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Abstract. We develop a theory of multilevel distributions of eigenvalues which complements
the Dyson’s threefold β = 1, 2, 4 approach corresponding to real/complex/quaternion matrices
by β = ∞ point. Our central objects are the G∞E ensemble, which is a counterpart of the
classical Gaussian Orthogonal/Unitary/Symplectic ensembles, and the Airy∞ line ensemble,
which is a collection of continuous curves serving as a scaling limit for largest eigenvalues at
β = ∞. We develop two points of views on these objects. The probabilistic one treats them
as partition functions of certain additive polymers collecting white noise. The integrable point
of view expresses their distributions through the so-called associated Hermite polynomials and
integrals of the Airy function. We also outline universal appearances of our ensembles as scaling
limits.
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1. Introduction

1.1. Motivations. Traditionally, the random matrix theory1 deals with real, complex, and
quaternion matrices, their eigenvalues and eigenvectors. Following the work of Wigner,
Dyson, Mehta, and others in 1950-60s, a central role is played by Gaussian ensembles, which
are defined as follows: let X be an infinite Z>0 × Z>0 matrix with i.i.d. standard normal
real/complex/quaternion matrix elements, normalized so that their real parts have variance
2
β with β = 1/2/4, respectively. The N ×N principal submatrix MN of X+X∗

2 is then called the

Gaussian Orthogonal/Unitrary/Simplectic ensemble of rank N . The matrix MN is Hermitian,
it has N real eigenvalues χ1 ≤ χ2 ≤ · · · ≤ χN and their distribution is explicit. The joint density
is proportional to

(1.1)
∏

1≤i<j≤N
(χj − χi)β

N∏
i=1

exp
(
−β

4 (χi)
2
)
.

Although originally in (1.1) only β = 1, 2, 4 come out, the formula suggests the possibility of
taking arbitrary positive real values for β. In the terminology of statistical mechanics, such β
can be interpreted as the inverse temperature. More recently the distribution (1.1) was found
in [DE1] to govern for any β > 0 the eigenvalues of tridiagonal real symmetric random matrices.
Multiple other reasons to be interested in the Gaussian β ensembles (1.1) with arbitrary β > 0
are reviewed in [Ox, Chapter 20 “Beta Ensembles”], they include connections to the theory
of Jack and Macdonald symmetric polynomials, to Coulomb log-gases, and to the Calogero–
Sutherland quantum many–body system. One can go further and replace exp

(
−β

4 (χi)
2
)

in (1.1)
by any potential V (χi) leading to a class of distributions known under the name β–ensembles.

Beyond β = 1, 2, 4, there are two other special values of β for β–ensembles. First, at β = 0 the
interactions between particles disappear and we link to the classical probability theory dealing
with sequences of independent random variables. We are not going to consider this value here.
Instead, we concentrate on β = ∞, following [DE2, AKM, EPS, GM, VW]. The point of view
of [DE2, EPS] is that many characteristics of the distribution (1.1) (such as mean and variance
of individual eigenvalues xi for finite N and as N → ∞) are well-approximated by Taylor
expansions near β = ∞. In particular, their numeric simulations show a good match between
the first two non-trivial asymptotic terms and exact expressions even at β = 1, which seems
very far from β = ∞. Our own simulations for the Gaussian ensembles of 3 × 3 matrices are
shown in Figure 1. We see an astonishing match between exact probability densities and their
approximations from β =∞.

The β = ∞ ensembles or, equivalently, the behavior of β–ensembles at large values of β is
the central theme of this article. As we explain in Section 2, a β = ∞ ensemble consists of
two pieces of data: The first one is a deterministic particle configuration, which is a β → ∞
limit of β-ensembles, such as (1.1); the second piece is a Gaussian vector describing asymptotic
fluctuations around this limit. We would like to combine large β with large N . In other words, we
deal with asymptotic questions about large-dimensional ensembles of β =∞ random matrices.

We discover that the β =∞ point possesses a lot of integrability and the asymptotic questions
can be understood in precise details, going far beyond what is known for general values of β > 0.

1See, e.g., textbooks [AGZ, Me, Ox, Fo2] for general reviews.



UNIVERSAL OBJECTS OF THE INFINITE BETA RANDOM MATRIX THEORY 3

-10 -5 0 5 10
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

-8 -6 -4 -2 0 2 4 6 8
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

-6 -4 -2 0 2 4 6
0

0.05

0.1

0.15

0.2

0.25

0.3

Figure 1. The figures show arithmetic mean of the probability densities (MAT-
LAB simulation using 5× 106 samples) of 3 eigenvalues of 3× 3 matrices. Light
green solid lines correspond to eigenvalues sampled from GβE ensembles (1.1)
at β = 1/2/4, N = 3. Black dash-dotted lines correspond to the result of the
3–term approximation of eigenvalues of the form χi = hi+

1√
β
ξi+

1
β ri, i = 1, 2, 3,

where (h1, h2, h3) = (−
√

3, 0,
√

3) are roots of the degree 3 Hermite polynomial,
(ξ1, ξ2, ξ3) is a Gaussian vector, whose study is one of our topics, and (r1, r2, r3)
is a deterministic vector not discussed in this text.

This is our main message: β =∞ is accessible to the same extent as the most well-studied point
β = 2.

1.2. Second dimension and asymptotics. For our asymptotic results an important role is
played by an extension of β–ensembles to two-dimensional systems. In fact, there are two
distinct extensions, which are both very natural. The first one originates in [Dys], where Dyson
suggested in 1960s to identify (1.1) with a fixed time distribution of the Dyson Brownian Motion.
The latter is an N–dimensional stochastic evolution (X1(t) ≤ · · · ≤ XN (t)), solving the SDE:

(1.2) dXi(t) =
∑
j 6=i

dt

Xi(t)−Xj(t)
+

√
2

β
dWi(t), i = 1, 2, . . . , N,

where Wi(t) are independent standard Brownian motions. One shows that at t = 1 the law of
the solution of (1.2) with zero initial condition X1(0) = · · · = XN (0) = 0 is given by (1.1). [Dys]
constructed the evolution (1.2) at β = 1, 2, 4 as a projection onto the eigenvalues of a dynamics
on Hermitian matrices in which each matrix element evolves as a Brownian motion. Yet, (1.2)
makes sense for any2 β > 0. The Dyson Brownian Motion is a key ingredient in proofs of many
recent limit theorems for random matrices and β–ensembles, see, e.g., [AGZ], [EY].

Another 2d extension is constructed by considering the joint distribution of eigenvalues of
all principal top-left N × N corners of the infinite Hermitian matrix X+X∗

2 simultaneously for

N = 1, 2, 3, . . . . In this way one arrives at an array of numbers {χki }1≤i≤k, where χk1 ≤ χj2 ≤
· · · ≤ χjj are the eigenvalues of k × k corner. The eigenvalues satisfy deterministic inequalities

χk+1
i ≤ χki ≤ χ

k+1
i+1 and the law of the subarray {χki }1≤i≤k≤N has density proportional to

(1.3)

N−1∏
k=1

 ∏
1≤i<j≤k

(χkj − χki )2−β
 · [ k∏

a=1

k+1∏
b=1

|χka − χk+1
b |β/2−1

]
·
N∏
i=1

exp
(
−β

4 (χNi )2
)
.

2For β < 1 additional care is required, since the particles start to collide with each other, see [CL].
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We call this distribution the Gaussian β corners process. Modern computations leading to (1.3)
for β = 1, 2, 4 can be found in [Bar] and [Ner], while the underlying ideas arose in representation
theory back in 1950s, see [GN, Section 9.3]. The consistency between (1.3) and (1.1) is automatic
from the construction at β = 1, 2, 4, but needs an additional argument at general β > 0, which
can be obtained either using a 100-year old integration identity from [Dix] (see also [An]) or as
a limiting case of the branching rules for Jack and Macdonald symmetric polynomials, see [BG,
Appendix], [GS1].

Beyond intrinsic interest, the multilevel distributions (1.3) were used recently to prove as-
ymptotic theorems leading to the one-level distribution (1.1). The central idea here is that the
multilevel distribution can be uniquely identified by some of its simple features, which (1.1) is
lacking, such as conditional uniformity at β = 2 (notice that most of the factors in (1.3) disap-
pear at β = 2), see [G, Dim]. In wider contexts, the usefulness of similar multilevel distributions
and their characteristic Gibbs properties was demonstrated, e.g., in [CH, CD, CGH].

In this text we focus our attention on the largest eigenvalues in β–ensembles and their 2d
extensions. Let us state two of our main results. We use the notation Ai(x) for the Airy function
and we let a1 > a2 > a3 > . . . to be its zeros.

Theorem 1.1. Suppose that an infinite random array {χki }1≤i≤k is distributed so that for each N
its projection onto indices 1 ≤ i ≤ k ≤ N has the law (1.3). In addition, for each k = 1, 2, . . . , let

xk1 < xk2 < · · · < xkk be the roots of the degree k Hermite polynomial3 and set κ(t) = N+b2tN2/3c.
Then we have the following limit in the sense of convergence of finite-dimensional distributions
of the two-dimensional stochastic process:

lim
N→∞

lim
β→∞

N1/6
√
β

(
χ
κ(t)
κ(t)+1−i − x

κ(t)
κ(t)+1−i

)
= Z(i, t), i ∈ Z>0, t ∈ R,

where Z(i, t) is a mean–zero Gaussian process with covariance

(1.4) EZ(i, t)Z(j, s) =
2

Ai′(ai)Ai′(aj)

∫ ∞
0

Ai(ai + y)Ai(aj + y) exp (−|t− s|y)
dy

y
.

Notably, for the Dyson Brownian Motion the limit turns out to be the same. More specifically,
while the t parameter in Theorem 1.1 refers to the difference in the size of a submatrix, in
Theorem 1.2 below the size of the matrix is fixed and t is time in the stochastic evolution. And
still we are getting the same limit behavior.4

Theorem 1.2. Suppose that the N–dimensional dynamics
(
Xi(t)

)N
i=1

solves (1.2) with X1(0) =

· · · = XN (0) = 0. In addition, for each k = 1, 2, . . . , let xk1 < xk2 < · · · < xkk be the roots of

the degree k Hermite polynomial and set τ(t) = 1 + 2tN−1/3. Then we have the following limit
in the sense of convergence of finite-dimensional distributions of the two-dimensional stochastic
process:

lim
N→∞

lim
β→∞

N1/6
√
β

(
XN+1−i(t)−

(
τ(t)β2

)1/2
xNN+1−i

)
= Z(i, t), i ∈ Z>0, t ∈ R.

Remark 1.3. In both Theorems 1.1 and 1.2 we deal with an iterative limit, i.e. we first send
β →∞ and then N →∞. One could expect that the joint limit N, β →∞ is the same, yet we
do not prove such results in this text.

3Here and below we use the monic “probabilists” Hermite polynomials with weight function e−x
2/2.

4We conjecture that the same is true for each β > 0: if we remove limβ→∞ from Theorems 1.1 and 1.2, then
the N →∞ limits should still coincide. Heuristically, one reason is that transition probabilities for the dynamics
in both theorems can be obtained by specializations and limits from (skew) Jack polynomials, see [GS1].
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Figure 2. Left panel: Bullets show random sample of the three largest eigen-
values in the Gaussian β-corners process for corners of size k = 80, . . . , 119 and
with β = 50. Thin lines are corresponding roots of the Hermite polynomials.
Right panel: A random sample of the limiting process Z(i, t) for −1 ≤ t ≤ 1;
black think line for i = 1, blue solid line for i = 2, cyan dotted line for i = 3.

The limiting process Z(i, t) can be defined in such a way that for each fixed i = 1, 2, . . . ,
it becomes an almost surely continuous function of t, see Section 6.4 for a proof and Figure 2
for a simulation. While we are not going to provide details in this direction, we expect that
convergence in Theorems 1.1 and 1.2 can be upgraded to convergence in law in an appropriate
space of continuous functions.

In addition to the explicit formula for the covariances (1.4) we develop an equivalent stochastic
point of view on the limiting process Z(i, t), i ∈ Z>0, t ∈ R, appearing in Theorems 1.1 and
1.2. For that we consider a continuous time homogeneous Markov chain X(x0)(t), t ≥ 0, taking
values in state space Z>0. The initial value is x0 ∈ Z>0, i.e. X(x0)(0) = x0. For i, j ∈ Z>0 we
define the intensity of the jump from i to j to be:

Q(i→ j) =
2

(ai − aj)2
.

The transitional probabilities Pt(i→ j) for this Markov chain can be expressed through integrals
of the Airy function, as we explain in Section 6.3.

Next, we take a countable collection of Brownian motions W (i)(t), i ∈ Z>0. For each i =
1, 2, . . . and t ∈ R we can identify Z(i, t) with the following random variable:

(1.5) Z(i, t) = 2EX (i)(r), r≥0

∫ ∞
r=0

dW (X (i)(r))(t+ r).

In words, we start the Markov chain X from i at time t, follow its trajectory, and collect the
white noises Ẇ (j) along it. Z(i, t) is the expectation over the randomness coming from X ; it is
still a random variable with randomness coming from the Brownian motions. Alternatively, we
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can view Z(i, t) as the partition function of a directed polymer in additive Gaussian noise. The
form of the expression (1.5) is a bit vague, since it is unclear how to compute the r-integral,
as it seems to be infinite. A more mathematically precise (but, perhaps, less elegant) form is
obtained by swapping the integration and expectation signs, resulting in the following expression
(see Theorem 6.5):

(1.6) Z(i, t) = 2
∞∑
j=1

∫ ∞
r=t

Pr−t(i→ j)dW (j)(r).

The decay of Pr−t(i→ j) as either r →∞ or j →∞ implies that (1.6) is well-defined.
Note that the representation (1.6) implies that the correlations between Z(i, t) and Z(j, s) are

always positive. This agrees with our simulation in the right panel of Figure 2, which gives a
feeling of attraction between the trajectories of the particles. In contrast, for finite β the drift
of the Dyson Brownian Motion (1.2) is leading to a repulsion rather than an attraction.

We call the process Z(i, t), i = 1, 2, . . . , t ∈ R, the Airy∞ line ensemble and we treat its
definition and appearance in Theorems 1.1, 1.2 as the central results of our text.

1.3. Comparison to previous results. Most results about the asymptotic behavior of β–
ensembles are available for single level ensembles as in (1.1). At β = 1, 2, 4 the detailed under-
standing can be achieved through the theory of determinantal/Pfaffian point processes, which
encode the probabilistic information in a function of two variables called a correlation ker-
nel. This kernel is expressed through orthogonal polynomials, which makes its asymptotics
accessible. In particular, the scaling limit for the largest eigenvalues of the Gaussian Orthogo-
nal/Unitary/Symplectic ensembles, their connections to the Airy functions and Painleve equa-
tions were developed in [TW1, TW2, Fo1].

At general values of β > 0 the available approach is very different. It starts from the real-
ization of the ensemble as an eigenvalue distribution of certain tridiagonal matrices, analyzes
asymptotics of these matrices, and in this way identifies the scaling limits of the largest eigen-
values with (highly non-linear) functionals of Brownian motion, see [DE1, ES, RRV, GS2] for
different faces of this approach. We refer to β = 1, 2, 4 approach as integrable and general β > 0
one as probabilistic. To a large extent they are disjoint and many results are hard to translate
from one language into another: for instance, the match between expected Laplace transform
of largest eigenvalues computed in two ways in [GS2] gave rise to a brand new distributional
identity for integrated local times of the Brownian excursion. From this perspective, our β =∞
results are an exception, since we are able to match explicit covariance (1.4) of Z(i, t) with its
stochastic representation (1.5), (1.6).

In principle, tridiagonal matrices can be used to study certain marginals of Z(i, t). In partic-
ular, by using this approach [DE2, EPS] produced a formula for the variance of the individual
components of Z(i, t). In other words, they present5 a one-point version of Theorems 1.1, 1.2.
Interestingly, while their formula also involves an integral of Airy function, but it is of different
form than i = j, t = s specialization of (1.4) — yet, numerically both formulas output the same
numbers.

When it comes to the 2d extensions of β-ensembles, many results are again available at β = 2.
The N → ∞ limiting object for the largest eigenvalues is called the Airy Line Ensemble — it
is a determinantal point process with correlation kernel expressed through the Airy functions,
and it also enjoys a Brownian Gibbs resampling property, see [FoN, Mac, FoNH, CH], and [Fe,
Section 4.4] for the analogues of our Theorems 1.1, 1.2 at β = 2. For β = 1 the N → ∞ limit

5While the article formulates the statement for all i > 0, the supporting argument is given only for i = 1, 2.
On the other hand, they also analyze the limit in different order limβ→∞ limN→∞.
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of the largest eigenvalues for a common 3d extension of the corners process (1.3) and the Dyson
Brownian Motion (1.2) was computed in [So].

Outside β = 1, 2, the available information about joint distributions of the N → ∞ limit
of either corners process or the Dyson Brownian Motion is very limited. Developing proper
understanding of these objects remains a major open problem6. One possible approach is to
give a proper mathematical meaning to N → ∞ limit of the Dyson Brownian Motion SDE
(1.2) and to the notion of its solution, see [OT] and references therein. There are still technical
difficulties when analyzing largest eigenvalues through this approach outside β = 1, 2, 4. For the
bulk limits (i.e. for the eigenvalues in the middle of the spectrum) such an SDE point of view
was put on rigorous grounds in [Ts]7. Yet, even after we manage to convince ourselves that
SDE (1.2) has a proper large N limit, it would still remain unclear how to solve the limiting
equations. From this point of view, Theorems 1.1, 1.2 are the first results computing the precise
probabilistic characteristics of N →∞ limit of joint distributions of largest eigenvalues at several
times or levels outside β = 1, 2, 4.

One conceptual feature which unites our β =∞ study with classical β = 1, 2, 4 cases is that
the infinitely-dimensional limiting process gets identified through a function of finitely many
variables (two variables if we speak about one-level distributions as in (1.1) or four variables if
we deal with 2d extensions as in (1.3)). However, the role of this function becomes different:
at β = 1, 2, 4 the description proceeds in terms of the correlation kernels of determinantal or
Pfaffian point processes, while at β =∞ we deal with Gaussian processes uniquely fixed by their
covariances. Still, in all the situations the limiting behavior of largest eigenvalues gets expressed
through the Airy functions. A vague theoretical physics analogy suggests to call β = 1, 2, 4
results fermionic, while our β =∞ theorems being a bosonic counterpart.

1.4. Universality. We expect that the Airy∞ line ensemble appears in β,N → ∞ regime in
many other problems going well beyond Theorems 1.1, 1.2. We are not going to pursue this
universality direction here, let us only mention possible setups, where the appearance of the
Airy∞ line ensemble seems plausible:

(1) The corners process (1.3) and the Dyson Brownian Motion (1.2) have a common 3d
extension, which is a stochastic evolution on arrays of interlacing eigenvalues constructed
in [GS1]. We expect that the scaling limit of the largest eigenvalues in a 2d section of
such evolution along a space-like path (i.e. along a sequence of times and corner sizes
(ti, ki), satisfying t1 ≤ t2 ≤ t3 ≤ . . . , k1 ≥ k2 ≥ k3 ≥ . . . ) should converge to Z(i, t) as
β,N →∞. Results of this type for β = 1, 2 were proven in [Fe, So].

(2) One can replace exp
(
−β

4 (χi)
2
)

in (1.1) by a more general potential V (χi) and the result-
ing formula would give the stationary distribution for a version of the Dyson Brownian
Motion with an additional drift term (see, e.g., [LLX, AH] and references therein for
more details on the Dyson Brownian Motion with a potential). In a slightly different
direction, one can also start the Dyson Brownian Motion from more complicated initial
conditions than X1(0) = · · · = XN (0) = 0 which we consider. One could hope that an
analogue of Theorem 1.2 holds in such settings under mild restrictions on V (χ) and on
initial conditions.

(3) One can modify the definition of the corners process (1.3) by replacing exp
(
−β

4 (χNi )2
)
.

The most extreme case is obtained if we remove this factor altogether and instead impose
deterministic equalities χNi = yi, i = 1, 2, . . . , N . At β = 1, 2, 4 this corresponds to

6On the technical side the problem stems from the fact that tridiagonal matrices (which were instrumental in
understanding limits of β-ensembles) are not compatible with 2d extensions.

7One can similarly restate the corners process (1.3) as a Markov chain with time coordinate given by k. For
this process the bulk limit is also available, see [NV] and [H].
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taking an N×N Hermitian matrix with deterministic eigenvalues and uniformly random
orthonormal eigenvectors and considering the law of eigenvalues of its principal corners.
In contrast to (1.3) the definition is not going to be consistent over varying N (if we
replace N by N + 1, then χNi become random and can no longer be deterministic),
yet we can assume that (y1, . . . , yN ) changes with N in a regular way as N → ∞ and
then analyze the behavior of the largest eigenvalues of corners of size ≈ Nα for some
0 < α < 1. We expect an analogue of Theorem 1.1 to hold in such setting and present
a partial result in this direction in Theorem 2.17.

There is also a universality of a different kind, namely, the Gaussian β corners process (1.3)
and its β = ∞ counterpart appear as scaling limits in various setups. Let us explain this by
starting from the real β = 1 example. Consider a uniformly random point (v1, . . . , vN ) on the
unit sphere SN−1 in RN . A direct computation shows that each individual squared coordinate
v2i is distributed as Beta random variable B(12 ,

N−1
2 ), which can be then used to show that

E(vi)
2 = 1

N , E(vi)
4 = 3

N(N+2) , E(vi)
2(vj)

2 = 1
N(N+2) . Now take an N × N Hermitian matrix

Λ with deterministic eigenvalues λ1, . . . , λN and uniformly random eigenvectors. The top-left
matrix element Λ11 can be written as

λ1(v1)
2 + λ2(v2)

2 + · · ·+ λN (vN )2, (v1, . . . , vN )− uniformly random vector on SN−1.

Computing the mean and variance of Λ11 using the above moments of (vi)
2 and using additional

arguments to show the asymptotic Gaussianity, one proves the distributional convergence

Λ11 −
λ1 + · · ·+ λN

N
≈

√√√√√√ 1

N + 2

∑N
i=1(λi)

2

N
−

(∑N
i=1 λi

)2
N2

 · N (0, 2), N →∞.

This result should be treated as convergence of recentered and rescaled 1×1 corner of the matrix
to the 1 × 1 Gaussian Orthogonal Ensemble, whose eigenvalues are given by (1.3) with β = 1.
The procedure can be generalized in two directions: instead of 1 × 1 we can consider arbitrary
n × n corners and instead of β = 1 we can consider arbitrary β > 0. The result remains the
same: the scaling limit is always given by the Gaussian β corners process (1.3), see [Cu] and
[MM].

Section 2.4 contains a β = ∞ version of such results. It starts from the observation of [GM]
that the process formed by eigenvalues of corners of a N × N Hermitian matrix with fixed
spectrum and uniformly random eigenvectors admits a non-degenerate β → ∞ scaling limit.
This limit is an interesting N(N − 1)/2–dimensional Gaussian process, whose components are
attached to the lattice of all zeros of all derivatives of a degree N real–valued polynomial. The
next step is to send N →∞ and Theorem 2.12 shows that under very mild restrictions the limit
(which is a counterpart of the eigenvalue process for fixed size corners of a large matrix from the
previous paragraph) is universally given by the β = ∞ version of Gaussian β corners process
(1.3).

1.5. Our methods. For the proofs we start from the computation of β →∞ fixed N limit in
(1.3), following [GM]. In the first order, individual eigenvalues at level k converge to the roots
of the degree k Hermite polynomial, limβ→∞ χ

k
i = xki , and we are led to study the fluctuations

around these roots:
ζki = lim

β→∞

√
β(χki − xki ).

While the N(N −1)/2 dimensional process {ζki }1≤i≤k≤N is Gaussian and has an explicit density
(see Section 2.2), computing its N → ∞ limit is very far from being obvious: each coordinate
of this process interacts with many others in a non-trivial way.
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An important ingredient underlying all our results is identification of ζki with a partition
function of a directed additive polymer obtained by running a random walk on roots of the
Hermite polynomials and collecting white noises along the trajectories. This is a discrete version
of the representation (1.5) for Z(i, t). Thus, our asymptotic problems are now reduced to the
study of this random walk. In one time step the walker jumps from a root of the degree k
Hermite polynomial to a root of the degree k+1 Hermite polynomial with probability of a jump
from x to y being equal to 1

(k+1)(x−y)2 .

Our next step is to diagonalize the transition semigroup of the random walk. It turns out that
for each j ≤ k the transition probabilities preserve the space of polynomials of degree ≤ j and,

moreover, are explicitly diagonalized in the basis of certain polynomials Q
(k)
m (z), 0 ≤ m < k.

We further give two descriptions of polynomials Q
(k)
m (z). On one hand, for fixed k, these are

the k first monic orthogonal polynomial with respect to the discrete uniform weight on the
roots of the degree k Hermite polynomial Hk(z). On the other hand, these are the associated
Hermite polynomials first studied in [AW]. The three-term recurrence (in m) satisfied by these
polynomials is the same as the recurrence of the Hermite polynomials, but read in the opposite
order.8

The formula (1.4) eventually arises as a limit of the expression for the covariance of ζki through

polynomials Q
(k)
m (z). In order to compute this limit, we need to compute the asymptotic of

polynomials Q
(k)
m (z) at the locations of the largest roots of the Hermite polynomials Hk(z). We

remark that while the asymptotic behavior of orthogonal polynomials supported on discrete sets
has been studied in great detail, one typically assumes that the support of the weight function
locally looks like a lattice, see, e.g., [BKMM] for such results. However, in our case the largest
roots of the Hermite polynomials approximate zeros of the Airy function, which are very far

from forming a lattice. Hence, the type of the asymptotic of Q
(k)
m (z) that we develop seems to

be new, see Theorem 6.1 for the exact statement and proof.
For the Dyson Brownian Motion of Theorem 1.2 the story is similar: again the polynomials

Q
(k)
m (z) and their asymptotic behavior play a crucial role.

Let us outline the directions in which our approach might generalize. The representation
of the β → ∞ limit of the corners process through a random walk collecting noises exists not
only for the Gaussian ensemble (1.3), but also for the process formed by the β version of the
operation of cutting corners from a Hermitian matrix with fixed spectrum and uniformly random
eigenvectors discussed in the previous section. However, the general situation is complicated
by two features. First, the variance of the noise becomes inhomogeneous. Second, we do not
know any reasonable identification for the polynomials diagonalizing the random walk transition
matrix, in particular, it is unclear, whether they are orthogonal with respect to some natural
weight. On the other hand, since we already know the answers from Theorems 1.1, 1.2, it
might be possible to show that they remain valid in the such a more general setting by arguing
directly and probabilistically in terms of the random walk — this would be a step toward the
universality of the previous section. Simultaneously, we also expect that our representation
through the random walk should be helpful in studying other joint limits as β,N → ∞, such
bulk local limits or global fluctuations of the spectra.

Finally, let us mention two other texts which appeared almost simultaneously with our paper9.
Both texts deal with the Dyson Brownian Motion (1.2). [Lan] proves an existence theorem for
the edge limit at finite values of β > 1 (as in Theorem 1.2, but with β staying finite) and shows

8In terminology of [BS] and [VZ] Q
(k)
m (z) are dual polynomials to Hk(z).

9The three groups of authors were working independently and without knowing about each other’s projects.
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that the limit can be thought of as a solution to an N = ∞ version of (1.2). The approach of
[Lan] does not give explicit formulas for the edge limit and it is unclear whether our Z(i, t) can
be identified directly by sending β → ∞ in the results of [Lan] — this is an interesting open
question. [AHV] computes the fixed time edge limit of the β = ∞ Dyson Brownian Motion
providing a different approach to the asymptotic results of [DE2, EPS]; in other words, [AHV]
covers the intersection of Theorems 1.1 and 1.2 corresponding to the t = 0 marginal. The
associated Hermite polynomials also appear in [AHV], but in a different way: in our work they
diagonalize transition matrices, while in [AHV] they are eigenfunctions of fixed time covariance
matrices. We also remark that [AHV, Section 6] makes a step in the universality direction of
Section 1.4 by analyzing the N, β →∞ limits of the Laguerre ensemble which can be obtained
from (1.1) by replacing exp

(
−β

4 (χi)
2
)

with another weight function.

Acknowledgements. We are grateful to Alan Edelman for fruitful discussions about β–
ensembles and to Alexei Zhedanov for bringing [VZ] to our attention. We thank two anonymous
referees for helpful comments. The work of V.G. was partially supported by NSF Grants DMS-
1664619, DMS-1949820, by BSF grant 2018248, and by the Office of the Vice Chancellor for
Research and Graduate Education at the University of Wisconsin–Madison with funding from
the Wisconsin Alumni Research Foundation.

The work of V.K. was partially supported by ANR Gromeov (ANR-19-CE40-0007), by Centre
Henri Lebesgue (ANR-11-LABX-0020-01), as well as by the Laboratory of Dynamical Systems
and Applications NRU HSE, of the Ministry of science and higher education of the RF grant
ag. No. 075-15-2019-1931.

2. β =∞ multilevel ensembles

The goal of this section is to define the β →∞ fixed N limits of the multidimensional objects
of general β random matrix theory: β–corners processes and the Dyson Brownian Motion.

2.1. ∞-corners process. Take an N × N random Hermitian matrix with fixed spectrum
xN1 , . . . , x

N
N and uniformly random eigenvectors10. Let xki , i ≤ k ≤ N − 1, be the ith eigen-

value of the k × k top–left corner of this matrix. This procedure can be done for real, complex,
or quaternion matrix elements (corresponding to β = 1, 2, 4, respectively, see [Ner] for the mod-
ern proof), resulting in the joint laws for the array {χki }1≤i≤k≤N−1 given by the density with
respect to the Lebesgue measure

(2.1)
1

ZN,β

N−1∏
k=1

 ∏
1≤i<j≤k

(χkj − χki )2−β
 · [ k∏

a=1

k+1∏
b=1

|χka − χk+1
b |β/2−1

]
,

where ZN,β is the normalizing constant, and the eigenvalues χki satisfy the deterministic inequal-

ities χk+1
i ≤ χki ≤ χ

k+1
i+1 for all 1 ≤ i ≤ k ≤ N − 1.

While our ultimate interest is in N →∞ asymptotics of (2.1), it was noticed in [GM] that a
simpler object can be obtained if we first send β →∞ while keeping N fixed. Namely, as β →∞,
the values {χki } become deterministic (“crystallize”), tending to an array {xki }. The latter can

be computed recursively using the relation Pk−1(x) = 1
kP
′
k(x), where Pk(x) =

∏k
j=1(x − xkj ) is

the characteristic polynomial for the limiting level k eigenvalues11. Recentering around these

10Equivalently, we deal with the uniform measure on all Hermitian matrices with fixed spectrum xN1 , . . . , x
N
N .

11Thus, the polynomials Pk(x) form an Appell sequence.
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limiting values and renormalizing by
√
β we arrive at the∞–corners process. This is a Gaussian

process

{ξki }1≤i≤k≤N = lim
β→∞

{√
β(χkj − xkj )

}
1≤i≤k≤N

,

where ξN1 = ξN2 = · · · = ξNN = 0, and the other coordinates (see [GM, Eq. (11)]) have the
common density proportional to

(2.2) exp

N−1∑
k=1

 ∑
1≤i<j≤k

(ξki − ξkj )2

2(xki − xkj )2
−

k∑
a=1

k+1∑
b=1

(ξka − ξk+1
b )2

4(xka − xk+1
b )2

 .

2.2. Gaussian ∞–corners process. A special role in our exposition is played by the Gaussian
∞–corners process12, in which the polynomials Pk(x) = Hk(x) are the Hermite polynomials and
the top row ξN1 , ξ

N
2 , . . . , ξ

N
N is also random rather than deterministically vanishing. This object

can be obtained as β → ∞ limit of the corners process constructed from the Gaussian β–
ensemble, which is a distribution on arrays {χki }1≤i≤k≤N , obtained from (2.1) by making the
top row random and distributed according to the Gaussian β–ensemble (1.1). The distribution
of the full array {χki }1≤i≤k≤N was given in (1.3). Recentering χki around the zeros of the Hermite
polynomials, multiplying by

√
β and sending β → ∞ we get the Gaussian ∞–corners process.

For one level the link to the zeros of the Hermite polynomials is classical, see [Sz, Section 6.7],
[Ker], while the second order Gaussianity was investigated in [DE2]. The multilevel result is
obtained through a straightforward Taylor expansion of (1.3) near its maximum given by the
roots of the Hermite polynomials, cf. [GM, Theorem 1.6].

Recasting the result of β →∞ limit transition, we deal with an infinite-dimensional centered

Gaussian vector ζji , 1 ≤ i ≤ j, such that for each fixed N = 1, 2, . . . , the N(N + 1)–dimensional

marginal {ζji }1≤i≤j≤N has density proportional to:

(2.3) exp

− N∑
i=1

(ζNi )2

4
+

N−1∑
k=1

 ∑
1≤i<j≤k

(ζki − ζkj )2

2(xki − xkj )2
−

k∑
a=1

k+1∑
b=1

(ζka − ζk+1
b )2

4(xka − xk+1
b )2

 ,

where xki is the i–th root (i = 1 means the smallest) of the degree k Hermite polynomial Hk.

Proposition 2.1. The definition (2.3) is consistent: restricting {ζji }1≤i≤j≤N to k(k + 1)/2

coordinates {ζji }1≤i≤j≤k gives the object of the same type. Further, restriction of {ζji }1≤i≤j≤N
onto N particles ζN1 , ζ

N
2 , . . . , ζ

N
N has the density proportional to

(2.4) exp

− N∑
i=1

(ζNi )2

4
−

∑
1≤i<j≤N

(ζNi − ζNj )2

2(xNi − xNj )2

 .

Proof. Following [GM], the formula (2.3) is obtained as β → ∞ limit of the density of the
Gaussian β corners process of [GS1, Definition 1.1] at t = 2

β and the consistency becomes the

corollary of the consistency of the latter Definition 1.1. Similarly, (2.4) is β → ∞ limit of the
density of the Gaussian β ensemble; it is a projection of (2.3) as β → ∞ limit of the fact that
the Gaussian β corners process projects to the Gaussian β ensemble, which can be found in
[GS1, Corollary 5.4]. �

12Note the double meaning of the word Gaussian here. The process is a Gaussian vector and it also arises as
a limit of eigenvalues of Gaussian matrices.
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2.3. Dyson Brownian Motion at β =∞. Recall that the Dyson Brownian Motion (see, e.g.,
[Me, Chapter 9], [AGZ, Section 4.3]) is an N–dimensional stochastic process with coordinates
X1(t) ≤ X2(t) ≤ · · · ≤ XN (t), t ≥ 0, defined as a solution to the system of SDEs

(2.5) dXi(t) =
∑
j 6=i

dt

Xi(t)−Xj(t)
+

√
2

β
dWi(t), i = 1, 2, . . . , N, t ≥ 0,

where W1(t), . . . ,WN (t) is a collection of independent standard Brownian motions. The evolu-
tion (2.5) should be supplied with initial conditions and in this text we are going to only consider
the case X1(0) = X2(0) = · · · = XN (0) = 0. In this situation the distribution of the solution to
(1.2) at a fixed time t is (a rescaled version of) the Gaussian β ensemble of density

(2.6)
∏

1≤i<j≤N
(χj − χi)β

N∏
i=1

exp
(
− β

4t(χi)
2
)
.

Since we are ultimately interested in β → ∞ limit, we can assume β ≥ 1; in this situation
(2.5) has a unique strong solution, see [AGZ, Section 4.3]. Hence, we deal with a pair of N–
dimensional stochastic processes (Xi(t);Wi(t))

N
i=1, t ≥ 0, such that (Wi(t))

N
i=1 is the standard

Brownian motion, for each t > 0 the law of (Xi(t))
N
i=1 is given by (2.6) (in particular Xi(0) = 0),

and (Xi(t))
N
i=1 is the unique strong solution to (1.2) on t ∈ [0,+∞) time interval.

Theorem 2.2. Fix N and let X1(t) ≤ X2(t) ≤ · · · ≤ XN (t) be the solution to (2.5) with
X1(0) = X2(0) = · · · = XN (0) = 0 and let xN1 < xN2 < · · · < xNN be the roots of the degree N
Hermite polynomial. Define

(2.7) ζNi (t) = lim
β→∞

√
β
(
Xi(t)−

√
t xNi

)
.

Then the N–dimensional (Gaussian) vector (ζN1 (t), . . . , ζNN (t)) solves a linear SDE

(2.8) dζNi (t) = −
∑
j 6=i

ζNi (t)− ζNj (t)

t(xNi − xNj )2
dt+

√
2 dWi(t), t ≥ 0,

with initial condition ζN1 (0) = · · · = ζNN (0) = 0. The convergence in (2.7) is in law in the space
of N–dimensional continuous functions on each interval t ∈ [t1, t2] with 0 < t1 < t2, and joint
with the law of Wi(t), t ≥ 0, 1 ≤ i ≤ N (the latter does not depend on β).

Before coming to the proof of Theorem 2.2 let us look at the limiting SDE (2.8).

Lemma 2.3. Let
(
Wi(t)

)N
i=1

, t ≥ 0 be a standard Brownian motion. There exists a unique

stochastic process
(
ζNi (t)

)N
i=1

, t ≥ 0, such that for each ε > 0,
(
ζNi (t)

)N
i=1

is a strong solution to
(2.8) on the interval t ∈ [ε,+∞) and

lim
t→0

ζNi (t) = 0, in probability for each i = 1, 2, . . . , N.

We prove Lemma 2.3 in Section 7.1; the solution is expressed there as a sum involving Ito
integrals and orthogonal polynomials. This solution is the limiting process in Theorem 2.2.

We expect that convergence in Theorem 2.2 can be upgraded to almost sure uniform con-
vergence on each interval t ∈ [0, T ], T > 0. Such an upgrade would need careful analysis at
t = 0, where both (2.5) and (2.8) are singular. Because eventually our interest is in large t (as
in Theorem 1.2), we decided not to pursue this analysis here and to phrase Theorem 2.2 in the
way avoiding t = 0. A variant of Theorem 2.2 for a different initial condition can be found in
[VW]. We also give a proof here in order to be self-contained.
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Proof of Theorem 2.2. We start by computing the first order limit yi(t) := limβ→∞Xi(t). There
are several ways to do it. First, looking at (2.6) we conclude that y1(t) < · · · < yN (t) should
solve the variational problem

(2.9)
∏

1≤i<j≤N
(yj − yi)

N∏
i=1

exp

(
− 1

4t
(yi)

2

)
→ max .

The latter is known to be solved by rescaled zeros of the Hermite polynomials: yi(t) =
√
txNi .

Such a variational characterization of roots dates back to the work of T. Stieltjes, cf. [Sz, Section
6.7], [Ker]. We can also send β →∞ directly in (2.5) concluding that yi(t) should solve

(2.10) dyi(t) =
∑
j 6=i

dt

yi(t)− yj(t)
, i = 1, 2, . . . , N, t ≥ 0; y1(0) = · · · = yN (0) = 0.

The fact that yi(t) =
√
txNi solve (2.10) would follow once we show that

(2.11)
1

2
xNi =

∑
j 6=i

1

xNi − xNj
, i = 1, 2, . . . , N.

The latter identity is equivalent to the vanishing of the logarithmic derivatives in each yi of (2.9)
at t = 1 for the maximizing configuration yi = xNi .

Next, let us compute the centered fixed t limit of Xi(t) as β →∞. For that we Taylor expand
the (logarithm of the) density (2.6) around the N–tuple (

√
txNi )Ni=1. In the same way as in

Proposition 2.1, this results in a limiting relation involving a rescaled version of (2.4):

(2.12) lim
β→∞

√
β

(
Xi(t)−

√
txNi

)N
i=1

d
=
(√
tui
)N
i=1
,

where (u1, . . . , uN ) is a Gaussian vector with density proportional to

exp

− ∑
1≤i<j≤N

1
2(xNi −xNj )2

(
ui − uj

)2 − N∑
i=1

1
4

(
ui
)2 .

Let us emphasize that (2.12) is a distributional limit at a fixed time t. In order to deduce the
multi-time limit, we further write

Xi(t) =
√
txNi +

1√
β
ηi(t)

and plug this into (2.5) getting

(2.13)
1

2
√
t
xNi dt+

1√
β

dηi(t) =
∑
j 6=i

dt√
txNi −

√
txNj + 1√

β
ηi(t)− 1√

β
ηj(t)

+

√
2

β
dWi(t).

Further, Taylor expanding the dt term in the right-hand side in small parameter 1√
β

we get

1

2
√
t
xNi dt+

1√
β

dηi(t)

=
∑
j 6=i

dt√
txNi −

√
txNi

+
1√
β

∑
j 6=i

dt(ηj(t)− ηi(t))
t(xNi − xNj )2

+

√
2

β
dWi(t) +O

(
1

β

)
.

Using (2.11) to cancel the first terms in the right-hand and left-hand sides, multiplying by
√
β,

and sending β →∞ we get (2.8).
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N

constant size

N−1/2

N−2/3

zeros of
Airy function

N−1·lattice

zeros of
Hermite polynomials

Figure 3. Three scaling regimes and limiting objects for the grid formed by
zeros of derivatives of PN (x).

Now choose ε > 0. For t ≥ ε, the β → ∞ convergence of the SDE that ηi(t) satisfies

towards (2.8), together with (2.12), implies that
(
ζNi (t)

)N
i=1

= limβ→∞
(
ηi(t)

)N
i=1

, is the solution

of (2.8) on time interval t ∈ [ε,+∞) with initial condition given by (
√
εui)

N
i=1, cf. [VW, Proof of

Theorem 2.2] for some details. Note that such solution is unique by general theorems on SDEs
with Lipshitz coefficients (see, e.g., [Ka, Theorem 21.3]).

Clearly, the initial condition ζNi (ε)
d
=
√
εui for each i converges to 0 as ε→ 0 in distribution

and, hence, also in probability. We conclude that the limiting process (ζNi (t))Ni=1, t ≥ 0, is the
object of Lemma 2.3. �

2.4. Asymptotic results for the corners processes. We presented the N →∞ asymptotic
results about the Gaussian ∞–corners process of Section 2.2 and the β = ∞ Dyson Brownian
Motion of Section 2.3 in Theorems 1.1 and 1.2, respectively. In this section we present several
N →∞ asymptotic results dealing with the β =∞–corners process {ξki } of Section 2.1.

The definition of the process ξki relies on the (deterministic) configuration of points xki . Recall
that we start from an N–tuple y1 ≤ y2 ≤ · · · ≤ yN , and define the monic polynomials:

(2.14) PN (x) =

N∏
i=1

(x− yi), Pk(x) =
1

N(N − 1) . . . (N − k + 1)

(
∂

∂x

)N−k
PN (x).

The points xk1 ≤ xk2 ≤ . . . xkk are defined as k (real) roots of Pk(x). We study the points xki in
three scaling regimes, which are schematically shown in Figure 3

For N–tuples y1 ≤ y2 ≤ · · · ≤ yN (with each yi = yi(N) depending on N , although we omit
this dependence from the notations) we introduce various quantities describing it:

• (Centered) moments:

µN =
1

N

N∑
i=1

yi, (σN )2 =
1

N

N∑
i=1

(yi − µN )2, (κN )3 =
1

N

N∑
i=1

|yi − µN |3.
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• Empirical measures:

ρN =
1

N

N∑
i=1

δyi .

We would like to have asymptotic control on yi and for different applications we use different
topologies summarized in the following three assumptions:

Assumption 2.4. We have

(2.15) lim
N→∞

κN
σN

N−1/6 = 0.

Remark 2.5. A typical situation is that both σN and κN stay bounded away from 0 and ∞, in
which case the assumption holds automatically.

Assumption 2.6. As N → ∞ the measures ρN weakly converge to a compactly supported
probability measure ρ.

Assumption 2.7. As N →∞:

(1) The measures ρN weakly converge to a compactly supported probability measure ρ;
(2) The supremum of the support of ρ is B and limN→∞ yN = B;
(3) For a constant ϑ > 0, which does not depend on N , we have yN+1−i − yN−i > ϑ/N for

all 1 ≤ i ≤ ϑN ;
(4) ρ has a density ρ(x) on [B − ϑ,B], which satisfies ρ(x) ≥ ϑ(B − x) on this segment.

Remark 2.8. The conditions in Assumption 2.7 are tuned so that to guarantee the convergence
in Theorem 2.17 of the largest points xkk+1−i to the roots of the Airy function for all the range

of ratios 0 < k
N < 1; these conditions will be used in Lemma 8.1. If we only aim at small values

of the ratio k
N , then the conditions can be significantly weakened: small k has a smoothing role,

which leads automatically to the necessary edge behavior.
If we are interested in the smallest points xki (rather than the largest), then we need to use

similar conditions with N + 1 − i indices replaced by i and with supremum of the support B
replaced by the infinum A.

The first two results of this section explain the prominent role of the Gaussian ∞–corners
process as a scaling limit.

Theorem 2.9. Let {xki }1≤i≤k be the roots of Pk(x) as in (2.14). Under Assumption 2.4 for
each fixed 1 ≤ i ≤ k

lim
N→∞

√
N

σN

(
xki − µN

)
= hki ,

where hk1, h
k
2, . . . , h

k
k are k roots of the degree k Hermite polynomial Hk(x).

Remark 2.10. For a particular case when xNi , i = 1, 2, . . . , N , are i.i.d. random variables, a result
similar to Theorem 2.9 can be found in [HS].

Example 2.11. Suppose that N is even, N = 2M , and

PN (x) = P2M (x) = (x+ 1)M (x− 1)M = x2M −Mx2M−2 +
M(M − 1)

2
x2M−4 + . . .

In this situation µN = 0, σ2N = 1, and κ3N = 1. Hence, Theorem 2.9 applies. Let us check its
conclusion directly for k = 3. Indeed,

P3(x) =
1

2M(2M − 1) · · · 4
∂2M−3

∂x2M−3
P2M (x) = x3 − 6M

2M(2M − 1)
x = x3 − 3

2M − 1
x.



16 V. GORIN AND V. KLEPTSYN

We see that as M →∞

(2.16) (2M)3/2P3

(
x√
2M

)
→ x3 − 3x.

Because x3 − 3x is the degree three Hermite polynomial, (2.16) agrees with Theorem 2.9.

Theorem 2.12. For each N = 1, 2, . . . , take N–tuple of reals y1 ≤ y2 ≤ · · · ≤ yN and let
{ξki (N)}1≤i≤k≤N be a Gaussian vector distributed as the ∞–corners process (2.2) with top level
xNi = yi, i = 1, . . . , N . Under Assumption 2.4 for each fixed K = 1, 2, . . . , we have convergence
in distribution

lim
N→∞

√
N

σN

{
ξki (N)

}
1≤i≤k≤K =

{
ζki
}
1≤i≤k≤K ,

where {ζki } is the Gaussian ∞–corners process of Section 2.2.

For the next results, we need to introduce an equation on an unknown variable z, with
parameters 1 ≤ k ≤ N − 1 and x ∈ R

(2.17)
1

N
·
P ′N (z + x)

PN (z + x)
=
N − k + 1

N
· 1

z
, z ∈ C.

In our approach this equation arises as a critical point condition G′(z) = 0 with

(2.18) G(z) :=
1

N
ln
(
PN (z + x)

)
− N − k + 1

N
ln z.

Lemma 2.13. Either all roots of (2.17) are real, or it has a unique pair of complex conjugate
roots.

Proof. Let us first assume that all yi are distinct. After clearing the denominators, (2.17) is a
polynomial equation of degree N . Hence, it has at most N roots. On the other hand, (2.17) can
be rewritten as

(2.19)
1

N

N∑
i=1

1

z − (yi − x)
− N − k + 1

N
· 1

z
= 0.

Let us look at N − 1 segments (yi − x, yi+1 − x), 1 ≤ i ≤ N − 1 on the real axis. The point 0
belongs to at most one of them. For the remaining N−2 segments, the function in the left-hand
side of (2.19) is continuous and changes its sign from positive at z = yi − x + 0 to negative at
z = yi+1 − x − 0. Therefore, each such segment has a root of (2.17) and we found N − 2 real
roots. Hence, there are at most two complex roots.

For the case when some yi are allowed to coincide, the argument remains the same with the
only difference being that the polynomial equation now has degree “number of distinct values
of yi” rather than N . �

Whenever (2.17) has two complex roots, we say that (x, kN ) belongs to the liquid region
(sometimes also called the band) and denote through zc the corresponding root in the upper
half-plane. Otherwise, we say that (x, kN ) belongs to the void region.

Theorem 2.14. Under Assumption 2.6 choose (x, kN ) in the liquid region in such a way that

as N →∞, k
N is bounded away from 0 and 1 and zc stays bounded away from the real axis and

from ∞. Then, zooming in near x, the point configurations

{N(xki − x)}
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u/N

v/N

x

level k
level k + 1
level k + 2

level k − 1

Figure 4. Particles near a point x in the bulk resemble a lattice with spacings
proportional to 1

N .

asymptotically form a lattice (cf. Figure 4) with fixed spacing u = limN→∞(xki+1 − xki ) and fixed

spacing v = limN→∞(xki − x
k+1
i ) (satisfying 0 < v < u), such that

u = π

(
N − k + 1

N
Im

1

zc

)−1
, v = u · 1

π
arg(zc).

Remark 2.15. Results of this type are known in the literature, see, e.g., [FaR].

Remark 2.16. When all the roots of (2.17) are real, we expect to observe no points from {xki }
near (x, kn), hence, the name “void region”. We do not prove such a statement here, but it
probably can be proven by the same methods which we use in the Appendix.

Looking carefully into the argument of Lemma 2.13, one can notice that for a very large
(positive or negative) x all roots of (2.17) are real and such x belongs to the void region. If we
start decreasing x from +∞, then at some point we eventually reach the liquid region. This
transition point is the right edge of the liquid region. Note that at this point the complex
conjugate roots zc and zc merge together, forming a double root of (2.17).

Let a1 > a2 > a3 > . . . be the zeros of the Airy function Ai(x).

Theorem 2.17. Under Assumption 2.7, as N →∞ and with k varying in such a way that for
k/N stays bounded away from 0 and from 1, let x = x(N, k) be the largest real number, such
that (2.17) has a double root, and let zc ∈ R denote the location of this root. Then for each
i = 1, 2, . . . ,

lim
N→∞

N2/3 x
k
k+1−i − x

σ
= ai,

where ai is the ith largest zero of the Airy function and, using G(z) given by (2.18), we have

σ = z2c

(
G′′′(zc)

2

)1/3 N

N − k + 1
.

Remark 2.18. A very similar statement holds for the smallest points xki , i = 1, 2, . . . , with the
difference being that x is replaced by the smallest real number for which (2.17) has a double
root. Note that G′′′(zc) > 0 when we deal with the largest points xkk+1−i and G′′′(zc) < 0 when

we deal with the smallest points xki .

Remark 2.19. One can expect that in the setting of Theorem 2.17, the two-dimensional process

(i, t)→ c2N
2/3ξk+c1N

2/3t
k+c1N2/3t−i converges to Z(i, t) after proper choice of the deterministic constants

c1, c2 > 0. This should be viewed as a (conjectural) extension of Theorem 1.1.

Proofs of Theorems 2.9, 2.14, 2.17 are based on the steepest descent analysis of the contour
integrals, they are given in Appendix (Section 8). Proof of Theorem 2.12 is in Section 5.
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3. Innovations and the jumping process

Our approach to the asymptotic theorems for {ξki } and {ζki } is based on their representa-
tions as partition functions of directed polymers (with heavy-tailed jumps) collecting additive
independent Gaussian noises. In this section we introduce such representations.

As before, we start from a collection {xki } of roots of an Appell sequence of polynomials (2.14).
We define a collection of numbers αka,b, through

(3.1) αka,b =
(xka − xk+1

b )−2

k+1∑
b′=1

(xka − xk+1
b′ )−2

, 1 ≤ a ≤ k, 1 ≤ b ≤ k + 1.

The definition readily implies that αka,b form a stochastic matrix:

(3.2) ∀a, b αka,b > 0, and ∀a
k+1∑
b=1

αka,b = 1.

We also define a linear operator Ak with matrix (αka,b)a=1,...,k, b=1,...,k+1: it maps (k + 1)–
dimensional space to k–dimensional space.

Remark 3.1. Ak can be interpreted as the differential of the k–dimensional vector of roots of
the derivative P ′k+1 as a function of k + 1 roots of Pk+1. In this interpretation, the identity∑k+1

b=1 α
k
a,b = 1 becomes a corollary of an observation that shifting all the roots of a polynomial

by a constant ε we also shift every root of its derivative by the same constant ε.

Definition 3.2. The jumping process is a Markov process with the set of allowed states Xk :=
{xka}a=1,...,k at the time k, and with the transition probabilities given by (3.11)

P(xka → xk+1
b ) = αka,b.

The product of matrices in (3.13) then becomes its diffusion kernel:

Definition 3.3. The diffusion kernel Kk,`(a→ b) is defined as the (transition) probability that
the jumping process, starting at xka at time k, at time ` > k ends up at x`b. Formally,

Kk,`(a→ b) = (Ak . . . A`−1)a,b.

Theorem 3.4. The process {ξki }1≤i≤k≤N of Section 2.1 can be represented as

(3.3) ξka =
N−1∑
`=k

∑̀
b=1

Kk,`(a→ b) · η`b,

where η`b are independent Gaussian random variables with the variance

(3.4) Var η`b =
2∑k+1

b=1 (x`b − x
`+1
c )−2

= −2
P`+1(x

`
b)

P ′′`+1(x
`
b)
.

We also have

(3.5) Cov(ξk1a1 , ξ
k2
a2 ) =

N−1∑
`=max(k1,k2)

(∑̀
b=1

Kk1,l(a1 → b)Kk2,`(a2 → b) ·Var η`b

)
.



UNIVERSAL OBJECTS OF THE INFINITE BETA RANDOM MATRIX THEORY 19

Theorem 3.5. The process {ζki }1≤i≤k of Section 2.2 can be represented as

(3.6) ζka =
∞∑
`=k

∑̀
b=1

Kk,`(a→ b) · η`b,

where η`b are independent Gaussian random variables with the variance

(3.7) Var η`b =
2

`+ 1
.

We also have

(3.8) Cov(ζk1a1 , ξ
k2
a2 ) =

∞∑
`=max(k1,k2)

(∑̀
b=1

2

`+ 1
Kk1,l(a1 → b)Kk2,`(a2 → b)

)
.

Remark 3.6. Let us emphasize that Kk,`(a → b) depends on the array {xji}. In particular, in
Theorem 3.5 the diffusion kernel is constructed using roots of the Hermite polynomials, while
in Theorem 3.4 more general configurations are allowed.

In words, Theorems 3.4 and 3.5 say that {ξki } and {ζki } are averages over the trajectories of
the jumping process of the sums of independent Gaussian noises collected by this process. In
the rest of the section we prove these theorems.

Consider the process {ξki }1≤i≤k≤N of Section 2.1 as a vector-valued process {~ξk}k=1,...,N , where
~ξk = (ξk1 , . . . , ξ

k
k). It is immediate to see from (2.2) that this process is Markovian: conditionally

on any ~ξk0 , the values of ξk with k < k0 are independent from those with k > k0.

Now, let us compute the conditional distribution of ~ξk given ~ξk+1. One way to do it is by
sending β →∞ in the similar finite β conditional distribution, computed in [GS1, (1.6)] or [GM,

(56)]. The computations result in the density of the conditional distribution of ~ξk given ~ξk+1

being proportional to

(3.9) exp

(
−

k∑
a=1

k+1∑
b=1

(ξka − ξk+1
b )2

4(xka − xk+1
b )2

)
=

k∏
a=1

exp

(
−
k+1∑
b=1

(ξka − ξk+1
b )2

4(xka − xk+1
b )2

)
.

Completing the squares in the last formula, we rewrite it as

(3.10) C ·
k∏
a=1

exp

−1

4

[
k+1∑
b=1

1

(xka − xk+1
b )2

]ξka −
k+1∑
b=1

ξk+1
b

(xka − xk+1
b )−2

k+1∑
b′=1

(xka − xk+1
b′ )−2


2 ,

where C is a constant which does not depend on ξk1 , ξ
k
2 , . . . , ξ

k
k . The conditional expectation

E(~ξk | ~ξk+1), thus, can be written as

(3.11) E(ξka | ~ξk+1) =
k+1∑
b=1

αka,bξ
k+1
b , where αka,b =

(xka − xk+1
b )−2

k+1∑
b′=1

(xka − xk+1
b′ )−2

.

We write ~ξk as a sum of this conditional expectation and of the innovations vector ~ηk =
~ξk − E(~ξk | ~ξk+1). From (3.10) we see that ~ηk has independent components with the variance

(3.12) Var ηka =
2∑k+1

b=1 (xka − xk+1
b )−2

= −2
Pk+1(x

k
a)

P ′′k+1(x
k
a)
,
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where the second equality comes from differentiating the relation
P ′k+1(y)

Pk+1(y)
=

k+1∑
b=1

1
y−xk+1

b

, substi-

tuting y = xka, and using P ′k+1(x
k
a) = 0.

Now, let us iterate the representation

~ξk = Ak~ξk+1 + ~ηk,

going from an arbitrary level k all the way to the top level N . Since ηNi = 0, 1 ≤ i ≤ N , we get

(3.13) ~ξk = ~ηk +Ak~ηk+1 +AkAk+1~ηk+2 + · · ·+AkAk+1 . . . AN−2~ηN−1,

which is precisely (3.3). The identity (3.5) directly follows from (3.3) and independence of ηka ,
thus, finishing the proof of Theorem 3.4.

Let us now develop a similar representation for the Gaussian∞–corners process ζki of (2.3). In
this particular case Pk(X) = Hk(x) are the Hermite polynomials and they satisfy the differential
equation

(3.14) H ′′k (x)− xH ′k(x) + kHk(x) = 0.

Thus, at every root y of Hk = 1
k+1H

′
k+1 one has

Hk+1(y)
H′′k+1(y)

= − 1
k+1 . Hence, Var ηkb = 2

k+1 for all b.

Another distinction is that ζNi no longer vanishes and (3.3) gets modified to:

(3.15) ζka =
N−1∑
`=k

∑̀
b=1

Kk,`(a→ b) · η`b +
N∑
b=1

Kk,N (a→ b)ζNb

Since N > k is arbitrary in (3.15), we can also take N =∞, getting

(3.16) ζka =
∞∑
`=k

∑̀
b=1

Kk,`(a→ b) · η`b,

which is the same as (3.6).

Remark 3.7. The series (3.16) is almost surely convergent, as follows (by the Kolmogorov’s
three series theorem, see, e.g., [Du, Theorem 2.5.8]) from the independence of the terms η`n and
convergence of the series defining the variance of ζka , i.e.

∞∑
`=k

∑̀
b=1

(
Kk,`(a→ b)

)2
· 2

`+ 1
<∞.

The last inequality is implied by the upper bound Kk,`(a→ b) ≤ k
` of Lemma 5.1.

Remark 3.8. For the transition from (3.15) to (3.16), one should additionally check that

(3.17) lim
N→∞

N∑
b=1

Kk,N (a→ b)ζNb = 0, in probability.

For that, let us note that, by construction, vectors (ζNb )Nb=1 and (η`b)1≤b≤`<N in (3.15) are un-
correlated with each other. Hence,

(3.18) Var(ζka ) = Var

(
N−1∑
`=k

∑̀
b=1

Kk,`(a→ b) · η`b

)
+ Var

(
N∑
b=1

Kk,N (a→ b)ζNb

)
.

Sending N →∞ in the last identity, (3.17) would follow if we manage to prove that

(3.19) Var(ζka ) = Var

( ∞∑
`=k

∑̀
b=1

Kk,`(a→ b) · η`b

)
.



UNIVERSAL OBJECTS OF THE INFINITE BETA RANDOM MATRIX THEORY 21

This identity will be established in Corollary 7.5 by relying on the representation of Kk,`(a→ b)
in terms of orthogonal polynomials.13

Using independence of ηka , the representation (3.6) implies (3.8). The proof of Theorem 3.5
is finished.

4. Random walks through orthogonal polynomials

The aim of this section is to diagonalize the stochastic matrices Ak from (3.2) using a special
class of orthogonal polynomials.

4.1. Preservation of polynomials. Let us choose a sequence of polynomials Pk(x), such that
Pk is a monic polynomial of degree k and Pk−1(x) = 1

kP
′
k(x) for each k = 1, 2, . . . . Each

polynomial Pk is further assumed to have k distinct real roots, which constitute the set Xk.

Definition 4.1. Fk is the k–dimensional space of functions on Xk.

We further define Dk to be the dual operator to Ak:

Definition 4.2. The operator Dk maps Fk to Fk+1 through:

[Dkf ](x) =
∑
y∈Xk

 f(y)

(x− y)2

( ∑
x′∈Xk+1

1

(x′ − y)2

)−1 , x ∈ Xk+1.

We are going to mostly concentrate on the action of Dk on polynomial functions. It is
important to note that since Fk is finite-dimensional, monomials xn, n = 0, 1, 2, . . . are linearly
dependent. Hence, there can be several representations of Dk, whose equivalence is sometimes
non-evident.

Proposition 4.3. For each m = 0, 1, . . . , k − 1, linear operator Dk preserves the space of
polynomials of degree at most m. In more details,

Dkx
m =

(
1− m+1

k+1

)
xm + (polynomial of degree at most m− 1).

In the proof we rely on the following identity.

Lemma 4.4. For y ∈ Xk we have

(4.1)
∑

x∈Xk+1

1

(x− y)2
= −

P ′′k+1(y)

Pk+1(y)
.

Proof. This is a reformulation of the second equality in (3.4). �

Proof of Proposition 4.3. We are going to use two integral representations for the action of the
operator Dk on polynomial functions. First,

(4.2) [Dkf ](x) = − 1

2πi

∮
Xk
f(z) · Pk+1(z)

P ′k+1(z)
· dz

(z − x)2
,

where the integration contour is positively (i.e. counter clock-wise) oriented and includes all
poles at points of Xk, but does not include x. Indeed, taking into account (4.1), the sum of the
residues of (4.2) at points y ∈ Xk matches the sum in the definition of Dk. Second, for x ∈ Xk+1,

13Before reaching Corollary 7.5, the reader might assume that we deal with the process of (3.6) whenever we
mention ζka .
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using Pk+1(x) = 0, we can deform the integration contour in (4.2) through the simple pole at
z = x picking up the residue f(x) there and get

(4.3) [Dkf ](x) = f(x)− 1

2πi

∮
∞
f(z) · Pk+1(z)

P ′k+1(z)
· dz

(z − x)2
,

where the integration now goes in positive direction over a very large contour enclosing all
singularities of the integrand. Let us emphasize that equality between (4.2) and (4.3) holds only
for x ∈ Xk+1. We now specialize to f(x) = xm and compute the integral in (4.3) as a residue at
∞. For that we expand for large z

(4.4)
1

(z − x)2
=

1

z2
+ 2

x

z3
+ 3

x2

z4
+ 4

x3

z5
+ . . . .

Note that zm · Pk+1(z)
P ′k+1(z)

grows in the leading order as zm+1

k+1 . Hence, only the first m+ 1 terms in

(4.4), which are
1

z2
+ · · ·+ (m+ 1)

xm

zm+2
,

contribute to the residue. We conclude that this residue is a degree m polynomial of the form
m+1
k+1 x

m + . . . . �

4.2. Lattices with 3–term recurrence. Our next task is to introduce a basis in Fk, such that
the action of Dk is diagonal with respect to this basis. We were unable to present a satisfactory
definition for generic choices of Pk and need to restrict ourselves to the following class14:

Definition 4.5. We say that polynomials Pk(z) are classical if

(4.5) P ′′k (z)αk(z) + P ′k(z)βk(z) + Pk(z) = 0,

where αk(z) is a polynomial of degree at most 2 and βk(z) is a polynomial of degree at most 1.

Examples are given by classical orthogonal polynomials, see, e.g., [Ma] and Section 4.3.

Definition 4.6. Fix k and equip Xk with the weight

(4.6) wk(y) = − 1

k(k + 1)
· Pk+1(y)

Pk−1(y)
= −Pk+1(y)

P ′′k+1(y)
.

Consider a scalar product on Fk:

(4.7) 〈f, g〉k =
∑
y∈Xk

f(y)g(y)wk(y).

Define Q
(k)
m (x), m = 0, 1, 2, . . . , k − 1, to be the monic orthogonal polynomials with respect to

this scalar product.

Remark 4.7. Due to interlacing between the roots of Pk+1 and its derivative, the weight wk(y),
y ∈ Xk is positive.

Remark 4.8. For each y ∈ Xk, due to (4.5) and vanishing of Pk(y), we have wk(y) = αk+1(y).

Theorem 4.9. Suppose that polynomials Pk(z) are classical. Then for 0 ≤ m ≤ k − 1 we have

(4.8) DkQ
(k)
m =

(
1− m+1

k+1

)
Q(k+1)
m .

14As of 2021, we do not know other classes of Pk leading to explicit identification of a basis. A possible another
good case for future investigations is β =∞ version of the ergodic measures on eigenvalues of corners of general
β–random matrices of infinite size, see, e.g., [AN] and [BCG, Section 4.4] for discussions about these measures
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Proof. Proposition 4.3 implies that DkQ
(k)
m is a degree m polynomial with leading coefficient(

1− m+1
k+1

)
. Hence, it remains to prove that:

(4.9) 〈DkQ
(k)
m , xj〉k+1

?
= 0, 0 ≤ j ≤ m− 1.

We are going to use the following contour integral representation of the scalar product 〈f, g〉k
for polynomial functions f and g:

(4.10) 〈f, g〉k = − 1

k + 1
· 1

2πi

∮
Xk
f(z)g(z)

Pk+1(z)

Pk(z)
dz,

where the integration contour is counter-clockwise oriented and encloses all singularities of the
integrand, which has k poles at the points of Xk — roots of Pk(z). Sum of the residues at
these poles matches the definition of scalar product. The formula (4.10) remains valid even for
non-polynomial functions f and g as long as these functions have an analytic continuation to a
small complex neighborhood of Xk; in this situation the integration contour should be a union
of small loops around points of Xk.

Combining (4.2) with (4.10), we need to prove:

(4.11)

∮
Xk+1

[∮
Xk
Q(k)
m (z) · Pk+1(z)

Pk(z)

dz

(z − u)2

]
uj
Pk+2(u)

Pk+1(u)
du

?
= 0.

Note that the internal integral might fail to be a polynomial as a function of u. The u–integral
in (4.11) is over a union of k + 1 small loops around points of Xk+1 and the z–integral is over a
union of k small loops around points of Xk

We would like to deform the u–contour in (4.11) to make it a large circle. In this deformation
we encounter singularities at the double pole u = z resulting (up to 2πi factor, which we omitted)
in an additional residue term given by the following integral

(4.12)

∮
Xk
Q(k)
m (z) · Pk+1(z)

Pk(z)

∂

∂z

(
zj
Pk+2(z)

Pk+1(z)

)
dz =

∮
Xk
Q(k)
m (z) · Pk+1(z)

Pk(z)
jzj−1

Pk+2(z)

Pk+1(z)
dz

+

∮
Xk
Q(k)
m (z) · Pk+1(z)

Pk(z)
zj(k + 2)dz −

∮
Xk
Q(k)
m (z) · Pk+1(z)

Pk(z)
zj
Pk+2(z)(k + 1)Pk(z)

(Pk+1(z))2
dz.

Let us show that each of the integrals in the right-hand side of (4.12) vanishes. In the last one
the factor Pk(z) cancels out and there are no singularities inside the integration contour. The

middle integral is a scalar product of Q
(k)
m and zj(k+ 2) and, thus, vanishes. For the remaining

first integral we use the three-term relation (4.5):

(4.13) j

∮
Xk
Q(k)
m (z)zj−1 · Pk+2(z)

Pk(z)
dz = j

∮
Xk
Q(k)
m (z)zj−1 · (k + 2)(k + 1)Pk(z)αk+2(z)

Pk(z)
dz

+ j

∮
Xk
Q(k)
m (z)zj−1 · (k + 2)Pk+1(z)βk+2(z)

Pk(z)
dz.

For the last two integrals, the first one has integrand with no singularities, hence, it vanishes15.

The second integral is a scalar product of Q
(k)
m with polynomial zj−1(k+ 2)βk+2(z) of degree at

most j, hence, it also vanishes.

15Note that this is the only place where αk+2(z) appears and we do not need it to be a polynomial in order
for this argument to work. Yet, it is unclear, whether this observation can be used to add any generality to the
theorem that we are proving.
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Now (4.11) got converted into

(4.14)

∮
∞

[∮
Xk
Q(k)
m (z) · Pk+1(z)

Pk(z)

dz

(z − u)2

]
uj
Pk+2(u)

Pk+1(u)
du

?
= 0.

Let us integrate in u first by computing the u–residue at ∞. For that we expand 1/(z − u)2 in

1/u power series. Since uj
Pk+2(u)
Pk+1(u)

grows as (k+ 2)uj+1, we only need terms up to 1/uj+2 in the

expansion, i.e. we need

1

(z − u)2
=

1

u2
+ 2

z

u3
+ · · ·+ (j + 1)

zj

uj+2
+ (· · · ),

where the (· · · ) terms can be ignored. We conclude that the u–integral is a polynomial in z of

degree at most j. Hence, the z–integral becomes a scalar product of Q
(k)
m with this polynomial

and vanishes. �

4.3. Hermite, Laguerre, and Jacobi examples. In this section we list the classical polyno-
mials, for which (4.5) is satisfied. We take the formulas directly from [KLS].

First, the (monic) Hermite polynomials form an Appell sequence, H ′k(z) = kHk−1(z), and
also satisfy a differential equation

H ′′k (z)− zH ′k(z) + kHk(z) = 0.

Hence, they fit into Definition 4.5. The weight is constant in this case:

(4.15) wk(y) =
1

k + 1
, y ∈ Xk.

The second example is given by the generalized Laguerre polynomials L
(α)
k (z), which solve

the following second order differential equation:

(4.16) zf ′′(z) + (α+ 1− z)f ′(z) + kf(z) = 0, k = 0, 1, 2, . . . .

The leading coefficient of L
(α)
k (z) is usually chosen to be (−1)k

k! and in this normalization they
satisfy the relation

∂

∂z
L
(α)
k (z) = −L(α+1)

k−1 (z).

Hence, the polynomials

Pk(z) = (−1)kk! · L(α−k)
k (z), k = 0, 1, 2, . . . ,

are monic, form an Appell sequence, and fit into Definition 4.5. The weight is linear in this case:

wk(y) =
y

k + 1
, y ∈ Xk.

The third example is given by the Jacobi polynomials J
(α,β)
k (z), which solve the following

second order differential equation:

(4.17)
(
1− z2

)
f ′′(z) +

(
β − α− (α+ β + 2)z

)
f ′(z) + k(k + α+ β + 1)f(z) = 0.

If we use the normalization of [KLS], then the leading coefficient is

2−m
Γ(α+ β + 2k + 1)

Γ(k + 1)Γ(α+ β + k + 1)

and the polynomials satisfy the relation:

∂

∂z
J
(α,β)
k (z) =

k + α+ β + 1

2
J
(α+1,β+1)
k−1 (z).
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Hence, the polynomials

(4.18) Pk(z) = 2m
Γ(k + 1)Γ(α+ β + k + 1)

Γ(α+ β + 2k + 1)
J
(α−k,β−k)
k (z), k = 0, 1, 2, . . .

are monic, form an Appell sequence, and fit into Definition 4.5. The weight is quadratic:

(4.19) wk(y) =
1− y2

(k + 1)(k + α+ β + 2)
, y ∈ Xk.

We remark that if α > −1 and β > −1, then Jacobi and Laguerre polynomials are orthogonal
(with respect to weights (1 − z)α(1 + z)β on [−1, 1] and xαe−x on [0,+∞), respectively), yet,
this restriction on the parameters is not necessary for the polynomials to be well-defined and
for the above identities to hold. Note, however, that we need the polynomials to be real–rooted,
which is always true for α > −1, β > −1, but fails for some values of α ≤ −1, β ≤ −1, see, e.g.,
[Law, Be].

4.4. Consequences of orthogonality. Our main motivation for the introduction of the or-

thogonal polynomials Q
(k)
j is that they are helpful in analyzing the covariance (3.5).

Theorem 4.10. Suppose that polynomials Pk(z) are classical and let Q
(k)
m be as in Definition

4.6. Then the stochastic process {ξka}1≤a≤k≤N admits the following formula for the covariance:

(4.20) Cov(ξk1a1 , ξ
k2
a2 ) = 2wk1(xk1a1)wk2(xk2a2)

N−1∑
`=max(k1,k2)

min(k1,k2)−1∑
m=0

Q(k1)
m (xk1a1)Q(k2)

m (xk2a2)

× 〈Q(`)
m , Q

(`)
m 〉`

〈Q(k1)
m , Q

(k1)
m 〉k1〈Q

(k2)
m , Q

(k2)
m 〉k2

`−1∏
j=k1

(
1− m+1

j+1

) `−1∏
j=k2

(
1− m+1

j+1

)
.

Further, if Pk(z) are the Hermite polynomials and we deal with {ζka}1≤a≤k, then

(4.21) Cov(ζk1a1 , ζ
k2
a2 ) = 2wk1(xk1a1)wk2(xk2a2)

∞∑
`=max(k1,k2)

min(k1,k2)−1∑
m=0

Q(k1)
m (xk1a1)Q(k2)

m (xk2a2)

× 〈Q(`)
m , Q

(`)
m 〉`

〈Q(k1)
m , Q

(k1)
m 〉k1〈Q

(k2)
m , Q

(k2)
m 〉k2

`−1∏
j=k1

(
1− m+1

j+1

) `−1∏
j=k2

(
1− m+1

j+1

)
.

Proof. The diffusion kernel of Definition 3.3 admits a spectral representation. Using the notation
1xka for the delta-function at xka, we have:

(4.22) Kk,`(a→ b) = [D`−1 · · ·Dk+1Dk1xka ](x`b) =
k−1∑
m=0

〈1xka , Q
(k)
m 〉k

〈Q(k)
m , Q

(k)
m 〉k

[DkDk+1 · · ·D`−1Q
(k)
m ](x`b)]

= wk(x
k
a)

k−1∑
m=0

Q
(k)
m (xka)Q

(`)
m (x`b)

〈Q(k)
m , Q

(k)
m 〉k

`−1∏
j=k

(
1− m+1

j+1

)
.
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Using (3.5) and Var η`b = 2w`(x
`
b), we further write

(4.23) Cov(ξk1a1 , ξ
k2
a2 ) = 2

N−1∑
`=max(k1,k2)

〈Kk1,`(a1 → ·),Kk2,`(a2 → ·)〉`

= 2wk1(xk1a1)wk2(xk2a2)
N−1∑

`=max(k1,k2)

k1−1∑
m1=0

k2−1∑
m2=0

Q(k1)
m1

(xk1a1)Q(k2)
m2

(xk2a2)
〈Q(`)

m1 , Q
(`)
m2〉`

〈Q(k1)
m1 , Q

(k1)
m1 〉k1〈Q

(k2)
m2 , Q

(k2)
m2 〉k2

×
`−1∏
j=k1

(
1− m1+1

j+1

) `−1∏
j=k2

(
1− m2+1

j+1

)
.

Orthogonality implies m1 = m2 and the last expression simplifies to

(4.24)

2wk1(xk1a1)wk2(xk2a2)

N−1∑
`=max(k1,k2)

min(k1,k2)−1∑
m=0

Q(k1)
m (xk1a1)Q(k2)

m (xk2a2)
〈Q(`)

m , Q
(`)
m 〉`

〈Q(k1)
m , Q

(k1)
m 〉k1〈Q

(k2)
m , Q

(k2)
m 〉k2

×
`−1∏
j=k1

(
1− m+1

j+1

) `−1∏
j=k2

(
1− m+1

j+1

)
.

For {ζka}1≤a≤k the argument is the same. �

4.5. Duality property. In previous subsection we explained how {ξka}1≤a≤k≤N can be analyzed

using orthogonal polynomials Q
(k)
m (z) of Definition 4.6. Our next aim is to collect the necessary

tools for obtaining the asymptotic theorems about these polynomials.

Although polynomials Q
(k)
m (z) are not well-known, but they have appeared in the literature

previously. Some of their properties are explained in [VZ] with certain elements of the construc-
tions going back to [BS], [B] and others being rooted in classical orthogonal polynomial topics:
associated polynomials (we rely on [AW]), quadrature formulas, and Christoffel numbers. Let
us present a general framework.

Suppose that we are given a sequence of monic orthogonal polynomials16 Pn(x), n = 0, 1, 2, . . .
satisfying a three-term recurrence:

(4.25) Pn+1(x) + bnPn(x) + unPn−1(x) = xPn(x)

with an initial condition
P0(x) = 1, P1(x) = x− b0.

One way to think about (4.25) is by considering a tridiagonal matrix of the form

(4.26)


b0 u1 0 . . .
1 b1 u2 0 . . .
0 1 b2
...

. . .

 .

Then (4.25) says that the operator of multiplication by x is given by the matrix (4.26) in the
basis of orthogonal polynomials P0(x),P1(x), . . . . Simultaneously, denoting through Mn the
top-left n× n corner of (4.26), we see that the recurrence (4.25) is solved by

(4.27) Pn(x) = det(x−Mn).

16We do NOT assume these polynomials to form an Appell sequence.
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Fix N > 0 and define dual polynomials Qn(x), n = 0, 1, . . . , N − 1 through the dual recurrence:

(4.28) Qn+1(x) + bN−n−1Qn(x) + uN−nQn−1(x) = xQn(x)

with the initial condition

Q0(x) = 1, Q1(x) = x− bN−1.
In other words, the N × N tridiagonal matrices corresponding to (4.25) and (4.28) differ by
reflection with respect to the � diagonal.

It turns out that polynomials Qn have an explicit orthogonality measure, which is supported
on the N roots of PN and has weight:

(4.29) w∗(x) =
PN−1(x)

P ′N (x)
, for x such that PN (x) = 0.

[VZ, (1.20)] explains that

(4.30)
∑

x|PN (x)=0

w∗(x)Qm(x)Qn(x) = 1n=m · hn, 0 ≤ n,m ≤ N − 1.

Let us compare the weight w∗(x) of (4.29) with wk(x) of Definition 4.5. In general, the formulas
are different, however, it is important to recall that we actually deal with classical polynomials.
Indeed, [AC] suggested to define classical orthogonal polynomials as those satisfying a relation

(4.31) π(x)P ′n(x) = (αnx+ βn)Pn(x) + γnPn−1(x), n ≥ 1,

where π(x) is a polynomial (which then has to be of degree at most 2). The relation (4.31)
readily implies that w∗(x) is a polynomial of degree at most 2 (and the latter fact can be used
as yet another definition of classical orthogonal polynomials, see [VZ]), matching the examples
of Section 4.3. In particular, for the monic Jacobi polynomials (4.18) the relation (4.31) takes
the form

(x2 − 1)P ′n(x) =

(
nx+ n

β2 − α2

(α+ β)(2n+ α+ β)

)
Pn(x)

− 4n(n+ α+ β)(n+ α)(n+ β)

(2n+ α+ β − 1)(2n+ α+ β)2
Pn−1(x),

giving the match between w∗(x) and wk(x) of (4.19) up to a constant factor. Hence, monic
orthogonal polynomials with respect to these weights coincide.

We also rely on a link between dual and associated polynomials. Fix a parameter c =

0, 1, 2, . . . , and define the associated polynomials P(c)
n (x) as a solution to the three-term re-

currence:

(4.32) P(c)
n+1(x) + bn+cP(c)

n (x) + un+cP(c)
n−1(x) = xP(c)

n (x)

and the initial condition

P(c)
0 (x) = 1, P(c)

1 (x) = x− bc.
In terms of the tridiagonal matrix (4.26) we deleted the first c rows and the first c columns.

Then, either using [VZ, Theorem 1] or comparing (4.27) for dual and associated polynomials,
one identifies

(4.33) Qn(x) = P(N−n)
n (x), 0 ≤ n ≤ N.

In particular, QN = P(0)
N = PN .



28 V. GORIN AND V. KLEPTSYN

For us the most important case is when Pk(x) are the Hermite polynomials. In this situation,
we saw in Section 4.3 that wk(x) = 1

k+1 . On the other hand, P ′n(x) = nPn−1(x) and, therefore,

w∗(x) is also a constant. Taking into account the three–term relation for the Hermite polynomials

Hn+1(x) + nHn−1(x) = xHn(x)

and for the associated version

H
(c)
n+1(x) + (n+ c)H

(c)
n−1(x) = xH(c)

n (x),

we record the conclusion:

Proposition 4.11. Let Pk(z), k = 0, 1, 2, . . . be the Hermite polynomials Hk(z). Then orthog-

onal polynomials Q
(k)
m (z) of Definition 4.6 satisfy the three-term recurrence:

(4.34) Q
(k)
m+1(z) + (k −m)Q

(k)
m−1(z) = zQ(k)

m (z), 0 ≤ m ≤ k − 1

and the initial conditions

(4.35) Q
(k)
0 (z) = 1, Q

(k)
1 (z) = z.

We also have an identity with the associated Hermite polynomials:

(4.36) Q(k)
m (z) = H(k−m)

m (z), 0 ≤ m ≤ k.

Corollary 4.12. We have

(4.37) 〈Q(k)
m , Q(k)

m 〉k =
k(k − 1)(k − 2) · · · (k −m)

k + 1
.

Proof. For any sequence orthogonal polynomials satisfying a three-term recurrence of the form
(4.25), the ratio of the norm of the m–th polynomial and the norm of the 0th polynomial is
u1u2 · · ·um. �

Here is one more ingredient that we need.

Proposition 4.13. The associated Hermite polynomials have an explicit generating function:

(4.38)

∞∑
n=0

vn
H

(c)
n (x)

(c+ 1)n
= cv−c exp

(
−v2

2 + xv
)∫ v

0
uc−1 exp

(
u2

2 − xu
)
du,

which can be rewritten using (4.36) as a contour integral
(4.39)

Q(k)
m (x) =

(k −m)m+1

2πi

∮
0
v−(k−m) exp

(
−v2

2 + xv
)[∫ v

0
uk−m−1 exp

(
u2

2 − xu
)

du

]
dv

vm+1
.

Proof. See [AW, (4.14)], but note a different definition of the Hermite polynomials used there
— they are orthogonal with respect to exp(−x2) in [AW] rather than exp(−x2/2) used here. �

Remark 4.14. One can directly check the that the right-hand side of (4.39) satisfies the relations
(4.34) and (4.35).

5. G∞E limit: Proof of Theorem 2.12

The proof relies on several lemmas. We use the notations of Section 3. As before, for

1 ≤ k ≤ N , xki are the roots of Pk(x) ∼
(
∂
∂x

)N−k
PN (x) and Kk,`(a→ b) are diffusion kernels of

Definition 3.3.

Lemma 5.1. The matrix elements of the diffusion kernel of Definition 3.3 satisfy

(5.1) Kk,`(a→ b) ≤ k

`
, ` > k.
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Proof. Applying Proposition 4.3 with m = 0, we get for each b ∈ {1, 2, . . . , `}:
k∑
a=1

Kk,`(a→ b) =

(
1− 1

k + 1

)
·
(

1− 1

k + 2

)
· · ·
(

1− 1

`

)
=
k

`
.

In words, the above formula says that the uniform measure on Xk is mapped to the uniform
measure on Xl by our diffusion. It remains to use the non-negativity of Kk,`(a→ b). �

Lemma 5.2. For each 1 ≤ k < N we have

(5.2)

k∑
i=1

Var
(
ηki

)
=

2

k + 1

 1

k + 1

k+1∑
i=1

(xk+1
i )2 −

(
1

k + 1

k+1∑
i=1

xk+1
i

)2
 .

Proof. We write using (3.4):

(5.3)

k∑
i=1

Var
(
ηki

)
= −2

k∑
i=1

Pk+1(x
k
i )

P ′′k+1(x
k
i )

= −2
∑

x:P ′k+1(x)=0

Pk+1(x)

P ′′k+1(x)
= − 1

πi

∮
∞

Pk+1(z)

P ′k+1(z)
dz,

where the integration goes over a large positively-oriented contour enclosing all singularities of
the integrand. We further compute the last integral as the coefficient of 1/z in the following
power series expansion at z =∞:

Pk+1(z)

P ′k+1(z)
=

(
k+1∑
i=1

1

z − xk+1
i

)−1
= z

(
k+1∑
i=1

1

1− xk+1
i /z

)−1

=
z

k + 1

1 +
1

k + 1

k+1∑
i=1

xk+1
i

z
+

1

k + 1

k+1∑
i=1

(
xk+1
i

z

)2

+O(z−3)

−1

=
z

k + 1
− 1

(k + 1)2

k+1∑
i=1

xk+1
i +

1

z(k + 1)

( 1

k + 1

k+1∑
i=1

xk+1
i

)2

− 1

k + 1

k+1∑
i=1

(xk+1
i )2

+O(z−2).

The coefficient of 1
z in the last expression matches the desired formula. �

Lemma 5.3. If
N∑
i=1

xNi = 0 and 1
N

N∑
i=1

(xNi )2 = σ2, then for all 1 ≤ k ≤ N we have

k∑
i=1

xki = 0 and
1

k

k∑
i=1

(xki )
2 =

k − 1

N − 1
σ2.

Proof. We proceed by induction in (N−k) with the base case N−k = 0 being obvious. Suppose
that the statement is true for some k. Then

Pk(z) =

k∏
i=1

(z − xki ) = zk −

(
k∑
i=1

xki

)
· zk−1 +

∑
i<j

xki x
k
j

 · zk−2 − . . .
= zk − 0 · zk−1 +

1

2

(
k∑
i=1

xki

)2

− 1

2

k∑
i=1

(xki )
2

 · zk−2 − . . .
= zk − 0 · zk−1 − 1

2

(
k∑
i=1

(xki )
2

)
· zk−2 − . . . .
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Differentiating, we get

Pk−1(z) =
1

k

∂

∂z
Pk(z) = zk−1 − 0 · zk−2 − k − 2

2k

(
k∑
i=1

(xki )
2

)
· zk−3 − . . . .

Comparing the coefficient of zk−2 with the expansion of Pk−1(z) =
∏k−1
i=1 (z−xk−1i ), we conclude

that
∑k−1

i=1 x
k−1
i = 0. Then comparing the coefficient of zk−3 and dividing by (k− 1) we deduce

1

k − 1

k−1∑
i=1

(xk−1i )2 =
k − 2

k − 1
· 1

k

k∑
i=1

(xki )
2. �

Proof of Theorem 2.12. We are going to assume that µN = 0 and σN =
√
N . All other cases

can be obtained by shifting and rescaling the relevant variables. Theorem 2.9 then implies the
convergence of xki , i = 1, . . . , k, towards the roots hki of the Hermite polynomial Hk.

We further use the expansions (3.3) and (3.16). We have

(5.4) ξka =

N−1∑
`=k

∑̀
b=1

Kk,`(a→ b) · η`b,

where η`b are independent centered Gaussians with variances (3.4). Also

(5.5) ζka =

∞∑
`=k

∑̀
b=1

K̃k,`(a→ b) · η̃`b,

where the variances of the noises η̃`n and kernels K̃k,`(a → b) are now constructed using the
roots hki of the Hermite polynomials instead of xki .

Convergence of xki towards hki readily implies that the expansion (5.4) converges to (5.5)
term by term. It remains to produce a tail bound showing that the terms with large ` do not
contribute to (5.4) (and similar argument would work for (5.5)).

For that we write using Lemmas 5.1, 5.2, 5.3:

(5.6) Var

(
N−1∑
`=L

∑̀
b=1

Kk,`(a→ b) · η`b

)
=

N−1∑
`=L

∑̀
b=1

(
Kk,`(a→ b)

)2 ·Var(η`b)

≤
N−1∑
`=L

(
max
1≤b≤`

Kk,`(a→ b)

)2

·
∑̀
b=1

Var(η`b) ≤
N−1∑
`=L

k2

`2
· 2

`+ 1
· `

N − 1
·N ≤ 4k2

N∑
`=L

1

`2
,

which converges (uniformly in N) to zero as L→∞. �

6. Edge limit: proof of Theorem 1.1 and properties of Z(i, t).

This section has four parts. First, we analyze orthogonal polynomials Q
(k)
m (z) in the

asymptotic regime relevant to Theorems 1.1 and 1.2. Then we prove Theorem 1.1. In the
third subsection we explain how the limiting object (Airy∞ line ensemble) can be identified
with a partition function of a polymer whose trajectories travel over the roots of the Airy func-
tion. Finally, in the last subsection we apply Kolmogorov continuity theorem to deduce the
regularity of the trajectories of Z(i, t).
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6.1. Asymptotic theorem for polynomials Q
(k)
m (z). Recall that the Airy function Ai(z) is

defined as a solution to the differential equation

(6.1) Ai′′(z) = zAi(z),

given explicitly by the contour integral

(6.2) Ai(z) :=
1

2πi

∫
exp

(
v3

3
− zv

)
dv,

where the contour in the integral is the upwards-directed contour which is the union of the lines
{e−iπ/3t : t ≥ 0} and {eiπ/3t : t ≥ 0}.

Theorem 6.1. Let polynomials Q
(k)
m be as in Definition 4.5 for Pk being the Hermite polynomials

Hk. Let xk+1−i
k be the ith largest root of Hk. Then for each fixed i = 1, 2, . . . , as k → ∞ we

have

(6.3) k−1/3
Q

(k)
m (xkk+1−i)√
〈Q(k)

m , Q
(k)
m 〉k

=
Ai
(
ai + m

k1/3

)
Ai′(ai)

(1 + o(1)),

where ai is the ith largest real zero of the Airy function and convergence is uniform over m such
that the ratio m

k1/3
belongs to compact subsets of [0,+∞). In addition, there exists C > 0, such

that we have a uniform bound

(6.4)

∣∣∣∣∣∣k−1/3 Q
(k)
m (xkk+1−i)√
〈Q(k)

m , Q
(k)
m 〉k

∣∣∣∣∣∣ < C
(

1 +
m

k1/3

)−1
, 0 ≤ m ≤ k − 1, k = 1, 2, . . . .

We present two proofs of Theorem 6.1. The first one shows that the relation (4.34) after
proper rescaling of variables converges to the Airy differential equation (6.1). This is how we
first arrived at the asymptotic statement (6.3). In principle, the convergence of the equations
should imply the desired convergence of their solutions, yet, additional technical efforts are
needed (the Airy differential equation has a second solution, which is explosive at +∞ and
may potentially lead to large errors in approximations). Simultaneously with our work (and
independently) Theorem 6.1 was obtained in [AHV]: they also rely on (4.34) and use several
clever analytic tricks to show convergence of its solution to the Airy function.

In our second proof we provide a very different argument and arrive at an integral represen-
tation for the right-hand side of (6.3) (different from (6.2)) by applying the steepest descent
analysis to the generating function of (4.38).

Remark 6.2. While it does not matter for the validity of the statement, but from the numeric
point of view, we found that if we replace the right-hand side of (6.3) with

Ai
(
ai + m+1

k1/3

)
Ai′(ai)

,

then we get a better agreement for the finite values of k, see Figure 5.

Remark 6.3. Here is a way to check normalizations in (6.3). Note that the matrix 1√
k + 1

Q
(k)
m (xkk+1−i)√
〈Q(k)

m , Q
(k)
m 〉k


1≤i≤k, 0≤m≤k−1
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Figure 5. Blue points are

(
m
k1/3

, k−1/3
Q

(k)
m (xkk)√

〈Q(k)
m ,Q

(k)
m 〉k

)
for k = 200 and m =

0, 1, . . . , 100. Gray thick line is the graph of
Ai(a1+y+k−1/3)

Ai′(a1)
, green dash-dotted

line is the graph of Ai(a1+y)
Ai′(a1)

.

is orthogonal. Hence,

(6.5)
k−1∑
m=0

1

k + 1
·

(
Q

(k)
m (xkk+1−i)

)2
〈Q(k)

m , Q
(k)
m 〉k

= 1.

As k → ∞ the sum becomes integral. Hence, if the normalization in (6.3) is correct, then we
should have ∫ ∞

0

(
Ai (ai + y)

Ai′(ai)

)2

dy = 1.

But indeed, integrating by parts, using Ai(ai) = 0 and the Airy differential equation, we have

(6.6)

∫ ∞
ai

Ai2(y)dy = −2

∫ ∞
ai

Ai′(y)Ai(y)ydy = −2

∫ ∞
ai

Ai′(y)Ai′′(y)dy

= (Ai′(y))2
∣∣∣ai
+∞

= (Ai′(ai))
2.

The same orthogonality implies that we should also have∫ ∞
0

(
Ai (ai + y)

Ai′(ai)

)(
Ai (aj + y)

Ai′(aj)

)
dy = 0, i 6= j.

And indeed,

∂

∂y

[
Ai(ai + y)Ai′(aj + y)−Ai′(ai + y)Ai(aj + y)

]
= (aj + y)Ai(ai + y)Ai(aj + y)− (ai + y)Ai(ai + y)Ai(aj + y) = (aj − ai)Ai(ai + y)Ai(aj + y).
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Hence, 1
aj−ai [Ai(ai + y)Ai′(aj + y)−Ai′(ai + y)Ai(aj + y)] is an antiderivative of

Ai (ai + y) Ai (aj + y), which implies (6.3).

Sketch of the first proof of Theorem 6.1. We start by noting that as k →∞

(6.7) xkk+1−i = 2
√
k + k−1/6ai(1 + o(1)),

as follows from the Plancherel-Rotach asymptotics (going back to [PR]) for the Hermite poly-

nomials Hk(x) for x close to 2
√
k. Using (4.37) we transform (4.34) into

(6.8)
√
k −m− 1

Q
(k)
m+1(x

k
k+1−i)√

〈Q(k)
m+1, Q

(k)
m+1〉k

+
√
k −m

Q
(k)
m−1(x

k
k+1−i)√

〈Q(k)
m−1, Q

(k)
m−1〉k

=
(
2
√
k + k−1/6ai(1 + o(1))

) Q(k)
m (xkk+1−i)√
〈Q(k)

m , Q
(k)
m 〉k

.

Dividing (6.8) by
√
k and Taylor-expanding square roots using

√
1− q = 1− q

2 + o(q), we get

(6.9)
Q

(k)
m+1(x

k
k+1−i)√

〈Q(k)
m+1, Q

(k)
m+1〉k

− 2
Q

(k)
m (xkk+1−i)√
〈Q(k)

m , Q
(k)
m 〉k

+
Q

(k)
m−1(x

k
k+1−i)√

〈Q(k)
m−1, Q

(k)
m−1〉k

= k−2/3ai(1+o(1))
Q

(k)
m (xkk+1−i)√
〈Q(k)

m , Q
(k)
m 〉k

+
m

2k
(1+o(1))

 Q
(k)
m+1(x

k
k+1−i)√

〈Q(k)
m+1, Q

(k)
m+1〉k

+
Q

(k)
m−1(x

k
k+1−i)√

〈Q(k)
m−1, Q

(k)
m−1〉k

 .

Next, let y = m
k1/3

be finite. Then in the leading order (6.9) becomes

(6.10) k2/3

 Q
(k)
m+1(x

k
k+1−i)√

〈Q(k)
m+1, Q

(k)
m+1〉k

− 2
Q

(k)
m (xkk+1−i)√
〈Q(k)

m , Q
(k)
m 〉k

+
Q

(k)
m−1(x

k
k+1−i)√

〈Q(k)
m−1, Q

(k)
m−1〉k


≈ ai

Q
(k)
m (xkk+1−i)√
〈Q(k)

m , Q
(k)
m 〉k

+
y

2

 Q
(k)
m+1(x

k
k+1−i)√

〈Q(k)
m+1, Q

(k)
m+1〉k

+
Q

(k)
m−1(x

k
k+1−i)√

〈Q(k)
m−1, Q

(k)
m−1〉k

 .

If we now treat
Q

(k)
m (xkk+1−i)√
〈Q(k)

m ,Q
(k)
m 〉k

as a function of y, then (6.10) is precisely a finite-difference ap-

proximation of the differential equation (6.1) upon identification z = y + ai.
It remains to match the boundary conditions and normalization. Note that the right-hand

side of (6.3) as a function of y has value 0 and derivative 1 at y = 0. For the left-hand side,

Q
(k)
0 (xkk+1−i) = 1, and, therefore, as k →∞

(6.11) k−1/3
Q

(k)
0 (xkk+1−i)√
〈Q(k)

0 , Q
(k)
0 〉k

= k−1/3
√
k + 1

k
→ 0.
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On the other hand, Q
(k)
1 (z) = z and its norm is k(k−1)

k+1 according to (4.37). Hence,

(6.12) k−1/3

 Q
(k)
1 (xkk+1−i)√
〈Q(k)

0 , Q
(k)
0 〉k

−
Q

(k)
0 (xkk+1−i)√
〈Q(k)

0 , Q
(k)
0 〉k


= k−1/3

(
2
√
k(1 + o(1))

√
k + 1

k(k − 1)
−
√
k + 1

k

)
= k−1/3(1 + o(1)).

This means that k−1/3
Q

(k)
m (xk+1−i

k )√
〈Q(k)

m ,Q
(k)
m 〉k

as a function of y grows by k−1/3 when y is increased by

k−1/3 (near y = 0). Thus, we have a match with unit derivative at y = 0. �

Second proof of Theorem 6.1. The proof splits into two parts. First, we explain how to find the
leading asymptotics giving the answer for a fixed y = m

k1/3
∈ (0,+∞) and then we explain how

to achieve the desired uniformity over all y ∈ [0,+∞).
Part 1. We use the contour integral representation (4.39) written as:

(6.13) Q(k)
m (x) =

(k −m)m+1

2πi

∮
0
v−k−1 exp

(
−v2

2 + xv
)[∫ v

0
uk−m−1 exp

(
u2

2 − xu
)

du

]
dv.

Throughout the proof we always assume that x = xkk+1−i for some i = 1, 2, . . . . Note that

(6.14)
k!

2πi

∮
0
v−k−1 exp

(
−v2

2 + xv
)

dv = Hk(x) = 0, at x = xkk+1−i.

Thus, the lower limit of the u–integral can be changed from 0 to any other point without changing
the value of the double integral. Let us change this limit to 1 and then integrate by parts in
(6.13). We get:

(6.15) Q(k)
m (x) = −(k −m)m+1

2πi

∮
0

[∫ v

1
u−k−1 exp

(
−u2

2 + xu
)

du

]
vk−m−1 exp

(
v2

2 − xv
)

dv.

The transition from (6.13) to (6.15) uses the fact that the internal u-integral is a meromorphic
single-valued function of v, which follows from the independence of the value of the integral from
the choice of integration path implied by (6.14) (otherwise, integration by parts would have led
to the appearance of an additional term).

The lower limit 1 of the u–integral in (6.15) again can be changed to any other point (this

time, because of vk−m−1 exp
(
v2

2 − xv
)

having no singularities in the complex plane leading to

vanishing of its contour integrals). It is convenient for us to change this point to −∞, leading
to the final expression:

(6.16) Q(k)
m (x) = −(k −m)m+1

2πi

∮
0

[∫ v

−∞
u−k−1 exp

(
−u2

2 + xu
)

du

]
vk−m−1 exp

(
v2

2 − xv
)

dv.

Next, we apply a version of the steepest descent method to the integral (6.16). This method
guides us to deform the integration contour to pass through the critical points of the integrand
and to localize the integration to neighborhoods of these points.

Denote

F (v) := − ln
(
v−k exp

(
−v2

2 + 2
√
kv
))

= k ln(v) + v2

2 − 2
√
kv.

Then using the asymptotic expansion (6.7) for x, the u–dependent part of the integrand in (6.16)
becomes

1

u
exp(−F (u)) · exp(k−1/6(ai + o(1))u),
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Figure 6. The graph of <F̂ (z) of (6.17) globally on the left panel and locally
near the double critical point at z = 1 on the right panel.

and the remaining explicitly depending on v factors in (6.16) admit a similar representation in
terms of F (v). While it might seem that F changes with k, but, in fact, the dependence on k is
very simple:

(6.17) F (v) = kF̂ (v̂) + k ln(
√
k), F̂ (v̂) = ln(v̂) +

v̂2

2
− 2v̂, v̂ =

v√
k
.

Thus, all the properties of F (v) can be read from analyzing a single explicit function F̂ (v̂).
Further, notice

F ′(v) =
k

v
+ v − 2

√
k, F ′′(v) = − k

v2
+ 1, F ′′′(v) = 2

k

v3
.

Hence, v =
√
k is a double critical point of the function F (v). We are going to deform the

v–integration contour to pass near this point, so that the asymptotic of the integral is given by
the contribution of a small neighborhood of the critical point. It is helpful to take a look at the
graph of <F (v) before explaining the geometry of the contours and we refer to Figure 6.

The desired integration contours are shown in Figure 7. The v–contour in the upper half-plane
is chosen so that it starts from

√
k under the angle π

3 and has growing |v| as we move away from√
k until we reach the line Im (v) = 2

√
k, at which point the contour follows this line to the left

until the point v = −2+2i and then proceeds vertically till the real axis. In the lower-half plane
the v–contour is given by the mirror image. Figure 8 shows the graph of <F (v) (in the changed

coordinates of (6.17)) along the v–contour: the real part is minimized at points θ
√
k, θ̄
√
k and

maximized at the intersections of the contour with the real axis.
Further, when v is on the part of the right part of the contour between θ̄ and θ (in particular,

when it is close to
√
k), the u–contour (which we explain here in the reverse direction from v to

−∞) starts from v and first follows the v–contour to the point
√
k, then it continues from

√
k

under the angle 2π
3 by another level line Im (F (z)) = 0 until it gets back to the real axis far left

from the origin, at which point it proceeds to −∞ via a horizontal line. When v is on the left
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vu

√
k

0

2
√
k

2
√
k

−2
√
k

θ
√
k

θ̄
√
k

Figure 7. The v–contour is shown in solid black. The u–contour for points v
close to

√
k is shown in dashed blue. The points θ

√
k and θ̄

√
k give the minima

of <F (v) on the v–contour.

Figure 8. Three panels show the graph of <F̂ (v̂) with v̂ = v√
k

and v as in

Figure 7. Left panel: <F̂ (1 + t exp(iπ/3)). Middle panel: <F̂ (1 + 2√
3
− t + 2i).

Right panel: <F̂ (−2 + 2i− ti). The minimum in the middle graph is attained at
the point v̂ = θ.

part of the contour, we instead follow the v–contour to the point −2
√
k and then continue to

−∞.
The choice of the contours achieves the following goal: the absolute value of the u–integrand,

which is ∣∣∣ 1u · exp(−F (u)) · exp(k−1/6(ai + o(1))u)
∣∣∣ ,
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starts from being very close to 0 when u = ∞, and then grows as we approach v and has a
sharp extremum near v. Hence, the absolute value of the v–integral can be upper bounded by∣∣ 1
v exp(−F (v)) exp(k−1/6(ai + o(1))v)

∣∣. This implies that the v–integrand is upper-bounded by

|v|−m and, therefore, since |v| is minimized near
√
k, the integrand is sharply decaying as v

moves away from
√
k. In more details, the part of the v–integral outside ε

√
k–neighborhood of√

k is upper bounded by

(6.18) const ·
√
k · k−m/2

(
1 +

ε

2

)−m
,

where
√
k factor arises from the length of the integration contour. Since we are interested in the

regime when m is proportional to k1/3, (6.18) is exponentially small compared to the leading
contribution which comes next.

The overall conclusion is that the integral is dominated by the contribution of a small neigh-
borhood of the point

√
k. We can Taylor expand F (v) in such a neighborhood:

F (v) = F (
√
k) +

1

3
√
k

(v −
√
k)3 +O

(
(v −

√
k)4

k

)
.

We further introduce the new variables:

ṽ = k−1/6(v −
√
k), ũ = k−1/6(u−

√
k).

The contour integral (6.16) then asymptotically behaves as

(6.19)
(k −m)m+1

2πi

∫ e
πi
3 ∞

e−
πi
3 ∞

[∫ ṽ

e
2πi
3 ∞

exp
(
−1

3 ũ
3 + aiũ+ ai

√
k
) k1/6dũ√

k + k1/6ũ

]
× exp

(
1
3 ṽ

3 − aiṽ − ai
√
k
)

(
√
k + k1/6ṽ)−yk

1/3−1 k1/6dṽ.

Equivalently, this is

(6.20)
(k −m)m+1

k1/6 · k
m+1

2

1

2πi

∫ e
πi
3 ∞

e−
πi
3 ∞

[∫ ṽ

e
2πi
3 ∞

exp
(
−1

3 ũ
3 + aiũ

)
dũ

]
exp

(
1
3 ṽ

3 − aiṽ − yṽ
)

dṽ.

In the last integral the ṽ–contour is an upwards-directed contour which is the union of the lines
{e−iπ/3t : t ≥ 0} and {eiπ/3t : t ≥ 0}. The internal û–integral has quickly growing integrand
and, therefore, it is dominated by the end-point ṽ giving the value ≈ exp

(
−1

3 ṽ
3 + aiṽ

)
, which

cancels. As a result, the integrand is exponentially decaying in ṽ for each y > 0. Combining

with an explicit expression for 〈Q(k)
m , Q

(k)
m 〉k of (4.37) we conclude that the left-hand side of (6.3)

converges as k →∞ to

(6.21) − 1

2πi

∫ eiπ/3∞

e−iπ/3∞

[∫ ṽ

e2iπ/3∞
exp

(
−1

3 ũ
3 + aiũ

)
dũ

]
exp

(
1
3 ṽ

3 − aiṽ − yṽ
)

dṽ.

It remains to identify the last double integral with Ai(ai+y)
Ai′(ai)

. For that we analyze the double

contour integral as a function of y. Let us denote this function through A(y + ai).

Let us apply the Airy operator to (6.21), i.e. we compute ∂2

∂y2
A(y + ai) − (ai + y)A(y + ai),

getting

(6.22) − 1

2πi

∫ eiπ/3∞

e−iπ/3∞

[∫ ṽ

e2iπ/3∞
exp

(
−1

3 ũ
3 + aiũ

)
dũ

]
(ṽ2 − ai − y) exp

(
1
3 ṽ

3 − aiṽ − yṽ
)

dṽ.
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We now recognize ∂
∂ṽ exp

(
1
3 ṽ

3 − aiṽ − yṽ
)

and can integrate by parts, noticing that[∫ ṽ

e2iπ/3∞
exp

(
−1

3 ũ
3 + aiũ

)
dũ

]
exp

(
1
3 ṽ

3 − aiṽ − yṽ
)

vanishes at both infinities by the previous arguments. We get

(6.23)
1

2πi

∫ eiπ/3∞

e−iπ/3∞
exp

(
−1

3 ṽ
3 + aiṽ

)
exp

(
1
3 ṽ

3 − aiṽ − yṽ
)

dṽ,

which is 0. In addition it is clear from (6.21) that limy→+∞A(y) = 0, since the integrand is fast
converging to zero.

We conclude that A(y) is a solution to the Airy equation, which vanishes at +∞. This implies
(see, e.g., [VS])

A(y + ai) = c ·Ai(y + ai)

for some constant c ∈ R. This constant is fixed by the argument of Remark 6.3, as soon as we
have uniformity of convergence in m and the tail bound (6.4) justifying the convergence of the
sum (6.5) to the integral (6.3). This finishes part 1 of the proof.

Part 2. We now explain an extension of the argument of the first part giving the uniform
convergence over y ∈ [0,+∞) and the tail bound (6.4). Notice that in the previous arguments
uniformity of the asymptotics for y in compact subsets of (0,+∞) is obtained for free. Thus,
we only need to investigate y → 0 and y →∞ boundary points. We start from the latter.

For large y = m
k1/3

we need to establish the uniform bound (6.4). For that the first step is to

figure out a similar bound for the asymptotic expression (6.21)17. Take a radius 1 neighborhood
around 0. The part of the ṽ integral in (6.21) outside this neighborhood decays exponentially
fast as y grows. Inside the neighborhood we can upper-bound the magnitude of the integral by

const ·
∣∣∣∣∫ 1

0
exp(−y exp(iπ/3)t)dt

∣∣∣∣ = O

(
1

y

)
, y →∞.

Switching to the prelimit asymptotic expression given by (6.19) and (6.20), notice that the

prefactor (after dividing by k1/3〈Q(k)
m , Q

(k)
m 〉1/2k ) is decreasing monotonously in m and, therefore,

we can ignore it for the large m asymptotic upper bound. After getting rid of the prefactor, the
only m–dependent factor in the integrand is

(1 + k−1/3ṽ)−m = (1 + k−1/3ṽ)−yk
1/3
.

Hence, the prelimit expression is upper-bounded for large y exactly in the same way as the
limiting expression (6.21).

Proceeding to y close to 0 we need to explain that the expression (6.21) is a convergent
integral, i.e., that the ṽ–integrand decays fast enough as ṽ goes to infinity along the integration
contour. For that we use the following transformation (obtained integrating by parts) of the
integral over a part of the real axis:

(6.24)

∫ q

γ
exp(−αu3 − βu)du =

∫ q

γ

1

−3αu2 − β
· ∂
∂u

[
exp(−αu3 − βu)

]
dy

=
exp(−αq3 − βq)
−3αq2 − β

− exp(−αγ3 − βγ)

−3αq2 − β
−
∫ q

γ

6αu

(3αu2 + β)2
exp(−αu3 − βu)dy.

17A much faster decay is known for the Airy function as its argument tends to +∞, but it is harder to see
from our formulas.
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In the part of ũ integral in (6.21) from 0 to ṽ, the direction of the integration is exp(±iπ/3), and,
therefore, the parameter α in the last formula is α = 1

3 exp(±iπ) = −1
3 . Hence, the integrands

in (6.24) are fast growing in u and the formula implies an upper bound on the integral of the

form O
(

1
1+q2

exp(−αq3 − βq)
)

. The large positive real number q corresponds to |ṽ| in (6.21)

and we conclude that the integrand in ṽ–integral decays as O( 1
1+|ṽ|2 ) or faster for any value of

y ≥ 0. Therefore, the integral is uniformly convergent in y ≥ 0.
The next problem is that for small y (or small m), we can no longer guarantee the exponential

decay of (6.18). Note that if m > kδ for some small δ > 0, then (1 + ε
2)−m is fast decaying and

our arguments go through. Thus, it remains to study the case m < kδ, corresponding to very
small positive values of y. Note that according to (6.3) we expect to see the Airy function at a
point close to its zero ai in the limit. Hence, we need to show that for m < kδ the left-hand side

of (6.3) converges to zero. Let us denote this left-hand side through Q
(k)
m . We now reexamine

the equations which we developed in the first proof of Theorem 6.1. In particular, (6.11) and
(6.12) yield that

(6.25) Q
(k)
0 = k−1/3(1 + o(1)), Q

(k)
1 −Q

(k)
0 = k−1/3(1 + o(1)), k →∞.

The recurrence (6.8) in the asymptotic form (6.10) then implies the following bound valid for

all 0 < m < k1/3, in which C > 0 is a constant that can be made explicit:

(6.26) k2/3
∣∣∣(Q(k)

m+1 −Q(k)
m

)
−
(
Q(k)
m −Q

(k)
m−1

)∣∣∣ ≤ C · (|Q(k)
m+1|+ |Q

(k)
m |+ |Q

(k)
m−1|

)
.

We now show that the following two inequalities hold for all large enough k and all 0 < m < k1/6.

(6.27) |Q(k)
m | < 2 · (m2 + 1) · k−1/3, |Q(k)

m −Q
(k)
m−1| < (m+ 1) · k−1/3.

We prove (6.27) by induction in m. For m = 1 this is implied by (6.11) and (6.12). Suppose
that the statement holds up to some value of m and let us prove it for m+ 1. Using (6.26) we
write

|Q(k)
m+1 −Q(k)

m | ≤ |Q(k)
m −Q

(k)
m−1|+ Ck−2/3

(
|Q(k)

m+1|+ |Q
(k)
m |+ |Q

(k)
m−1|

)
≤ |Q(k)

m −Q
(k)
m−1|+ Ck−2/3

(
|Q(k)

m−1|+ 2|Q(k)
m |
)

+ Ck−2/3|Q(k)
m+1 −Q(k)

m |.

Hence, for large k

|Q(k)
m+1 −Q(k)

m | ≤ (1− Ck−2/3)−1
[
|Q(k)

m −Q
(k)
m−1|+ Ck−2/3

(
|Q(k)

m−1|+ 2|Q(k)
m |
)]

≤ (1− Ck−2/3)−1
[
(m+ 1)k−1/3 +

1

2
k−1/3

]
≤ (m+ 2)k−1/3.

Simultaneously,

|Q(k)
m+1| ≤ |Q

(k)
m+1|+ |Q

(k)
m+1−Q(k)

m | ≤ 2 ·(m2+1) ·k−1/3+(m+2) ·k−1/3 ≤ 2 ·((m+1)2+1) ·k−1/3,

which finishes the proof of (6.27). Since (6.27) implies that limk→∞ |Q
(k)
m | = 0 uniformly over

0 ≤ m ≤ k1/6−γ for any γ > 0, we are done. �

6.2. Proof of Theorem 1.1. We deal with the consecutive N →∞, β →∞ limit and compute
the latter first, as in Section 2.2. The β → ∞ limit is already a Gaussian process, hence, it
remains to study the behavior of its covariance as N → ∞. For that we are going to pass to
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the limit in the formula for the covariance of (4.21). Let us first simplify it by plugging in the
expressions for the weight and norm from Sections 4.3 and 4.5. We have:

(6.28)

Cov(ζk1a1 , ζ
k2
a2 ) =

2√
k1 + 1

√
k2 + 1

∞∑
`=max(k1,k2)

min(k1,k2)−1∑
m=0

Q
(k1)
m (xk1a1)√

〈Q(k1)
m , Q

(k1)
m 〉k1

Q
(k2)
m (xk2a2)√

〈Q(k2)
m , Q

(k2)
m 〉k2

× (`−m)m+1

(`+ 1) ·
√

(k1 −m)m+1

√
(k2 −m)m+1

`−1∏
j=k1

(
1− m+1

j+1

) `−1∏
j=k2

(
1− m+1

j+1

)
.

Next we would like to study the asymptotics of the last line in (6.28) in the regime18:

(6.29) k1 = N + 2N2/3t1, k2 = N + 2N2/3t2, ` = N + 2N2/3λ, m = yN1/3, N →∞.

We write using ln(1 +u) = u+O(u2) and the notation f ≈ g whenever the ratio f/g tends to 1:

(`−m)m+1 = `m+1
m∏
i=1

(
1− i

`

)
= `m+1 exp

(
−

m∑
i=1

i

`
+O

(
m3

`2

))

= `m+1 exp

(
O

(
m2

`

)
+O

(
m3

`2

))
≈ `m+1 = Nm+1

(
1 +

2λ

N1/3

)yN1/3+1

≈ Nm+1 exp(2yλ).

Similarly, we have√
(k1 −m)m+1 ≈ N

m+1
2 exp (yt1) ,

√
(k2 −m)m+1 ≈ N

m+1
2 exp (yt2) .

Further,

`−1∏
j=k1

(
1− m+1

j+1

)
= exp

− `−1∑
j=k1

m+ 1

j + 1
+O

(
(`− k1)m2

k21

) ≈ exp
(
2y(t1 − λ)

)
.

And similarly
`−1∏
j=k2

(
1− m+1

j+1

)
≈ exp

(
2y(t2 − λ)

)
.

Altogether, the second line in (6.28) behaves as N →∞ as

1

N
exp
(
y(2λ− t1 − t2 + 2t1 − 2λ+ 2t2 − 2λ)

)
=

1

N
exp
(
y(t1 + t2 − 2λ)

)
.

Summing over ` the second line in (6.28), we see an approximation of a computable integral:

∞∑
`=max(k1,k2)

(`−m)m+1

(`+ 1) ·
√

(k1 −m)m+1

√
(k2 −m)m+1

`−1∏
j=k1

(
1− m+1

j+1

) `−1∏
j=k2

(
1− m+1

j+1

)
≈ 2N−1/3

∫ ∞
max(t1,t2)

exp
(
y(t1 + t2 − 2λ)

)
dλ = N−1/3

1

y
exp
(
−y|t1 − t2|

)
,

18We omit integer parts in order to shorten the notations.
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where the prefactor 2 appears because of 2 in (6.29). Further, the m–sum in (6.28) becomes as
N →∞:

(6.30) N1/3 Cov(ζk1a1 , ζ
k2
a2 )

= 2N−1/3
min(k1,k2)−1∑

m=0

k
−1/3
1

Q
(k1)
m (xk1a1)√

〈Q(k1)
m , Q

(k1)
m 〉k1

k
−1/3
2

Q
(k2)
m (xk2a2)√

〈Q(k2)
m , Q

(k2)
m 〉k2

1

y
exp
(
−y|t1 − t2|

)
.

Plugging in k1 = κ(t1), k2 = κ(t2), a1 = i, a2 = j and using Theorem 6.1 we recognize a
Riemann sum approximating as N → ∞ the integral in the right-hand side of (1.4). (The tail
part corresponding to the large values of m is being controlled by the uniform bound (6.4).)
This finishes the proof of Theorem 1.1.

6.3. Random walk representation. Consider the matrix

Pt(i→ j) =

∫ ∞
0

Ai(ai + y)Ai(aj + y)

Ai′(ai)Ai′(aj)
exp(−ty) dy, ai, aj are zeros of Ai(z).

Theorem 6.4. The matrices Pt(i → j), t ≥ 0, i, j ∈ Z>0 form a stochastic semigroup, which
means that:

(1) Pt(i→ j) ≥ 0 for each t > 0 and P0(i, j) = 1i=j;
(2) For each t ≥ 0

(6.31)

∞∑
j=1

Pt(i→ j) = 1;

(3) For each t, s ≥ 0 and each i, j ∈ Z>0

(6.32)

∞∑
q=1

Pt(i→ q)Ps(q → j) = Pt+s(i→ j).

Proof. The proof is based on the combination of two ideas. First, Pt(i → j) is a limit of the
diffusion kernels Kk,`(a → b) of Section 3, which shows that it is non-negative. In principle,
stochasticity and semigroup property might have been lost in the limit transition: the equalities
(6.31) and (6.32) might have turned into inequalities. In order to rule out this possibility we
find explicit eigenfunctions of Pt(i→ j) with eigenvalues arbitrarily close to 1.

Step 1. Consider the Gaussian ∞–corners process with xki being the roots of the Hermite
polynomials. Then (4.22) yields an expression for the corresponding diffusion kernels:

Kk,`(a→ b) =
1

k + 1

k−1∑
m=0

Q
(k)
m (xka)Q

(`)
m (x`b)

〈Q(k)
m , Q

(k)
m 〉k

`−1∏
j=k

(
1− m+1

j+1

)
.

Set ` = k + b2tk2/3c, a = k + 1 − i, b = ` + 1 − j and send k → ∞ in the last formula using

Theorem 6.1, formula (4.37) and computation for m ≈ yk1/3√√√√ 〈Q(k)
m , Q

(k)
m 〉`

〈Q(k)
m , Q

(k)
m 〉k

`−1∏
j=k

(
1− m+1

j+1

)
=

√√√√ k + 1

m+ 1

m∏
j=0

(
1 +

`− k
k − j

) `−1∏
j=k

(
1− m+1

j+1

)
≈ exp(ty) exp(−2ty) = exp(−ty).

We get

(6.33) lim
k→∞

Kk,k+b2tk2/3c(k + 1− i→ `+ 1− j) = Pt(i→ j).
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Since the matrices Kk,`(a → b) are stochastic, we conclude that Pt(i → j) ≥ 0 and∑∞
j=1 Pt(i→ j) ≤ 1.
Step 2. For y ≥ 0 denote

Ai(y) =
Ai(ai + y)

Ai′(ai)
.

As functions of y these are eigenfunctions of the Sturm–Liouville operator corresponding to the
Airy differential operator on [0,+∞) with Dirichlet boundary condition at y = 0:

∂2

∂y2
Ai(y) + yAi(y) = aiAi(y), y ≥ 0; Ai(0) = 0.

We also know that they are orthonormal (see Remark 6.3):∫ ∞
0
Ai(y)Aj(y)dy = δi=j .

The general theory of Sturm–Liouville expansions (see [Ti, Section 2.7 and Section 4.12] or [VS,
Section 4.4]) yields that the functions Ai(y), i = 1, 2, . . . , form a complete orthonormal basis.
In particular, we can expand function Ai exp(−ty) in this basis, yielding

(6.34) Ai(y) exp(−ty) =

∞∑
j=1

Aj(y)

∫ ∞
0
Aj(y)(Ai(y) exp(−ty))dy.

Let us now change the point of view, fix some y > 0 and treat Ai(y) as a function of i. Then
(6.34) means that this is an eigenvector of the matrix Pt(i→ j) with eigenvalue exp(−ty). Note
that we can not take y = 0 here, since Ai(0) vanishes.

The definition of Ai implies that for each i = 1, 2, . . .

(6.35) lim
y→0

1

y
Ai(y) = 1.

In addition, there is a uniform bound:

(6.36) lim
y→0

sup
i≥1

∣∣∣∣1yAi(y)

∣∣∣∣ = 1,

which follows from the known asymptotic expansions for Ai(x), x→ −∞, and for Ai′(ai), i→∞,
see, e.g., [VS, (2.48) and (2.58)].

We can now apply (6.34) to get an inequality

(6.37)

∣∣∣∣1yAi(y) exp(−ty)

∣∣∣∣ =

∣∣∣∣∣∣1y
∞∑
j=1

Aj(y)Pt(i→ j)

∣∣∣∣∣∣ ≤ sup
j≥1

∣∣∣∣1yAj(y)

∣∣∣∣ ∞∑
j=1

Pt(i→ j).

Sending y → 0 using (6.35) and (6.36) we conclude that
∑∞

j=1 Pt(i → j) ≥ 1. Combining with

the opposite inequality established on the first step we conclude that
∑∞

j=1 Pt(i→ j) = 1.
Step 3. It remains to prove the semigroup property. By definition, it is satisfied by the

matrices Kk,`(a→ b) and we have

(6.38)
∑̀
c=1

Kk,`(a→ c)K`,r(c→ b) = Kk,r(a→ b).

We now set ` = k + b2tk2/3c, r = ` + b2sk2/3c, a = k + 1 − i, c = ` + 1 − q, b = r + 1 − j and
send k → ∞. Using (6.33) we see that the terms of the series (6.38) converge towards those of
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(6.32). It remains to notice an asymptotic tail-bound: for any fixed M we have
(6.39)
`−M∑
c=1

Kk,`(a→ c)K`,r(c→ b) ≤
`−M∑
c=1

Kk,`(a→ c) = 1−
∑̀

c=`−M+1

Kk,`(a→ c)→ 1−
M∑
q=1

Pt(i→ q).

Since
∑∞

q=1 Pt(i → q) = 1, by choosing large enough M we can make (6.39) arbitrarily small.

Hence, k →∞ limit of (6.38) gives (6.32). �

Let us consider a continuous time homogeneous Markov chain X(x0)(t), t ≥ 0, taking values
in the state space Z>0. The initial value is x0, i.e. X(x0)(0) = x0. The transitional probabilities
are given by Pt:

Prob(X(x0)(t) = a) = Pt(x0 → a).

Next, we take a countable collection of standard Brownian motions W (i)(t), i ∈ Z>0. For
each x ∈ Z>0 and t ∈ R define a random variable

Z(i, t) = 2

∞∑
j=1

∫ ∞
t

Pr−t(i→ j)dW (j)(r).

An alternative expression for Z(i, t) was given in (1.5). In words, we start the Markov chain X
from i at time t and add the white noises Ẇ (i) along its trajectory. Z(i, t) is the expectation
of the sum over the randomness coming from X ; it is still random variable with randomness
coming from the Brownian motions. We can also view Z(i, t) as the partition function of a
directed polymer in additive Gaussian noise.

Theorem 6.5. The finite-dimensional distributions of Z(i, t) are the same as ones of the limit
in Theorems 1.1, 1.2, i.e. the covariance EZ(i, t)Z(j, s) matches the right-hand side of (1.4).

Proof. Since Ito integral is a L2–isometry, we have

(6.40) EZ(i, t)Z(j, s) = 4E
∞∑
a=1

∫ ∞
t

Pr−t(i→ a)dW (a)(r)
∞∑
b=1

∫ ∞
s

Pr′−s(i→ b)dW (b)(r′)

= 4

∫ ∞
max(t,s)

∞∑
`=1

Pr−t(i→ `)Pr−s(j → `)dr.

Using the symmetry Pt(x, y) = Pt(y, x) and the semigroup property (6.32), we compute the sum
over ` and get

4

∫ ∞
max(t,s)

P2r−t−s(i→ j)dr = 4

∫ ∞
max(t,s)

dr

∫ ∞
0

Ai(ai + y)Ai(aj + y)

Ai′(ai)Ai′(aj)
exp(−(2r − t− s)y) dy.

Changing the order of integration and computing the dr integral we finally get

2

∫ ∞
0

Ai(ai + y)Ai(aj + y)

Ai′(ai)Ai′(aj)
exp
(
−(2 max(t, s)− t− s)y

) dy

y
. �

Our next aim is to compute the intensities of the Markov chain X (x)(t), matching its descrip-
tion at the end of Section 1.2.

Proposition 6.6. We have

(6.41)
∂

∂t
Pt(i→ j)

∣∣∣
t=0

=

{
2

(ai−aj)2 , i 6= j,
2
3ai, i = j.

For the proof we need two computations of indefinite integrals.
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Lemma 6.7. Fix any a ∈ R and introduce the notation

Aia = Ai(y + a).

Then we have

(6.42)
∂

∂y

(
2a− y

3
Ai′aAi′a +

1

3
Ai′aAia +

(y + a)(y − 2a)

3
AiaAia

)
= yAiaAia,

Also for any a, b ∈ R

(6.43)

∂

∂y

(
2Ai′aAi′b + (a− b)(yAi′aAib − yAiaAi′b)− 2yAia Aib − (a+ b)AiaAib + 2

AiaAi′b −Ai′aAib
b− a

)
= (a− b)2yAiaAib.

Proof. The method for finding such identities is suggested in [Al]. The identities themselves
are checked by direct differentiation using (6.1). The left-hand side of (6.42) is transformed as
follows:(
−1

3
Ai′aAi′a + 2(a+ y)

2a− y
3

Ai′aAia

)
+

(
1

3
(a+ y)AiaAia +

1

3
Ai′aAi′a

)
+

(
2

(y + a)(y − 2a)

3
Ai′aAia +

y + a+ y − 2a

3
AiaAia

)
= yAiaAia.

The left-hand side of (6.43) is transformed as follows:(
2(y+a)AiaAi′b+2(y+b)Ai′aAib

)
+(a−b)

(
(Ai′aAib−AiaAi′b)+y((y+a)AiaAib−(y+b)AiaAib)

)
−
(
2AiaAib + 2yAi′aAib + 2yAiaAi′b

)
− (a+ b)

(
Ai′aAib + AiaAi′b

)
+

(
2

b− a
(
(y + b)AiaAib − (y + a)AiaAib

))
= (a− b)2yAiaAib. �

Proof of Proposition 6.6. Differentiating under the integral sign, we get

(6.44)
∂

∂t
Pt(i→ j)

∣∣∣
t=0

= −
∫ ∞
0

y
Ai(ai + y)Ai(aj + y)

Ai′(ai)Ai′(aj)
dy.

For the case i = j we apply (6.42) converting the last expression into

(6.45)
1

Ai′(ai)Ai′(ai)

(
2ai − y

3
Ai′aiAi′ai +

1

3
Ai′aiAiai +

(y + ai)(y − 2ai)

3
AiaiAiai

)∣∣∣∣∣
y=0

y=∞

=
2

3
ai.

When i 6= j, we apply (6.43) instead. �

We end this section by noting conservativity of the semigroup Pt(i→ j), i.e., that the sum of
its intensities over j vanishes.

Lemma 6.8. We have ∑
j≥1 | j 6=i

1

(ai − aj)2
= −1

3
ai.

Proof. This is just one of many similar identities found in [BR]. Alternatively, it can be proven
as k →∞ limit of the identity of Lemma 4.4 specialized by (4.6) and (4.15)

k∑
j=1

1

(xkk+1−j − x
k−1
k−i )

2
= k,
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where xka are the roots of the Hermite polynomials. �

6.4. Holder-continuity of Z(i, t).

Theorem 6.9. The process Z(i, t) has a continuous modification, such that for each i = 1, 2, . . .
the process Z(i, t) is almost surely a locally γ–Holder continuous function of t for all 0 < γ < 1

2 .

Proof. By the Kolmogorov continuity theorem (see e.g. [Ka, Theorem 3.23]) it suffices to check
that for each i = 1, 2, . . . and each d = 1, 2, . . . there exists a constanct C(i, d), such that

(6.46) E(Z(i, t)− Z(i, s))2d ≤ C(i, d)|t− s|d, t, s ∈ R.

Because
(
Z(i, t)− Z(i, s)

)
is a mean 0 Gaussian random variable, (6.46) for d = 1 implies it for

all d = 2, 3, . . . . For d = 1, we recall the formula for the covariance obtained by substituting
i = j in (1.4):

EZ(i, t)Z(i, s) =
2

[Ai′(ai)]2

∫ ∞
0

[Ai(ai + y)]2 exp (−|t− s|y)
dy

y
.

Using the inequality exp(−a) ≥ 1− a, valid for a ≥ 0, we get

EZ(i, t)Z(i, s) ≥ 2

[Ai′(ai)]2

∫ ∞
0

[Ai(ai + y)]2
dy

y
− 2|t− s|

[Ai′(ai)]2

∫ ∞
0

[Ai(ai + y)]2dy.

The first integral in the last formula is EZ2(i, t) = EZ2(i, s) and the second integral is computed
by (6.6). We conclude that

EZ(i, t)Z(i, s) ≥ EZ2(i, t)− 2|t− s|.

Hence,

E(Z(i, t)− Z(i, s))2 ≤ 4|t− s|,
which implies (6.46) for d = 1. �

7. The β =∞ Dyson Brownian Motion: proof of Theorem 1.2

The proof is split into two parts. First, we express the covariance of the β →∞ limit of the
Dyson Brownian Motion (as in Theorem 2.2) through the orthogonal polynomials Qki (x). Then
we use the asymptotics of these polynomials established in Theorem 6.1 to finish the proof. This
section also contains the proofs of Lemma 2.3 and identity (3.19) (see Remark 7.6).

7.1. Covariance of the β =∞ Dyson Brownian Motion. The aim of this section is to solve
inhomogeneous linear equations (2.8). By the well-known algorithm for finding the solutions to
inhomogeneous differential equations, we need to start by identifying N linearly independent
solutions to the homogeneous version of (2.8).

Theorem 7.1. Consider a linear N–dimensional system of differential equations

(7.1) dzi(t) = −
∑
j 6=i

zi(t)− zj(t)
t(xNi − xNj )2

dt, t ≥ 0, i = 1, 2, . . . , N,

where xNi is the ith zero of the Hermite polynomial HN (x). Let Q
(m)
N be the m–th orthogonal

polynomial with respect to the uniform measure on {xN1 , . . . , xNN}, as in Definition 4.6. Then for
each m = 0, 1, 2 . . . , N − 1, the N–dimensional vector

(7.2) zi(t) = t−m/2Q
(m)
N

(
xiN
)
, i = 1, 2, . . . , N,

is a solution to (7.1).
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Remark 7.2. The statement of Theorem 7.1 is closely related to that of Theorem 4.9. In random
matrix terminology, Theorem 4.9 corresponds to the changing matrix size, while Theorem 7.1
is about time evolution of a matrix of a fixed size. Our proofs of these theorems follow similar
schemes: essentially we are showing that the dynamics (7.1) preserves both polynomiality and
orthogonality with respect to the counting measure on the set {

√
txN1 ,

√
txN2 , . . . ,

√
txNN}.

Proof of Theorem 7.1. The statement would follow as soon as we show that

(7.3)
m

2
Q

(m)
N

(
xNi
)

=
∑
j 6=i

Q
(m)
N

(
xNi
)
−Q(m)

N

(
xNj
)

(xNi − xNj )2
, 0 ≤ m ≤ N − 1.

In order to prove (7.3) we set L to be the linear operator in N–dimensional Euclidean (with
respect to counting measure) space `2(x

N
1 , x

N
2 , . . . , x

N
N ) with matrix 1

(xNi −xNj )2
, i, j = 1, . . . , N , in

the standard coordinate basis. Let LQ be the matrix of the same operator L in the orthonormal
basis of functions

Q
(0)
N (x)√

(N + 1)〈Q(0)
N , Q

(0)
N 〉N

,
Q

(1)
N (x)√

(N + 1)〈Q(1)
N , Q

(1)
N 〉N

, . . . ,
Q

(N−1)
N (x)√

(N + 1)〈Q(N−1)
N , Q

(N−1)
N 〉

.

The relation (7.3) is readily implied by the following three properties that we will prove:

(1) The matrix LQ is symmetric.
(2) The matrix LQ is triangular.

(3) The diagonal elements of the matrix LQ are 0, 12 ,
2
2 ,

3
2 , . . . ,

N−1
2 .

For the first property note that L is symmetric in standard coordinate basis. Hence, its matrix
in any orthonormal basis is also symmetric and so is LQ. For the remaining two properties we

fix 0 ≤ m ≤ N − 1 and consider a function R(m) : {xN1 , xN2 , . . . , xNN} → R given by

(7.4) R(m)
(
xNi
)

:= −m
2
Q

(m)
N

(
xNi
)

+
∑
j 6=i

Q
(m)
N

(
xNi
)
−Q(m)

N

(
xNj
)

(xNi − xNj )2
.

The desired two properties of LQ would follow immediately, if we manage to prove that R(m) is

a polynomial of degree at most m − 1 of real argument xNi , i = 1, 2, . . . , N . In fact, the exact

nature of the polynomial Q
(m)
N is irrelevant here. Expanding Q

(m)
N into monomials, it suffices to

check that the function

(7.5) xNi 7→ −
m

2

(
xNi
)m

+
∑
j 6=i

(
xNi
)m − (xNj )m

(xNi − xNj )2
, i = 1, 2, . . . , N,

is a polynomial of degree at most m− 1. The last expression transforms into

(7.6) − m

2
(xNi )m +

∑
j 6=i

(xNi )m−1 + (xNi )m−2(xNj ) + · · ·+ (xNj )m−1

xNi − xNj
, i = 1, 2, . . . , N.

Let us use an identity which is implied by (2.11):

(7.7)
m

2
(xNi )m −

∑
j 6=i

m(xNi )m−1

xNi − xNj
= 0, i = 1, 2, . . . , N.
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Subtracting (7.7) from (7.6), we convert the latter into

(7.8)
∑
j 6=i

[(xNi )m−1 − (xNi )m−1] + [(xNi )m−2(xNj )− (xNi )m−1] + · · ·+ [(xNj )m−1 − (xNi )m−1]

xNi − xNj

= −
∑
j 6=i

(
0 + (xNi )m−2 + (xNi )m−3

[
xNi + xNj

]
+ · · ·+

[
(xNj )m−2 + (xNj )m−3(xNi ) + . . . (xNi )m−2

])
,

which is a (minus) sum of the expressions of the form

(7.9) (xNi )`
∑
j 6=i

(xNj )m−2−` = (xNi )`(pm−2−` − xm−2−`i ),

where 0 ≤ ` ≤ m−2 and pk =
∑N

j=1(x
N
j )k. The expression (7.9) is a polynomial in xNi of degree

m − 2, whose coefficients do not depend on i. Hence, (7.5) is a polynomial in xNi of degree at
most m− 2 (which is even better than the degree at most m− 1 that we wanted to have). �

We can now write down an explicit formula for the solution to (2.8).

Theorem 7.3. The system of SDEs (2.8) is solved by

(7.10) ζNi (t) =
√

2
N−1∑
m=0

Q
(m)
N (xNi )

N∑
j=1

Q
(m)
N (xNj )

(N + 1)
〈
Q

(m)
N , Q

(m)
N

〉
N

∫ t

0

(s
t

)m/2
dWj(s),

where the scalar product
〈
Q

(m)
N , Q

(m)
N

〉
N

is as in Definition 4.6 and Corollary 4.12, so that

(N + 1)
〈
f, g
〉
N

=

N∑
a=1

f(xNa )g(xNa ).

Proof. Using the result of Theorem 7.1 we have:

(7.11) dζNi (t) =
√

2 d

N−1∑
m=0

t−m/2Q
(m)
N (xiN )

N∑
j=1

Q
(m)
N (xNj )

(N + 1)
〈
Q

(m)
N , Q

(m)
N

〉
N

∫ t

0
sm/2dWj(s)


=
√

2
N−1∑
m=0

d
[
t−m/2Q

(m)
N (xNi )

] N∑
j=1

Q
(m)
N (xNj )

(N + 1)
〈
Q

(m)
N , Q

(m)
N

〉
N

∫ t

0
sm/2dWj(s)

+
√

2

N−1∑
m=0

t−m/2Q
(m)
N (xNi )

N∑
j=1

Q
(m)
N (xjN )

(N + 1)
〈
Q

(m)
N , Q

(m)
N

〉
N

d

[∫ t

0
sm/2dWj(s)

]

= −
∑
j 6=i

ζNi (t)− ζNj (t)

t(xNi − xNj )2
+
√

2
N−1∑
m=0

N∑
j=1

Q
(m)
N (xNi )Q

(m)
N (xNj )

(N + 1)
〈
Q

(m)
N , Q

(m)
N

〉
N

Wj(t)

= −
∑
j 6=i

ζNi (t)− ζNj (t)

t(xNi − xNj )2
+
√

2Wj(t),

where the last identity is obtained by changing the order of summation and using the fact that

the matrix (i,m) 7→ Q
(m)
N (xNi )√

(N+1)
〈
Q

(m)
N ,Q

(m)
N

〉
N

is orthogonal. �

We further show that (7.10) is the unique solution of Lemma 2.3.
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Proof of Lemma 2.3. In Theorem 7.3 we checked that (7.10) solves the SDE (2.8). It is also
clear that this solution satisfies the initial condition: limt→0 ζ

N
i (t) = 0. Thus, it remains to

check the uniqueness. Let (ζNi (t))Ni=1 and (ζ̃Ni (t))Ni=1 be two stochastic processes satisfying
conditions of Lemma 2.3 with the same Brownian motions (Wi(t))

N
i=1. Then their difference

solves a deterministic homogeneous linear differential equation:

d[ζNi − ζ̃Ni ](t) = −
∑
j 6=i

[ζNi − ζ̃Ni ](t)− [ζNj − ζNj ](t)

t(xNi − xNj )2
dt, t > 0, i = 1, 2, . . . , N.

A complete basis of solutions of this equation was found in Theorem 7.1. None of the non-zero
solutions tends to (0, . . . , 0) at t→ 0. Hence, ζNi (t)− ζ̃Ni (t) must be almost surely equal to zero
for all i = 1, . . . , N and all t ≥ 0. �

Lemma 7.4.
(
ζNi (t)

)N
i=1

, t ≥ 0, of Theorem 7.3 is a mean 0 Gaussian process with covariance

(7.12) Cov(ζNi (t), ζNj (s)) = 2
N−1∑
m=0

Q
(m)
N (xNi )Q

(m)
N (xNj )

(N + 1)
〈
Q

(m)
N , Q

(m)
N

〉
N

· (min(t, s))m+1

(m+ 1)(ts)m/2

Proof. Using the isometry property of stochastic integrals

E
∫ t

0
f(τ)dWa(τ)

∫ s

0
g(σ)dWb(σ) = δa=b

∫ min(t,s)

0
f(τ)g(τ)dτ

and (7.10), we have

(7.13) EζNi (t)ζNj (s) = 2E

[
N−1∑
m=0

Q
(m)
N (xNi )

N∑
a=1

Q
(m)
N (xNa )

(N + 1)
〈
Q

(m)
N , Q

(m)
N

〉
N

∫ t

0

(τ
t

)m/2
dWa(τ)

×
N−1∑
`=0

Q
(`)
N (xNj )

N∑
b=1

Q
(`)
N (xNb )

(N + 1)
〈
Q

(`)
N , Q

(`)
N

〉
N

∫ s

0

(σ
s

)`/2
dWb(τ)

]
=

2

(N + 1)2

×E

[
N−1∑
m=0

N−1∑
`=0

Q
(m)
N (xNi )Q

(`)
N (xNj )

N∑
a=1

Q
(m)
N (xNa )〈

Q
(m)
N , Q

(m)
N

〉
N

Q
(`)
N (xNa )〈

Q
(`)
N , Q

(`)
N

〉
N

∫ min(t,s)

0

(τ
t

)m/2 (τ
s

)`/2
dτ

]
.

It remains to compute the τ–integral and to use the orthogonality relation

1

N + 1

N∑
a=1

Q
(m)
N (xNa )Q

(`)
N (xNa ) = δm=` ·

〈
Q

(m)
N , Q

(m)
N

〉
N
. �

Corollary 7.5. The fixed t covariance of the process
(
ζNi (t)

)N
i=1

of Theorem 2.2 (equivalently,
of the Gaussian vector of (2.12)) is given by

(7.14) Cov(ζNi (t), ζNj (t)) =
2t

N + 1

N−1∑
m=0

Q
(m)
N (xNi )Q

(m)
N (xNj )

(m+ 1)
〈
Q

(m)
N , Q

(m)
N

〉
N

.

At t = 1 the same formula also computes the covariance Cov(ζNi , ζ
N
j ) for the double infinite sum

(3.6) of Theorem 3.5.

Remark 7.6. Comparing (2.4) with (2.12), we conclude that the left-hand side of (3.19) coincides
with the variance of ζNi (1). Hence, the last statement of Corollary 7.5 implies (3.19).

Remark 7.7. The formula (7.14) was also proven in [AV, Theorem 3.1]: the proof there is based
on an explicit diagonalization of the quadratic form in the exponent of (3.19).
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Proof of Corollary 7.5. The formula (7.14) is obtained by substituting t = s into (7.12).
On the other hand, the covariance of the infinite sum (3.6) is computed by setting k1 = k1 = N

in (4.21). Using (4.15), it becomes:

(7.15) Cov(ζNa1 , ζ
N
a2)

=
2

(N + 1)2

∞∑
`=N

N−1∑
m=0

Q(N)
m (xNa1)Q(N)

m (xNa2)
〈Q(`)

m , Q
(`)
m 〉`

〈Q(N)
m , Q

(N)
m 〉N 〈Q(N)

m , Q
(N)
m 〉N

`−1∏
j=N

(
1− m+1

j+1

)2
.

In order to match (7.15) with (7.14) at t = 1, we interchange the order of the summa-
tions in the former and compute the sum

∑∞
`=N for each 0 ≤ m ≤ N − 1, using the

explicit formula for 〈Q(`)
m , Q

(`)
m 〉` from Corollary 4.12 and the Pochammer symbol notation

(x)n = x(x+ 1) · · · (x+ n− 1):

(7.16)

∞∑
`=N

〈Q(`)
m , Q(`)

m 〉`
`−1∏
j=N

(
1− m+1

j+1

)2
=

∞∑
`=N

`(`− 1) · · · (`−m)

`+ 1
·
(

(N −m)(N + 1−m) · · · (`−m− 1)

(N + 1)(N + 2) · · · `

)2

=

∞∑
`=N

(N −m)(N −m+ 1) · · · (`− 1)`

(N + 1)(N + 2) · · · (`+ 1)
· (N −m)(N + 1−m) · · · (`−m− 1)

(N + 1)(N + 2) · · · `

=
(N −m) · · ·N

N + 1

∞∑
`=N

(N −m)`−N
(N + 2)`−N

=
(N −m)(N −m+ 1) · · ·N

N + 1
2F1(1, N −m;N + 2; 1),

where 2F1 is the Gauss hypergeometric function. Its value can be computed using the Gauss’s
summation theorem:

2F1(a, b; c; 1) =
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b)

.

Hence, we further transform (7.16) into

(N −m)(N −m+ 1) · · ·N
N + 1

· Γ(N + 2)Γ(m+ 1)

Γ(N + 1)Γ(m+ 2)
=

(N −m)(N −m+ 1) · · ·N
m+ 1

.

Plugging the result back into (7.15) and using Corollary 4.12 again, we arrive at (7.14) with
t = 1, as desired. �

7.2. Proof of Theorem 1.2. The theorem deals with the iterative limit N → ∞, β → ∞.
The latter limit is computed in Theorem 2.2, it is a Gaussian process and we use the result of
Lemma 7.4 for its covariance. It remains to send N →∞ in (7.12), i.e. to compute the limit

(7.17) lim
N→∞

E
[
N1/3ζNN+1−i(1 + 2tN−1/3)ζNN+1−j(1 + 2sN−1/3)

]
=

lim
N→∞

2N1/3
N−1∑
m=0

Q
(m)
N (xN+1−i

N )Q
(m)
N (xN+1−j

N )

(N + 1)
〈
Q

(m)
N , Q

(m)
N

〉
N

· (1 + 2N−1/3 min(t, s))m+1

(m+ 1)(1 + 2N−1/3t)m/2(1 + 2N−1/3s)m/2
.

We use Theorem 6.1 to compute the asymptotic behavior of Q
(m)
N (xN+1−i

N ) and Q
(m)
N (xN+1−j

N ),
transforming (7.17) into

(7.18) lim
N→∞

2
N−1∑
m=0

Ai
(
ai + m

N1/3

)
Ai
(
aj + m

N1/3

)
Ai′(ai)Ai′(aj)

· (1 + 2N−1/3 min(t, s))m+1

(m+ 1)(1 + 2N−1/3t)m/2(1 + 2N−1/3s)m/2
.
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The terms in the last sum rapidly decay as m
N1/3 → +∞. Hence, denoting y = m

N1/3 and using
the N →∞ asymptotic approximation

(1 + 2N−1/3 min(t, s))m+1

(m+ 1)(1 + 2N−1/3t)m/2(1 + 2N−1/3s)m/2
≈ N−1/3 1

y
exp (2ymin(t, s)− yt− ys)

= N−1/3
1

y
exp(−y|t− s|),

(7.18) becomes a Riemann sum approximating as N →∞ the integral

2

∫ ∞
0

Ai
(
ai + y

)
Ai
(
aj + y

)
Ai′(ai)Ai′(aj)

exp(−y|t− s|)dy

y
,

thus, matching (1.4) and finishing the proof.

8. Appendix: steepest descent analysis

Proof of Theorem 2.9. Rescaling and shifing the variables yi, we can (and will) assume without
loss of generality that µN = 0 and σN = 1.

We use the contour integral representation of the derivative to write

(8.1) Pk(y) =

(
N

k

)−1
· 1

2πi

∮
0

PN (z + y)

zN−k+1
dz,

where the integral goes over a positively oriented loop enclosing 0. We further set

y =
x√
N
.

Our aim is to show that up to certain factors, which have no zeros, Pk(
x√
N

) becomes the degree

k Hermite polynomial as N → ∞. By the Hurwitz theorem, this would imply the desired
convergence of zeros.

Using (8.1) and adopting the notation ∼ to indicate an equality up to factors independent of
x, we have

Pk

(
x√
N

)
∼
∮
0

N∏
i=1

(
1 +
−yi + x√

N

z

)
dz

z1−k
.

Note that |yi|/
√
N → 0 uniformly in i as N →∞ due to Assumption 2.4. Hence, we can change

the variable z =
√
N
w and use the Taylor series expansion ln(1 + q) = q − q2

2 +O(q3) to get

Pk

(
x√
N

)
∼
∮
0

exp

[
N∑
i=1

ln

(
1 +

w√
N
·
(
−yi +

x√
N

))]
dw

wk+1

=

∮
0

exp

[
N∑
i=1

(
w√
N
·
(
−yi +

x√
N

))
− 1

2

N∑
i=1

w2

N
(−yi)2 −

1

2

N∑
i=1

w2x2

N2

+
1

2

w2

N
√
N
x

N∑
i=1

yi +
1

N
√
N

N∑
i=1

O
(
(−yi)3

)
+ o(1)

]
dw

wk+1
.

By Assumption 2.4 and our choices of µN and σN

N∑
i=1

yi = 0,
1

N

N∑
i=1

(yi)
2 = σN = 1,

1

N
√
N

N∑
i=1

|yi|3 =
κ3N√
N

= o(1).
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Hence, we conclude that after factoring out the x–independent constants Pk(
x√
N

) converges

(uniformly over x belonging to a compact subsets of the complex plane) to

k!

2πi

∮
0

exp

[
wx− w2

2

]
dw

wk+1
,

which is a known contour integral representation for the Hermite polynomial Hk(x), see [KLS,
(9.15.10)]. �

Proof of Theorem 2.14. Since we deal only with roots of the polynomials, but not with their
values, we can and will omit various multiplicative constants. We would like to investigate the
zeros of the function Pk(x+ 1

N χ) of a complex variable χ as N →∞. Using the contour integral
representation of the derivative, we have

Pk(x+ 1
N χ) ∼

∮
PN (z + x)

(z − 1
N χ)N−k+1

dz,

where the integration contour encloses the unique pole of the integrand at z = 1
N χ. We would

like to apply the steepest descent method to the last integral. For that we write the integrand
as

(8.2) exp(NG(z)) ·
(

1− χ

Nz

)−N+k−1
,

where

G(z) =
1

N
ln
(
PN (z + x)

)
− N − k + 1

N
ln z.

The second factor in (8.2) converges as N → ∞, and we are led to study the first oscillating
factor. The steepest descent method suggests to deform the contours of integration so that they
pass through the critical points of G(z). Thus, we arrive at the equation G′(z) = 0, which
is (2.17). We deform the contours to pass through its complex critical points zc and zc. The
contour itself is then the union of curves ImG(z) = const along which <G(z) has maxima at
z = zc and z = zc. The result is that the dominating contribution to the integral is given by
small neighborhoods of these critical points. Near the critical point zc we have

G(z) = G(zc) +
G′′(zc)

2
(z − zc)2 + o((z − zc)2).

Note that G′′(zc) is non-zero, since its vanishing would mean a double critical point for G(z),
which is impossible, as the argument of Lemma 2.13 explains19. Hence, making a change of
variable z = zc + 1√

N
√
G′′(zc)

w, the integral near zc becomes a Gaussian integral and evaluates

explicitly as N →∞ to

(8.3)
1√
N

√
2π

G′′(zc)
· exp

(
NG(zc)

)
· exp

(
N − k + 1

N
· χ
zc

)
,

where the last factor arose from the limit of the second factor in (8.2). In principle, one should

be careful in choosing the branch of
√
G′′(zc) in (8.3), but the final asymptotic theorem is not

sensitive to this aspect and we will not detail it. Similarly, the contribution of the neighborhood
of zc is

(8.4)

√
2π

G′′(zc)
· exp

(
NG(zc)

)
· exp

(
N − k + 1

N
· χ
zc

)
,

19We also would like G′′(zc) to remain bounded away from 0 as N → ∞, which follows from its convergence
to a limiting value under Assumption 2.6.
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Note that G(z) = G(z). Hence, we conclude that

(8.5) Pk(x+ 1
N χ) ∼ 1√

G′′(zc)
exp
(
iN ImG(zc)

)
· exp

(
N − k + 1

N
· χ
zc

)
(1 + r1(χ))

+
1√

G′′(zc)
exp
(
−iN ImG(zc)

)
· exp

(
N − k + 1

N
· χ
zc

)
(1 + r2(χ)),

where ∼ hides χ–independent factors and r1(χ), r2(χ) are complex remainders, which tend to 0
as N →∞ (uniformly over χ belonging to compact sets). By the Hurwitz’s theorem (or by the
Rouche’s theorem) zeros of a uniformly convergent sequence of holomorphic functions converge
to those of the limiting function. Applying this statement to Pk(x + 1

N χ) as a function of χ
(after multiplication by a proper constant to get the right-hand side of (8.5), and noting that
the exponent iN ImG(zc) in exp

(
iN ImG(zc)

)
can be made bounded by using 2πi periodicity of

exp(·)), we conclude that the zeros of Pk(x+ 1
N χ) as N →∞ are the same as those of

(8.6) exp
(
iN ImG(zc)

)
· exp

(
N − k + 1

N
· χ
zc

)
+ exp

(
−iN ImG(zc)

)
· exp

(
N − k + 1

N
· χ
zc

)
.

For fixed ratio N−k+1
N the latter zeros form a lattice on the real line with step

u = π

(
N − k + 1

N
Im

1

zc

)−1
.

On the other hand, if we increase k by 1, then the change in N−k+1
N is negligible, however, the

definition of G changes: exp(NG(z)) is multiplied by z. We can still use the same critical point
zc in the asymptotic computation and only change NG(zc) in (8.6) by adding a new term ln(zc).
We conclude that k → k + 1 results in the shift of the lattice of zeros to the left by

v = u · 1

π
Im ln(zc) = u · 1

π
arg(zc). �

Proof of Theorem 2.17. We follow the same approach as in Theorem 2.14. The only difference
is that now we have a double critical point zc on the real line, instead of a pair of complex
conjugate critical points. Our first task is to identify the location of this point. Here we rely on
lemma, which we prove a bit later.

Lemma 8.1. Under assumptions of Theorem 2.17, the (unique) double critical point zc of (2.17)
satisfies zc > yN − x > 0, and moreover the difference zc − (yN − x) stays bounded away from 0
as N → ∞. The third derivative G′′′(zc) is positive and stays bounded away from 0 and ∞ as
N →∞.

Next, we write:

(8.7) Pk(x+ 1
N2/3χ) ∼

∮
exp
(
NG(z)

) (
1− χ

N2/3z

)−N+k−1
dz,

where

G(z) =
1

N
ln
(
PN (z + x)

)
− N − k + 1

N
ln z.

We deform the integration contour to pass through zc and the integral becomes dominated by
a small neighborhood of this point20. In this neighborhood we have:

G(z) = G(zc) +
G′′′(zc)

6
(z − zc)3 + o(z − zc)3.

20We omit a standard justification of this fact.
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We make a change of variable
z = zc +N−1/3w.

We need to find the asymptotic expansion of the second factor in the integrand of (8.7):

(
1− χ

N2/3z

)−N+k−1
=

(
1− χ

N2/3zc

)−N+k−1
·

(
(N2/3z − χ)(N2/3zc)

(N2/3zc − χ)(N2/3z)

)−N+k−1

=

(
1− χ

N2/3zc

)−N+k−1
·

(
(zc +N−1/3w −N−2/3χ)(zc)

(zc −N−2/3χ)(zc +N−1/3w)

)−N+k−1

=

(
1− χ

N2/3zc

)−N+k−1
·
(

1 +
N−1χw

z2c +N−1/3wzc −N−2/3zc −N−1χw

)−N+k−1
.

As N → ∞, the first factor is a function of (finite) χ, which has no zeros and therefore can be
ignored for our computations. The second factor asymptotically becomes

exp

(
−N − k + 1

N
· χw
z2c

)
.

We conclude that up to factors, which have no zeros (as functions of χ),

(8.8) Pk(x+ 1
N2/3χ) ∼

∫
exp

(
G′′′(zc)

6
w3 − N − k + 1

N
· χw
z2c

)
dw.

We have some freedom in choosing the contour of integration, as long as it extends to infinity
in both directions in such a way that the integrand decays. Our choice is to integrate over the
unions of two rays arg(w) = ±π

3 , which gives real negative values for w3 (recall that G′′′(zc) > 0).
We now recall the contour integral representation of the Airy function:

(8.9) Ai(ξ) =
1

2πi

∫
exp

(
w̃3

3
− ξw̃

)
dw̃,

where the integration contour is the same as in (8.8). Changing the integration variable in (8.8)
by

w =

(
2

G′′′(zc)

)1/3

w̃,

we conclude that

Pk(x+ 1
N2/3χ) ∼

∫
exp

(
w̃3

3
−
(

2

G′′′(zc)

)1/3 N − k + 1

N
· χw̃
z2c

)
dw̃

∼ Ai

(
χ ·
(

2

G′′′(zc)

)1/3 N − k + 1

N
· 1

z2c

)
. �

Proof of Lemma 8.1. Note that roots of a polynomial smoothly depend on the coefficients of
this polynomial as long as roots do not merge together. We use this observation to deform from
the x = +∞ case down to the first x when a double root of (2.17) arises. Recall from Lemma
2.13 that (2.17) has N roots (with multiplicity). When x is large positive, we can pin down all
these roots on the real line: following the sign changes of (2.19), we locate N − 1 roots inside
segments (yi+1 − x, yi − x), 1 ≤ i < N , and another root inside the ray (0,+∞). This remains
true as long as x > yN . Let us investigate what happens when x becomes slightly smaller, i.e.
for x = yN − ε. We claim that we now have two distinct roots on the segment (yN − x,+∞).
Indeed, the function in the left-hand side of (2.19) is positive at z = yN−x+0, becomes negative
for slightly larger z (because of the contribution of −N−k+1

N · 1z ; in this part the lower bound on
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the spacings yN+1−i − yi in Assumption 2.7 becomes important), and then it is again positive
for very large z → +∞. When we further decrease x, all other roots continue to belong to the
segments (yi+1−x, yi−x) and, therefore, the first appearance of a double root is when the above
two roots on (yN − x,+∞) merge. Hence, zc > yN − x > 0.

Now set δ(N) = zc − (yN − x). Our aim is to show that δ(N) is bounded away from 0 as
N → ∞. We argue by contradiction and assume that δ(N) can become arbitrary small, i.e.
there is a growing sequence Nm such that limm→∞ δ(Nm) = 0. Then one can find a constant
D > 0 such that yNm − x > D for all m. (Indeed, otherwise, passing to a further subsequence,
if necessary, we would get limm→∞(yNm − x) = 0, and consequently the left-hand side of (2.19)
would be negative at zc due to dominating contribution of −N−k+1

N · 1z .) But then we can upper
bound G′′(zc) as:

(8.10) G′′(zc) = − 1

N

N∑
i=1

1

(zc − (yi − x))2
+
N − k + 1

N
· 1

z2c

< − 1

N

N∑
i=1

1

(δ(N) + yN − yi)2
+
N − k + 1

N

1

D2
.

Since by Assumption 2.7, the empirical measure of {yi} converges to a measure ρ supported on
[A,B], yN converges to B, and ∫ B

A

1

(B − x)2
ρ(dx) = +∞,

the inequality (8.10) implies that G′′(zc) goes to −∞ as N →∞, which contradicts G′′(zc) = 0.
Hence, our assumption was wrong and δ(N) is indeed bounded away from 0.

Next, G′′′(zc) is non-negative, since G′(z) is a non-negative function on z ∈ (yN − x,+∞)
with a minimum G′(zc) = 0. G′′′(zc) is bounded away from ∞ immediately from the formula

G′′′(zc) = 2
1

N

N∑
i=1

1

(δ(N) + yN − yi)3
− 2

N − k + 1

N
· 1

z3c

and the facts that δ(N) is bounded away from 0 and zc > δ(N).
It remains to show that G′′′(zc) is bounded away from 0. Indeed, otherwise, passing to a

subsequence, if necessary, we would see a triple root at zc for the function G(z). But (by the
Hurwitz or by the Rouchet’s theorem) this is impossible, since for finite N we have shown that
G(z) has only a double root at zc and no other roots in a neighborhood. �
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