i)dﬂN($)

si€{x1} ” le, 6{:|:1} oESN i=1
Ay) 1
= [ ————=—~— ] | [2cosh(dz;)] (=) | | e’ dun(x)
[ iy Hesions & o1l
N B(s,x)
s 2 cosh(dz; “dun(x).
)| TLzeosntorl g (e
Notice now that
Z A(s 4+ 0e)py n (s + d¢)
e;e{x1}
vanishes at s; = s;, meaning that
A(s + de N B(s,x
(2.4 > SR (s o0) = [ T[eoshi@n)l gD dun(o)
eie{£1} i=1 Xs

admits an analytic continuation to and converges absolutely on a neighborhood of [y, x1]" for some § > 0.
Notice now that |pg, (x) - - pr, ()] < Hivzl 2 cosh(dx;) outside of a compact set, which implies that

B(s,x)

N
Py (T) Py (x)m M

< H[Q cosh(éxi)]B(X p

=1

outside of a compact set. Therefore, the absolute convergence of (2.4) together with the eigenrelation

DyB(s,x) = pr(x)B(s, x)
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implies by dominated convergence that for s in some neighborhood of [y, x1]", we have

B
D Dan(s) = [ 010+ o) g ),
Plugging in s = x then yields
E[pk1 ('T) © Py (:L‘)] = /pkl (‘T> ©Phy (x)d:uN = Dk1 T Dkz¢x,N(X)' U

2.2. Statement of the results. Let yy € W be a sequence of N-tuples such that we have the weak
convergence of measures

LN
N Z Oxn,i/N = dX
i=1
for some compactly supported measure dx on R. Let ¢y n () := ¢y, n(51,...,5n) be the multivariate Bessel
generating function of a sequence of smooth measures duy. We now define conditions on ¢, n(s) which
imply a limit shape and Gaussian fluctuations for these measures. For a subset I C {1,..., N}, define
st = (8;)ier and
I

N (8) = Oy N (8)]s;=x;,5¢1
where we note that ¢)I<’N(s) is a function of s’ alone. For a function f(s) on C¥ and some r € CV, we will

adopt the notation that 9, f(r) = %f(s)

Definition 2.3. We say that the measures duy are LLN-appropriate for yuy if they are yy-smooth and
there exist a compact set V,, C R and a holomorphic function ¥ on an open complex neighborhood U of V,
such that xn /N € V, for all N and for each fixed integer k > 0, uniformly in I with |I| =k, i € I, and
rI e UMl we have

. 1

Jim_ |0 llog oL s (V)] = W(r)| 0.

Definition 2.4. We say that measures duy are CLT-appropriate for x if they are LLN-appropriate for
XN Wwith respect to some function ¥ and sets V,, C R with neighborhood U and there exists a holomorphic
function A on U? such that for each fixed integer k > 0, uniformly in I with |I| = k, v/ € U!|, and distinct
1,7 € I, we have

Jim |0y, 0y, llog ¢% n (rN)] = A(ri,rj)| = 0.
Define the Cauchy transform of the measure dy by

(2.5) E(u) ::/ ! dx(z)

uUu—x

as a holomorphic function on C\ V,.
Theorem 2.5 (Law of large numbers). If the measures duy are LLN-appropriate for yy, then we have the
following convergence in probability

k+1 dau

2mi’

1

" (E(U) + \Il(u)>

1 L1 —p, —
(2.6) Jim pk(z) = lim S Elpy(z)] = pr =
where the u-contour encloses V, and lies within U. In addition, the random measures % Zf\il 0z, with z

distributed according to duy converge in probability to a deterministic compactly supported measure du
with [z*du(z) = py.

Theorem 2.6 (Central limit theorem). If the measures duy are CLT-appropriate for yy, then the collection
of random variables

{pr(z) — Elpr(2)]}ren
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converges in the sense of moments to the Gaussian vector with zero mean and covariance
l
(27)  Jim Cov(pi(z).pi(x) = Covy = 55 55 (2w + ¥(w) (2(w) + ww))

(s )

U —w) 27 271’

k

where the u and w-contours enclose V,, and lie within U, and the u-contour is contained inside the w-contour.

Remark. In Theorems 2.5 and 2.6, the coordinates of xy are allowed to repeat. In particular, we may
choose xy = (0,...,0), in which case they are a continuous version of the results of [BG15b, BG18a] and
are closely related to the results of [MN18].

In our applications, we will use the following computation of Z(u) for dx(z) = 1 1jdx.

Lemma 2.7. If dx(x) = 1 1jdx, we have that Z(u) = log(u/(u — 1)) on C\ [0, 1].

Proof. By direct computation of fol u%dac. O

T

2.3. The symmetrization procedure on analytic functions. In what follows, we will make extensive
use of the following properties of symmetrizations of analytic functions.

Definition 2.8. Let f(s?) be a function in variables (s;)ic;. For K = {ki,...,k} C I, we define its
symmetrization over (sg)rex by
1
Symf(s”) = 5 3 F((57)ier )
K !
g€S;
where for o € S;, we define

Sk i:km

o(m)

i i ¢ K
37:{5 i

Lemma 2.9. If f(s) is an analytic function of s on U/l for a complex domain U C C, for any A C I and
i € I\ A, the symmetrization over K := {i} U A given by

1
sym | ]] f(s’>]
K acA 5i = Sa
is an analytic function of s’ on Ull. Further, if f;(s’) for t = 1,2,... are a sequence of analytic functions

uniformly converging to 0 on U!!!, then the sequence of functions

Sym [H : isaft(sl)]

S
acA "

converges to 0 uniformly on compact subsets of U!.

Proof. Denote by g(s!) the symmetrized function, which is meromorphic in s’ on U Il Notice that the poles
of g(s') are contained within the hyperplanes {s’ € U/l | s, = s3,} for ki, ks € K. The complement of the
set
V= {s! e UM | s, = sp,, si distinct and not equal to sy, for k ¢ {k1,k2}}

in the union of these hyperplanes has codimension 2. Because the set of poles is either empty or has
codimension 1 by Riemann’s second extension theorem (see [GR84, Theorem 7.1.2]), it suffices for us to
check that the poles of g(s?) avoid V. For any r! € V with ry, = rg, = z, we see that g(s?) is evidently
holomorphic near 7! in the variables (8i)ier\{k1,ke}- Notice now that we may rewrite g(s?) as

(28) gs') =Sym | I —L 76D

— 8 Sk, — S
“ keK\{i,k1,k2} k1 k

L P I | (R CTPU R ) (——— e

S — S S, — S S — S
K u T %ke \ e\ (hy ko} TFY T R KK\ (k1 ko) 2 7k
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where 7 exchanges s; with sg, and 7 exchanges s; with si,. Notice that

1 1
H ———f(r(s")) and H —f(r'(s"))
KEK\ {kn ko) “F1 T Ok KEK\ {kn ko} B2 Ok
1,~h2 1,~h2

are both analytic near s’ = r! and are given by exchanging sy, with s,, which implies that the argument

of the symmetrization in (2.8) and hence g(s’) are analytic in sy, and si, near 7/. Thus g(s?) is analytic in
all variables near !, completing the proof of the first claim.

For the second claim, for any compact subset V' € UM, choose | K| nested contours (7 )rex contained in
U and containing the coordinate projections of V’. Notice that for any partition K = {i} LI A, the function
[loca ﬁ is uniformly bounded for (uz)rerx with uz € v,. Denoting by g:(s’) the symmetrized function
corresponding to fi(s?), this implies that g; — 0 uniformly on {s € U | s € v.}. Applying the Cauchy
integral formula | K| times with the | K| nested contours (yx)rex then implies that g; converges to 0 uniformly
on V', as desired. a

2.4. A graphical calculus. The purpose of this section is to produce an expansion for m < n of

Dy, - Dy, ¢y .~ (5)
PN (8)
into the sum of terms. Each term will be associated with a forest tagged with some combinatorial data,
where many terms can have the same index. The proofs of Theorems 2.5 and Theorem 2.6 will identify
terms associated to specific forests as leading order, allowing us to only compute the values of those terms.
In what follows, we specify this expansion precisely via an inductive construction in m.

In what follows, for each m € {1,...,n}, we will define certain type m terms appearing in our expansion
by downwards induction on m. Such type m terms will be associated with a rooted forest F' on the vertex
set {m,...,n} with either single or bold edges along with an assignment to each tree T in F' of a set of
indices Kp C {1,..., N}, a LLN weight W 1, > 0 and a CLT weight Wp ¢ > 0. Let F,,, ,, be the set of such
forests with associated data. This association will have the property that if F =Ty U---UT; € Fp,p is &
division of the forest into trees, then the term takes the form

Xl"‘Xh

where each X; is associated with T;. We now proceed to define the notion of a type m term.

Call sets of indices Ay, ..., A, C{1,..., N}, indices j1,...,jn € {1,..., N}, and (possibly-empty) vectors
of non-negative integers Bi,..., By, and C' = (c1,...,¢n_1) a good label if j; ¢ A;, By = (bf,...,b} ) with
bj» >0, ¢, =0, and k; = |A;| + Zj bé» + ¢;. We define a type n term to be an expression of the form

{jn}UAn Sjn — Sa

Sym [ II 1] (077 10g v (5)] - - (B log ()]
acA

where A,,, j,, By, come from a good label. We associate to this type n term the forest in F,, ,, consisting of
the single vertex tree T rooted at n with index set Kp := {j,} UA,, and LLN and CLT weights W, = W¢ =
> (b —1) 4+ |A,|. It consists of a single multiplicand associated to T'.

For m < n, we define type m terms by downwards induction on m. Let X;--- X; be a type m + 1 term

corresponding to some good label and associated with a forest F' € F, 1, consisting of trees T1,...,T;
associated to X1,...,X;, respectively. For some c! ... cl > 0 such that ¢} +---+c. = ¢, and where
A;, ji, Bi, ¢; come from the same good label as the type m + 1 term, define

(2.9) Kf = {jm}UA,U ] K.

i:ci, >0

We define a type m term to be an expression of the form

1 o m "
(2.10) II xi|-Sym l|| — _S] [T o1 80 log dyw(s)] -+ [0, log dy, v (5)]
0 Jm a

’ S ;
Kr a€Apm, iici, >0

1Ch, =

We associate this term to the forest F’ € F,, ,, consisting of {T} | ¢, = 0} and a new tree T' with root at m
with edges to the root of each tree in {T; | ¢!, > 0}. Let the edge between m and the root of T; with ¢!, > 0
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be single if j,, ¢ K7, and bold otherwise. Assign to T' the index set K/ and LLN and CLT weight given by

Wio= Al + 307 =D tem+ > Wnyg
) 7]

im applied to X;

0j,, applied to X;

m

Finally, associate T; to X; and T to the multiplicand

T

1 i pm pm
Sylm [ H s—s‘| H 6;: [Xi] [83',1,1 log ¢y, (8)] - [8j,lnm log ¢y, v (s)]
K a€A,, Im a i:ct, >0

In Proposition 2.10, we show that these terms are sufficiently rich to expand the action of our differential
operators in. Lemma 2.11 and Corollary 2.12 then prove properties of this expansion.

Proposition 2.10. The quantity
Dy, -+ Dy, ¢x,n(5)
PN (8)
is a linear combination with coefficients independent of N of type-m terms, where the number of terms
associated to any F' € F,, ,, is independent of V.

Remark. Before giving a proof, for the reader’s convenience we illustrate Proposition 2.10 explicitly for
n = 2. Direct computation shows that

(2.11) Dklfﬁf@w)— Z > Z (|f111|>(|1]f122|)

(s Jl]z 1AL C{1,...N} A {1,...,
J1¢A1 Jzé 2

k1—|Aq| # ; kz )
68“ [¢X’N(S)¢X,N(s) [GQQ S5, _sa] Sy ¢ N( )] .

Proposition 2.10 associates the symmetrized summands of this expression to forests on {1,2}. Terms where
851.11_"41' is applied only to the first factor ¢, n(s) on the second line of (2.11) correspond to the forest
consisting of two 1-vertex trees Ty = {1} and Ty = {2} with K7, = {j1} U Ay and K7, = {j2} U A3. The
remaining terms correspond to the forest consisting of the single tree T = {1, 2} rooted at 1, where the edge
from 1 to 2 is single if j; ¢ {j2} U A3 and bold if j; € {j2} U Ag. In this case, Kr = {j1} U {j2} U A; U As.
If ki = ko = 1, and F € Fi5 is the forest {{1},{2}} with given Kp,, Kr,, there are |Kr,| - |Knp,|
possibilities for ji, j2, A1, As. Neither the number of terms in the expansion (2.11) associated to this data
nor the coeflicients of those terms depend on N. However, we remark that Kp, and Kp, can range over
subsets of {1,..., N} of size at most 1, meaning the number of possible choices for F' does depend on N.

e

S
acA; "It

Proof of Proposition 2.10. We proceed by downwards induction on m. For m = n, by the identity of
differential operators

K
(2.12) Als) Ttk As) =Y (’“;) > lH Sis ]a;i -
N} (2 a

h=0 A, C{1,..., a€A,
| Ay |=h,i¢ A,
we conclude that
Dknqu, Zak ¢X7 ()

N

kn 1 kn—|An|
=2 X <|A |) [H P 15% P (3):
i=1 A, C{1,...,N} " acA, "t 7

¢ A,
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Because Dy, ¢y, n(s) is symmetric in s, we may replace the summand of this double summation by its
symmetrization over {s; | j € {i} U A,,} multiplied by a constant independent of N. Consequently, by the
Leibnitz rule and the identity
8«5']‘ ¢x,N(5) = [asJ- log ¢x,N(s)]¢X,N(S)v

this symmetrized summand is exactly a linear combination of terms of type n with coefficients independent
of N . Since k, = |An| + >_; b} by construction, the number of such terms associated with a fixed choice
of index set Kr = {j,} U A, and LLN and CLT weights W = W¢ is a function of k,, and therefore also
independent of N.

Suppose now that the claim is true for some m + 1 < n. It suffices to check that for any type m + 1 term
X1 -+ X, the expression

Dy, [ X1+ Xipy v (5)]
Dx.n(8)

is a linear combination of type m terms. By (2.12), we find that

N
Dy, [X1---Xigyn() =D D (flm ) [ 11 si i sa] Ok AmlIX o Xy (9)).

i=1 A,,c{1,...,N} [Am|
i¢Am

Applying the Leibnitz rule to distribute the derivative and symmetrizing over {s; | i € K}} with K/ from
(2.9) the portion of the resulting summand which excludes terms X; whose s; derivative are not taken, we
obtain a decomposition into a linear combination of type m terms. By the inductive hypothesis, the number
of type m + 1 terms X; --- X, associated to F' € Fp,41,, is independent of N and their coeflicients are
independent of N. In addition, if a type m term is associated to F’ € F,, ,,, it comes from a type m+1 term
F" € Ft1,n via the procedure just described, and the number of possible choices of F’ is independent of N.
Since the coefficients and number of type m terms associated to F' by the procedure above are independent of
N, we conclude that the resulting overall decomposition into type m terms again has coefficients independent
of N and number of terms associated to F' € F,, ,, independent of IV, completing the induction. |

Lemma 2.11. If a term X7 - - - X; corresponds to a forest with trees {T1,...,T;} and index sets Kr,, ..., K1,
then letting

X/ (8) = X¢(8)]s; 20, 5. tEL{L..., 1},
for
I:[(T1 U--'UKTI,
each X/ (s) with ¢t € {1,...,1} satisfies
(a) X{(s) is symmetric in {s;}ick,, ;
(b) X[ (rN) is analytic in rf;
(c) if duy is LLN-appropriate for yn, NW7i.2 X (rN) converges as N — oo to an analytic function of
rI on UM,
(d) if dux is CLT-appropriate for yx, NYW7.¢ X/ (rN) converges as N — oo to an analytic function of
rIon UM,
e) if duy is CLT-appropriate for yy and i € I\ Kz,, NWT.c+19 XI(rN) converges as N — oo to an
12 t i<t
analytic function of ! on UM,
(f) the number of appearances of log ¢§<7N(s) in X/ (s) is given by dier, ki —Wr, L.

Proof. We consider the expansion of
Dy, -+ Dy, ¢y .~ (5)
Dy (8)

into terms indexed by forests on {m,...,n} and apply downward induction on m from n to 1. For m = n,
we consider terms of the form

1 n br
X/(s) = Sym lH ] (05" log 6y ()] -+ [0, log &1 n(s)].
{jn}UAn acA In a
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Claims (a) and (b) follow from the definition and an application of Lemma 2.9. For (c) and (d), we see that
NWree X[ (rN) = NWrer X[ (rN)

1 1 b7 —14%0,

= Sym | [[ ———| N9 log¢l ny(rN)]---[N"'9,1" log ¢% n(rN)].
{3n}VAn | gen, Tin —Ta

By Definition 2.3, we see that +9;, log (bf(}N(rN) converges to an analytic function of 77, so (c) and (d) both

follow from Lemma 2.9. For (e), because ¢ ¢ Kr,, we see that 0, and Sym K, commute, meaning that

1 n n
NWre o, X[ (rN) = Sym [H ] N, ([N 10, oz 6!y (rV)] - [N 00 log o1y (r1)).
{jn}UAn acA Jn Ta ’

where the final term converges to an analytic function of ! by Definition 2.4. By the same reasoning as for
(c) and (d), we obtain (e). Finally, Claim (f) follows from the fact that

#{appearances of log qbiN(s)} =lp=kn—|A4n| — Z(b:‘ —1)=k,—Wrp.

2

For the inductive step, Claims (a) and (b) follow for the same reasons. For (c), we see that NW7..L X[ (rN)
takes the form

1 k
NV X (rN) = Sym [ [T ;5 [WWeear, vion) - N0, Y ()
Kt |qea, "im ~ e

(07 1og 6%, (rIV)] -+ 0717 log ] v (PN

+1"'Dkn¢x,1\7(5
bx,N(5)

that ¢}, + -+ ck = ¢,,. Claim (c) then follows by the inductive hypothesis, Definition 2.3, and the same

argument as in the base case. For (d), we notice that

where Y; are terms with weights W; ;, appearing in the expansion of Fm ) and ¢}, > 0 are such

1 _ , . _
NYree X{(rN) = Sym l [T ;- [ o v ] [N e o, v (V)]
KTt a€Am, Jm a

by bi,
(0%, 1og 6%, (rIV)] -+ 0737 log 6} v ()] -
By the inductive hypothesis and the fact that CLT-appropriate measures are LLN-appropriate in Definition
2.4, all terms after Symp., {H

term upon application of Lemma 2.9. For (e), if ¢ ¢ Kr,, we notice that d,, and Sym Ky, COmmute and we
obtain

acA 7] converge to an analytic function in !, hence so does the final
m Tjm ~Ta

1 . . .l
NWTt~c+18thI(7“N) = Sym [ H 7Nari ([NW”‘C—'—IJT"QK” o vy (TN)] e
a€A

L Jm © i1
Kr, m Tjm Ta

Tim * ik

: . Ck m b‘[rn
N e e, ot VI (N )|[0F log 6y (rN)] -+ 077 log 64 (rN)]) |

By a combination of the inductive hypothesis and Definition 2.4, we see that all terms after

I

Symye,, [laca,, %%Ta] converge to an analytic function in 7', so Claim (e) follows from Lemma 2.9.

Finally, Claim (f) now follows from our recursive definition of the LLN weight and the fact that k,, =
A + 32 0 + - O
Corollary 2.12. If a term X;---X; corresponds to a forest with trees {Ti,...,7;} and index sets
Kr,,..., K, then for t € {1,...,1}, X}(s) satisfies
(a) if duy is LLN-appropriate for y, uniformly in s//N in a neighborhood of VJ(H, mi,...,mg > 0,
and i1,. .., € Kr,, we have that

o9 X] () = O(NTWres =R m ),
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(b) if duy is CLT-appropriate for xy, uniformly in s /N in a neighborhood of VQI‘, mi,...,mp > 0,
and i1,...,4, € Kr,, we have that

aml "'akatI(S) — O(NfWTt,szj m.iil{'mj > 0 for some i; ¢ KTt})
Siq Sik *
Proof. Claim (a) follows from Lemma 2.11(c), and Claim (b) follows from Lemma 2.11(d) and (e). O

2.5. Proof of Theorem 2.5. Define the expressions

€q,i(8) := a!ea( )*# and €alu,s) = a!ea( 1 ),

U — Sy

Si — Sx

where e, denotes the a'® elementary symmetric polynomial, and (s1, ..., sy ) is either a collection of variables
or numbers with s; # s; for any j # 1.

Lemma 2.13. For u € C\ V,, we have that
N, (u, xn/N) = E(u)* + O(N ).

Proof. Define the normalized power sums by

1. 1
Pr(us s) = v Z T
i=1
Viewing pi(u, xn/N) as a Riemann sum, we find that

Eu) k=1

oo (U—1x) o1) k>1 + O,

(2.13) pr(u, xn/N) = /OO : dx(z) + O(NT) :{

Now, by [Mac95, Example 1.2.8], we have the determinant formula expressing elementary symmetric poly-
nomials in terms of power sums

» 1 o --- 0

) D2 D1 2 e 0

€a= 11 : : . :
Pa—1 Pa-2 a—1

Pa Pa—1 - b1

If we apply this formula to compute €,(u, xn/N), each factor of p; has order N by (2.13). Therefore, the
leading order contribution must come from the product of the diagonal entries, implying that

N™€(u,xn/N) = pi(u, xn/N)* (1 + O(N7H)) = E(u)* + O(N71). O
We are now ready to prove the law of large numbers. By Lemma 2.2, we have that

1 _ 1 Doy n(xnv)
NP = T o)

Applying the graphical calculus of the previous section and noting the additional prefactor of N1, this is a
linear combination of the evaluation at s = xx of terms of the form

1

— Sq

N—lAl-1 Sym
{j1}uA

] 1073 1og v (5)] -+ [0 og by, ()],

ac€Ay i1
where j; ¢ Ay, b} > 0, and |A;| + >, b5 = k. Such a term corresponds to l-vertex tree with index
set K = {j1} U A; and LLN weight |4 + >, (b, — 1), meaning by Corollary 2.11(c) that it has order
O(N*‘A”’Zh(bi’l)*l); there are O(N1411+1) such terms, meaning that their sum has order O(N~ Zh(bifl)).
As a result, the terms with leading order contribution are those with b}L = 1, implying that

1 1o [k al
NEP@] = 5D (b)N” Db ()INT0;, log dy v (rN))? +O(NT).
b=0 j=1

r=xn/N
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Notice now that

N
> b (NN, log by N (rN)]

r=xn/N

is a linear combination with coefficients independent of N of O(N*¥~%*1) terms of the form

Sym [H = ] IN“18,, log 6Ly (rN)]?
acA

{7}uvAa Ti —Ta r=xn/N
for j ¢ A, |A| =k —b, and I = {j} U A. By LLN-appropriateness we see that
[N=10,, log ¢y n (rN)]” = W(r5)" + o(1),

uniformly on U!! for an open neighborhood U D Vy. By Lemma 2.9, this implies that

Sym [H ! ] (IN"20,, 10g 6% (PN = W(r;)")

{jJuA acA Tj —Ta

uniformly on compact subsets of U/!. This implies that

v g (1) ég’“’“(” (IN 0., g by n (M) — W)

r=xn/N

i( )Nb FLo(NF=0FL) = o(1).

We conclude that

—E[pk ZNb k<b) igk:b,j(r) (\If(r)”+0(1)) .

NZ( ) v Bttt My o,

where the u-contour encloses V,, and lies within U. By Lemma 2.13, we find that

b uw Z(u)kbtt
%E[Pk(ﬂf)} = Z (S) yg%k(_)im‘l’(u)b +o(1)

b=0
k
1 k+1 du _ _
=i > ( b ) fﬁz(U)k "0 (u)’ + o(1)
b=0
1 du

(2w + q/(u))k“ +o(1).

“k+1f 2mi
It remains to check that limy_, oo #Cov(p;.C (), pr(x)) = 0. For this, define

DyDipy N (s)  Didy,n(s) Digy,n(s)
PN (5) PxN(5)  Dxn(s)

22 (VS (Janom [y 2R s

= c=1 i=1

(214) CN’]CJ(S) =

and notice by Lemma 2.2 that

L Covipu(@), pe()) =

1
e 5 ON ke (XN)-

N
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Choose indices 4,j and sets A;, As with ¢ ¢ Ay and j ¢ As. Defining Ky := {i} U {j} U A; U Ay and
Ky := {j} U As, we notice that C . ,(xn) is a linear combination of the evaluation at xn of terms of the
form

t

C
o,

[T102 108 ¢ff,5v<s>}]
h=1

for different choices of i, j, A1, Ay and ¢, by, b), > 0 with |[A;|+c+ >, 0, =k, |A2| + >, bp =1, and ¢ > 1.
Such terms are again linear combinations of the terms associated to the forest on {1,2} consisting of a
2-vertex tree with index set K7 and LLN weight

[Av] + A + D (bl = 1)+ (bn—1) +¢
h 3

so by Lemma 2.11(c), they have order
0(N7|A1HA2\fzhw'hsl)fzh(bhfl)fc).

1
S}}?n l H Sj/N — S*/N

2 Lx€eA;

There are O(N!A11+l421+1+ g ks ) guch terms, meaning that their sum has order
O(N— Zh(b;—n—zh(bh—1>+(1—c)+11-¢x2)7
hence the terms with leading order contribution to Cn k. x(xn) are those with b, =1, b, = 1, ¢ =1, and

i ¢ Ko. We conclude that Cn k. (xn) = O(N), hence

%Cov(pk(x),pk(m)) = %CN,I@,I@(XN) =O(NY),

which concludes the proof that limy_s o %pk(x) = limy 00 E[pi ()] in probability. This immediately implies
the corresponding convergence of empirical measures.

2.6. Proof of Theorem 2.6. We prove Theorem 2.6 in two steps. We first prove that Cov(pg(z), pi(x))
has the claimed value and then show that all higher cumulants vanish.

2.6.1. Computing the covariance. Notice that Cov(pg(z), pi(x)) = Cn k1(xn), where we recall the definition
of Cn g, (s) from (2.14). Applying the expansion from the previous section into terms of the form (2.15), we
see that Cn i1 (xn) is a linear combination of terms associated to the forest on {1,2} consisting of a 2-vertex
tree with index sets K7 = {i} U Ay U {j} U Ay and Ky = {j} U A3 and CLT weight

A+ Az + D (bl = 1)+ > (bn = 1) + ¢ + Ligx,,
h h

so by Lemma 2.11(d), they have order
O<N7|A1|7|A2|fzh<b;fl>fzh<brl)fc71ieK2).

There are O(N|A1|+‘A2‘+1+1i¢f<2) such terms, meaning that their sum has order
O(N~ Zh(bﬁl—l)—zh(bh—l)ﬁr(l—C)).

Thus, the leading order terms in Cy ;(xn) are those with b}, = 1, b, = 1, and ¢ = 1. To compute the
covariance, we analyze these terms more precisely. Setting I = K7, define

; 1
Af\}ﬂ (r):= Narj log qbi)N(rN) — U(r))

so that from Definition 2.4 we have

(2.16) OAY (r)=o0(1), m=>0
anAf\’rj (r) =
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With this notation, the terms with b, =1, b, = 1, and ¢ = 1 take the form

11 1 1
N_|A1|—|A2|—1 Sym Or. | Sym I | N_lar. log &/ "N I—| As|
%1 e, i Ta %2 ven, 7T ra[ ; 10g ¢y v (rN)]

AL 1 As|— 1 1 : 1—]As|
=N 41—l 42]=1 Sym [ H ri—r 8’“1‘ [S%m H ri—7 (\Il('rj) + A}’\}j(r))
i a j a

Z|A1]—|A —1Z_|A2‘ 1 T k—]Aq|—1
= NN sy | T =0, [f7%, (1)] (qj(ri)"_A]\} (T))

T —T
m=0 K1 acA, v @

for some i ¢ Ay and j ¢ Az and f"y, (1) defined for 0 < m <1 — |As| by

1 l - |A2| _ _ I.q
f_;?Az (7") := Sym H — < \I/(Tj)l |As| mAA}J (,,,)m.
Kz a€As r‘] T'a m

We study the asymptotics of each summand separately. We see that each fI"y (r) converges as N — oo to

an analytic function of r/, which is 0 unless m = 0. Therefore, if i € K5 and m > 0 the summand

1 i k—]Aq|—-1
N_|A1|_|A2|_l Sl}ém [ H ﬁaﬁi |: JT,nAz (T)] (\Il(rl) + Af\} (7")) ‘|
U Laea, T a

has analytic limit of order o( N~141=1421=1) by Lemma 2.9. Similarly if m = 0, for g > 0, the terms
AL [ A — 1 E—]Al—-1 A1 ;
Ay|—|Az|-1 0 k—]Ai|-1 I,
I [ [T 0n [0, ( S e s
acA
y k—|A1|—-1
resulting from the binomial expansion of (\I/(ri) + AN'(r) have analytic limit of order

o( N~IA:l=14:1=1) by Lemma 2.9. There are O(N52l) = O(NI411+142141) of each of these type of terms,
so the resulting terms do not contribute to the limit unless m =0 and g = 0.
Now, if i ¢ Ko, for m > 1 we have that

m 1 1 [—|A _ —m i e _
8” ].’A2(r) = Nsym H ( | 2|>\I’(Tj)l |As| mAf\}J(r) IF(I’l)(T‘i,Tj)—i-O(N 1)7

m

meaning that N9, fi"y, (r) converges as N — oo to an analytic function of 7! which is 0 unless m = 1.
Therefore, if ¢ ¢ K1, for m > 1 the summand

T —T
Ki acA, 0 a

N~ gy l H $&~i [fi, ()] (\I/(n-) + AJI\}i(r))k_lAll_ll

has analytic limit of order o( N~1411=1421=2) by Lemma 2.9. Similarly, if m = 1, for g > 0 the terms

2.18) N‘A1‘|A2‘1S%m[H L, 0] (’“"‘;‘1)w<mk-Al'-1-gA5¢<r>g]
1 lacA,

i a
have analytic limit of order o( N~1411=1421=2) by Lemma 2.9. Since there are O(N!Kz2l) = O(NA1l+14:21+2)
such terms, their total contribution is o(1) unless m =1 and g = 0.

We conclude that the leading order terms in Cy x(xn) correspond to those with m = 0, g = 0, and
i€ Kyin (217)orm =1, g =0, and 7 ¢ K> in (2.18), with their coefficients given by their coefficients in

(N0, log ¢y v (rN)* _11
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the direct expansions X (xn/N) and Xo(xn/N) for

NN
:Zz<a> (b)z aN* G ()0, Zel b.j (7 )| )

a=0 b=0 i=1
k l
a—k o
B ()()Z ) D S B | O A RNV
4=00=0 JF#1 Agii,jE As a€Ay
[Az|=l—b

where X1 (xn/N) corresponds to the terms with m = 0, and X2(xn/N) corresponds to the terms with
m = 1. Defining yn := xn /N, we see that

N) = ii (’;) (é) aNa““liak_a,i(r)a” [ ;;W\P(u)b} i) |

a=0 b=0 r=XN
k l
_ kY (1 a—k4b—i—1 )P —=b)p. b a1
- az—;); ( ><b> N Zek il 27r1 (u — r;)P+2 ez o )R ()
T T=XN
5Lk (1 dw du T oy (W, Xn) <= (—1)P(1 — b)
_ a—k+b—1—1 W ot Ck—a+1 y XN - p~ ~ b a—1
- Z;J (a> <b> o 75 2ri2mi k—a+1 pz:% (u—wyprz 7" p( X)W (u) "W (w)* ™,

where both the u and w-contours enclose V,, and lie in U, and the u-contour is contained inside the w-contour.
Applying Lemma 2.13 yields

P quwk7a+ll*b_p_
=22 (ID (Zi) o 7p§£ ;ZTnszn k( _)a 1 > ((ul)_ ii)pfgpa(u)lb”@(u)b@(w)al +O(NTY

a=0 b=0 =
o RN /I dw du St W () ()L .
- ;; (a> (b>ay§ 2ri 271'1]@(%1—}—1:@)[ b((i_(w))g +O(N7Y).

Finally, adding a (vanishing) term with a = k + 1 in the second from last equality, we obtain

[I]

a=1b=0
=y§ %%(aw) + q,(w))’“(g(u) F4w) ot O,

where both the u and w-contours enclose V, and lie in U, and the u-contour is contained inside the w-contour.
Notice now that
N

Xo(xn) = ii (]:L) (;)) Zab]vafmbfl*?gk_a,i(r)

=1

du 1 _ “
ot = Do () W@ FOD )0

— Ek: lO (Z) (2) g:abN“*“b*H’ék,a,i(r)

i=1

r=XN

1—b+1
% % Z (_1)1)( (l —b+ 1)p p€l7b+17p(ua T)\I’(u)b_lF(l’l)(’l’i, U)\P(T‘i)a_l
=0

l—b+1)(U—TL)

r=xn/N
= abN—kFo=I= (—
2.2 (o) 2

du dw €g_gr1(w, XN) (-b+1), - . b1 (1,1 .
— b1 v F U (w)®
55 omi2mi k-a+1 (I—b+ )(u—wp ' p (1 X)W (1) (w, u) ¥ (w)*,
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where both the u and w-contours enclose V, and lie in U, and the u-contour is contained inside the w-contour.
Applying Lemma 2.13, we find that

k 1 l—b+1 — —
A E\ /1 7 du dw Z(w)F—aot!
X - E bN~P —1)P o 11
) a=0 b=0 <a> <b>a 1;) - yg 2mi2mi k—a+1

E(w)! 0 (u) T FOD (w, ) U (w) T+ O(N )

koo
B K\ (1 du dw Z(w)F=ott Z(y)l-0+! b—1 (1,1) a1 1
= E: E <a> <b>aby§ D i R i U(u)” " F5Y (w, u)¥(w) +O(N7),

where both the u and w-contours enclose V,, and lie in U, and the u-contour is contained inside the w-contour.
Adding (identically zero) terms with a = k+ 1 and b =1+ 1 in the last equality, we find that

Iiﬂi ( ) ( ) 55 5’5 P W) =) () O () () + O(N )

a=1 b=1

= b (5w + vw) (2 + ¥w) FOD s T - o),

where both the u and w-contours enclose V, and lie in U, and the u-contour is contained inside the w-contour.
Putting these computations together, we find the covariance to be

Cov(pr(2), pi(2)) = X1(Xn) + Xa(Xn) + O(N )
= P s (5w + vw) (Bw) + ¥w)) (s + PV w)) + O,

27i 27 (u—w)?

where both the u and w-contours enclose V, and lie in U with the u-contour contained inside the w-contour.

2.6.2. Establishing Gaussianity. For any ki, ..., k,, define the cumulant by

Ky ,ohn = Z (-1 'HE H Pr; (

U U--LU,={1,...,N} JEU;

We now check that Ky, ..k, = o(1) for n > 3. By an analogue of [BG18b, Lemma 3.10], the only terms in
Kky,... .k, With non-zero contribution correspond to a forest composed of a single tree and hence ¢ = 1 and
Uy ={1,...,N}. We now check that these terms are o(1). By construction, if a forest has a single tree, its
index set is

K={ji}UU{jn}UA U U4,
and it has CLT weight

Z |An| + Z(bfn -1+ Zcm + #{single edges in T},
m=1 i,m m

where we notice that

Zcm > #{edges in T}.

On the other hand, the size of the index set is at most

1+ Z | A | + #{single edges in T'}.

m=1
By Lemma 2.11(d), the total contribution of these O(N'T2m=1 [Am|+#{single edges in T}y tormg has order
O(N#{lfzi,mw:"fl)fzm cm})7

where we notice that

=D 0 =1) =) em < 1—#{edges in T} <2,

i,m m

This implies that the total contribution to the cumulant is O(N2~"), which vanishes as desired for n > 3.
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2.7. Central limit theorems for growing measures. In this section, we adapt our theorems to a case
where the measures grow in a specific manner. Choose M = w(1), where we recall that f = w(yg) if
limy 00 f/g = 00, so that M, N — oo simultaneously. As before, let duy be a sequence of measures with
multivariate Bessel generating function ¢, n(s). Suppose that there exist a sequence of smooth measures
d)\y with multivariate Bessel generating function ¢, n(s)™, and let dA\y be the pushforward of d\ under
the map X — ﬁ)\’ . In this setting, we have the following extensions of Theorem 2.5 and Theorem 2.6.

Theorem 2.14. If duy is LLN-appropriate for x, then if x is distributed according to dAy, we have the
following convergence in probability

Jim o) = Jim ()] = = P E@) )

v du
2mi’

where the u-contour encloses V, and lies within U. In addition, the random measures 3 Ef\il 0y, with z
distributed according to dAy converge in probability to a deterministic compactly supported measure dA
with [z*d\(z) = p..

Proof. Define @, n(s) := ¢y n(s)*. As in our previous analysis, we have that

—ky—e—ky, Dy, --- Dknq)x,N(XN)
Py N (xn)

which may be written as a linear combination of terms encoded by the graphical calculus of Section 2.4.
The coefficients of this linear combination are independent of N and are monomials in M. By Lemma
2.11(f), the exponent in M is bounded above by —Wy,, where Wy, is the LLN weight of the term. Since
M = w(1), the leading order terms in our situation are the subset of the leading order terms of the case
M =1 corresponding to the terms whose coefficient has the maximal power of M. In particular, this implies
by the proof of Theorem 2.5 that

Elpk, (#) - - pr, ()] = M

—k ”
NERr) = 7 b (B0 + arww) T S o)
— =5 + O N,

where the contour encloses V, and lies within a neighborhood U of V,, and we notice that
% \I,(u)k+1 dl
27

vanishes because ¥ is holomorphic on U. Similarly, we have from the proof of Theorem 2.5 that
~zCov (pk (), pr (a:)) = O(N~1), which yields the desired. O

Theorem 2.15. If the measures duy are CLT-appropriate for x y, then if = is distributed according to dAy,
the collection of random variables

{M'2(pr.() = Elpr()]) e
converges in the sense of moments to the Gaussian vector with zero mean and covariance

lim COV(M1/2pk($)7 Ml/QPl(@)
N—oo

Kl 55 E(u)\ll(u)kJrl*Z\I/’(u)ﬂ

2mi’

du dw
271 27l

=kl 95515E(u)a(w)\p(u)kflqf(w)lleU’l)(u,w)

where the u and w-contours enclose V,, and lie within U, and the u-contour is contained inside the w-contour.

Proof. As in the proof of Theorem 2.6, we analyze for n > 2 the terms which appear in the expansion of the
cumulant Ky, . %, of px, (z),...,pk, (z) as encoded in the graphical calculus of Section 2.4. In particular,
each term with non-zero contribution corresponds to a single tree T on n vertices; such terms have LLN
weight

(2.19) Wy, = i |Am| + i Z(b;” -1)+ i Cm > #{edgesin T} =n —1.
m=1

m=1 1 m=1
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By Lemma 2.11(f), this implies that the exponent of M in each term with non-zero contribution to an nth
mixed cumulant is at most 1 — n.

We now analyze the covariance and the higher cumulants separately. For the higher cumulants,
by the proof of Theorem 2.6 and what we just showed, any n'® cumulant of {py(x)} has order at
most O(N?~"M'~"), meaning that any n'® cumulant of {M'?(py(x) — E[px(x)])} has order at most
O(N?="M*'="/2) = o(1) for n > 3.

For the covariance, we again analyze terms in the expansion as in the proof of Theorem 2.6. Notice that
the coefficients of each term are simply multiplied by a power of M equal to the number of appearances of a
(derivative) of log (bf(! ~(s) which appears in it. As we just argued, this power is non-positive, which means
that any leading order term in this expansion comes from a leading order term in the case M =1 and that
all other terms have order at most O(N~!). This implies that

(2.20) Cov(Ml/zpk(m)>Ml/2pl( )) =M*" z+1y§§,§ u) + M¥(u ))l

< (w) + MU (w)) ((u_lw)ﬁMF(M)(w,u))

where the v and w-contours enclose V, and lie in U, and the u-contour is contained inside the w-contour.
Observe now that for 1 <a <[l and 1 < b < k we have

dw du
kF(l 1) —
%75 (w, )27T127Tl 0

27r1 2

dw du
=/ \b l k—b 1(1,1) _
§1§§£H(w) U(u)' U(w)* °F (w,u)—27Ti 51 0
§£§£ 1 dw du —0
(u—w)? 27i2mi
1 du dw
Ew) U (u) U (w)f e — — =
%55 (w) P ()P (w) (u — w)? 27i 27 0,

where the first, third, fourth, and fifth integrals vanish because the integrand is holomorphic inside the
u-contour, and the second integral vanishes because the integrand is holomorphic inside the w-contour. We
conclude that

dw du

N71
27 27i o ),

du dw
M1/2 M1/2 _ %% E l—lq/ k—lF(l,l)
COV( pe(®), pu(@)) = Kl (u) (w) (w, )27r1 2mi
1 du dw
l u) 1w ——— — +O(NY).
* %yﬁ (w)* (u—w)227ri27ri+ ( )
Computing the w-integral as the residue at w = w in the second integral yields the claim. |

3. ASYMPTOTICS OF MULTIVARIATE BESSEL FUNCTIONS

3.1. Statement of the results. Recall that p = (N —1,...,0). In this section, we study the asymptotics
of the normalized multivariate Bessel function

B(u, A)
B(p, A)
when p deviates from p in only & coordinates. In this case, we may parametrize p as
(3.1) W= (ahag,...,ak,N— 1,...,()Al,...,bAg,...,l)Ak,...70).
for some aq,...,ar and by > --- > b, € {0,..., N — 1}, where l;; denotes that the coordinate b; is missing.

We obtain asymptotics for these p from asymptotics for

tap = (a,N—17...,lA),...7O>
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differing from p in a single coordinate. Our first two results of this section relate these two cases and give a
new contour integral expression (3.2) for the normalized multivariate Bessel function when p = 1, which
will be crucial to our asymptotic analysis.

Proposition 3.1. For two k-tuples ay,...,ar € Cand by > --- > b, € {0,..., N — 1}, we have that

B(u, A) 1) na(@m — br) det (ai —bi B(“aivbﬂ"/\)f .
1,7=1

Blo.N) Alan)A(bw) — \ai—b; Blp,N)
Theorem 3.2. For any a € C\ {N —1,...,0} and b € {N —1,...,0}, we have that

Blrap ) _ _yweps DN = BT(b+ DT(a — N + D(a—b)

By Y at1)
§ ot e e
() 2mi Jg oy 2 z—w Lz —e ’

(3.2)

where the z-contour encloses the poles at e and avoids the negative real axis and the w-contour encloses
both 0 and the z-contour.

Remark. Proposition 3.1 and Theorem 3.2 are parallel to [GP15, Theorem 3.7] and [GP15, Theorem
3.8]. We note that Proposition 3.1 does not involve differentiation and thus takes a simpler form than
[GP15, Theorem 3.7]; in particular checking that the expression of Proposition 3.1 equals 1 when p = p
is straightforward, while the corresponding check in [GP15, Theorem 3.7] is rather delicate. On the other
hand, Theorem 3.2 is more complicated than [GP15, Theorem 3.8], as a single contour integral is replaced
by a double contour integral.

The final result of this section, Theorem 3.4 gives asymptotics under certain asymptotic assumptions on
A in the case where finitely many b; are perturbed. We first specify these asymptotic assumptions. For a
sequence A\', A2, ... where AV has length N, define dpy and dpy by

1 & 1 &
de = NZ&/\?I dﬁN = NZ(S@@V.
i=1 i=1
as the empirical measure of AV and its pushforward under the exponential map. We make the following
assumption on dpy.

Assumption 3.3. The measures dpy have support contained within a fixed finite interval I and converge
weakly to a compactly supported measure dp.

Forby > > by € %Z with b;N € {0,..., N — 1}, define the N-tuple

(3.3) Moo a5 = (ZilN,?igN,...,ZikMN —1,....,byN,... . baN, ..., bpN, .. 0)
We will study the N — oo asymptotics of the quantity
~ ~ ~ B(,u~ anb b 7AN)
By(ay,...,ag;b1,...,bg) := CEARSLLT FAN.
N(a/la , Ak 01, 3 k?) B(p, )\N)

Our answer will be expressed in terms of the moment generating function of the exponential moments and
its S-transform, defined by

e’z 1+2
Mi(2)i= [ 15 5don(@)  Sp(e) = M)

where by Mﬁ_Nl we mean the functional inverse of Mj, as a (uniformly convergent) power series in z. We
also consider their limiting versions defined by

Mj(z) = / 1im:xzdp($) Si(z) == 112 ME1(2).
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Some analytic properties of M5, (2), M5(z), Sz, (2), and S5(z) are discussed in Lemma 3.10 below. Define
finally the function

(3.4) \ipN(c) =clog S, (c—1)+ /log ((1 - c)(—Mﬁ*Nl(c 1)t + es))de(s),

which is holomorphic on a neighborhood of [0, 1] by Lemmas 3.10 and 3.11 and the fact that
{IVJPN(C) =clog S5, (c—1) + /log <cS§N (c—1)'4+(1- c)es)de(s).

Theorem 3.4. If \V satisfies Assumption 3.3, for 51 > e > bk € —Z with b N e{0,...,N —1}, as a
function of ay,...,ax, the quantity EN(El, e ,’dk;gl, cee bk) admits a holomorphic extension to an open
neighborhood U* of [0, 1]* such that uniformly on compact subsets and uniformly in 51, e ,Ek we have
= TG — b)) AMG @ — 1)AM] (b — 1))
BN(al,...,ak;bl,...7bk): = o~
A@A®D) 1,50 @ — 1) — M (b — 1)

ﬁ (ai_gi) /S By~ D) [l +o(1)]
= RYATN — )M (M (b — 1)) /Spy @ — DV o @0 '
Lemma 3.5. The expression
st (@m — b1) A (@ — 1)) A(M; ! (b; — 1))
A@A®b)  TI ;M5 (@ —1) - Mle(bg 1]
& (@ —b) Sy (b = 1) ¥on ()

[

; P 17 — (o — DeNYoy @)
im1 | /M5 (M3 @ — 1) ML (M5! (b — 1)) v/ Spx (@5 = 1)e™Pon

in Theorem 3.4 is holomorphic in @, ...,d, on an open complex neighborhood U* of [0, 1]*.
Proof. Note that N
st @on — b)) AM )@= 1)AM (b 1))
A@A®D) T, (M @ — 1) — M5 — 1)
has no poles in codimension 1 as a function of ay,...,ag, bl, ..., b, on U?*, hence is holomorphic by Rie-
mann’s second extension theorem (see [GR84, Theorem 7.1.2]). In addition, by Lemma 3.10, MgNl(u —1)is

meromorphic on a neighborhood U D [0, 1] uniformly in N and avoids 0 and oo aside from a simple zero at
1 and a simple pole at 0. Noting that MgNl (u—1) € [0,—00) for u € [0,1] and that

(3.5) M (M3l =1) = [ o (),

on a neighborhood of U? the function
(a —b)?
-1, _ 2 -1 _
(M7 (a—1) = M3 (b—1))2Mj (M7 (a—1))Mj (M7 (b~ 1))
has no zeros and has poles contained in the union of hyperplanes {a = b}U{a = 0}U{a = 1}U{b = 0}U{b = 1}.
By (3.5), we may easily check that it has no poles in codimension 1 and hence no poles on all of U2. Similarly,

Szx (u— 1) is holomorphic and non-vanishing on some U. Therefore, for a small enough neighborhood U of
[0, 1], we may choose branches of the functions

a—>b 1
My (a=1) = Mzi(o =1 oy (M3 (o — 1)My, (M3 (b= 1))

and /S5, (u— 1) so that they are holomorphic on U? and U, respectively. Combining these with the fact
that W5, (u) is holomorphic shows that the expression is holomorphic on U k as needed. O

The remainder of this section is devoted to the proofs of Proposition 3.1, Theorem 3.2, and Theorem 3.4.
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3.2. Multivariate Bessel functions and hook Schur functions. In this section we derive some prop-
erties of multivariate Bessel functions through their connection to certain symmetric functions called Schur
functions. Recall that a signature g = (u1,...,un) is an N-tuple of integers such that py > --- > py. For
such a signature, we may define the Schur function s,(x) by

det(xfﬁN_j)N

N,
(3.6) su(x) == 2

g H1§z‘<j§N($i - zj)
as a function on 1, ...,z N. By the Weyl character formula, it is the character of the representation of U(N)

with highest weight pu. Recalling that p = (N — 1,...,0), if g — p is a signature, the multivariate Bessel
function may be expressed in terms of Schur functions as

A(eMA
(6 ) (p>5#_p(6)‘).
AN A(p)
We will consider cases where o — p is a partition, meaning that uy — py > 0.

For a Young diagram of a partition A with k boxes on its main diagonal, we may represent A in Frobenius
notation

A= (ala"'7ak} | 617"'75/6)7
where o; = \; — i, B; = A, — i, and ) denotes the dual (transposed) partition to A. If a3 — N +1>--- >
ar — N +k > N, then for the y defined in (3.1) we see that

u—p=(a1—N+1ljaa—N+2....,a, —N+kk,....,k,k—1,...)k—1,...,1,...,1,0,...,0),
where k appears N —b; — 1 times and k — ¢ appears b; — b; 1 — 1 times. In Frobenius notation, we have that
p—p= (a1—N7...,ak—N|N—1—bk,...7N—1—b1).

The following lemma expresses a Schur function corresponding to a partition with k£ hooks in terms of
individual hook Schur functions s,|g(x), which will allow us to prove Proposition 3.1.

Lemma 3.6 ([Mac95, Example 1.3.9]). If A = (a1,...,ax | f1,.-.,Bk) in Frobenius notation, we have that

sx(@) = det(sq,15,(2))F ;1.

where
B

Sa8(1) = Y (=)' hayrri(z)es—i(x),
i=0
where hy(x) and eg(z) denote the complete homogeneous and elementary symmetric polynomial, respectively.

In order to convert Lemma 3.6 into a similar formula for multivariate Bessel functions, we require the
following version of Carlson’s Theorem from [Carl4] as stated in [Pil05]. This result allows us to show that
identities of analytic functions which hold on certain specializations hold everywhere.

Theorem 3.7 (Carlson’s Theorem). Suppose f(z) is holomorphic in a neighborhood of {z € C | Rz > 0}
and satisfies

(a) exponential growth, meaning f(z) = O(e“11#l) for » € C for some C; > 0;
(b) exponential growth of order at most 7 along the imaginary axis, meaning f(iy) = O(e“2¥!) for y € R
for some 0 < Cy < 7.

If f(n) =0 for all non-negative integers n, then f(z) = 0 identically.

Proof of Proposition 3.1. First, treating both sides of the desired equality as functions of a; —N+1,...,ar—
N + k, by considering the explicit definition (2.1), we see they satisfy both exponential growth conditions of
Carlson’s theorem separately in each variable. Applying Carlson’s theorem to the difference in each variable
sequentially, it suffices to check this for integer a; such that a; — N 4+1 > --- > ary — N + k > N so that
w1 — p is a partition. In this case, combining the relation (3.7) and Lemma 3.6, we see that

B(p, A) _ Alp)

k
(3:8) Bl = a2 (e mvibn, ()

ij=1
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We see that
k ) k
SNNEUDE § PRSI | Gy 1 ETICU DYy SRR § U
A(’u) A(am) m=1 i¢{b1,....,br} Um =1 A(bm)A(am) m=1 i#bm m —
Moving these factors into the determinant in (3.8) and noting that
B(pap, A) _ Alp) A) = (q) Vbt A
BlpA) Al M) = 1;{ o1,
we find that
B(u, A) _ Hmﬂ(am —bi) det ( a; — b; B(Mm,bkﬂ—jv/\))k
B(p, \) A(am)A(by,) a; — bpy1—; B(p, \) ig=1
which yields the result after applying the reindexing j +— k 4+ 1 — j. (]

3.3. An integral formula for multivariate Bessel functions. In this section we prove Theorem 3.2
by combining index-variable duality for Schur functions and the following integral formula for hook Schur
functions.

Proposition 3.8. We have that

e % 56 dzdw 1) ,—a-i- Qw_N_ll—wﬁ*'ll]—V[w—xiz
{0} {0} 27T1 1—w 171’1'2’

i=1
where both contours are small circles around 0.

Proof. We recall that for H(z,z) := Hi]il(l — zz;)~ !, we have that

1 H(z,z)

h = — dz.
l(ﬂ?) 2mi {0} Zl+1 *
We conclude by Lemma 3.6 that
i 8= (z)
Sa\ﬁ %0} 27” sot+2+j H(-Ty Z)
_ 4 g B2 YA {\idg. P
= Py (z,2)z (1) Z(—l) eg—j2" ]
{0} 7=0
dzdw N
= — H(z,2)27*"2(-1)* [ [(w fx-z)(wafl +-~+w*N71+ﬁ)
%{0} &éo} (27i)? £[1 '
?§ yg dzdw 1)85-a—5-2, Nll—w'@“ﬁw—wiz 0
{0} {O} 271'1 1—w i1 1-— Tz '

We may now use Proposition 3.8 to prove Theorem 3.2.

Proof of Theorem 3.2. First, suppose that a > N is a positive integer. By (3.7) and Proposition 3.8, we
have that

B(p*a,ln)\) _ —b—1
oy — VT

with I(a,b) and J(a,b) defined by

I(a,b) % 95 dzdwbalw_N 1 1= Nblj—vlw—e’\iz
{0} J{0} 27i 27i 1—w el 1—6)\"’2

J(a,b) := Ha—z

i#£b

where both contours are small circles around 0. Note that the integrand has z-poles at 0 and e~*¢ and
w-poles at 0 and co. We deform the z-contour through infinity, so that it now encloses only e~*¢ instead

b—i
a—i Sa7N|N717b(e>\) - J(CL, b)I(CL, b)7
i#£b
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of 0 and the sign changes. Simultaneously we deform the w-contour to be a very large circle around the
origin and reverse its direction so it now encloses the pole at co rather than 0. Split now the double contour
integral into two according to 1 — w™¥ =% = (1) + (—w™~?). On the new deformed w-contour, the first part
vanishes, as there is no longer a pole at co. Together, these manipulations yield

N
dz dw 1 w—etiz
I b) = — e v —a+b—-1, —b—1 ]
(,5) 7%6_&.} 271 J{oey 271 I werrd | e
i=1
Let us make the change of variables
.1 . w 1 w
P=—, w=—; ==, w=—_.
z z Z Z
We get for positive integer a > N that
- - N .
dz di 1 L _eri/z
3.9 I b) = za—b+1+b+1 ~—b—1 _ z — I, b
(39) (a,5) 55{} 27i(2)2 5400} omi(z) - 1;[1 ez @b

for

'(a,b) :55 dz dw Zaﬁfbjl H ’Lﬁ)—e ,A7
{ N

e)\,i}Tﬂ'i {O}Tﬁ zZ—w

where the Z-contour encloses the poles at e* and avoids the negative real axis, the w-contour is a large
circle enclosing 0 and the Z-contour, and we use one of the negative signs to switch the orientation of the
w-contour. In addition, we notice for positive integer a > N that

Nepp1 T(N =D)L (b+1)I'(a — N +1)(a — b)'

J(a,0) =] boi_ J'(a,b) == (1)

iy @ I'(a+1)
Therefore, denoting the right hand side of the desired by B(a,b) := J'(a,b)I’'(a,b), we find that
B(:U'a by )‘)
3.10 ————~ = B(a,b forae {N,N+1,...}.
(310) st = Blab) { )

We now complete the proof by checking the conditions of Carlson’s theorem.
B(U'a,bv)‘)

As a function of a, the expression BN is evidently analytic, of exponential type, and satisfies
‘ B(pn+iy,bs A)
B(p, A)
for some C' > 0. On the other hand, notice that J'(a,b) is evidently meromorphic in a with poles at
{N = 1,...,0}\ {b} and that by contracting first the Z-contour and then the w-contour that I’(a,b) is

an analytic function in a of exponential type with I'(N + iy,b) < Cel¥! for some C' > 0. Further, for
a€{N—1,...,0}\ {b}, by deforming the Z contour to co we find that the non-residue term vanishes and

we have
I'(a,b) :yﬁ 0 o1 g,
{0} 271

‘ < CelY! fory e R

This shows that I’(a,b) has zeroes at a € {N —1,...,0}\ {b} and hence B(a,b) is analytic. Finally, J(a,b)
is evidently of exponential type and satisfies .J(N + iy, b) < Cel¥! for y € R and some C' > 0, meaning that
both functions satisfy the conditions of Carlson’s theorem as a function of a — N. We conclude that they
are identically equal, as desired. O

Remark. The definition (3.6) of Schur functions and the principal evaluation identity [Mac95, Example I.1]
imply the index-variable duality formula

$x(a") _ Sa—p(0*"7)

sx(@?)  sa—p(q”)
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Using this and the method of proof of Theorem 3.2, we may also obtain the identity

_ _ N—b—1 n_ i1 b i
(3 11) Sk(laQr"aqb 1aqa7qb+l7"'an 1) :q—(N—b—l)(N—b—Q)/2 H qN 1_qN =1 qb_ql !
S)\(].,..‘,qul) Py q® _quz bl qa_qul
dz dw 20w 01 Ny — gretN—i
X (*1)N7b71§£ 5 G ' H q,\~+N—i ’
(gritN—iy 2T Jigy 21z —w AT

where the z-contour encloses ¢* TV =% and avoids the negative real axis and the w-contour encloses the

z-contour and 0. This identity and its generalizations to other root systems are of key importance in [CG18].

3.4. Single variable asymptotics. The proof of Theorem 3.4 will proceed through the single variable case,
which gives asymptotics for the quantity

B(NaNj;Na )‘N)
B(p, \V)

In this case, we will apply the method of steepest descent to derive the following specialization of Theorem
3.4 to a single variable.

By (a,b) :=

Theorem 3.9. If AV satisfies Assumption 3.3, for be {0, %, ey %}, as a function of a, the quantity
By (a,b) admits a holomorphic extension to an open neighborhood U of [0, 1] such that uniformly on compact

subsets of U and uniformly in b we have

5o a-b /S (b= 1)eNTon ®
By (a,b) = L b o=y [14+0(1)].

1~ 1\ _ av-17 _ 1~ 15 = N¥, . (@
Mo (@=1) = Mz (b=1) \/are (M:1a— 1) MY (M5 (b — 1)) v/Spa (@ — DeV o @

Remark. By Lemma 3.5, the expression
1 a—b Spw (b= 1)eN¥on )
—1~ 1\ _ ar—17 1~ 1 = NV, (@
Mz (a—1) = Mz (b—1) \/M,gN(Mﬁ;(a — )M (M5 1(b— 1)) /S5 (@ — e Vo @

in Theorem 3.9 is analytic in @ on a complex neighborhood of [0, 1].

To prove Theorem 3.9, we need a few asymptotic preliminaries.

Lemma 3.10 ([BV92, Proposition 3.1 and 3.3]). There is a neighborhood U D [0, 1] such that Mﬁ_Nl (z—1)
is well-defined, bijective, and meromorphic on U with unique pole at 1 and zero at 0 and S;,(z — 1) is
holomorphic with no zeros on U. Further, the functions Mﬁ_Nl(z — 1) converge uniformly on compact subsets
of U\ {1} to Mgl(z — 1), and the functions S5, (2 — 1) converge uniformly on compact subsets of U to
S5(z—1).

Lemma 3.11. We have that S5, (2) > 0 for z € [~1,0] and that

550) = | eSde<s>]1 ad S5 (1) = [ dpn(s)

Proof. The first statement follows by [BV92, Proposition 3.1(3)] and the latter two are straightforward by
series expansion in the definition of S5, (u). O

Proof of Theorem 3.9. The argument is based on the steepest descent method, cf. [Erd56, Cop65]. We
deform the z- and w-contours in the double contour integral representation of Theorem 3.2 so that they
pass through the critical points the z and w parts of the integrand (multiplied by (z — w)). The leading
contribution to the asymptotics is then given by integrals over small neighborhoods of these critical points,
where we can consider Taylor expansions of the integrand. We now present the technical details. Define the
function

ha(w) i= [ log(e? ~ ¢*)dpa(s)
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for which we have that
ho(y) =2 —1— Mz (e™")
hy(y) = e M, (e7")
B (y) = —e VMY, (e7Y) — MY, (V).
In particular, for € U \ {0,1}, by Lemma 3.10, h,(y) has critical points at — log Mﬁ_Nl(x — 1) + 27iZ. We
define
Yp = — log Mﬁ_Nl(ac -1
to be the unique critical point of this form with S(y,) € [0,27). Notice in particular that
eTMT (e — 1)
(1- e‘f‘"‘tMl;N1 (x —1))2
s+tar—1(,. _ sttpr=1l(. _
WY (g + ) = / oMy - D e M 1)
(1 —est' Mz (z—1))°

For 1/2 > ¢ > 0, define the counterclockwise contour

(3.12) Wi 1) = [ dpn(s)

(3.13) dpn(s).

T.:={x—ic|z€[0,1]} U{l +cexp(2niz) |z € [-1/4,1/4]}U
{r+ic|ze|0,1]} U{eexp(2nix) | z € [1/4,3/4]}

shown in Figure 3.1 which encloses [0, 1] and maintains a distance ¢ from it.

FIGURE 3.1. The contour Y.

Plugging in the value of y,, we obtain the expressions
-1
Mz (x—1)

_ ) Mg (1)
0. M Mz — 1)

axMﬁNl (x—1)
from which Lemma 3.10 implies that h)(y,) and h’'(y,) are meromorphic as functions of z. Furthermore,
for ¢ € [0,1], by the expression (3.12) and the fact that MgNl (x — 1) is non-positive, we see that h(y,) is
differentiable in z and h!/(y,) < 0 with zeroes only at = € {0,1}. In addition, by the expression (3.13) we
see that h})/(y,) is differentiable and bounded on z € [0,1], with zeroes at € {0,1}. By Lemma 3.10, all
of these properties hold uniformly in N for large enough N. We conclude that there exists C1,Cj,CY > 0,

e > 0, and 7 > 0 so that for large enough N we have uniformly in N and b by the fact that |hZ(yz)| is
bounded for @ € [0,1] that

h (Ya) and B (ye) = [07 M (a=1)][0. M (a— 1) [M ] (2 —1)]?

PN

(3.14) W (yz)| € [C71,C1]  foralla € Y.
and by the boundedness of |hZ'(yz)| for a € [0, 1] that
(3.15) [RY (yz)| < C1 foralla € Y.

and by the boundedness of |17 (y;)| for b e [0,1] that

(3.16) W (y;) € [-C1, —Cy '] for all b € [r,1 — 7]
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and by the fact that h7/(y;) is non-positive on [0, 1] and has zeroes and is differentiable at b e {0,1} that
(3.17) W (y;) < —Cibforbe [0,7]  h(y;) < —Cj(1—b) forbe [1 - 7,1]

and by the boundedness of A7 (y;) for b e [0,1] that

(3.18) B ()| < Cy forbe[r,1—1]

and by (3.13) and Lemma 3.10 that uniformly in |¢| < 7, we have

(3.19) B (5 + 1) < Cibfor be [0,7]  |h(yz +1)] < CY(1—b) for be [1 —7,1].

From now on, we fix this € > 0. Define the domain V; to be the interior of the region enclosed by Y.

Notice that both By (5,5) and the claimed asymptotic expression are analytic in a for each N by Lemma
3.5. Therefore, if we can show uniform convergence for a € Y., then this will show that their differences
form a sequence of holomorphic functions on a neighborhood of Y. U V. which converge to 0 on Y.. By the
Cauchy integral formula, this would imply that the difference also converges to 0 on V.. Thus, to prove the
desired statement for U = V., it suffices for us to prove it for @ € YT.. For the rest of the proof, we will
therefore assume that a € Y.

We now define

dz dw 23N w=dN=1 Ny, AT

I(@,b) :=
(CL, ) fieAN} 27i {0} 27T1 zZ—w iy Z—eAf\j

so that N N N

N —BNEGN + DEGN = N + )@= BN 5
T@N + 1) “

by Theorem 3.2. Choose M > 1 so that max{e®, e *} < M for s € I, where I is the interval from Assumption

3.3. Given this M, choose ky so that as N — oo we have

B(@h) = (-0-vn

k2
(3.20) ky = w(1) and M’“NWN = o(N'/?),
We divide the analysis into several cases depending on the value of g, where we wish to obtain convergence
uniform in b in each case. _
Case 1: Suppose that ky/N < b <1 — ky/N. Make the change of variables w = e* and z = e* so that

160 = 5% ) =g ow (V0 i),

where the z-contour I'% is a positively oriented contour around {A\N} and the w-contour Z/E connects y; to
y; + 271 while staying to the right of T';.
Case 1, Step 1. We deform I'; and Efl; to steepest descent contours. For Eé«, notice that hy(y) has a unique

critical point at y;. In addition, because be (0,1), we see that y; € (—00,0) + 7i and that

Ris(w) = Rly) ~ [ logle — e*ldp (5)

which implies that on the vertical line segment passing through y;, Rh;(y) is minimized at y € y; + 27iZ.
Putting these facts together, we deform Z/Z to the line segment X between y; and y; + 27i so that the
resulting contour 3J; satisfies the following properties uniformly in V:

e X7 lies within {Rh;(y) > RNh;(y;)} away from its endpoints, where we note that Jth;(y) may be
infinite on ¥;

e for points on ¥z, in constant-size neighborhood of y; and y; + 27i, the value of R[h;(y) — hz(y;)] is
smaller on this neighborhood than its complement;

e 3 has bounded length.

For I'Z, notice that hz(y) has a unique critical point at y; and that Rhz(y) is harmonic away from I + 2miZ.
Therefore, at least one of the components of {Rhz(y) > Rhz(yz)} has compact closure and contains either
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suppdpy or suppdpy + 2mi. In addition, for 7 > 0 to be determined later, we see by the weak convergence
of dpy to dp that Rhz(y) converges uniformly on compact subsets of

ni=C\{z ||z —w|>nforwe I+ 2nmiZ}

to the function Rh2°(y) for
() =y — [ logle? ~ edpls).

As a consequence, the intersection of the level set {Rhz(y) = Rhz(ya)} with D, converges to a fixed contour.
Because yz € D, for small enough 7, for small enough 1 > 0, there exists some small ¥ > 0 so that the
line through yz in the direction of [—h%(yz)]~*/? intersects {Rhz(y) = Rha(yz) — v} at least a fixed distance
away from yz for large enough N. Notice that the union of {hz(y) = Rha(yz) — v} and the line through
yz in the direction of [—h%(yz)]~'/? contains a loop which encloses either supp dpx or supp dpn + 2mi. We
deform T'Z to the closed contour I'; defined as the pieces of the contour forming this loop.

Notice that I'y N D,, converges to a fixed contour, while I'; N (C \ D,)) lies within a single connected
component of C\ D,, hence has bounded length. We conclude that I'; satisfies the following properties
uniformly in N:

e in a constant size neighborhood of yz, 'z is a line segment in the direction of [—h% (yz)] /2, and the
value of R[hz(yz) — ha(y)] is smaller on this neighborhood than its complement;
e ['; is a closed loop passing through y; which encloses supp dpy or supp dpy + 27i;
e I'; lies within {Rhz(y) < Rha(ya)} outside of yz and D,;
e ['; has bounded length.
We illustrate the two contours ¥; and I'z in Figure 3.2. After these two constructions, we see that

e Rh;(y) achieves a global minimum on Y5 at y; and y; + 27i;
e Rhz(y) achieves a global maximum on I'y at yz.
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FIGURE 3.2. Schematic configuration of the contours 7 and I'z

In the course of the deformations described above, we may pick up some residues. Denoting these residues
by R(a,b), we find that
I(@,b) = I'(a,b) + R(a, b)

95 27”515 o (N(ha() — (@)

R(@,b) :== ) — exp ( (a— b)w),

= 2mi

for

where = is a closed contour which is either empty or has endpoints on I'z N3, and we adopt the convention
that exp(Nhg(w)) = 0 if Rhz(w) = oo. Note that the contours I'z, ¥z, = may depend on N, but in what
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follows, we will use only the properties specified above, which hold for all large enough N. Define d; =
55(N) > 0 and (532 &g(N) > 0 by
(3.21) 0 =N"25 65 = NP (y;)| /7
so that 0; = o(1) by (3.16), (3.17), and the fact that b€ [kn/N,1—ky/N]. For these choices, define the
decompositions I'; = 'L UT2 and X; = Z% L E% for

]'—% = B(ya>5a) nIg, F% - FE\F’(lia z% = [B(yg»fgg) UB(yE+27rlv(;E)] mEEv 2’12; = EE\E%

Since 62 = o(1) and §§\h/g’(yg)\ = 0(1), for large enough N, we have uniformly in @,b that
1

(3.22) Rlha(ya) — ha(y)] > Z\h%(yaﬂf% for y € I';
1

(3.23) Rihz(y) — hy(yg)] > g\h'é(%)wf fory € Z%.

We now analyze I'(@,b) and R(a,b) separately.
Case 1, Step 2. We claim that

—i 1
L= a0 () e ()

(3.24) I'(@,b) = eNlhala) =k wa)l(1 4 o(1))

b

where we take the standard branch of the square root. Consider the decomposition

I'(@,b) = I,(a@,b) + I(a, b) + I3(@,b) + Li(a, b)

I (a, b) = lyb 0 [}él exp (Nh;;(%)) Qdi] l;}il exp ( — N(hg(@)) ;ifl]

1-—

1
b

yﬁ éii b, e o (M0s(2) )

o~ dz dw 1 1 N
I4(a,b) := }él o ggzz o [1 — e 1_ eyg_ya} exp (N(h’d(g) - h’z;(w)))
a b

where we note that yz = —log ]\/[/;N1 (@—1) and y; = —log ]\/[/;N1 (b—1) are not equal because the domains Y.
and {0,1/N,...,(N —1)/N} of @ and b do not intersect and Mﬁ_Nl(u — 1) is bijective on U by Lemma 3.10,

meaning that 1 — e¥%Ya £ 0. We first analyze I, (@, b). For z € {a, 5} and |y — y,| < 0, we have the Taylor
expansion

for

1 1 .
ho(y) = ha(ya) + ShE (W) (y = ya)* + ShE (W)Y = 92)°,
where &,(y) € B(yz,d,). Consider the resulting decomposition

(3.25) J(@) = ?é e (Nh-,;(%)) 2‘% = J1(@) — Jo(@) + J5(a)

for

T1(@) = eNhalva) 55 R ) F-va)? 92
Lz 27

Jo(@) = eNhava) % efhf{(ya)(z—ya)Qﬁ
55—1—‘1 27T1

Js(@) == eNha(ya)§£

Tt
a

e i (wa) F-va)” (eﬁh::’(fa@))(z—ya)?' B 1) 2de
1
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where (5 is the line passing through yz in the direction of [—hZ (ya)]_l/ 2. The main contributing factor will
be

° dt —i
(@) = eNhala) [_pt (e —1/2/ x4t U Nk,
1( ) [ a(y )} e 2 27TNhg(y5)
In this expression, notice that
1~ 1~ a—1 - 1~
hg(ya) = M5 (a— 1) M5 (M7} (a— 1)) = — S (a- D)MF (M50 (@~ 1)),

where the loop each term in the final expression traces out for a € T, does not enclose 0, meaning that we
may choose a branch of the logarithm such that /hZ(yz) is well-defined for all @ € T.. We now bound each
other term relative to |J1(a)|. Notice that for large enough N, we have by a Gaussian tail bound that

~ (e _ dt
1a@)| < |00 | = )| 2 [ =
(—00,—da|hY (ya)|*/2[]Ulda|hy (ya)|'/2,00) T

N 42
,it

< 2]eNhaWa) || B2 (yg)| "2 - e 7%l va)l

< e @M @)

for some Cy > 0, where the last inequality follows from (3.14) and (3.21). Similarly, we have for large enough
N that
dalhiwa)l?

@) < eV ) [ o
—5alhg (va)| /2

Y (€a(ya+-hY (va)] =2 D) g )] /26 _ | 9E
2w

. IR AVE
< [Nt )| 2N 2
—831h% (ya)|V/2VN

ds

LnY (&alya+—hY (wa)l~/28)[=hY (ya)] 22N> _ 1] ==
2

e6'’a

< C303NY2| 1 (@)l
= C3 N~ 1, (@)
for some C3 > 0, where we use (3.15) and (3.21) in the last two inequalities. We conclude that

—i

a) = e a(ya) o .
J@) = e+ o)
Consider now
- A - - -
(3.26) K@) = 515 exp(- N (@) o = K1 (5) ~ Ka(B) + Ks (D)

b
for
3~ Nhy(yp) — N () (T—)? QW — N () (@—yy—2i)? A0
Ki(b):=e 5 \Yp e 2 \Wg 8 —— 4 e 2 (g b —
L ¥4

+ 2mi - 2mi
b b

K (B) = e~ NTi(5) §£ o~ EH ) (@) T0 +§1§ o~ 0 () @y —2mi)? 4D
¢+~ B(y;.0) 2mi - Jom By +2mib) 2ri

Ks(b) = e~ Nhaus) }Zﬁ o= AR () (T-yp)? (e%h%”(ig(ﬁ))(@*yg)s _ 1) dw
J51nB(y;.0) 2mi

+§1§ o= AR () (- ~2mi)° (e%hg'@g(w))(mwr%iﬁ _ 1) duw
SINB(y;+2ri,s) 2mi

where E; is the upwards vertical ray through y;, EE_ is the downwards vertical ray through y; + 27i, and we

note hZ(y + 27i) = hy(y) and N[hg(y; + 2mi) — hy(yy)] = 27iNb € 2miZ for bN € Z. As before, the main
contributing factor is

K,(b) = e*Nh};(yg)[hﬂ(yg)]*l/z/ ef%tzdit. — ;G*Nhg(yg)'
b e 2mi QWNhfg(yg)
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For large enough N, we have by a Gaussian tail bound that

K (B)] < e VD | )| 1 / i
(—007—5~|h”(vg)ll/zlu[%lh’g(yg)\1/2700) 2

< 26_Nhg(yg)|hlg/(yg)| 1/2 ,— % 6210 (43)]
= 26N ) | )| 71/ 2~ NI /2
= [K1(b)|o(1),

where we apply (3.21) and the fact that N|hL’( b)| = w(1). Similarly, for large enough N, we have

5512 () |1/
|K3(0)| < e M) |n (y;)|~1/2 V P e | R (B ()] T PO )] 1’ at
0
0 N 42 1" 7 1/2 7 —3/2,3 dt
+/ om Nt | AR g 2t ()] 20 R )22 | dE
,5E|h/g/(yg)|1/2 2w
51y (yp) M2 VN .
< e*Nhg(yg)‘hg(%)‘,1/2N71/2 [/ 511 Wy 6*552 e*iéhg,(&g(yg“’i[*h%(yg)}_1/25/\/ﬁ))[*h£(yg)]_3/233/\/ﬁ
0
0
+/ o35 | iEhy (G yptamitil=h ()] 712/ VD)) =i (yp)) =25 VN _ 1’ :
=&1hY (yp) |12V N

If b € [r,1 — 7], then uniformly in s € [0, &5|hfg(y5)|1/2\/ﬁ] we have
O2h! (& (yy + [=hf (yp)] /% /VN)N = o(1).
Otherwise, by (3.19), we have uniformly in complex ¢ € B(0, ;) that
R (s + 1) < CYbifbe [0,7) W (yz+1)] < CY(1—b)ifbe [l —7,1],
meaning that uniformly in s € [0, 57| A7 (y;)|'/2V/N] we have for b e [0,7] that
2B (€505 + 3T p) ]2/ V)N < CEN /(0 () |5 = O((BN) %),

A similar argument shows this bound for b € [1 — 7, 1] and for |5§hg/(§3(y5+ 2mi+ i[—h’;’(yg)]*l/Qs/\/ﬁ))NL
We conclude that
[K3(B)| = O((bN) /)| K1 (b)] = Ok ™) [ K1 (B)] = | K1 (B)] - o(1).
We conclude that
K(b) = ;e—“s(yz)(l + o(1)).
2N ()

Putting these computations together, we conclude that

eN[ha(ya)—h’g(y’z;)](l + o(1)).

(3.27) I(a,b) =

—i 1
L e e N a) 12 )

We now bound I»(@,b), I3(a,b), and I4(a,b). For Iy(a,b), by (3.22) and (3.14) and the construction of I'z,
on I'2 we have

exp (N (ha(2) — b)) )| < exp ( — () 52N) < =N

for some C' > 0, which implies by the fact that I'z and 35 have bounded length that

L@ 0)] < =N exp (N(halya) - y(v5))) = 11 (@5)] - o(1)

ds
o
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uniformly in @,b. Similarly, for I5(a,b), by (3.23), (3.16), (3.17), and the construction of I';, on 1"% we have
for large enough N that

‘eXP (N(hg(yz) - hZ(w)))‘ < exp ( — i|h%(yg)|5§]v) — e—[N|h’E’(yE)|]1/5/4.

This implies by the fact that I'z and X7 have bounded length that

L(@.5)] < e~ INIH R 1/ /4 Nha(ya) 55 g§
|55 (@, )| € ’ 27 27

where in the second step we apply a standard steepest descent analysis in z.
For I4(a,b), for Z € T't and w € I%, since dz = o(1) and d; = o(1), we have for large enough N that

sz (Vha(D) | = o) @D

1 1
‘ 1—e—2 1 —¢Y%Va (9 + d3) = o(1)

’ eYsYa

(1 — eyg—ya)2

uniformly in b. We conclude that

3.98 - 5 dz — dw ~
Ii(a = Nhz (%) N h; (w) . ~
(3.28) [14(a, b)| = o(1) [5626 5 i} l?gle b i} =o(1) - [I1(a,b)|.

Combining our expressions for I1(a,b), I (’d,;l;), I5(@,b), and 14(a,b) yields (3.24).
Case 1, Step 3. We now account for R(a,b), which is given by

1
@—BN[
where ¢, ¢z are the endpoints of = which lie on I'z N 3. For large enough N, these endpoints must lie on
rZn E%, so we see by (3.22) that

R(a,b) = N@ber _ ezv(a—aﬂ

)

-~ 1
R[(@ = b)ei] = Rlha(ei) — hylen)] < Rlha(va) = hy(yp)] — 176 (va) 107,
which implies that
(R(@,B)] < e H 100N exp (N (halya) — hy(y)))| = o1) - 11'@,5).
We conclude finally that

~ —1i 1
I(a,b) = S eNlhala)=hs (W)l (1 4 o(1)).
L O 2N R 1 ()

J(a,b)
I@pb)’

Case 1, Step 4. It remains to analyze the prefactor Applying Stirling’s approximation, we see that

(N — BTN + 1) = 27 IﬁzNNaNugﬁykﬂNﬁNu+oa»

For each a € C, choose one of two branches of the logarithm such that the branch line avoids the set [a— 1, d]
in the complex plane. For this branch, we see that

I'(aN — N +1)
log TN 1+ 1) ZlogaN i)
N-1
=—NlogN — > log(a—i/N)
=0

=—NlogN — %[log(a) —log(a—1)] — N/ log(a — z)dz + O(N 1)
0

=—NlogN + N — %[log(?i) —log(a —1)] — (1 —a)log(a — 1)N —alog(a)N + O(N~1)
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uniformly in @, where we apply the trapezoid rule. Exponentiating, we find that

TGN-N+1)  nn 1/a—-1\av 1
—:N
TGN + 1) ¢ 3 ( a ) G- 1N

[1+o(1)],

where we take the standard branch of the square root in
for a € T, and therefore has holomorphic square root. We thus conclude that

L(E _ 1)(1—5)1\1”551\/

-+ DV —BN)T(ON + DI @N — N+ D)(@—-b)N _ s I i
=1 I'(@aN +1) 2 b)N\/E(lal)ﬁN(al)N[H W
and hence

N N / b b 1)0- b)NbbN —Nhz (y3)
By (a,b) = A [1+0(1)],

1—eY%s— Ua\/m\/hff\/il_a—l G.Na_l) ha(ya)

where the o(1) is uniform in @ and b. Substituting yz = — log MH_N (@—1) and y; = —log M '(b—1) and
noting that

(1 —c)log(c— 1) + clog(c) — he(ye) = ¥py (c),
we find that

M- 1)

Br(@,b) = M H(b—1)— M (a—1)

a-b \/7N‘I’PN
VNG - DML (M2 @ - D)y M (5 — DM, (M b - 1) /e o @ [1+o(1)].

Finally, since be (0,1), for the standard branch of the square root we have

M E- ) 5 w®-1 s 6-1)

VMG - )M (M3 (b 1) b1 \/M’ (M3} (b 1)) \/MéN(M/;NI(Z—l)).

Similarly, for @ € T, we see that

\/Mﬁ—lj(a—nM[g( Ya—1)) ,/a_l \/SpN ML (M3 (a - 1)),

where each of the arguments for the square roots on the left lie in the right half plane, meaning that this
equality holds~f0r the standard square root. Substituting these equalities yields the desired result.
Case 2: 0 <b < ky/N: Contracting the w-contour through 0, we find that

N N
1@0) == Zyﬁ }27T1 Hen(eM ) b)NHCH AN’

k=0 z—en

where e, is the k' elementary symmetric polynomial. Because AY are all contained in the fixed finite
interval I of Assumption 3.3, we have a uniform upper bound eM < M. This implies that

k—1

N
p1(€_)‘i )k N Mk i NkMk )
P ") < 2 _ —1)---(N = — _ — .
= en(e™)| < = (N N(N=1)--- (N —k+ 1)) - (1 gu Z/N))
Notice now that
kE—1
N N — 1
log H(l —i/N) > N/ " log(l1 —z)de = —(k—1)+ (k— N —1)log #,
i=0 0



GAUSSIAN FLUCTUATIONS FOR PRODUCTS OF RANDOM MATRICES 39

which implies using the fact that 1 — e < e™¢ that

k—1 _N_— 2
[[a—i/n) Zel_k<1—%)k o ZeXp(l—k— (k_1)<13v_N_1)) = U7
=0

These imply that if Mk% = o(1), then uniformly in k& we have
—AN\E
—AN pile
en(e M) = %[1 +o(1)].

By the bound on 0 < b < kN/N and (3.20), we find that

dz N* [ pi(e Aﬁv)

oS N k pie ) (@G—b)N+k
I@b) =e E §1§ }27“ T ( N Hz—61 (14 0(1)]
~ _ bN AN Ry
_ E./\ﬁv¢ 92 (qyvein N (e ) ) vy
S > : — e + o(1
T omil Y (bN)! N et
) iy AN bN

— A v A (male ) SR

(bN)! N 2rNh2 (yz)

where the second step holds uniformly in b because we replace the sum by the asymptotically largest term
and the penultimate step is by a steepest descent analysis in z similar to Case 1. In this setting, we conclude
as before that

(@N — N +1) v fJa—1 1
- 7 - N — 11 1
TGN +1) N T Gonaargnw L el
and that
DN — BN) = |25 NN=BN(1 _ ) 3=BIN o= N+BN [y | o)),
(1-D)N
We find that

By (a,b) = —

~ T N NDBN oS AN BN L (1 _py(A=b)N
o <p1(e_Ai)> : : m( | [1+0(1)]

halya) \ N [ L eNToy (@

uniformly in @ and b. Notice now that

MzIb-1)7t = —Wu +O0(ky/N)]  and %m(e-ﬂ ) = / e dpy(s).
Noting that k%, /N = o(1), we find that
exp (Nhlyp)) = (~)N M7 (b= 1)V em = exp N/log(l — Mz (b=1)" e ) dpn (s) )

= (—1)AINGEN ( (o= AT) /NN o= ZAY exp (NM,;;(E— 1)1 /e_sde(s) + O(NBQ)) 1+ 0(1)]

— (—1)INEN (py (M) IN) N e T AT ¢ TIN[1 4 o(1)]
and that

" _ SMN (b_l) _ 7 T2\ _ T 0
o) = [ ey () = B 00 = Tt o)

e¥sVa = MﬁN (b—1)"te ¥ =o(1).
uniformly in b. Together, these imply that
b1/ 1

- - . ~ N -
eN\I/pN(b) h//l( ) o _ 71(1 7 b)(l b)N(p1(e A; )/N)bNezl ; 6 [1 +0(1)]
Y%
b
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Substituting in, we find that

B = / N\ppN
Ba(@,b) = a—b 1+o(1)],
1—e%™ yam /hL’ / N\IJPN

which simplifies to the desired expression.
Case 3: 1 — ky/N < b < 1: After deforming the w-contour to oo, we obtain

k+1 (@+1-b)N—k—1
z ygw (1)) H -

z—eM
The remainder of the analysis then proceeds similarly to Case 2. (Il
3.5. Proof of Theorem 3.4. By Proposition 3.1, we have that
BN (@1 k3 b1y bp) = In(@1, oy ki b1y be) I (@1 Gk by D)

for

_ ~ 7 TN Hm#l(amN—glN) _ Lna(@m —b)
IV b B N G NAGN) | @A)

- k
~ ~ — @ —bIN Bl vi o AY)
In(ay,...,ax;b1,...,0x) : (—1)k(kz>1)det<((al bi) lN’b"N) )
j=1

N —b;N)  Blp, AV

B,j=

By Theorem 3.9, we have

~ k
5 o~ ~ E(k—1) 61 — bi ~ 7
IN(al,...,ak;bl,...,bk):(—1) 2 det = E BN(ai,bj)

ij=1
= (-1 det | — !
N (az_l) M~ (b —1)
~ k
@ — b, Sy (b — 1)eNTon (b5)
b a. NV, (a;) [ + 0(1)]
VOV s — )My, 1, — 1)) v/ Gt~ DN o B
1,)=
k
(—1)"=" det ( ! 1+ (1)])
- (— o )
1

Mz (a; —1) - (b; — 1) -
ﬁ (az *ng) SﬁN (gl — 1)6N‘IIPN(EL')
= \/ pN al B 1)>MéN (Mﬁ;Nl(gZ - 1)) SﬁN (az - 1)€N‘IIPN (a:)

A(M; (a; — 1))A(M~ (bi — 1))
[T, (M7, @ = 1) = M7 (b — 1)
k (Et *ng) SﬁN (gl - 1)6N@PN(EZ')
3 — | [L+o(1)],
i= 1 \/ ))M’ (Mf’;]\}(bz — 1)) SﬁN (57, _ l)eN‘ijN(az‘)
where uniformity in by,. .., by follows from the corresponding uniformity in Theorem 3.9 and where in the

last step we use the Cauchy determinant formula. Combining these asymptotics yields the desired.
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4. PRODUCTS OF RANDOM MATRICES

4.1. Multivariate Bessel generating functions for matrix products. For a N x N Hermitian positive-
definite random matrix X with measure do(X), let g = (1 > -+ > pn > 0) be its spectrum, which inherits
a measure do (). If the log-spectral measure of X is p-smooth for p = (N —1,...,1,0), then its multivariate
Bessel generating function with respect to p is given by

(s, logu
4.1 .
(4.1) B (. 1oz 1) do (1)

In this section, we will only consider multivariate Bessel generating functions with respect to p, so we will
omit the N-tuple x of (2.2) from the notations. In the following two lemmas, we prove the key property
that the multivariate Bessel generating function is multiplicative over products of matrices.

Lemma 4.1. When s is an integral signature such that s—p is a partition, the multivariate Bessel generating
function of a random matrix X with smooth log-spectral measure takes the form

1

X = .,
s—p

[ xe-n(X)da(x),
where Ls_, is the highest weight representation of gl corresponding to s — p and x,—, is its character.

Proof. By the Weyl character formula, for a matrix X with spectrum pu, we have

det(:u’z )’L] 1
Xs—p(X) = W

Combining this with (2.1) and (4.1), we find that

det(1;”)A(p) 1 /
= | ——2——=d = — s—o(X)do(X). O
¢X(s) A(N)A(S) U(/J‘) dimLs_,, X P( ) J( )
Lemma 4.2. Let X; = Y'Y; and Xo = Y5'Ys be Hermitian random matrices with spectral measures

do1(X1) and dos(Xs), and let X3 = (Y1Y2)*(Y1Y2). If the distribution of X5 is unitarily invariant and the
log-spectral measures of X; and X5 are smooth, then we have the identity

¢X3 (S) = ¢x, (s)¢X2 (S)

of multivariate Bessel generating functions.

Proof. Both sides satisfy the exponential growth conditions of Carlson’s theorem (Theorem 3.7), so it suffices
to check this for integral signatures s such that s — p is a partition. Noting that X3 has the same spectrum
as X7 X9 and the functional relation

/ Xs_p(XlUXgU*)dHaarU = Xs—p(Xl)Xs—p(X2)
U

dim Ls_,

from [Mac95, Lemma VII.4.2] and [Forl0, Proposition 13.4.2], we may compute by Lemma 4.1 that

0x,(5) = g ] Xep (X1 X (X))

dlmLSp/ //Xé p(X1UXoU")do1(X1)doa(X2)dHaary

- @diles_p)?/Xsp(Xl)dol(Xl)'/xsp(Xz)dgz(XQ)

= ¢X1 <8)¢X2 (8)7

where we apply unitary invariance in the second equality and note that the log-spectral measure of X3 is
smooth by this expression for the defining integral of its multivariate Bessel generating function. ]



42 VADIM GORIN AND YI SUN

4.2. LLN-appropriate and CLT-appropriate measures. For each N, let Y3, ..., YJ@ be N x N random
matrices which are right unitarily invariant, and let X := (Y)*Y};. We will study the log-spectral measure
of

Xy = Yn Y)Yy YR),

which is a N x N positive definite Hermitian random matrix. For this, notice that the multivariate Bessel
generating function of such measures takes a simple form.

Corollary 4.3. The multivariate Bessel generating function of the log-spectral measure of Xy is given by

k
dxn(5) = [ [ oxi, (9)-
i=1
Proof. This follows by iteratively applying Lemma 4.2. |

Lemma 4.4. If the log-spectral measures of X }V, o, X ]’% are LLN-appropriate (CLT-appropriate) for some
U, (u) (Aj(u,w)), then so is the log-spectral measure of Xy for

U(u):= Z U, (u) and Alu,w) = ZAi(u,w).
i=1 i=1
Proof. This follows directly from Corollary 4.3. O

Remark. Corollary 4.3 reflects the fact that the log-spectral measure of Xy depends only on the distribu-
tions of X% = (Y3)*Yy. In what follows, we will state our results in terms of the distribution of X¥; instead

of Y}, meaning that they will hold for any distribution on Y3 for which X% 4 (Vi) Yi.

‘We now give several situations in which the spectral measure of a single random matrix is LLN-appropriate
and CLT-appropriate.

Theorem 4.5. Let Xy be a sequence of unitarily invariant N x N positive-definite Hermitian random
matrices with spectrum AY. If the empirical measure of AV has support contained within a fixed finite
interval and converges weakly to a compactly supported measure dp, then the log-spectral measure of Xy
is CLT-appropriate with

U(u) = —log Sz(u —1)

A(u,w) = L — 1
T N (= DML (w - D)L - 1)~ M (w— D) (- w)

Proof. By definition, we have that
B(s,log AN)
B(p,log AN)’

which means that for s = p; - 7 7 from (3.3), we have that

d)XN (8) =

Pxn ('uﬁh...ﬁk;gl,w,gk) = BN(al’ < @riby, bk)

For I = {i1,...,ix}, notice by Theorem 3.4 and the fact that uniformly convergent sequences of holomorphic
functions can be differentiated that

~ 7T N —i
A =Ty, o ="

1 1 ~ - ~
787“1;1 log(ﬁg(N(TN) = N 851 [logBN(ala . '7ak;bl7' . '7bk)}

N =V (r;,)+o(1)

uniformly in 4, I, and ! in a neighborhood of [0, 1]/, where we recall from (3.4) that

\T/,,N (r) =rlog Sz, (r— 1) 4+ log(r — 1) + /log(Mi)TNl(r — 1)t —e%)dp(s).
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Taking the limit N — oo and applying Lemma 3.10, we find that

- Si(u—1) 1 DMt (u—1)71
im —U. (u) = —log S5(u— 1) — u—~ - S
1\}1—1&; Von () log S5(u — 1) uSﬁ(u —-1) u-—1 ngl(u — 1)l —es dpls)
Si(u—1) 1 9
- _ g — 1)y P _ Y W —1(, _ 1\-1
= —log Sz(u—1) uS~(u ) u=1 ulMz " (u 1)8uMp (u—1)

= —log S5(u —1).
Again by Theorem 3.4, we have that

Oy, Oy, log ¢k (rN) = 95,05, [log By (@y, ..., @ b, ..., by)] | ——
Am=Tip Om="F

1,1
= Fy (1, 13,) + (1)
uniformly in 41,45, I, and 7! in a neighborhood of [0, 1]/*! for
Fy(u,w) = log(MgNl(u -1) - MgNl(w —1)) —log(u — w) = F(u,w) + o(1).
Noting that A(u,w) = F1Y (u, w), we conclude that X is CLT-appropriate for ¥(u) and A(u,w). O

We now consider the Jacobi and Wishart ensembles. At § = 2, the Jacobi ensemble with parameters «
and R > N is the process on N points in [0, 1] with density proportional to

N
[T =2 [T ta = r.
i<j i=1
Let Y be a N x (a+ N — 1) submatrix of a Haar distributed matrix from the unitary group Us+r+n—1; then
by [Forl0, Proposition 3.8.2], the Jacobi ensemble is the distribution of the eigenvalues of Y*Y. Alternatively,
as discussed in [Forl0, Proposition 3.6.1], it corresponds to the spectral distribution of the matrix

-1
(XAR)*XAR((XAR)*XAR n (YNR)*YNR) 7

where XA% and YV are A x R and N x R matrices of i.i.d. complex Gaussians and A = o + R — 1. We
now show that this ensemble fits into our framework, for which we must introduce the Heckman-Opdam
hypergeometric function at 8 = 2.2 It and its normalized version are given by
. Fr(s) B(—s,—r)
Fr(s) == A(r)B(r, s) and Fr(s) == = - .
]:r(_p) B(/L _T)

For parameters a1,...,an,b1,...,bg so that a; +b; < 0, the Heckman-Opdam measureonry > --- > ry > 0
is given by the density F,.(a)F,(b)Z(a,b)~! for the partition function

N R
(12) 2(a.b) = [ 11 _al_bj -/ _ F@)F b

i=1j=1

where the second equality is a continuous version of the Cauchy-Littlewood identity; we refer the reader to
[BG15a] for a generalization to general 5 random matrices.

Theorem 4.6. Let X, p ny be a random matrix from the Jacobi ensemble with parameters o and R. If
R/N=R+O(N7!)and a/N =&+ O(N~1) as N — oo for some R > 1 and & > 0, then the log-spectral
measure of X, g n is CLT-appropriate with
U(u) = log Aai and Alu,w) = 0.
a+R+u

2While for 3 = 2 these functions are essentially the same as multivariate Bessel functions, for other values of 8 the difference
is more significant.
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Proof. We first compute the multivariate Bessel generating function for X, g n. It was shown in [BG15a,

Theorem 2.8] that if AV = e~ are drawn from the Jacobi ensemble with parameters a and R, then rN

have the law of a Heckman-Opdam measure with a; = 1 — ¢ and b; = 1 — j — . Therefore, using (4.2) we
see that

R 9 i N1—i—
ETN[fTN(s)]— HH - 11 Sll_aa

Z1j=1° i=1

where (z), := z(x —1)---(z —n + 1). This implies that the defining integral of the multivariate Bessel
generating function converges and equals

xon) =B [BE T g [ )] = [T U 00

In particular, we see that

N .
(7N +1— Oz)R
1 = log—mm — 72—
0g ¢XQ,R,N(S) ; 0og (_57, — a)R
where we see that for g; = X=¢ by Stirling’s approximation and the fact that a > 0 we have
N-1log (-N+i—a)g — N-llog INa+ N —i+ RT(a+rN)

(—=rN —a)r INa+ N —i)I'(a+rN + R)

=U(r) — U(p) + O(N?)

uniformly on a neighborhood of [0, 1] for

U(r):=(a+r)log(é+r)— (&+R+r)log(ad+ R+r).
This implies that
1 =~ _
SO 1080k (rN) = /(1) + O(N)

uniformly in 7; and 1. Since all mixed partials of ¢x, . (s) vanish identically, this implies the desired. [

Using the interpretation of the Jacobi ensemble as the squared singular values of submatrices of unitary
matrices, we may take a limit to Wishart ensembles. Recall that the L x N complex Ginibre ensemble is the
L x N random matrix of i.i.d. centered complex Gaussians &;; with variance E[|¢;;|*] = N1 and that the
N x N complex Wishart ensemble with parameter L is the corresponding random matrix X v := G}, yGr N-

Theorem 4.7. Let G y be a sequence of L x N complex Ginibre matrices, and let X n = G;NGL,N be
the corresponding sequence of complex Wishart matrices. If L/N = v+ O(N~1) for some v > 1, then the
log-spectral measure of X n is CLT-appropriate with

U(u) =log(u+~v—1) and A(u,w) =0.

Proof. Set a = L — N +1. As R — oo with all other dimensions fixed, we see by [PR04, Theorem 6.1] that
a L x N submatrix of a Haar distributed element of U, converges in distribution to a L x N complex
Ginibre matrix scaled by (L 4 R)~*/2N'/2. Thus if X, g is drawn from the Jacobi ensemble, taking the
limit as R — oo yields a matrix X nx from the corresponding Wishart ensemble. This implies that the



GAUSSIAN FLUCTUATIONS FOR PRODUCTS OF RANDOM MATRICES 45

defining integral for ¢x, , (s) converges and equals

B(s,log(L + R) — log(N) — r)}

B(p,log(L + R) —log(N) — )
(<i—L+N)ryr }

(—Si —L+N— 1)L+R

(~L+i—1)psr }
(_si_L—‘FN_l)LJrR

¢XL,N(8) = lim ET l:

= lim J] |N?7 (L + R)* "

= lim []|[NP(L+ R)*

Nor .
; oy TRL+R—i+1)I(L— N +s;+1
= lim [ |N?7(L+ R)* " (2L + R —i+ DI + 5+ )]

T(L—i+O)I(2L+R—N+s,+1)

N D(L—N+s;+1)

I( -
- NPi—8i
=)

K3

Applying Stirling’s approximation and using the fact that v > 1, we see that

1, [PL-N+rN+1) 1 ~ o~ L
1 —1 NPT =W(r) — U (g, N
NSeo N Og[ T(L—i+1) (r) = W(p) + O(N)
uniformly in r on a neighborhood of [0,1] for 4; = &= and

(u):=(u+y—1loglut+~y—-1) = (ut+y—1).
As before, this implies that
1 =~ _
O log @,  (TN) = ¥'(r:) + O(N )
uniformly in 7; and . Again, since all mixed partials of ¢x, , (s) vanish, this implies the desired. O

4.3. Products of finitely many random matrices. We now apply Theorems 4.5, 4.6, and 4.7 to prove
results on products of random matrices in several different settings. Suppose that Yi,..., Y are N x N
random matrices which are right unitarily invariant, and let X% := (Y%)*Y}. Under different assumptions
on the spectral measure of X%, we study the spectral measure of

Xy o= (Vg Y (Ya - YR

where N — oo and M is fixed. Let the eigenvalues of Xy be pul¥ > ... > u% > 0, let their logarithms be
AN = log ul, let

1
i=1
denote the empirical log-spectral measure of X, and define the corresponding height function by
Hu(t) = #{N <t}

Finally, recall that the free product of two measures p; and py was defined in [Voi85, Voi87] as the unique
operation (dpi,dps) — dp1 X dps on probability measures which is compatible with multiplication of S-
transforms, meaning that

801892 (2) = 9p, ()5, (2)-

Theorem 4.8. If the X% have deterministic spectrum with support contained within fixed finite intervals
and converging weakly to compactly supported measures dp;, then as N — oo with M fixed, the empirical log-
spectral measure dAY converges in probability in the sense of moments to the measure dp whose pushforward
dp under the exponential map satisfies

dp=dpy B - K dpy.
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Its centered moments {pg(A) — E[pr(A)]}ren converge in probability to a Gaussian vector with covariance

l

Cov ()10 = ¢ b (1og(u/(u— 1)) = tog S5 — 1)) (togtu/(w — 1)) ~ log S5~ 1)

(i”: 1 M1 >
= M (M (u— )M (M5 (w = 1))(Mz (u—1) = Mz (w—1))2 (u—w)? |

Proof. By Theorem 4.5, the log-spectral measure of each X% is CLT-appropriate, so by Lemma 4.4 the
log-spectral measure of X is CLT-appropriate with

W(u) = —log (S5, (u— 1)+ S, (= 1))

M 1 1
Aww) =2 [M/gi (M, (u— 1) ML (M (w— 1)(M;, (u—1) — M (w—1)2  (u- w)2] '

i=1
Define the measure dp as the free product
dp:=dp1 ®---Kdpy
so that
S5(u) = S5, (u) - - - Sz, (w).

By Theorem 2.5 and Lemma 2.7, the log-spectral measure of X converges in probability in the sense of
moments to a measure with £ moment

k+1 dau

pe= g P (los(u/(u—1) ~log Spu— 1))
du
- _1 M:l -1 k+1 2%
pr 1 Pllee My (w=1DIF 50

__1 _ pe1_ € dx
k41 /ﬁ[ log 2 (e=5 — 2)? 27ridp(8)

= / sdp(s),

where we make the change of variable z = Mgl(u — 1) so that u = Mj(z) + 1, du = Mi(z)dz, and the
z-contour is clockwise around {z~! | z € suppdp}. Because dp(s) is compactly supported, convergence of
moments implies convergence of random measures, as desired. The fluctuations of moments now follow from
Theorem 2.6, Lemma 2.7, and the fact that the log-spectral measure is CLT-appropriate. ]

If dp(s) = p(s)ds is absolutely continuous with a-Hélder continuous density p(s) with respect to Lebesgue
measure, meaning that [p(x) — p(y)| < Clx — y|* for |z — y| < ¢ for some o > 0, § > 0 and C > 0, we may
define the Cauchy principal value integral

s—t

_ €
Mﬁ(@ t) = pV/mdp(S),

which satisfies

(4.3) lim Mz(e ") = Mz(e™") £ inp(t)

e—0F

by virtue of the relation

1
—t\
Mz(e™) = / o plogr)dr
between Mj;(e™") and the Stieltjes transform of the measure with density p(logr).

Corollary 4.9. Suppose that the measure dp is absolutely continuous with respect to Lebesgue measure
with a-Holder continuous density dp = p(s)ds. The centered height function Hy (¢) — E[Hn(t)] converges in
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the sense of moments to the Gaussian random field on R with covariance

L1 Mple!) = Myle) + im(plt) — p(s))
K{5) = =53 18| 3 070 M) £ 1n(o(0) + p(5)
A
L z[

_1(M~( ") +imp(t)) — _1( ple™") +imp(s))
Mp(et) +imp(t)) — M3 (Mp(e=*) — imp(s))
Proof. Choose an 1nterval I =[t1,t2] so that supp d\N C I. By integration by parts we see that
k+1
/HN(t)tkdt HN(t2)tk+1 H () gt /HN t
I

log Mp(e™") — My(e™) +im(p(t) — p(s)) ‘
Mp(e™*) = My(e=*) +im(p(t) +p(s)) ||

k+1 k+1 k-i-l

HN(t2) o1 HN() oga N
- th t A

E+1 2 E+1 1 k+1p’“+1( ),

which means that
Hy = /1 (Hn(t) — E[Hy (£)])t*dt = —k%l (pk+1(AN) - lE[pkH(AN)])

By Theorem 4.8, we find that Hj, are asymptotically Gaussian with covariance Cov(Hy, H;) given by

1 1 I+1
mcﬂnkJrl,lJrl = m %% (log(u/(u - 1)) — log Sﬁ(u — 1))

k+ du dw
(1og<w/<w 1)~ TogSp(w— 1)) GO, w) o
1 . I+1 —1/,. _ 1\1k+1,(1,1) dldﬂ
BRCES (Y] 7555 log M7 (u — 1)) [~ log Mz (w — D" ¢H D (w w2 o
; 141,k +1 2 v dz dv
CES Y 7595 aa"G(M( )+ 1 My(e™) + 1)27ri27ri

~f pa e
27ri 27
:7.211111/ / zlvk[H(z—l—ie,v+ie)—H(z—ie,v+ia)
(27“) =0 supp dp J supp dp

— H(z+1ie,v—ie) + H(z — ie,v — ie) |dzdv

for
M
Glu,w) =) [log(M ! (w = 1) = My (w ~ 1)) ~ log(u — w)] + log(u - w)
GO (4, ) i 1 M-
—~ M (u— )M (M (w = D))(M (u—1) = M (w—1))2 (u—w)?

H(z,v) =G

/N

M,s<e* > +1,Mp(e™) + 1),
which means that the covariance of the relevant Gaussian field is given by

1
K(t,s):= lim —— [H(t +ie,s+1ie) — H(t +ie,s —ie) — H(t — ie, s + ie) + H(t — ie, s — ig)]

= lim ———RN[H(t +ie,s+ic) — H(t +ie, s —ig)].
T

By (4.3), we find that
M ( 7t+15) _ Mp( 7s+15)
Mp( t+15) _ Mﬁ(efsfle)

lim log = log

e—0t

Similarly, we see that
M (M=) — M (Mj(e+))

Mil(Mﬁ(e*HiE)) _ Mél(Mb-(e*S*iE))

lim log
e—0t

= log
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Putting these together, we conclude that

1Myl = M) + in(p(t) — pls)
K(t,s)=—55log ‘ Mz(e=t) — Mz(e=*) +im(p(t) + p(s))

S f: . M (Mp(e™) +imp(t) — M3 (Mp(e™*) + imp(s b S(e7) — Mz(e™*) + im(p(t) — p(s))
272 2 |8 |2 (Mo ) + implD) — My (Mple—) —imp(s)| 0| M(e=) = My(e=) + in(p(t) + p(5))

Remark. The function w; := Mﬁ_il o M5 on C — [0, 00) which appears in the expression

MY (Ma(e™) £inp(t)) = lim M5 (Mz(e” 1))

Pi e—0t Pi

in Theorem 4.8 is the subordination function corresponding to multiplicative convolution of measures as
defined in [Vo0i93, Bia98, BB0T7]. We relate this function to supp dp in the following Lemma 4.10.

Lemma 4.10. If the measures dp and dp; are absolutely continuous with respect to Lebesgue measure with
a-Hélder continuous densities, then lim._,o+ w;(t +1ie) is real for some t € [0, 00) if and only if ¢t~ ¢ supp dp.

Proof. Ift=1 ¢ supp dp, the statement follows from [BBCF17, Lemma 3.2]. Now, suppose that lim,_,o+ w;(t+
ie) is real; if t = 0, we are done since dp is compactly supported. Otherwise, suppose for the sake of
contradiction that t~! € supp dp. Define

dpy = dp1 K- Rdp; K- K dpy
so that
dp = dp; R dp?.

Letting w; denote the subordination function for dp;, we get from [BBCF17, Equation 3.7] that for z €
C\ [0, 00) we have

(4.4) wi(2)w; (2) = 2m5(2) = 215, (w; (2)) = 20z (wi(2))
for
_ M=)
77/3(2) = m~

Equating the second and fourth terms in (4.4), we find that Mz(z) = M, (wi(z)) for z € C\ [0,00). In
particular, this means that
lim [M5(t +ie) — Mz(t —ie)] = lim [Mj,(w;(t +ie)) — M, (wi(t — ie))].
e—0t e—0t ) ’
Since t~! € suppdp and dp has a a-Holder continuous density, this expression is nonzero by (4.3), hence we
must have lim. g+ w;(t + ic) € [0, 00). In this case, we see that
(t +ie)np, (wi (t + ic))

lim argw;(t+ic) = lim ar - = lim argns, (W) (t+i€)).
e—0+ gwi ) e—0+ & w;(t + ie) 0+ 8115 (i ( )

Now, if w = lim._, o+ w; (t + ie) ¢ [0, 00), then argn;, is continuous at w and hence

argw = arg np, (w),

which implies by property (a) of 75, (2) in [BBCF17, Section 3.2] that p; is a point mass, which is excluded
by the given. We conclude that lim, g+ w}(t +ic) € [0, 00). Substituting z = ¢ + ic into the first equality in
(4.4) and taking the limit as ¢ — 0", we find that

lim n;(t +1ie) € R,

e—0t

which implies by virtue of the a-Hélder continuous density of dp that ! ¢ supp dp, as desired. ]
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Corollary 4.11. Suppose that the density p(s) for dp(s) is C1T* for some a > 0 on the interior of supp dp
and no dp; contains a point mass. Then for s in the interior of supp dp, the covariance of Corollary 4.9
satisfies

K(Ls):—%log o8| — % log at[Mﬁ(ez;;](g -
i (Mple™) +impl0)) - Mz (M(e™) — imp(®)) M, (M5! (My(e™) + imp())

+o(t —s)

2 92 Z log 27mp(t)

as (t — s) — 0, meaning that it matches that of a log-correlated Gaussian field along the diagonal.

Proof. By exchanging the derivative and Cauchy principal value integral, we see that

O Mz(e™") = p.v. p'(z +t)dx

1_ xT

exists if p(s) is C1T® near s = t. This implies that for s in the interior of supp dp, as t — s we have

My(e™") — Mz(e™®) +in(p(t) — p(s)) ' ~log (t — s)[0[Mp(e™")] + imp'(t)]

Mp(e™") — Mi(e*) +im(p(t) + p(s)) (t = s)[0e[Mp(e=")] + imp/ (t)] — 2imp(t)

O[Mp(e™")] + imp'(t)
27p(t)

Noting that 6‘thTi1(t) = W, we find therefore that as ¢ — s we have

(4.5) log

‘—l—o(t—s)

=log|t — s| + log +o(t—s).

M (M(e™") + imp(t) =M (Mp(e™®) + imp(s))
PN 1 .
= (= O™+ 1m0 O ey iy )

M (Mp(e™") +imp(t) =M (Mp(e ™) — imp(s))
= M (Mp(e™") +imp(t)) — M5 (Mp(e™") — imp(t)) + o(t — 5).
Putting these together, if M =1, we see that K (t,s) = 0; if M > 1, we see that as t — s, we have that
(4.6)

og MY (Mp(e™) + imp(t)) — M3 (Mp(e™) + imp(s)) B M,s(et)Ma(es)ﬂﬂ(p(t)p(s»’

Mz (My(e!) + imp(t)) — M5 (Mp(e=*) — imp(s)) % | M(e) — Myle=) + in(p(t) + p(s))
(M5! (M(e™t) 4 imp(t)) — M5 (Mp(e) — imp(1))) M5, (M5 (My(e™) + imp()))
2mp(t)

where since e' € supp dp, by Lemma 4.10 we have for M > 1 that
sli%{r [wi(t +ie) —w;i(t —ie)] = Mﬁ_il(Mg(eft) +imp(t)) — Mﬁ_il(Mﬁ(eft) —imp(t)) # 0.

= log +o(t— ),

Adding (4.5) and the summation of (4.6) over all i yields the claim. O

Remark. The additive analogue of Theorem 4.8 and Corollary 4.9 for two matrices was studied in [MSS07],
[CMSS07], [MS17, Chapter 5], [PS11, Chapter 10], and [BG18a, Proposition 9.8]. They considered unitarily
invariant Hermitian random matrices A}, ..., A} such that the empirical spectral measures dpl; of A%,
converge weakly to deterministic measures dp 4:. Define the R-transform and Cauchy transform of a measure

p by

R,(z) := Gp_l(z) — 2! and Gp(2) ::/ ! dp(s)

zZ— S

Then the empirical spectral measure of X, = Zf\il A% concentrates on a measure dpx,, = dp 18- - -Bdpm

for which
pXJVI Z RPA%
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In [PS11, Chapter 10], it was shown further that the fluctuations of the spectrum AN of Cy satisfy

hm Cov(pk()\N ,oi( )\N %%z w9, 0, Zlog( pAl Gox,, (2)) — G;ji(prju (w)))

B _ dz dw
—log(z —w) — (M — 1) log (prM (2)7" - Gox,, () 1)} 971 27’

where both contours enclose only the poles at co. Applying the same reasoning as in the proof of Theorem
4.8, this implies that the height function

N(t) = #DY < 1)
has moments

Hy = /(’HN(t) — E[Hn(t)])thdt

with limiting covariance

M
1 k+1, 1+1 -1 _ 1
Jim Cov(Hy, ) = Gy yﬁ 55 HHLH19, 8, [ ;:1: log (GW (Cpy,, () = G, 1 (G, (w)))

—log(z —w) — (M — 1) log (prM (z)~' - Gox,, (w)il)] %%
75 55 [Zlog (6L Gy, (2) = G L (G, ()
—log(z — w) — (M —1)log (pr ()7t — Gox,, (w)_l)} %%
G,)Al (Hxay(2)) = Gy (Hxas @) | |y (2)7 = Hoy )]
2 / / ol (Hx,, (2)) — G(mew))‘ 8 Hy, (2) = Hyy(w) ] o

! HXM (w)_l

z)” Hxy(w)
Z) ! HXM (w)_l

1 k, 1
—ﬁ/l/lzwlog

where I = suppdpx,, and

X (
w (

This means that Hy (¢t) — E[H ()] converges to the Gaussian field on supp dpx,, with covariance

M -1 -Gt s -1 _ -1
4.7) K(t,s):= —% log GiAi (Hxw (1)) GpAi(HXM())‘ — log Hxy (1) HXM(S)—l ]
S Gpi (Hx,y (8) = Gy (Hxy, (5)) Hx, ()~ — Hx,, (s)
_ i HXM (t)_l - HXM (S)_l )
2187 Hy,, (1)1 — Hay ()

Theorem 4.12. If the X% have spectrum which is a Jacobi ensemble with parameters o and R with
R/N =R+ O(N~')and a/N = @+ O(N~') for R > 1 and & > 0, then as N — oo the empirical log-
spectral measure d\" of Xy converges in probability in the sense of moments to the measure dp whose
pushforward dp under the exponential map has S-transform

G+ R+u+1\M
Sptu) = ( atutl )
For the height function defined by
Hu(t) == #{eN <t}
the centered height function Hy(t) — E[H v (t)] converges in the sense of moments to the Gaussian random
field on [0, 1] with covariance

M5(t™1) — Mz(s™1) + in(p(logt) — p(log s))
M;(t=1) — Mz(s—1) + ir(p(logt) + p(log s)) |’

1
K(t,s) = ~5.3 log
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where p(s) is the density of dp and Mj(t) is defined on [0,1] in the Cauchy principal value sense by

M;5(t) = p.v./ 1 iszstdp(s) and dp(s) = p(s)ds.

Proof. By Theorem 4.6, the log-spectral measure of each X% is CLT-appropriate, so by Lemma 4.4 the
log-spectral measure d\"V of Xy is CLT-appropriate with
U(u) = M log oz7+u —log S5(u —1) and A(u,w) = 0.
a+R+4u
By Theorem 2.5 and Lemma 2.7, the log-spectral measure of X converges in probability in the sense of
moments to a measure with ™" moment

P = %H 515 (tog(u/(u — 1)) — log Sj(u — 1))“1% _ /Skdp(s)

as in the proof of Theorem 4.8. Because dp(s) is compactly supported, convergence of moments implies
convergence of random measures, as desired.
For the central limit theorem, by integration by parts we see that

/‘HN (t)thdt = /ﬂ H(e%)e*FHD s

1 0
/ Hi (%) F D ds

k+1 k41
_ N 7Pk+1(6’\N)
k+1 E+1 7

which means that

1
HM:/XHMQ—MHMMﬁMh:
0
By Theorem 2.6 and Lemma 2.7, we see that

Z Co ( M(k+ 1) pm()\N)(l+1)m)

n! ’ m!

rl (karl(e/\N) - E[karl(e/\N)]),

COV(Hk,Hl)

mnO

(k+D+1)

1 (k+1)"
= RS ZO n'm' 55515 log(u/(u —1)) —log Sz(u — 1))

=

<log(w/(w — 1)) — log S3(w

1 _ kel -1 -1 1 du dw

:Wﬂgﬂwﬁl‘“‘” e I ey
_ %yﬁ k+1 l+1 Hz )Mo 1)z 72””%@
M~(z 1) — Mz(v=1))? 2mi 2ri

_1\\ dz dv

Applying the same argument as in the proof of Corollary 4.9, we find that the covariance of the relevant
Gaussian field is given by

)> 1 du dw
(u — w)? 27 27i

K(t,s)=—

o ‘A1~ ') = Mp(s™") + im(p(logt) — p(log 5)) 0
27

') = M(s~1) + im(p(logt) + p(log s)) |

Remark. When M = 1, our proof of Theorem 4.12 recovers the central limit theorem for global fluctuations
of the Jacobi ensemble. There are now several different proofs of this result (c.f. the discussion before
[BG15a, Proposition 1.3]). We now match our covariance for this case with that of [BG15a] for 8 = 2. More
specifically, we may compute

d+R+u+l

Sﬁ(u): a+u+1

)
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which implies that our computation of Cov(Hy, H;) coincides with the expression in [BG15a, Theorem 4.1]
after changing variables to u — —u and w — —w. Furthermore, we see that

U u— &
ut+ly—a-R
which means that —1 — Mz(u~") coincides with Q(u; 1) for M = R in [BG15a, Definition 4.11]. If we deform

the contours differently in the last step of Theorem 4.12 and make the change of variables u — —u and
w — —w, our result coincides with [BG15a, Theorem 4.13].

-1 -1 _
M/3 (—u—1)"" =

)

Theorem 4.13. If X4 = (G%)*Gl with G’ a Ginibre ensemble with parameters L and N with L/N =
v+ O(N~1Y), then as N — oo, the empirical log-spectral measure dA" of X converges in probability in the
sense of moments to the measure dp whose pushforward under the exponential map has S-transform
1

For the height function defined by

H () = #{eN <1},
the centered height function Hy(t) — E[H n(t)] converges in the sense of moments to the Gaussian random
field on [0, 00) with covariance

1 Ms(t=1) — Mz(s™1 i logt) — p(l
0,1 = g o MBI Mo o) g
27 M5(t=1) — Mz(s~1) +im(p(logt) + p(log s))
where p(s) is the density of dp and M;(t) is defined on [0, 00) by the Cauchy principal value integral

M;5(t) = p.v./ . iszstdp(t) and dp(s) = p(s)ds.

Proof. By Theorem 4.7, the log-spectral measure of each X% is CLT-appropriate, so by Lemma 4.4 the
measure d\" is CLT-appropriate with
U(u) = Mlog(u+~v—1) = —logSz(u—1) and Au,w) = 0.

As in Theorem 4.12, by Theorem 2.5, the log-spectral measure of Xy converges in probability in the sense of
moments to a measure with £ moment which matches those of dp. Because dp(s) is compactly supported,
convergence of moments implies convergence of random measures, as desired.

For the central limit theorem, similarly to Theorem 4.6, by integration by parts we see that

> N pk+1(e)‘N)
Hy()trhdt = -
/0 i) k+1

k+1 7
which means that

Hm [ () = B 0]) it = 1 (proa () ~ Elpra (7))
By Theorem 2.6 and Lemma 2.7, we see that
CovlHi H) =5 1)1(l 1) Z:Q = 17):!12!+ D™ Corvpn (0N, pra(AY)
_ L — (k+D"(+D)™ - "
o (e m;o I 5695 (toa(u/(u — 1)) ~ log S5(u — 1))
1 du dw

(1og(e/(w —1) = Sp(w — 1))m(

u —w)? 27i 27
dz dv
k., —1 -1
_ log (M=) - M50 22 22
%%z v 08 oz ) p(v ) 27l 27l

where we apply the exact same arguments as in the proof of Theorem 4.6. We therefore obtain that the
covariance of the relevant Gaussian field is given by

) — Mj(s™") + im(p(logt) — p(log 5))

) — Mz(s~1) +im(p(logt) + p(log s)) | -

1 Mﬁ(l‘,_l
K(t,s) = WIOg‘Mﬁ(t—l
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Remark. When M = 1, dp is the spectral measure of the Marchenko-Pastur distribution, as expected. Our
computation of the fluctuations of the moments of the spectral measure agrees with the single-level case of
[DP18, Proposition 1.2] after an integration by parts and deformation of contours.

4.4. Lyapunov exponents for matrices with fixed spectrum. We now apply our theorems to products
of infinitely many random matrices. Suppose that Yy, ..., Y]\I}/f are N x N random matrices which are right
unitarily invariant, and let X% := (Y})*Y}.. As before, we study the spectral measure of

Xy o= Yy Y (Va YR),

where we now make the assumption that M, N — oo simultaneously. In this setting, we expect the eigen-
values to grow exponentially in M, so we study the Lyapunov exponents

1
A’fv = M IOg ’ui\f’

where pf¥ > .- > & are the eigenvalues of Xy . Define their empirical measure by

N
Y=L K
i=1

In this setting, we may identify the limiting measure as the sum of a deterministic measure and an explicit
Gaussian process under rescaling. For ¢ € R, define the height function

Hu(t) == #{N <t}

Theorem 4.14. If the X have deterministic spectrum satisfying Assumption 3.3 for a compactly supported
non-atomic measure dp, then as M, N — oo, the empirical measure dA”" of the Lyapunov exponents converges
in probability in the sense of moments to the measure

oo —e”
AN = —————1 _ _oydz.

rq—1/_ [~ log S5(—1),— log S5(0)]

Sﬁ(sﬁ (e72))

The rescaled centered height function M'/2(H(t) — E[Hy(t)]) converges in the sense of moments to the

Gaussian random field on [—log S;(—1), —log S5(0)] with covariance
e te™s

S5(85 1 (e7))85(S5 " (e7))

K(ts) = H(S,;I(e-f) +1,55 (™) + 1) +o(t—s)

for
1 1

MM (= DM (w = D) (= 1) = My w = 1) (u—w)®

H(u,w) :

Proof. By Theorem 2.14, Lemma, 2.7, and Theorem 4.5, dA\" converges in probability to the measure with
moments

lim %E[pk(/\]v)] = §£log(u/(u —1))[—log S5(u — 1)]kdl

N—o0 27

= /1[—log Sx(u — 1)]kdu.
0

Recall by [HLOO, Theorem 4.4] that for a compactly supported measure dp which is not a single atom, S5(z)
is strictly decreasing on [—1,0]. Therefore, we may change variables to obtain

—Zz

1 —log S5(0) _
lim B[ (\Y)] = / ’ ° dz,

S ¢
N—o0 —log S5(—1) 55,5(5,;1(67’3))

where the values of S5(0) and S;5(—1) are given by Lemma 3.11. These are the moments of dA*°, which
uniquely identify it since it is compactly supported.
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For the central limit theorem, notice by integration by parts that

— log S5(0)
/ H (t)thdt

—log S5(—1)
H (—log S5(0))[— log S5(0)]*+1  Hy(—log S5(—1))[—log Sz(—1)]F+? —logSp0) gkl
- k+1 - k+1 - A
—log S5(—1)
_ Hn(—log S5(0))[—log S5(0)]**  Hy(—log S5(—1))[—log Sp(~1)]**" 1 ()
k+1 k+1 k4 1P

which means that

—log S5(0) M1/2
o= [ M2 (A (8) — B ()t = - (s (W) — Elpi (W)]).
~log S5(~1) k+1

By Theorem 2.15, Lemma 2.7, and Theorem 4.5, we conclude that Hj are asymptotically Gaussian with
covariance

i Cov(Hy, M) = 7§§£10g(1¢/(u — 1)) log(w/(w = 1))[~ log S5(u — D]*[~ log Sz(w — I'F "V (u, w)%%
Si(u—1 u
+ ¢log(u/(u = 1))[~log S(u — 1) [—ggéu_lﬂ szri

= /1 /1[— log S5(u — 1)]*[—1log S5(w — 1)]" H (u, w)dudw — /1[— log S5(u — 1)]k+lwdu
0 Jo 0 u—1)

—log S5(0) —log S5(0)
= / / ths K (t, s)dtds

—log S5(—1) J/—log S5(—1)

for
H(u.w) 1 1
u,w) = —
’ MAYMZ (u = 1) MYMT (w = 1)) (M5 (u—1) = My (w—=1))2 (u—w)?
—t,—s
K(t,s):=H(S= e ) +1,5 (e %) +1 € ¢ +0(t — s),
(t,5) = H(S5 M) + 1,55 (™) )5,%< carecr e TR
which yields the desired claim. O

Remark. The law of large numbers for Lyapunov exponents shown in Theorem 4.14 agrees with the previous
results of [New86b, Theorem 2.11], [Kar08, Theorem 2], and [Tucl0, Theorem 5.1].

Remark. By Theorem 4.14, the fluctuations of Lyapunov exponents have a white noise component when
M,N — oo, while by Corollary 4.9, they form a log-correlated Gaussian field when M stays finite. We
demonstrate a formal limit transition between these cases. For M finite, suppose that all dp; are identical
and equal to a non-atomic measure dy in Corollary 4.9. Recall by [HL0O, Theorem 4.4] that this means S;(2)
is strictly decreasing on [—1,0]. Let dp™ = dii®M | and let dAM be the empirical measure of the Lyapunov
exponents, which is the pushforward of the corresponding dp™ under the map = ﬁx Applying [Tucl0,
Theorem 5.1] and adjusting for a normalization factor of 2, we see that as M — oo, the measure dAM
converges to

AN = Wl[_ log S(—1),~ log 57(0)] 4%,

A

which coincides with the result of Theorem 4.14. Now define the height function

Hy o (t) == #{p}" <t}.
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By Corollary 4.9, its centered version Hn ar(t) — E[Hn a(t)] converges as N — oo to the Gaussian random
field on R with covariance

KM (1 5) = M log MFL_I(MﬁAI (e=t) + imp™M (1)) — Mﬁ_l(MﬁM(e_S) +impM(s))
272 MFL_I(MEM (e7t) +impM(t)) — Mﬁ_l(M;jM (e=s) —impM(s))
n M—-1 log MﬁM (eft) — Mﬁk{ (e7%) + iw(pM(t) _PM(S))
272 Mﬁ]\l (e7?) —MﬁNI(€_€) —|—i7T(pM(t) —l—pM(S)) ’

where pM () is the density of dp™ (s), which satisfies
—t

q(t) = lim Mp"(tM) = Wl[ log S (~1),~ log 55 (0)]-
The height function of dAM is given by Hy,a(tM) and hence its limiting covariance of
M2 (HMM(tM) _ E[HN,M(tM)])
is given by limps oo MK (tM,sM). To analyze this limit, we consider the limits of the Stieltjes transform.
Lemma 4.15. For r € (—logSi(—1), —1ogS5(0)), we have the following:

(a) uniformly on compact subsets we have

T

(i) My _ (g=1/ . -1 €
E1_1}%1 M M( ) (SH (6 ) + Ol) + l(ﬂ'M 75[(5:1(6*7")) + 02);
R
where C; = O(M~1) and Cy = O(M~2) are real;
(b) uniformly on compact subsets we have
e_T
lim_ 0, [Mau (e HM) = ————— 4+ O(M™).
o (5 (e )
Proof. First, by definition we have
1 _ 1 _
fu) = Mlog Mﬁ]\}(u) =log Sz (u) — i log(14+u~1)
Spw) 11
f,(u) = M( ) AT 2 .
Si(u)  Mu?+u
For (a), expanding in series we conclude that for & # 0, we have
My (el H19M) = 71 () 4 A (1+ o) + O
i‘)’]M e = O~ -— p— og 717—7i .
g SL(S7 (e7m+ie)) Sz (e7rt)
Taking the limit as ¢ — 0% yields the result. For (b), we find that for u = Mz (e(="+1)M) that
; S’(u) 1 17! e "
lim 8, [Mu (e HOM)] = i = O(M™h). O
c0t (M (e ) e50 S(u) Mu2 +u S’ﬁ(Sgl(e—’")) O )

For ¢, s in a compact subset of (—log Sz(—1), —log S;(0)), we notice that
MEM (M, sM) = KM(t,s) + KM (t, )
for
MﬁM (e(7t+i5)M) _ MﬁM (e(fs+ie)M)
M”D'IW (6(—t+is)M) _ M~M (6(—s—is)M)

M M:l M-~ e(*tJriE)M M~ (—s+ie)M
KM (t,s) = lim —=— |log |—~ (Mo (T T = My (M )
2 MﬁM(e(—t+1s)M) (6( e+1a)M)

M
KM(t,s) := lim —— log

Mﬁ_l (MﬁM (e(ftJris)I\/I)) o Mﬁ_ (M5M (e(fsfls)M))
MﬁM (e(—t+i€)M) _ MﬁM (e(—s—ia)M) :
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If |t — s| > M~1/2 applying Lemma 4.15 we see that

M (6(7t+is)M>) _ Mgl(MﬁM (6(7s+i6)]ﬂ)) ‘

2 (

u

0t \ 212 0 | M (Mpu (= HHDM)) — M (Mopnt (e{—5 193
(el
(

M2
MEM(tM,sM) = lim (- log

n M? —]\41 Mﬁlu e t+lE)M) M/;M (6(_5-“6)1\/[)
272 0g M e(—t+ie)M) _ MﬁM(e(—s—ia)M)
—1/a-1 1/g—1 a(t) q(s)
M2 M (55 (7)) = Mz (85 (e7)) + Br +3nM ™ (=5 =y ~ wzar (s, @ + 52)
= ——=log
o2 —1lig—1(,— —1/g—1 q(t) a(s)
i Mz (S5 (e71) — Mz (S; (e7#)) + By +ir M~ (Mkib(Mﬁ_l(Sﬂ_l(e*”))) + MLON(S, ) + Bs)
PRI SoHe™) = S e ™) + Cr +imM T (g(t) — g(s) + Ca)
22 0| ST (e ) = S, (e *) + Cy +inM 1 (q(t) + q(s) + Cs)
2772 q(t) q(s)
s log A M T (5, e ) ML (5, e ) oo
2 T g1, T o—1,, s
A (M5 (S5 7 (e7") = Mz (S5 (e79)))?
M? - M 412 M ~2q(t)q(s)
+ ———1log|1-— +0O(M~3
i g< Gt syt O
. at als) 1
My (M (S5 (e7))) My (M (S5 (e7#))) (M7 (S5 (e7t)) — M7 ' (S5 (e72)))?
_ (t)Q(S 4 O(M—l)

(S7t(et) =5 (e))?
= K(t,s) + O(M™Y),

where the real constants By, By, B3, C1,Cs, C3 are all of size O(M 1), and K (t, s) is the kernel of Theorem
4.14. On the other hand, if |t — s| < M~1/2 by Lemma 4.15 we have

Mﬁlw (6(78+i6)M) — Mﬁ]% (G(Siig)M)
M'ﬁM (e(_t+iE)M) — M'va (6(_‘9+iE)M)

M~ (—s+ie)M\ _ M~ (s—ie)M
— lim —— log |1+ g (e ) P (e )
e—0t 212 (t — )0y [Mzn (el=m+ie)M)]
s -1 e ® :
HEISW M ey 1
T on2 _ e—s _ -1 RV
n (t )S/ (S 1( 7b)) +O((t S)M +(t S) )

M 472
=—1 1+ —— M7+ M2t-s)"t
g (14 s + O 21257,

where in the second line 7 lies in the interval between s and ¢, and in the third line D; = O(M~2) is real.
Similarly, applying a second order Taylor expansion for Mﬁ_l, for

1 ML/ M:l M-~ e(—t—‘,—ie)M
D= (—t+ie)M and D = /H( = Ll (—ttie)M )))3
M,j(Mﬁ (M (e ))) Mﬁ(Mﬁ (Mg (e )

and

Al _ MﬁM (6(7t+i€)M) — M- (6(*s+i6)M) and AQ — MﬁM (6(7t+i€)M) _ Mﬁlw (e(*sfie)l\/f)7
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we have by application of Lemma 4.15 that

) Dy = D22 +0(|A1?)
KM(t,s) = — 5 lim log
277 <=0t U Dy~ 1DyA, + O<|A2|2)
. B ot MM (ST e ) . _
M2 —17TM 1SL(S:1(e_t)) Mi(M?l(S;l(E_t))P + IO(M 2)
= 5z log |1+ S S———~ Y]y
271' ]\/fé(MEl(SEI(C_t))) +O(M )

’ 24 r—2 e~2t M;g(M,{l(Sl{l(e_t)))Q )
e <1 T e s ey O 3)>
1 e 2 M;{(Mgl( gl(e—t)))g )
= 1505, (e 02 ML (s, ey O

We conclude that for any compactly supported continuous function f, we have

lim MEM(tM,sM)f(t,s)dtds

M—o0 —log Sj(—1) J —log Sz (—1)

—log 85 (0)  p—log Sz (0)
= lim / / Ly g>nm-12K (1, 5) f(t, s)dtds
M=00 | J _1og 85(—1) J —log Sz (—1)

—log S5 (0) —log S5 (0)
+ / / L ai<nr—i/o (K{”(t, )+ KM, s))f(t, s)dtds
—log S (—1) J —log Sp(—1) -

—log S5 (0) —log S (0)
_ / / I THENRG PRy (K(t, s) — 8t — s))f(t, s)dtds

log S (—1) J —log Sp(—1)

— log S;(0) /— log Sz (0)

—log S5 (0) M~1/2
+ lim / 1o tae[—log Sa(~1),— log Sﬂ(o)]KlM(s +x,8)f(s+ x, s)dxds.
M—=00 J_og S5(—1) J —M~1/2

[e%s} 4 2
/ log (1 + LZ)dy — 42,
y

— 00

Using the integral identity

we notice that

M1/
J\/}gnoo A1)z ]-ermG[f log Sp(—1),— log S;(O)]Kllv[(s + 2z, S)f(S + 2z, S)dl’
M M-1/2 9

4 _ o
BTl 1size[—log Sp(—1),—log Sz (0)] 108 (1 toaet oM™+ Mz 1)>f(s + x, s)dx

Ml/2 9
4
lim — Loyl tog 85 (-1), tog 501108 (14— + O(M ™+ M1y ™)) M1, 5)d
Mgnoo A2 /7]\/11/2 s+yM—1€[—log Sz(—1),— log S5 (0)] 108 + y2 +O( + Yy ) f(5+y 75) Yy

— f(s,5) +o(1).

Substituting this into the previous expression implies that

lim

— log ~(0) -1 g H(O)
S / og S K(t7 S) ; (t7 S)d :
M —o00 710g S~(71) *1Og5ﬁ( 1)

—log S5 (0) —log S5 (0)
MKM(tM,sM)f(t,s)dtdSZ/ /
—log Si(—1) J —log Sp(—1)

This gives a limit transition between log-correlated Gaussian fields with covariance K (¢, s) and the Gaussian
field with covariance K (¢, s), which has a white noise component.

4.5. Lyapunov exponents for Jacobi and Ginibre. We now consider Lyapunov exponents and their
fluctuations for Jacobi and Ginibre matrices.
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Theorem 4.16. If the X% are drawn from the Jacobi ensemble with parameters a and R so that o/N =
&+ O(N~Y and R/N = R+ O(N~!), then as M, N — oo, the empirical measure d\"V of the Lyapunov
exponents converges in probability in the sense of moments to the measure

e*(G+R—1)

d)\OO(z> = 7(1 — 62)2 [log

o<+1 ]dz
a+R+1

log

For the height function
Hu(t) = #{\ <t}
the rescaled recentered height function M'/?(Hy(t) — E[Hn(t)]) converges in the sense of moments to the

a+1
Gaussian white noise on [log +R,1 g a+R+1]'

Proof. By Theorem 2.14, Lemma, 2.7, and Theorem 4.6, d\" converges in probability to the measure with
moments

a+u r du
G+ R+u] 2

1 N k
:/ [logAa—’:u] du

0 a+R+u
B /log a+R+1 k ez(d —i—ﬁi— 1)
h (1 —e?)2

lim —E[pk()\N)] yglog(u/(u -1)) {log

N—oco N

dz,

so the law of large numbers follows because dA>° is compactly supported.
For the central limit theorem, we see as in the proof of Theorem 4.14 that
log — at1
a+R+1

Hy, = M1/2/1 . (Hn(t) — E[Hn(t)])t*adt

are asymptotically Gaussian with covariance

R k+1
a4+ u
lim Cov(Hy, H :5510 u/(u—1 [lo - } - —
N—o00 (Hie, H1) 8lu/( ) gd+R+u (& +u)(&+ R+ u) 2ri
! a+u ket R
= log —— - — du
0 a+R+u (G +u)(&+ R+ u)

log —&+
&+R+1
1 &

8 1R

by Theorem 2.15, Lemma 2.7, and Theorem 4.6. O

Theorem 4.17. If X§, = (G%)*GY with G from the Ginibre ensemble with parameter L so that L/N =
¥+ O(N~1) for v > 1, then as M, N — oo, the empirical measure d\" of the Lyapunov exponents converges
in probability in the sense of moments to the measure

AN (2) = € 11og(y-1),log 1|42

For the height function Hx(t) := #{AN < t}, the rescaled recentered height function M/2(Hy(t) —
E[Hn(t)]) converges in the sense of moments to the Gaussian white noise on [log(y — 1),log~].

Proof. By Theorem 2.14, Lemma 2.7, and Theorem 4.7, d\" converges in probability to the measure with
moments
R du

lim L E[pe (V)] = ﬁk%wmu—nm%w+w—1n

N—oco N 27

=Ah%w+w—nﬁw

log v
= / 2Fe*dz,
log(v—1)
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which implies the desired because dA*° is compactly supported.
For the central limit theorem, as in the proof of Theorem 4.14, we see that

logy

Hy = M2 /1 o (Hn(t) ~ BHx (1)) hat

are asymptotically Gaussian with covariance

1 du
: _ _ _ k4+l_ -~ =%
A}gnoo Cov(Hy, H;) = §£log(u/(u 1)) [log(u +~v —1)] ppr—
1
1
= log(u + v — D)]FH ———du
/O[ g(u+vy—1)] ppr—
log~y
log(y—1)
by Theorem 2.15, Lemma 2.7, and Theorem 4.7. (]

Remark. While Theorem 4.17 does not apply to the case v = 1, we extrapolate the results to this case to
compare to the literature. We see that the law of large numbers in Theorem 4.17 agrees with the triangular
law on the exponentials of the Lyapunov exponents shown in [IN92]. For the central limit theorem, in
[ABK14] and [Forl5], it was shown for the M-fold product of N x N Ginibre matrices with finite N and
large M, it was shown that the i*" Lyapunov exponent satisfies

A = (W(N =i +1) ~log N) + M~Y2X; + O(M ™),

(2

where X; ~ N(0, V(N —i+ 1)) and ¥(z) = 1;/((5)) is the digamma function. We will take the formal limit

as M, N — oo. For compactly supported smooth functions fi, fo on (—oc, 0], we apply the expansion
LN = (\I/(N —i+1)—log N) + M2, f) (\I!(N —i+1)—log N) +OoM™

to find that
N

MCOV(Zfl(Aiv)a ZN:fz()\év))

i=1 j=1

N
- Zf{(\IJ(N —it1) - 1ogN)f5 (\IJ(N —it1) - logN)\Il'(N — i+ 1) +O0M2),

Recalling the expansion ¥(z) = log(z) — 5 + O(z72), as N — oo we have the expansions
U(N —tN +1) —log N =log(1 —t) + O(N 1)

(N —tN+1) = N*1% +O(Nh.
This yields
N N 1 1
M%%}}Mwmzyanzéfm%u—mwmm—mT3ﬁ+ow*+M*>
i=1 j=1

0
— [ A@s@ds+ ot a ),

which suggests formally that the height function at 4 = 1 converges to white noise on (—o0, 0]. This heuristic
computation coincides with the extrapolation of Theorem 4.17 to v = 1.
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5. A 2-D GAUSSIAN FIELD FROM PRODUCTS OF RANDOM MATRICES

5.1. Statement of the result. Suppose that Y;,... ,Y]y are N x N random matrices which are right
unitarily invariant, and let X% := (Y3)*(Y%). In the setting where M — oo and N — oo, we study the
joint distribution of the Lyapunov exponents of

Xy = (Vi veMhy=b ooyl o o€ (0,1).

Define the Lyapunov exponents and empirical measure for Xy , by

N

1 1

AN 7 los ut and  dANO = ~ Zéwa,
=1

where pf* > .-+ > p; are the eigenvalues of X . Define the height function by
Hy(t, o) = #{AN* <t}

In Theorem 5.1, whose proof is given in Section 5.3, we show that H (¢, @) has a limit shape with fluctuations
forming a two-dimensional Gaussian field.

Theorem 5.1. If each X% has deterministic spectrum satisfying Assumption 3.3 for a compactly supported
non-atomic measure dp, then as M, N — oo, the log-spectral measure dA™V*® converges in probability in the

sense of moments to
—1,—a 'z
Ao = 2 °

- -1/ —q-14
SH(S5 (e

9 L—alog S5(—1),—alog S5(0)]42-

The rescaled centered height function M/?(Hy(t, o) — E[Hx(t,a)]) converges in the sense of moments to
the Gaussian random field on

D :={(t,a) | t € [-alog S5(—1), —alog S5(0)]}
with covariance

efa_ltefﬁ_ls

SH(S5 (emo 1)) SH(S5 (e=F7"))

K(t,a;s,8) = ailH(Sle(efa_lt) +1, 55—1(675—15) + 1)

+ato(att — p7Ls)
1 1

" MM (= )M (w = D) (= 1) = My w—1)2 (u—w)?

H(u,w)

for0<pf<ax<l.

Remark. We recall that the distribution 6(a~'t — 87 1s) is defined so that for any continuous function
f(t,s) on R? we have

/OO /00 f(t,s)6(a 1t — B 1s)dtds = af /00 f(ar, Brdr.

Remark. Making the change of variables ¢ = o't and § = 8~ 's, we find that the a t5(a"t — B L)
piece of K (t,a;s, ) becomes 35(t — S), meaning that the slice of the Gaussian field in Theorem 5.1 along
D, := {(ta, ) € D} is a standard Brownian motion indexed by «.

5.2. Multilevel LLN and CLT via multivariate Bessel generating functions. Our proof of Theorem
5.1 is based on a generalization of Theorems 2.14 and 2.15 to measures whose multivariate Bessel generating
functions are related. Let xn be N-tuples such that

1 N
N Z(SXNJ/N — dX

i=1
for some compactly supported measure dy. Suppose that we have x y-smooth measures dX}V, e dx% , with
corresponding multivariate Bessel generating functions ¢>1<, N(8),-.. ,w% v(8) with respect to xn. Let d\y

be the pushfoward of dXﬁV under the map A — ﬁ)\. We assume the following condition on these measures.
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Assumption 5.2. There exists a x y-smooth measure doy with corresponding multivariate Bessel generat-
ing function ¢, n(s) so that

;N(s) =¢yn(s) fori=1,..., M.
Under this assumption, we have the following two-dimensional LLN and CLT.

Theorem 5.3. If Assumption 5.2 holds with doy being LLN-appropriate for xy, then for any 0 < o < 1,
if ® is distributed according to d)\JL\?MJ, in probability we have

fim_ ~opu(e) = Jim LBl M) = = o f 2w o

N—oc0 N—o0 27Ti’

where the u-contour encloses V, and lies within U. In addition, the random measures 3 Zil dzo converge
in probability to a deterministic compactly supported measure du® with [ ohdu®(z) = pg.

Proof. This follows from Theorem 2.14 after correcting for a difference in scaling. |

Theorem 5.4. If Assumption 5.2 holds with doy being CLT-appropriate for yu, then if {z% € RY | z$
.-+ > %} is distributed according to d)\]L\?MJ, the collection of random variables

{M'2(p(z*) — E[pi(z®)]) tren,ae0,1)

converges in probability to a Gaussian variable with covariance

v

du dw

27l 27l

lim COV(M1/2pk(xO‘),M1/2pl(mﬁ)> =klak g yg515E(u)E(w)\I/(u)k_l\Il(w)l_lA(u,w)

N —oc0

d
+ klaF 14! %E(u)@(u)kﬂ*zqﬂ(u)—u,
27i
for 1 > a > 8 > 0, where the v and w-contours enclose V, and lie within U, and the u-contour is contained

inside the w-contour.

Proof. The proof is parallel to that of Theorem 2.15. We therefore describe the necessary modifications. Fix
1>a >-->a >0,r > 1, and {kl}1<i<i1<s<r,- Let B :== a; — a;_1, where we use the convention
ag = 0. Notice that

E

17 ()]

t=1s=1

is given by the evaluation at s = xx of the quantity

G ()M LMDy - Dy iy v (s) LML ML Dy Dy gy (s) LM

Dy ()M
... Dyi—1---D, - ..
_ Dkll LDH[J ¢X N(S) Loy M | kll 1 L k‘i‘z_ljl ¢X N(S) a1 M] Dk% L‘Dkilj ¢X N(S) lag M| .
Py, () LM Py, (s) Lo M Py, ()L M

As in Section 2.4, we may expand this quantity into the sum of terms associated with forests on the vertex
set {(t,s)}. The coeflicients of this linear combination are independent of N and are monomials in M and
B; whose exponent in M is at most —W7p,, where Wy, is the LLN weight of the term. Using (2.19) as in the
proof of Theorem 2.15, the exponent of M in each term with non-zero coefficient to an n'" mixed cumulant
is at most 1 — n. For n > 3, this shows that any n*® cumulant is the sum of finitely many terms, which of
which are of order at most O(N'="M*'~"/2) = o(1), as needed.

It remains to compute the covariance; it is given by modifying (2.20) in the proof of Theorem 2.15 to

k

Cov(Ml/ka(xa), Ml/QpZ(xﬁ)) = MR 9§§£ (E(u) + Ma\I/(u))
 + MBA(w.)) 2 2y o),

(E(w) + Mﬁqj(w))l (ﬁ 27i 27
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where the v and w-contours enclose V,, and lie within U, the u-contour is contained inside the w-contour,
and we add a prefactor to ¥(u), ¥(w), and A(w, u) to reflect which differential operator in

Dy,

D
dy,n(s)LeM] S, (s)t0M) l (s)LPM]
X

¢X,N(3) |BM | Qj)x,N

each term originates from. Extracting the leading order term in M as in the proof of Theorem 2.15 yields
the desired. 0

5.3. Proof of Theorem 5.1. First, for the law of large numbers, we see by Theorem 4.5, Lemma 2.7, and
Theorem 5.3 that for 0 < a < 1, the rescaled log-spectral measure of Xy , converges in probability in the
sense of moments to the measure with moments

Jim %E[pk()\}\‘;‘MJ)] — ot §£ log(u/ (1 — 1))[= log S(u — 1)]* 2%

N—00 2mi
1
:/ [—alog Sz(u — 1)]*du
0

—alog SE(O) X _a—le—ailz
= < r(Qe—1¢ —a-1z dZ,
—alog S5(—1) Sﬁ(sﬁ (e ))

where the final change of variables is legal because dp is not a single atom, hence S5(z) is decreasing on
[-1,0] by [HLOO, Theorem 4.4]. Because this measure is compactly supported, convergence of moments
implies convergence of random measures, and we see that

-1
_a—le—a z

lim d\N* =

o 1 —alog 55(—1),—alog 55 dz.
N—o00 S,%(Sﬁ—l(e_aflz)) [ log S5z(—1), log S5(0)]

For the central limit theorem, we see that

—alog S5(0) Nl=alog S~(0 k+1 —alog S5(0) tk+1
/) H(t, )t*dt = [ aza;(ﬂ —/‘ H&@w@E—Tﬁ
—alog S5(—1) —alog S5(—1) +

N[—alog S5(0))*+1 B pk+1<)‘1L\?MJ)
k+1 k+1

By Theorem 4.5, Lemma 2.7, and Theorem 5.4, this implies that the quantities
Hia = M2 (pe ™M) — Epe )

are jointly Gaussian with covariance

]\ZIPOOCOV(HIC,Q, H, )

_ okgitL y§§£log(u/(u — 1)) log(w/(w — 1))[~ log S5(u — 1)]*[~ log S5(w — 1)]lF(1,1)(u,w)%%
Siu—1)1 du
Sﬁ(u—l)}

27i

+ k5141 blog/(u — 1) log S3tu — 1) [—

1,1
= ﬁ/ / [—alog S5(u — 1)]k[—5log S5(w — 1)]lF(1’1)(u,w)dudw
o Jo

!

1 p\u )
= [ [-atog Sy~ 11" [-B1og Splu — ) 5o

—alog S5(0) —Blog S5(0)
— / / thsL K (t, a; s, B)dtds
—alog S5(—1) J —pBlog S5(—1)
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for0< B <a<1and

efa_ltefﬁ_ls

S8y (e )SH(S; e P )

p

K(t,a;s,8) = a’lH(Sﬁ_l(e*O‘_lt) +1, Sﬁ_l(efﬁ_ls) + 1)

+a '5(a™tt — p7ls)
1 1

MM (= )M (w = D) (= 1) = My w = 1) (u—w)®

H(u,w)

APPENDIX A. FLUCTUATIONS OF SUMS OF RANDOM MATRICES

In this appendix, we compute the distribution of fluctuations of sums of unitarily invariant random
matrices. Let Ay = U;AU; with U; a N x N ii.d. Haar unitary matrix and A diagonal with real spectrum
N, and define

XN,M ZA}V—F—FA]]\V/[

Proposition A.1. As M — oo, we have the convergence in distribution

1 d
7(XN,M —]E[XN7M}> — YN

VM

where YV is a centered Hermitian Gaussian random matrix with covariance

A
N+1

*WA(NH) i=j,i =g i#7
MWA i#gji=3="1
0 otherwise

i=j=i=j

Cov(YVY,YN) =K, Y] =

ij 2 iy

2
where A = £ S0 ()2 - (% 2 )

Proof. By the ordinary central limit theorem, it suffices to check that the matrix elements of M = UAU*
with U Haar unitary have the desired covariance. We have that

N
M;; = Zuikugﬂjm
k=1
which implies that

N
2 : — — N N
COV(Mij,Mi/jl) = Cov(uikujk,ui/k/uj/kf)uk 1%
k,k'=1

N
=7 — — N, N
Cov(Mij,Mi/j/) = E Cov(UikTk, Wy Wirkr ) [, [y -

kok'=1
By [CMO08, Lemma 14], we have that
_ 1
Eluatjr] = 0ij
1 1
Elwpwy i Uirg | = ———————1[0;70;757 + 0;5/ 057 i 0ppr | — 0370451 O0ppr + 043004 5].
[wik i Wi ] (N_1>(N+1)[J §* T 0ij8irj Ok (N_l)N(N+1)[J 3Ok 4 0ijr 6]
Computing using these formulas yields the desired form of the covariance. |

Remark. The matrix YV has the law of

N 1
\/(ZV—l)(]V-‘,—l)A (XN — NTI‘(XN) IdN> 3

where X is distributed as GUEy.
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APPENDIX B. MULTIVARIATE BESSEL GENERATING FUNCTIONS AND THE CHOLESKY DECOMPOSITION

Let Y be a N x N random matrix which is invariant under right multiplication by Uy, and let X = Y*Y be
the resulting Hermitian positive-definite random matrix. If Y = UR with U unitary and R upper triangular
is the QR decomposition of Y, then X = R*R is the Cholesky decomposition of X. The following result
gives a geometric interpretation of the diagonal entries of R.

Lemma B.1. If B, C CV is a random complex k-dimensional unit ball and B;_; C By is a random
(k — 1)-dimensional unit ball, then
a vol(Y(Bg))  vol(Big_1)

M Sol(Y (Br_1))  vol(By)

Proof. Choose a nested sequence of random complex unit balls By C --- C By, C CV of increasing dimension.

Notice that ¥ (BY) I
vol(Y'(By vol(Y(B))\ «
e = (Y LY . AY
< vol(By) 77777 wvol(By) ) (| utl, ..., [Yur A--- A u;.ﬂ|)7

where u1, ..., u are the first £ columns of a Haar unitary matrix. Because Y is right unitarily invariant, we

notice that (Yuy,...,Yug) 4 (y1,...,Yk), where y1, ..., yx are the first k columns of Y. By the interpretation
of QR-~decomposition as Gram-Schmidt orthogonalization, we obtain that

(\Yu1|,...,\yu1 /\--~/\Yuk|) 4 (th...,Ru---Rkk),
which implies the desired. O

From Lemma B.1, we may see that the law of the diagonal entries of the Cholesky decomposition is
multiplicative over products of random matrices.

Proposition B.2. Let Y! = U'R! and Y? = U?R? be the QR decompositions of independent right
unitarily-invariant matrices, and let Y2 = Y'Y?2 = U3R? be the QR decomposition of their product. We
have the equality in law

R}, < R}, - R},
Proof. Let By be a random k-dimensional complex ball and By_; C By a random (k — 1)-dimensional ball.
Because Y'! is right invariant, we have that

5 d vol(Y1Y2(By)) .Vol(Bk_l): vol(Y2(By)) .vol(Bk_l)]'[ vol(Y!(By,)) ~vol(By-1)
MR Vol(Y1Y2(Bi—1))  vol(By) vol(Y2(Bj_1))  vol(By) vol(Y1(By,_,)) vol(By) |’

where By, and Bj,_, are independent copies of By, and By_1. Applying Lemma B.1 completes the proof. O

We now give an interpretation of the multivariate Bessel generating function ¢x(s) in terms of this
Cholesky decomposition which is similar to [KK16b, Lemma 5.3]. Together with Proposition B.2, this gives
an independent geometric proof of Lemma 4.2.

Proposition B.3. If X is a Hermitian positive-definite unitarily-invariant random matrix with smooth
log-spectral measure du, then

(]5X(S) =E

N
el
k=1
where X = R*R is the Cholesky decomposition of X.

Proof. By the HCIZ integral of [HC57a, HC57b, 1Z80], we have

B(s,z) _ Alp) det(eijj) _ Ax) /eTr[SUdiag(x)U*]dHaarU7

B(p,z) A(s)A(e”) A(e?)
where S is the diagonal matrix with diagonal entries (s1,...,$x). Denote now by O, the (coadjoint) orbit
of the conjugation action of Uy on diag(x1,...,xyx) and by dw, the pushforward of dHaary to O, under

the map U — Udiag(z)U*. Define the Gelfand-Tsetlin polytope GT,. by
GT, ={yf,1<i<k1<k<N|y' < <y =2z},
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where y* < y**1 means that y’“r1 <yk< ykJrl and define the map GT : O, — GT, by
GT(Y) := (eig(Ya))1<k<n—1,

where Y}, denotes the principal k x k submatrix of Y. By [Bar0l, Lemma 1.12 and Proposition 4.7] and
[GN50], we have that

N1l Nk
GT.(dws) = 1y1<---<yN—z(A()a:) I ]
k=1 1=1

Applying this twice and applying the change of variables z¥ = s implies that

B(s,x) (N=1)!--1 / SN (- Yk gk Nk &
_ e2ak=1(5k—Sk+1 i=1Yi dyi
Blpw) D)y I

k=1i=1

N k N k

N — 1)!---1! Sp—sSpaq—1
SNt [ ()T e
Zl<e=aN=er [ 5 N el

N
A / [ det((UemU™)e)™ =+~ dHaany,

where we adopt the convention that sy+1 = 0. Now, for Ue*U* = R*R € O,=, we see that det((Ue*U*)) =
det(Ry)? = Hle RZ, so rearranging the previous equation we conclude that

N
x; = / H Ri;:’“fpk)dHaarU.
k=1

Therefore, if duy is the log-spectral measure of X, we see that

B(s,x) al
9 SE—pP SA Pk
B(p,x / / HR Hnarydua 1;[ 1

where R*R = X is the Cholesky decomposition of X. ]

We now combine Proposition B.3 with Theorem 4.5 to obtain a geometric interpretation of the S-
transform. Let d\ be a compactly supported measure on (0,00), and for a fixed compact set I D supp dA,
let AN € {z € I | £y > -+ > 2y > 0} be a sequence such that we have the weak convergence of measures

1 N
= Y G = dA.
N =1

Corollary B.4. Let Xy be the N x N unitarily invariant Hermitian random matrix with spectrum A%,
For t € [0, 1], the log-S-transform of the measure dA is given by

—logSun(t —1) = lim E [2log Ri¢n ) eny] 5
where Xy = R*R is the Cholesky decomposition of X .

Proof. First, by Proposition B.3, we find that

ask log ¢ x (p) = ask ¢XN /ask

1|

where Xy = R*R is the Cholesky decomposition. Applying Theorem 4.5, we have uniformly in k& €
{1,..., N} that

dHaary = /2 log Ry dHaary,

s=p

lim '/QIOngdeaarU + log Sax(k/N — 1)‘ =0,

N —oc0

from which the conclusion follows by continuity of the S-transform on [—1,0]. O
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