UNIVERSAL OBJECTS OF THE INFINITE BETA RANDOM MATRIX

THEORY

V. GORIN AND V. KLEPTSYN

ABSTRACT. We develop a theory of multilevel distributions of eigenvalues which complements
the Dyson’s threefold § = 1,2,4 approach corresponding to real/complex/quaternion matrices
by B = oo point. Our central objects are the GooE ensemble, which is a counterpart of the
classical Gaussian Orthogonal/Unitary/Symplectic ensembles, and the Airy. line ensemble,
which is a collection of continuous curves serving as a scaling limit for largest eigenvalues at
B = oco. We develop two points of views on these objects. The probabilistic one treats them
as partition functions of certain additive polymers collecting white noise. The integrable point
of view expresses their distributions through the so-called associated Hermite polynomials and
integrals of the Airy function. We also outline universal appearances of our ensembles as scaling
limits.
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1. INTRODUCTION

1.1. Motivations. Traditionally, the random matrix theory! deals with real, complex, and
quaternion matrices, their eigenvalues and eigenvectors. Following the work of Wigner,
Dyson, Mehta, and others in 1950-60s, a central role is played by Gaussian ensembles, which
are defined as follows: let X be an infinite Z~g X Zsg matrix with i.i.d. standard normal
real/complex/quaternion matrix elements, normalized so that their real parts have variance
% with 8 = 1/2/4, respectively. The N x N principal submatrix My of % is then called the
Gaussian Orthogonal/Unitrary/Simplectic ensemble of rank N. The matrix My is Hermitian,
it has N real eigenvalues x1 < x2 < --- < xn and their distribution is explicit. The joint density
is proportional to
N
(1.1) IT 06 —x) [T exp(=500)%).

1<i<j<N i=1

Although originally in (1.1) only S = 1,2,4 come out, the formula suggests the possibility of
taking arbitrary positive real values for 8. In the terminology of statistical mechanics, such g
can be interpreted as the inverse temperature. More recently the distribution (1.1) was found
in [DE1] to govern for any 3 > 0 the eigenvalues of tridiagonal real symmetric random matrices.
Multiple other reasons to be interested in the Gaussian 3 ensembles (1.1) with arbitrary 8 > 0
are reviewed in [Ox, Chapter 20 “Beta Ensembles”], they include connections to the theory
of Jack and Macdonald symmetric polynomials, to Coulomb log-gases, and to the Calogero—
Sutherland quantum many—body system. One can go further and replace exp(—g(xl-)g) in (1.1)
by any potential V' (x;) leading to a class of distributions known under the name [—ensembles.

Beyond 8 =1, 2,4, there are two other special values of g for f—ensembles. First, at 8 = 0 the
interactions between particles disappear and we link to the classical probability theory dealing
with sequences of independent random variables. We are not going to consider this value here.
Instead, we concentrate on 8 = oo, following [DE2, AKM, EPS, GM, VW]. The point of view
of [DE2, EPS] is that many characteristics of the distribution (1.1) (such as mean and variance
of individual eigenvalues x; for finite N and as N — oo) are well-approximated by Taylor
expansions near 8 = oo. In particular, their numeric simulations show a good match between
the first two non-trivial asymptotic terms and exact expressions even at § = 1, which seems
very far from § = oco. Our own simulations for the Gaussian ensembles of 3 x 3 matrices are
shown in Figure 1. We see an astonishing match between exact probability densities and their
approximations from 5 = oco.

The 8 = oo ensembles or, equivalently, the behavior of f—ensembles at large values of § is
the central theme of this article. As we explain in Section 2, a § = oo ensemble consists of
two pieces of data: The first one is a deterministic particle configuration, which is a 8 —
limit of S-ensembles, such as (1.1); the second piece is a Gaussian vector describing asymptotic
fluctuations around this limit. We would like to combine large 8 with large N. In other words, we
deal with asymptotic questions about large-dimensional ensembles of 8 = oo random matrices.

We discover that the 8 = oo point possesses a lot of integrability and the asymptotic questions
can be understood in precise details, going far beyond what is known for general values of g > 0.

1See, e.g., textbooks [AGZ, Me, Ox, Fo2] for general reviews.
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FIGURE 1. The figures show arithmetic mean of the probability densities (MAT-
LAB simulation using 5 x 10% samples) of 3 eigenvalues of 3 x 3 matrices. Light
green solid lines correspond to eigenvalues sampled from GSE ensembles (1.1)
at § = 1/2/4, N = 3. Black dash-dotted lines correspond to the result of the
3—term approximation of eigenvalues of the form y; = h; + ffl n, i=1,2,3,

where (hy, ha, h3) = (—/3,0,v/3) are roots of the degree 3 Herrrute polynomial,
(&1,&2,&3) is a Gaussian vector, whose study is one of our topics, and (71,72, 73)
is a deterministic vector not discussed in this text.

This is our main message: 8 = oo is accessible to the same extent as the most well-studied point

B =2

1.2. Second dimension and asymptotics. For our asymptotic results an important role is
played by an extension of f—ensembles to two-dimensional systems. In fact, there are two
distinct extensions, which are both very natural. The first one originates in [Dys], where Dyson
suggested in 1960s to identify (1.1) with a fixed time distribution of the Dyson Brownian Motion.
The latter is an N-dimensional stochastic evolution (X;(¢) <--- < Xy(t)), solving the SDE:

(1.2) X (1) :ZM+\/gdWi(t), i=1,2,... N,

JF#i
where Wj(t) are independent standard Brownian motions. One shows that at ¢t = 1 the law of
the solution of (1.2) with zero initial condition X;(0) = --- = Xx(0) = 0 is given by (1.1). [Dys]

constructed the evolution (1.2) at 5 =1,2,4 as a projection onto the eigenvalues of a dynamics
on Hermitian matrices in which each matrix element evolves as a Brownian motion. Yet, (1.2)
makes sense for any? 3 > 0. The Dyson Brownian Motion is a key ingredient in proofs of many
recent limit theorems for random matrices and S-ensembles, see, e.g., [AGZ], [EY].

Another 2d extension is constructed by considering the joint distribution of eigenvalues of
all principal top-left N x N corners of the infinite Hermitian matrix % simultaneously for

N =1,2,3,.... In this way one arrives at an array of numbers {x*}1<;<x, where x¥ < yJ <
- < X; are the eigenvalues of k x k corner. The eigenvalues satisfy deterministic inequalities

X?H < Xf < ijfll and the law of the subarray {XiC h<i<k<n has density proportional to
N—1 k k+1
k k\2— k k+1)8/2—1 Ny
(1.3) 111 IT oG —xd*2 - \TT T 1k — x5 HeXp (=506
k=1 | 1<i<j<k a=1b=1

2For B < 1 additional care is required, since the particles start to collide with each other, see [CL].
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We call this distribution the Gaussian B corners process. Modern computations leading to (1.3)
for 8 = 1,2,4 can be found in [Bar| and [Ner]|, while the underlying ideas arose in representation
theory back in 1950s, see [GN, Section 9.3]. The consistency between (1.3) and (1.1) is automatic
from the construction at 5 = 1, 2,4, but needs an additional argument at general 5 > 0, which
can be obtained either using a 100-year old integration identity from [Dix] (see also [An]) or as
a limiting case of the branching rules for Jack and Macdonald symmetric polynomials, see [BG,
Appendix]|, [GS1].

Beyond intrinsic interest, the multilevel distributions (1.3) were used recently to prove as-
ymptotic theorems leading to the one-level distribution (1.1). The central idea here is that the
multilevel distribution can be uniquely identified by some of its simple features, which (1.1) is
lacking, such as conditional uniformity at 5 = 2 (notice that most of the factors in (1.3) disap-
pear at 3 = 2), see |G, Dim]. In wider contexts, the usefulness of similar multilevel distributions
and their characteristic Gibbs properties was demonstrated, e.g., in [CH, CD, CGH].

In this text we focus our attention on the largest eigenvalues in S—ensembles and their 2d
extensions. Let us state two of our main results. We use the notation Ai(x) for the Airy function
and we let a; > a5 > ag > ... to be its zeros.

Theorem 1.1. Suppose that an infinite random array {Xf}lgigk is distributed so that for each N
its projection onto indices 1 <i <k <N has the law (1.3). In addition, for each k =1,2,..., let
ab < ok < ... < aF be the roots of the degree k Hermite polynomial® and set k(t) = N+ |2tN?/3].
Then we have the following limit in the sense of convergence of finite-dimensional distributions
of the two-dimensional stochastic process:

lim  lim Nl/G[( :8 o ngg#‘l—i) = 3(% t)7 i € Lso,t €R,

N—o00 f—00
where 3(i,t) is a mean—zero Gaussian process with covariance

2 & dy
14 E3(¢,t)3(4,8) = ———7— Ai(a; + y)Ai(a; + y) exp (—|t — s|y) —.
(L) E3G.030.9) = ooy b A+ 0)AiG + v exp (It —sly)

Notably, for the Dyson Brownian Motion the limit turns out to be the same. More specifically,
while the ¢ parameter in Theorem 1.1 refers to the difference in the size of a submatrix, in
Theorem 1.2 below the size of the matrix is fixed and ¢ is time in the stochastic evolution. And
still we are getting the same limit behavior.*

Theorem 1.2. Suppose that the N —dimensional dynamics (Xi(t))ﬁil solves (1.2) with X1(0) =

- = Xn(0) = 0. In addition, for each k = 1,2,..., let 2% < 2k < ... < xﬁ be the roots of
the degree k Hermite polynomial and set 7(t) = 1+ 2AN—1/3. Then we have the following limit
in the sense of convergence of finite-dimensional distributions of the two-dimensional stochastic
Process:

1/2
1 N . .
lim lim N /6f<XN+1 i(t) — (T(t)g) $N+1—i> =3(i,t), i€ Zso,t €R,
N—o00 f—00
Remark 1.3. In both Theorems 1.1 and 1.2 we deal with an iterative limit, i.e. we first send
B — oo and then N — oco. One could expect that the joint limit N, 3 — oo is the same, yet we
do not prove such results in this text.
3Here and below we use the monic “probabilists” Hermite polynomials with weight function e~ /2,

dwe conjecture that the same is true for each g > 0: if we remove limg_, o, from Theorems 1.1 and 1.2, then

the N — oo limits should still coincide. Heuristically, one reason is that transition probabilities for the dynamics
in both theorems can be obtained by specializations and limits from (skew) Jack polynomials, see [GS1].
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FIGURE 2. Left panel: Bullets show random sample of the three largest eigen-
values in the Gaussian -corners process for corners of size k = 80,...,119 and
with 8 = 50. Thin lines are corresponding roots of the Hermite polynomials.
Right panel: A random sample of the limiting process 3(i,t) for —1 < ¢ < 1;
black think line for ¢ = 1, blue solid line for ¢ = 2, cyan dotted line for i = 3.

The limiting process 3(i,t) can be defined in such a way that for each fixed i = 1,2,...,
it becomes an almost surely continuous function of ¢, see Section 6.4 for a proof and Figure 2
for a simulation. While we are not going to provide details in this direction, we expect that
convergence in Theorems 1.1 and 1.2 can be upgraded to convergence in law in an appropriate
space of continuous functions.

In addition to the explicit formula for the covariances (1.4) we develop an equivalent stochastic
point of view on the limiting process 3(i,t), i € Zsgo, t € R, appearing in Theorems 1.1 and
1.2. For that we consider a continuous time homogeneous Markov chain X(,(t), t > 0, taking
values in state space Z~g. The initial value is xg € Z~g, i.e. X(IO)(O) = xg. For 4,5 € Z~g we
define the intensity of the jump from ¢ to j to be:

Qi j)=—2

(a; —a;)*
The transitional probabilities P;(i — j) for this Markov chain can be expressed through integrals
of the Airy function, as we explain in Section 6.3.

Next, we take a countable collection of Brownian motions W (t), i € Zy. For each i =
1,2,... and t € R we can identify 3(i,¢) with the following random variable:

(15) 30,0 = 2B im0 [ AW (e,
- Jr=0

In words, we start the Markov chain X’ from ¢ at time ¢, follow its trajectory, and collect the
white noises W) along it. 3(i,t) is the expectation over the randomness coming from X’; it is
still a random variable with randomness coming from the Brownian motions. Alternatively, we
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can view 3(i,t) as the partition function of a directed polymer in additive Gaussian noise. The
form of the expression (1.5) is a bit vague, since it is unclear how to compute the r-integral,
as it seems to be infinite. A more mathematically precise (but, perhaps, less elegant) form is
obtained by swapping the integration and expectation signs, resulting in the following expression
(see Theorem 6.5):

(1.6) 3(i,t) = 22/00 P,_(i — §)dw ) (r).
j=1 r=t

The decay of P._(i — j) as either r — oo or j — oo implies that (1.6) is well-defined.

Note that the representation (1.6) implies that the correlations between 3(i,t) and 3(j, s) are
always positive. This agrees with our simulation in the right panel of Figure 2, which gives a
feeling of attraction between the trajectories of the particles. In contrast, for finite 8 the drift
of the Dyson Brownian Motion (1.2) is leading to a repulsion rather than an attraction.

We call the process 3(i,t), i = 1,2,..., t € R, the Airys line ensemble and we treat its
definition and appearance in Theorems 1.1, 1.2 as the central results of our text.

1.3. Comparison to previous results. Most results about the asymptotic behavior of §—
ensembles are available for single level ensembles as in (1.1). At 8 = 1,2,4 the detailed under-
standing can be achieved through the theory of determinantal/Pfaffian point processes, which
encode the probabilistic information in a function of two variables called a correlation ker-
nel. This kernel is expressed through orthogonal polynomials, which makes its asymptotics
accessible. In particular, the scaling limit for the largest eigenvalues of the Gaussian Orthogo-
nal/Unitary /Symplectic ensembles, their connections to the Airy functions and Painleve equa-
tions were developed in [TW1, TW2, Fol].

At general values of 8 > 0 the available approach is very different. It starts from the real-
ization of the ensemble as an eigenvalue distribution of certain tridiagonal matrices, analyzes
asymptotics of these matrices, and in this way identifies the scaling limits of the largest eigen-
values with (highly non-linear) functionals of Brownian motion, see [DE1, ES, RRV, GS2] for
different faces of this approach. We refer to 8 = 1, 2,4 approach as integrable and general g > 0
one as probabilistic. To a large extent they are disjoint and many results are hard to translate
from one language into another: for instance, the match between expected Laplace transform
of largest eigenvalues computed in two ways in [GS2] gave rise to a brand new distributional
identity for integrated local times of the Brownian excursion. From this perspective, our 5 = oo
results are an exception, since we are able to match explicit covariance (1.4) of 3(i,t) with its
stochastic representation (1.5), (1.6).

In principle, tridiagonal matrices can be used to study certain marginals of 3(,¢). In partic-
ular, by using this approach [DE2, EPS] produced a formula for the variance of the individual
components of 3(i,t). In other words, they present® a one-point version of Theorems 1.1, 1.2.
Interestingly, while their formula also involves an integral of Airy function, but it is of different
form than i = j, t = s specialization of (1.4) — yet, numerically both formulas output the same
numbers.

When it comes to the 2d extensions of S-ensembles, many results are again available at § = 2.
The N — oo limiting object for the largest eigenvalues is called the Airy Line Ensemble — it
is a determinantal point process with correlation kernel expressed through the Airy functions,
and it also enjoys a Brownian Gibbs resampling property, see [FoN, Mac, FoNH, CH], and [Fe,
Section 4.4] for the analogues of our Theorems 1.1, 1.2 at § = 2. For § = 1 the N — oo limit

SWhile the article formulates the statement for all i > 0, the supporting argument is given only for ¢ = 1,2.
On the other hand, they also analyze the limit in different order limg_, oo imy 0.
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of the largest eigenvalues for a common 3d extension of the corners process (1.3) and the Dyson
Brownian Motion (1.2) was computed in [So].

Outside 8 = 1,2, the available information about joint distributions of the N — oo limit
of either corners process or the Dyson Brownian Motion is very limited. Developing proper
understanding of these objects remains a major open problem® One possible approach is to
give a proper mathematical meaning to N — oo limit of the Dyson Brownian Motion SDE
(1.2) and to the notion of its solution, see [OT] and references therein. There are still technical
difficulties when analyzing largest eigenvalues through this approach outside 5 = 1,2, 4. For the
bulk limits (i.e. for the eigenvalues in the middle of the spectrum) such an SDE point of view
was put on rigorous grounds in [Ts]”. Yet, even after we manage to convince ourselves that
SDE (1.2) has a proper large N limit, it would still remain unclear how to solve the limiting
equations. From this point of view, Theorems 1.1, 1.2 are the first results computing the precise
probabilistic characteristics of N — oo limit of joint distributions of largest eigenvalues at several
times or levels outside 8 =1, 2, 4.

One conceptual feature which unites our 8 = oo study with classical § = 1, 2,4 cases is that
the infinitely-dimensional limiting process gets identified through a function of finitely many
variables (two variables if we speak about one-level distributions as in (1.1) or four variables if
we deal with 2d extensions as in (1.3)). However, the role of this function becomes different:
at § = 1,2,4 the description proceeds in terms of the correlation kernels of determinantal or
Pfaffian point processes, while at 8 = oo we deal with Gaussian processes uniquely fixed by their
covariances. Still, in all the situations the limiting behavior of largest eigenvalues gets expressed
through the Airy functions. A vague theoretical physics analogy suggests to call 8 = 1,2,4
results fermionic, while our § = oo theorems being a bosonic counterpart.

1.4. Universality. We expect that the Airy,, line ensemble appears in §, N — oo regime in
many other problems going well beyond Theorems 1.1, 1.2. We are not going to pursue this
universality direction here, let us only mention possible setups, where the appearance of the
Airy, line ensemble seems plausible:

(1) The corners process (1.3) and the Dyson Brownian Motion (1.2) have a common 3d
extension, which is a stochastic evolution on arrays of interlacing eigenvalues constructed
in [GS1]. We expect that the scaling limit of the largest eigenvalues in a 2d section of
such evolution along a space-like path (i.e. along a sequence of times and corner sizes
(i, k;), satisfying ¢1 <ty <t3 < ..., k1 > ko > ks > ...) should converge to 3(i,t) as
B, N — oco. Results of this type for 8 = 1,2 were proven in [Fe, So|.

(2) One can replace exp(—g(xi)z) in (1.1) by a more general potential V' (;) and the result-
ing formula would give the stationary distribution for a version of the Dyson Brownian
Motion with an additional drift term (see, e.g., [LLX, AH] and references therein for
more details on the Dyson Brownian Motion with a potential). In a slightly different
direction, one can also start the Dyson Brownian Motion from more complicated initial
conditions than X;(0) = --- = Xx(0) = 0 which we consider. One could hope that an
analogue of Theorem 1.2 holds in such settings under mild restrictions on V(x) and on
initial conditions.

(3) One can modify the definition of the corners process (1.3) by replacing exp(—%(xiv )?).
The most extreme case is obtained if we remove this factor altogether and instead impose
deterministic equalities XZN =y, 1 =1,2,...,N. At 8 = 1,2,4 this corresponds to

60n the technical side the problem stems from the fact that tridiagonal matrices (which were instrumental in
understanding limits of S-ensembles) are not compatible with 2d extensions.

"One can similarly restate the corners process (1.3) as a Markov chain with time coordinate given by k. For
this process the bulk limit is also available, see [NV] and [H].
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taking an N x N Hermitian matrix with deterministic eigenvalues and uniformly random
orthonormal eigenvectors and considering the law of eigenvalues of its principal corners.
In contrast to (1.3) the definition is not going to be consistent over varying N (if we
replace N by N + 1, then va become random and can no longer be deterministic),
yet we can assume that (yi,...,yn) changes with N in a regular way as N — oo and
then analyze the behavior of the largest eigenvalues of corners of size ~ Na for some
0 < a < 1. We expect an analogue of Theorem 1.1 to hold in such setting and present
a partial result in this direction in Theorem 2.17.

There is also a universality of a different kind, namely, the Gaussian  corners process (1.3)
and its 8 = oo counterpart appear as scaling limits in various setups. Let us explain this by
starting from the real § = 1 example. Consider a uniformly random point (vy,...,vy) on the
unit sphere S¥~1 in RY. A direct computation shows that each individual squared coordinate
v? is distributed as Beta random variable B (%, %), which can be then used to show that
E(v;)? = %, E(v;)* = m, E(v;)?(v;)? = m Now take an N x N Hermitian matrix
A with deterministic eigenvalues A1, ..., Ay and uniformly random eigenvectors. The top-left
matrix element Aj; can be written as

A (v1)2 + Xo(w2)? + -+ An(vn)?, (v1,...,v5) — uniformly random vector on SV 7!,

Computing the mean and variance of Aj; using the above moments of (v;)? and using additional
arguments to show the asymptotic Gaussianity, one proves the distributional convergence

2
N
ALt F AN L[ S (Zi:l /\i)

Ay — ~
1 N N +2 N N2

-N(0,2), N — oo.

This result should be treated as convergence of recentered and rescaled 1 x 1 corner of the matrix
to the 1 x 1 Gaussian Orthogonal Ensemble, whose eigenvalues are given by (1.3) with g = 1.
The procedure can be generalized in two directions: instead of 1 X 1 we can consider arbitrary
n X n corners and instead of § = 1 we can consider arbitrary 8 > 0. The result remains the
same: the scaling limit is always given by the Gaussian 8 corners process (1.3), see [Cu| and

Section 2.4 contains a 3 = oo version of such results. It starts from the observation of [GM]
that the process formed by eigenvalues of corners of a N x N Hermitian matrix with fixed
spectrum and uniformly random eigenvectors admits a non-degenerate 8 — oo scaling limit.
This limit is an interesting N(N — 1)/2-dimensional Gaussian process, whose components are
attached to the lattice of all zeros of all derivatives of a degree N real-valued polynomial. The
next step is to send N — oo and Theorem 2.12 shows that under very mild restrictions the limit
(which is a counterpart of the eigenvalue process for fixed size corners of a large matrix from the
previous paragraph) is universally given by the 5 = oo version of Gaussian [ corners process
(1.3).

1.5. Our methods. For the proofs we start from the computation of 8 — oo fixed N limit in
(1.3), following [GM]. In the first order, individual eigenvalues at level k converge to the roots
of the degree k Hermite polynomial, limg_,, X? = Jrf , and we are led to study the fluctuations
around these roots:

¢ = lim \/B(x; - ).

B—00

While the N (N —1)/2 dimensional process {(¥}1<;<x<n is Gaussian and has an explicit density

(see Section 2.2), computing its N — oo limit is very far from being obvious: each coordinate
of this process interacts with many others in a non-trivial way.
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An important ingredient underlying all our results is identification of Cf with a partition
function of a directed additive polymer obtained by running a random walk on roots of the
Hermite polynomials and collecting white noises along the trajectories. This is a discrete version
of the representation (1.5) for 3(i,t). Thus, our asymptotic problems are now reduced to the
study of this random walk. In one time step the walker jumps from a root of the degree k
Hermite polynomial to a root of the degree k+ 1 Hermite polynomial with probability of a jump
from x to y being equal to m

Our next step is to diagonalize the transition semigroup of the random walk. It turns out that
for each j < k the transition probabilities preserve the space of polynomials of degree < j and,

moreover, are explicitly diagonalized in the basis of certain polynomials Qgi)(z), 0<m<k.

We further give two descriptions of polynomials ng)(z). On one hand, for fixed k, these are
the k first monic orthogonal polynomial with respect to the discrete uniform weight on the
roots of the degree k Hermite polynomial Hy(z). On the other hand, these are the associated
Hermite polynomials first studied in [AW]. The three-term recurrence (in m) satisfied by these
polynomials is the same as the recurrence of the Hermite polynomials, but read in the opposite
order.®

The formula (1.4) eventually arises as a limit of the expression for the covariance of (¥ through

polynomials ng)(z) In order to compute this limit, we need to compute the asymptotic of

polynomials Qﬁ,’f) (z) at the locations of the largest roots of the Hermite polynomials Hy(z). We
remark that while the asymptotic behavior of orthogonal polynomials supported on discrete sets
has been studied in great detail, one typically assumes that the support of the weight function
locally looks like a lattice, see, e.g., [BKMM] for such results. However, in our case the largest
roots of the Hermite polynomials approximate zeros of the Airy function, which are very far

from forming a lattice. Hence, the type of the asymptotic of ng)(z) that we develop seems to
be new, see Theorem 6.1 for the exact statement and proof.

For the Dyson Brownian Motion of Theorem 1.2 the story is similar: again the polynomials
anf) (z) and their asymptotic behavior play a crucial role.

Let us outline the directions in which our approach might generalize. The representation
of the f — oo limit of the corners process through a random walk collecting noises exists not
only for the Gaussian ensemble (1.3), but also for the process formed by the /5 version of the
operation of cutting corners from a Hermitian matrix with fixed spectrum and uniformly random
eigenvectors discussed in the previous section. However, the general situation is complicated
by two features. First, the variance of the noise becomes inhomogeneous. Second, we do not
know any reasonable identification for the polynomials diagonalizing the random walk transition
matrix, in particular, it is unclear, whether they are orthogonal with respect to some natural
weight. On the other hand, since we already know the answers from Theorems 1.1, 1.2, it
might be possible to show that they remain valid in the such a more general setting by arguing
directly and probabilistically in terms of the random walk — this would be a step toward the
universality of the previous section. Simultaneously, we also expect that our representation
through the random walk should be helpful in studying other joint limits as 5, N — oo, such
bulk local limits or global fluctuations of the spectra.

Finally, let us mention two other texts which appeared almost simultaneously with our paper?.
Both texts deal with the Dyson Brownian Motion (1.2). [Lan] proves an existence theorem for
the edge limit at finite values of § > 1 (as in Theorem 1.2, but with g staying finite) and shows

8In terminology of [BS] and [VZ] Q' (z) are dual polynomials to H(z).
9The three groups of authors were working independently and without knowing about each other’s projects.
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that the limit can be thought of as a solution to an N = oo version of (1.2). The approach of
[Lan] does not give explicit formulas for the edge limit and it is unclear whether our 3(i,¢) can
be identified directly by sending 5 — oo in the results of [Lan] — this is an interesting open
question. [AHV] computes the fized time edge limit of the 8 = oo Dyson Brownian Motion
providing a different approach to the asymptotic results of [DE2, EPS]; in other words, [AHV]
covers the intersection of Theorems 1.1 and 1.2 corresponding to the ¢ = 0 marginal. The
associated Hermite polynomials also appear in [AHV], but in a different way: in our work they
diagonalize transition matrices, while in [AHV] they are eigenfunctions of fixed time covariance
matrices. We also remark that [AHV, Section 6] makes a step in the universality direction of
Section 1.4 by analyzing the N, 5 — oo limits of the Laguerre ensemble which can be obtained

from (1.1) by replacing exp(—g()@-)g) with another weight function.

Acknowledgements. We are grateful to Alan Edelman for fruitful discussions about [—
ensembles and to Alexei Zhedanov for bringing [VZ] to our attention. We thank two anonymous
referees for helpful comments. The work of V.G. was partially supported by NSF Grants DMS-
1664619, DMS-1949820, by BSF grant 2018248, and by the Office of the Vice Chancellor for
Research and Graduate Education at the University of Wisconsin—-Madison with funding from
the Wisconsin Alumni Research Foundation.

The work of V.K. was partially supported by ANR Gromeov (ANR-19-CE40-0007), by Centre
Henri Lebesgue (ANR-11-LABX-0020-01), as well as by the Laboratory of Dynamical Systems
and Applications NRU HSE, of the Ministry of science and higher education of the RF grant
ag. No. 075-15-2019-1931.

2. 3 = 0o MULTILEVEL ENSEMBLES

The goal of this section is to define the § — oo fixed N limits of the multidimensional objects
of general § random matrix theory: S—corners processes and the Dyson Brownian Motion.

2.1. co-corners process. Take an N x N random Hermitian matrix with fixed spectrum
w{v, . ,x% and uniformly random eigenvectors'®. Let xf, 1 < k < N —1, be the ith eigen-
value of the k x k top—left corner of this matrix. This procedure can be done for real, complex,
or quaternion matrix elements (corresponding to 5 = 1, 2,4, respectively, see [Ner] for the mod-
ern proof), resulting in the joint laws for the array {x*}1<;<k<n_1 given by the density with
respect to the Lebesgue measure

L N kokt1
k_ ky2— k_ k+1)8/2—

(2.1) 7 T of =2 - I TLTI It = x5 P!
NB 21 | 1<i<ji<k a=1b=1

where Z g is the normalizing constant, and the eigenvalues X? satisfy the deterministic inequal-
ities Xf“ < Xf < X?Ll forall 1 <i<Ek<N-—1.

While our ultimate interest is in N — oo asymptotics of (2.1), it was noticed in [GM] that a
simpler object can be obtained if we first send 8 — oo while keeping NV fixed. Namely, as 8 — oo,

the values {x¥} become deterministic (“crystallize”), tending to an array {z¥}. The latter can

be computed recursively using the relation Py_;(x) = 1P} (), where Py(z) = H;?:l(x - :cé“) is
11

the characteristic polynomial for the limiting level k eigenvalues™ . Recentering around these

10Equivalently, we deal with the uniform measure on all Hermitian matrices with fixed spectrum z, ..., z¥.

11Thus, the polynomials Pj(z) form an Appell sequence.
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limiting values and renormalizing by 1/ we arrive at the co—corners process. This is a Gaussian
process

k o vk
{&G h<i<k<n = Bl;ngo{\/ﬁ(xj —

where & = &V = ... = &8 = 0, and the other coordinates (see [GM, Eq. (11)]) have the
common density proportional to

)}1gi§k§N’

N-1 (5 k k+1 §k+1)
I S o e Do
k=1 [1<i<j<k a=1 b= l

2.2. Gaussian oco—corners process. A special role in our exposition is played by the Gaussian
oo—corners process'?, in which the polynomials Py(x) = Hy(z) are the Hermite polynomials and
the top row 5{\[ , fév yees ,511\\,7 is also random rather than deterministically vanishing. This object
can be obtained as § — oo limit of the corners process constructed from the Gaussian (5—
ensemble, which is a distribution on arrays {x¥};<;<r<n, obtained from (2.1) by making the
top row random and distributed according to the Gaussian S-ensemble (1.1). The distribution
of the full array {Xf}lgigkg ~ was given in (1.3). Recentering Xf around the zeros of the Hermite
polynomials, multiplying by /8 and sending 8 — oo we get the Gaussian oco—corners process.
For one level the link to the zeros of the Hermite polynomials is classical, see [Sz, Section 6.7],
[Ker], while the second order Gaussianity was investigated in [DE2]. The multilevel result is
obtained through a straightforward Taylor expansion of (1.3) near its maximum given by the
roots of the Hermite polynomials, cf. [GM, Theorem 1.6].

Recasting the result of 8 — oo limit transition, we deal with an infinite-dimensional centered
Gaussian vector ¢/, 1 < i < j, such that for each fixed N =1,2,..., the N(N + 1)-dimensional

marginal {({ H<i<j<n has density proportional to:

=2

(2.3) exp

2 N-1 (Ck 2 kE k+1 Ckﬂ)
| 2 spE a2 Z Ak | |

i=1 k=1 |1<i<j<k a=1 b= 1

where z¥ is the i—th root (i = 1 means the smallest) of the degree k Hermite polynomial Hy.

Proposition 2.1. The definition (2.3) is consistent: restricting {¢ }1<z<g<N to k(k +1)/2
coordinates {¢] }1<l<j<k gives the object of the same type. Further, restriction of {¢] h<i<j<n

onto N particles {1 ,CQ ,...,CN has the density proportional to
N N N2
(¢V)? (G =¢Y)
(2:4) CXp | — Z . Z N _ N2
= 4 1<i<j<N 2(z; — ')

Proof. Following [GM], the formula (2.3) is obtained as  — oo limit of the density of the
Gaussian ( corners process of [GS1, Definition 1.1] at ¢t = % and the consistency becomes the
corollary of the consistency of the latter Definition 1.1. Similarly, (2.4) is § — oo limit of the
density of the Gaussian § ensemble; it is a projection of (2.3) as § — oo limit of the fact that

the Gaussian 8 corners process projects to the Gaussian g ensemble, which can be found in
[GS1, Corollary 5.4]. O

12Note the double meaning of the word Gaussian here. The process is a Gaussian vector and it also arises as
a limit of eigenvalues of Gaussian matrices.
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2.3. Dyson Brownian Motion at = co. Recall that the Dyson Brownian Motion (see, e.g.,
[Me, Chapter 9], [AGZ, Section 4.3]) is an N—dimensional stochastic process with coordinates
X1(t) < Xo(t) <--- < Xn(t), t >0, defined as a solution to the system of SDEs

d 2
JF

where Wi(t),...,Wn(t) is a collection of independent standard Brownian motions. The evolu-
tion (2.5) should be supplied with initial conditions and in this text we are going to only consider
the case X1(0) = X2(0) =--- = Xn(0) = 0. In this situation the distribution of the solution to
(1.2) at a fixed time ¢ is (a rescaled version of) the Gaussian § ensemble of density

N

(2.6) H (X _Xi)BHeXP(_%(Xi)Q)'

1<i<j<N i=1
Since we are ultimately interested in 8 — oo limit, we can assume [ > 1; in this situation
(2.5) has a unique strong solution, see [AGZ, Section 4.3]. Hence, we deal with a pair of N—
dimensional stochastic processes (X;(t); W;(t))X,, t > 0, such that (W;(¢))}Y, is the standard
Brownian motion, for each t > 0 the law of (X;(¢))X, is given by (2.6) (in particular X;(0) = 0),
and (X;(t))X, is the unique strong solution to (1.2) on ¢ € [0, 4+00) time interval.

Theorem 2.2. Fiz N and let X1(t) < Xa(t) < --- < Xpn(t) be the solution to (2.5) with
X1(0) = X5(0) = -+ = Xn(0) = 0 and let 2 < 28 < --- < 2 be the roots of the degree N
Hermite polynomial. Define

(2.7) GV (1) = Jim /B (Xi(0) - VEal).

Then the N -dimensional (Gaussian) vector (N (t),..., (N (t)) solves a linear SDE

¢ (t) — ¢V (t)
Ny i J :
(2.8) deN(t) = — Z Wdt +V2dWy(t), t>0,
A T T
with initial condition (N (0) = --- = (¥ (0) = 0. The convergence in (2.7) is in law in the space

of N—dimensional continuous functions on each interval t € [t1,to] with 0 < t; < to, and joint
with the law of Wi(t), t >0, 1 <i < N (the latter does not depend on 3).

Before coming to the proof of Theorem 2.2 let us look at the limiting SDE (2.8).

Lemma 2.3. Let (Wi(t))ijip t > 0 be a standard Brownian motion. There exists a unique

stochastic process (CZN(t))N t > 0, such that for each € > 0, (CZN(t))Z]il is a strong solution to

i=1’

(2.8) on the interval t € [e,4+00) and
%in(l) CZ-N(t) =0, in probability for each i =1,2,..., N.
_>

We prove Lemma 2.3 in Section 7.1; the solution is expressed there as a sum involving Ito
integrals and orthogonal polynomials. This solution is the limiting process in Theorem 2.2.

We expect that convergence in Theorem 2.2 can be upgraded to almost sure uniform con-
vergence on each interval t € [0,7], T > 0. Such an upgrade would need careful analysis at
t = 0, where both (2.5) and (2.8) are singular. Because eventually our interest is in large t (as
in Theorem 1.2), we decided not to pursue this analysis here and to phrase Theorem 2.2 in the
way avoiding t = 0. A variant of Theorem 2.2 for a different initial condition can be found in
[VW]. We also give a proof here in order to be self-contained.
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Proof of Theorem 2.2. We start by computing the first order limit y;(t) := limg_,o X;(t). There
are several ways to do it. First, looking at (2.6) we conclude that y;(t) < --- < yn(t) should
solve the variational problem

(2.9) IT ¢ Hexp <— (y:) ) — max.

1§i<j<N

The latter is known to be solved by rescaled zeros of the Hermite polynomials: y;(t) = v/txl.
Such a variational characterization of roots dates back to the work of T. Stieltjes, cf. [Sz, Section
6.7], [Ker]. We can also send 8 — oo directly in (2.5) concluding that y;(¢) should solve

dt
(210)  dyi(t) =) —~——~, i=12,...,N, t>0;  3(0)=---=yn(0) =0.
— yi(t) — y;(t)
JFi
The fact that y;(t) = \/fva solve (2.10) would follow once we show that
(2.11) => g g i=1,2,...,N.
]751 mj

The latter identity is equivalent to the vanishing of the logarithmic derivatives in each y; of (2.9)
at t = 1 for the maximizing configuration y; = :z:fv
Next, let us compute the centered fixed ¢ limit of X;(t) as 8 — oo. For that we Taylor expand

the (logarlthm of the) density (2.6) around the N—tuple (vZz)¥,. In the same way as in
Proposition 2.1, this results in a limiting relation involving a rescaled version of (2.4):

N
(2.12) lim \/B<Xi(t) - \/%va) L (Vi)Y |,
Ao i=1 =
where (ug,...,uy) is a Gaussian vector with density proportional to
1 L(
exp | = Z 2(:ch\rf:r§\’) Z g\
1<i<j<N i=1

Let us emphasize that (2.12) is a distributional limit at a fixed time ¢. In order to deduce the
multi-time limit, we further write

Xi(t) = VizN + ;Bw)

and plug this into (2.5) getting

X dt 2
213)  —ad it \[dWi |
b e =S et B

Further, Taylor expanding the dt term in the right-hand side in small parameter ﬁ we get

1 1
N dt 4+ —=dn;(t)

2Vt VB
1o~ dt((t) —m@®) | [2 1
; Vi \f:c "B L t(a) — a2 i \/;dWZ(t)JrO <5)

Using (2.11) to cancel the first terms in the right-hand and left-hand sides, multiplying by /33,
and sending 8 — oo we get (2.8).
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constant size
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FiGURE 3. Three scaling regimes and limiting objects for the grid formed by
zeros of derivatives of Py (z).

Now choose ¢ > 0. For t > ¢, the 8 — oo convergence of the SDE that n;(t) satisfies
towards (2.8), together with (2.12), implies that (ClN(t))fil = limg_, (m(t))i]il, is the solution
of (2.8) on time interval ¢ € [g, +00) with initial condition given by (v/zu;)Y,, cf. [VW, Proof of
Theorem 2.2] for some details. Note that such solution is unique by general theorems on SDEs
with Lipshitz coefficients (see, e.g., [Ka, Theorem 21.3]).

Clearly, the initial condition ¢V (¢) 4 Veu; for each i converges to 0 as ¢ — 0 in distribution
and, hence, also in probability. We conclude that the limiting process (¢ (¢))X,, t > 0, is the
object of Lemma 2.3. O

2.4. Asymptotic results for the corners processes. We presented the N — oo asymptotic
results about the Gaussian co—corners process of Section 2.2 and the S = oo Dyson Brownian
Motion of Section 2.3 in Theorems 1.1 and 1.2, respectively. In this section we present several
N — oo asymptotic results dealing with the 3 = co—corners process {¢¥} of Section 2.1.

The definition of the process £F relies on the (deterministic) configuration of points z¥. Recall
that we start from an N—tuple y; < yo < --- <y, and define the monic polynomials:

N 1 o\
@1 A =Ilew. RO = ey ((%> Py(a)

The points 2} < 2% < a:i are defined as k (real) roots of Py(z). We study the points z¥ in
three scaling regimes, which are schematically shown in Figure 3

For N—tuples y; < yo < -+ < yn (with each y; = y;(N) depending on N, although we omit
this dependence from the notations) we introduce various quantities describing it:

e (Centered) moments:

N

N N

1 1

AN = 5 > v (on)’ = N > wi—pn)? (kn)* = N > lyi — uwl®.
=1 =1 =1
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e Empirical measures:

1 N
PN = N;éyi‘
P

We would like to have asymptotic control on y; and for different applications we use different
topologies summarized in the following three assumptions:

Assumption 2.4. We have

(2.15) lim "N N-1/6 = .

N—oo ON
Remark 2.5. A typical situation is that both on and ky stay bounded away from 0 and oo, in
which case the assumption holds automatically.

Assumption 2.6. As N — oo the measures py weakly converge to a compactly supported
probability measure p.

Assumption 2.7. As N — oo:

(1) The measures py weakly converge to a compactly supported probability measure p;

(2) The supremum of the support of p is B and limy_,oc yny = B;

(3) For a constant ¥ > 0, which does not depend on N, we have yni1—i — yn—i > 9/N for
all1<i<dN;

(4) p has a density p(x) on [B — 9, B], which satisfies p(x) > 9(B — ) on this segment.

Remark 2.8. The conditions in Assumption 2.7 are tuned so that to guarantee the convergence
in Theorem 2.17 of the largest points x’,z 4+1_; to the roots of the Airy function for all the range
of ratios 0 < % < 1; these conditions will be used in Lemma 8.1. If we only aim at small values
of the ratio %, then the conditions can be significantly weakened: small k£ has a smoothing role,
which leads automatically to the necessary edge behavior.

If we are interested in the smallest points :Bf (rather than the largest), then we need to use
similar conditions with N + 1 — ¢ indices replaced by ¢ and with supremum of the support B
replaced by the infinum A.

The first two results of this section explain the prominent role of the Gaussian co—corners
process as a scaling limit.

Theorem 2.9. Let {2¥}1<;<) be the roots of Pi(x) as in (2.14). Under Assumption 2.4 for
each fixed 1 <i <k
VN

lim ~—— (zF — — pk

Ngnoo ON (xl HN) v’

where h’f, h’g, e hi are k roots of the degree k Hermite polynomial Hy(x).

Remark 2.10. For a particular case when mZN, i=1,2,...,N,arei.i.d. random variables, a result

similar to Theorem 2.9 can be found in [HS].

Ezample 2.11. Suppose that N is even, N = 2M, and
MM —-1) p2M—4
2

In this situation puy = 0, 012\, =1, and m?\, = 1. Hence, Theorem 2.9 applies. Let us check its
conclusion directly for £ = 3. Indeed,
1 82M73

Py(z) = Pop(z) = (x + )M (z — )M = 22M — pa?M2 4 L

6M 3
3@) = Sarea =1y daer s @) = e T =Y T a1t
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We see that as M —

2.16 2M)%/2 P, <I> — 2% — 3.

(2.16) eM2p (o

Because z3 — 3z is the degree three Hermite polynomial, (2.16) agrees with Theorem 2.9.
Theorem 2.12. For each N = 1,2,..., take N—tuple of reals y1 < yg < --- < yn and let
{€5(N)}1<ick<n be a Gaussian vector distributed as the oo—corners process (2.2) with top level
va =y;,1=1,...,N. Under Assumption 2.4 for each fired K = 1,2,..., we have convergence

in distribution

lim @{ff(

Nooo ON Mhcicrer = {6 heicher

where {CF} is the Gaussian co—corners process of Section 2.2.

For the next results, we need to introduce an equation on an unknown variable z, with
parameters 1 <k < N —1and z € R

1 Py(z+x) N-k+1 1

2.17 — = C.
(2.17) N Py(z+x) N 2’ <
In our approach this equation arises as a critical point condition G'(z) = 0 with
1 N-—-k+1
(2.18) G(z) := N In(Py(z 4+ x)) — T+ In z.

Lemma 2.13. Either all roots of (2.17) are real, or it has a unique pair of complex conjugate
T001S.

Proof. Let us first assume that all y; are distinct. After clearing the denominators, (2.17) is a
polynomial equation of degree N. Hence, it has at most N roots. On the other hand, (2.17) can
be rewritten as

N

1 1 N-kE+1 1
2.1 - - 2 =0
(2.19) N;z—(yi—x) N z 0

Let us look at N — 1 segments (y; — x,yi+1 — x), 1 < i < N — 1 on the real axis. The point 0
belongs to at most one of them. For the remaining N — 2 segments, the function in the left-hand
side of (2.19) is continuous and changes its sign from positive at z = y; — = + 0 to negative at
z = yi+1 — ¢ — 0. Therefore, each such segment has a root of (2.17) and we found N — 2 real
roots. Hence, there are at most two complex roots.

For the case when some y; are allowed to coincide, the argument remains the same with the
only difference being that the polynomial equation now has degree “number of distinct values
of y;” rather than N. O

Whenever (2.17) has two complex roots, we say that (z, %) belongs to the liquid region
(sometimes also called the band) and denote through z. the corresponding root in the upper
half-plane. Otherwise, we say that (z, %) belongs to the void region.

Theorem 2.14. Under Assumption 2.6 choose (x, %) i the liquid region in such a way that

as N — oo, % s bounded away from 0 and 1 and z. stays bounded away from the real aris and
from co. Then, zooming in near x, the point configurations

[N} — )}
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'
u/N
) e—9 | © ) ) o level k + 2
° ° ° @ ° ° ° level k + 1
° ° ° o ° ° ° level k
° o <«—0 ° I ° ° ° level k — 1

v/N

FIGURE 4. Particles near a point x in the bulk resemble a lattice with spacings
proportional to %

asymptotically form a lattice (cf. Figure 4) with fixed spacing u = limN%oo(fo — k) and fived
spacing v = limy oo (xF — 2¥*Y) (satisfying 0 < v < u), such that

i

N—k+H 1\7! 1 (=)
U=\ ——]———1m — V=U-+-—arglz.).
N =) —arg(z

Remark 2.15. Results of this type are known in the literature, see, e.g., [FaR].

Remark 2.16. When all the roots of (2.17) are real, we expect to observe no points from {z¥}
near (z, %), hence, the name “void region”. We do not prove such a statement here, but it
probably can be proven by the same methods which we use in the Appendix.

Looking carefully into the argument of Lemma 2.13, one can notice that for a very large
(positive or negative) x all roots of (2.17) are real and such z belongs to the void region. If we
start decreasing x from 400, then at some point we eventually reach the liquid region. This
transition point is the right edge of the liquid region. Note that at this point the complex
conjugate roots z. and zZ. merge together, forming a double root of (2.17).

Let a; > ag > a3z > ... be the zeros of the Airy function Ai(z).

Theorem 2.17. Under Assumption 2.7, as N — oo and with k varying in such a way that for
k/N stays bounded away from 0 and from 1, let x = x(N,k) be the largest real number, such
that (2.17) has a double root, and let z. € R denote the location of this root. Then for each
1=1,2,...,

lim N2/3 M

N—o0 o
where a; is the ith largest zero of the Airy function and, using G(z) given by (2.18), we have

2 (G’”(z»)w N

= aq,

7T N-k+1

Remark 2.18. A very similar statement holds for the smallest points 2%, i = 1,2,..., with the
difference being that x is replaced by the smallest real number for which (2.17) has a double
root. Note that G"”(z.) > 0 when we deal with the largest points 2}, _; and G"'(z.) < 0 when
we deal with the smallest points xf .

Remark 2.19. One can expect that in the setting of Theorem 2.17, the two-dimensional process
(i,t) = coN?/ 35:1211\\;5;2:% converges to 3(i,t) after proper choice of the deterministic constants
c1,¢2 > 0. This should be viewed as a (conjectural) extension of Theorem 1.1.

Proofs of Theorems 2.9, 2.14, 2.17 are based on the steepest descent analysis of the contour
integrals, they are given in Appendix (Section 8). Proof of Theorem 2.12 is in Section 5.
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3. INNOVATIONS AND THE JUMPING PROCESS

Our approach to the asymptotic theorems for {¢¥} and {¢¥} is based on their representa-
tions as partition functions of directed polymers (with heavy-tailed jumps) collecting additive
independent Gaussian noises. In this section we introduce such representations.

As before, we start from a collection {2} of roots of an Appell sequence of polynomials (2.14).
We define a collection of numbers o/g p» through

k k+1y—2
(3.1) o/;vb:]ﬁ(fa )T i ca<k 1<b<hktl
(ak —ayt) =2
b'=1

The definition readily implies that a’; , form a stochastic matrix:

k+1
(3.2) Va,b a§,b>0, and Va Zaib:l.
b=1
We also define a linear operator A; with matrix (a b) 1o b=1,..k+1: it maps (k + 1)-

dimensional space to k—dimensional space.

Remark 3.1. Aj can be interpreted as the differential of the k—dimensional vector of roots of
the derivative P 41 as a function of k + 1 roots of Pry1. In this interpretation, the identity

Zngrll @, , = 1 becomes a corollary of an observation that shifting all the roots of a polynomial
by a constant € we also shift every root of its derivative by the same constant e.

Definition 3.2. The jumping process is a Markov process with the set of allowed states Xy, :=
{akYo1._k at the time k, and with the transition probabilities given by (3.11)

P(zk — 2t = O‘S,b-
The product of matrices in (3.13) then becomes its diffusion kernel:

Definition 3.3. The diffusion kernel K*f(a — b) is defined as the (transition) probability that
the jumping process, starting at a:]; at time k, at time £ > k ends up at x,‘;. Formally,

KM a —b) = (Ak ... Ar—1)ap

Theorem 3.4. The process {&F}1<i<i<n of Section 2.1 can be represented as

i

l
(3.3) &= K"a—-b)n
l=k b=1

Ead

where ng are independent Gaussian random variables with the variance

2 Prya(xh)
(3.4) Varnj = =2
o (p —act) 2 Pl ()

We also have

N-1

(3.5) Cov(gh, ’@): > (ZK’“’ a1 — b)K*(ay — b) - Varnb>

=max(k1,k2)
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Theorem 3.5. The process {Cf}lgigk of Section 2.2 can be represented as

oo /L
(3.6) G=2_ ) Ka—b)-m;

=k b=1
where 775 are independent Gaussian random variables with the variance

2

We also have

o) V4
(3.8) Cov(¢i,&f) = Y (Z Kkl’ (ay — b)K*2* (a2—>b)>
2)

{=max(k1,k

Remark 3.6. Let us emphasize that K**(a — b) depends on the array {xf }. In particular, in
Theorem 3.5 the diffusion kernel is constructed using roots of the Hermite polynomials, while
in Theorem 3.4 more general configurations are allowed.

In words, Theorems 3.4 and 3.5 say that {gz’“} and {Clk } are averages over the trajectories of
the jumping process of the sums of independent Gaussian noises collected by this process. In
the rest of the section we prove these theorems.

Consider the process {gf}lgiSkSN of Section 2.1 as a vector-valued process {@}k:h--,Na where
& = (&F,...,&F). Tt is immediate to see from (2.2) that this process is Markovian: conditionally
on any {ko, the values of &, with k& < kg are independent from those with k > k.

Now, let us compute the conditional distribution of & given QCH. One way to do it is by
sending 8 — oo in the similar finite § conditional distribution, computed in [GS1, ( 6)] or [GM

(56)]. The computations result in the density of the conditional distribution of fk given §k+1
being proportional to

k k+1 §k+1) k k+1 (¢ §k+1)
09 e (-3 S e (-3 S50
a=1b=1 ) a=1 b=1 4($a €Iy, )

Completing the squares in the last formula, we rewrite it as

2
k 1 k+1 1 k+1 N $k+1) -2
+1 a b
(3100 C-JLew [~ |2 | & Zi k+1 :
a=1 b=1 \Ta — Ty bgl(xk _ xlgfrl)
where C' is a constant which does not depend on flf,fé“, . ,fllj . The conditional expectation
E(& | €xv1), thus, can be written as
k+1 k k+1
(zg —z)?
(3.11) E(&) | &) Z% p&y Tt where of ), = s} :
k+1
Sy

We write é as a sum of this conditional expectation and of the innovations vector m, =
&k — E(&k | €k+1). From (3.10) we see that 7 has independent components with the variance

2 Py (zh)
(3.12) Varn® = = —ptal,
C N (k- ) Py (23)
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k+1
Pria(y) 1 .
BTN — ———, substi-
P — 2 el

where the second equality comes from differentiating the relation

tuting y = x¥, and using P (x ky =o.
Now, let us iterate the representation
§e = Aplrt1 + Tk,
going from an arbitrary level k all the way to the top level N. Since 77;N =0,1<i< N, we get

(3.13) € = e + Akt + ArApiaTors + - + ApAppr . Av_ofin1,
which is precisely (3.3). The identity (3.5) directly follows from (3.3) and independence of n¥,
thus, finishing the proof of Theorem 3.4.

Let us now develop a similar representation for the Gaussian oco—corners process (¥ of (2.3). In

this particular case Py(X) = Hy(z) are the Hermite polynomials and they satisfy the differential
equation

(3.14) Hyj/(x) — zHj(x) + kHg(x) = 0.
_ Hia(y) _
Thus, at every root y of Hy = %HH]/€+1 one has HZ’:i(Z) k+1 Hence, Varn) = k;-QH for all b.
Another distinction is that ¢ no longer vanishes and (3.3) gets modified to:
N-1 ¢
(3.15) =" K a—b) nb+ZKkNa—>b)Cb
=k b=1 b=1

Since N > k is arbitrary in (3.15), we can also take N = oo, getting

o0

¢
(3.16) =YY K" (a—0b)n,

=k b=1
which is the same as (3.6).
Remark 3.7. The series (3.16) is almost surely convergent, as follows (by the Kolmogorov’s

three series theorem, see, e.g., [Du, Theorem 2.5.8]) from the independence of the terms nfL and
convergence of the series defining the variance of ¢¥, i.e.

oo ¢ 9
ZZ (Kk’e(a — b)) i1 < 0.
=k b=1
The last inequality is implied by the upper bound K** (a—b) < % of Lemma 5.1.
Remark 3.8. For the transition from (3.15) to (3.16), one should additionally check that
N
(3.17) lim Y K*V(a—b)¢Y =0,  in probability.

N—oo
b=1

For that, let us note that, by construction, vectors (¢M)N_, and (77})1<p<s<n in (3.15) are un-
correlated with each other. Hence,

N—-1 ¢ N
(3.18) Var(¢¥) = Var (Z > KM(a—b)- > + Var <Z KN (g — b)QfV> :

o=k b=1 b=1
Sending N — oo in the last identity, (3.17) would follow if we manage to prove that

(3.19) Var(¢¥) = Var <ZZKH a — b) )

{=k b=1
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This identity will be established in Corollary 7.5 by relying on the representation of K**(a — b)
in terms of orthogonal polynomials.'?

Using independence of ¥, the representation (3.6) implies (3.8). The proof of Theorem 3.5
is finished.
4. RANDOM WALKS THROUGH ORTHOGONAL POLYNOMIALS

The aim of this section is to diagonalize the stochastic matrices Ay from (3.2) using a special
class of orthogonal polynomials.

4.1. Preservation of polynomials. Let us choose a sequence of polynomials Py(x), such that

Py is a monic polynomial of degree k and Py_q(z) = %P,:;(x) for each k¥ = 1,2,.... Each

polynomial Py is further assumed to have k distinct real roots, which constitute the set Xj.
Definition 4.1. Fj, is the k—dimensional space of functions on Xj.
We further define D;, to be the dual operator to Ay:

Definition 4.2. The operator Dy maps Fi to Fiy1 through:

-1
[Difl(z) = Z M( Z (x,_ly)2> , T € gy

yEXy ' €Xp 41

We are going to mostly concentrate on the action of Dy on polynomial functions. It is
important to note that since Fy, is finite-dimensional, monomials ™, n = 0,1, 2,... are linearly
dependent. Hence, there can be several representations of Dy, whose equivalence is sometimes
non-evident.

Proposition 4.3. For each m = 0,1,...,k — 1, linear operator D preserves the space of
polynomials of degree at most m. In more details,
Dpa™ = ( — %) 2™ + (polynomial of degree at most m — 1).

In the proof we rely on the following identity.

Lemma 4.4. For y € X} we have

1 P/I
(4.1) 3 = i)
v, @ —Y) Prya1(y)
Proof. This is a reformulation of the second equality in (3.4). O

Proof of Proposition 4.3. We are going to use two integral representations for the action of the
operator Dy on polynomial functions. First,

(4.2) [Difl(z) = b £(2) Pyy1(2) dz

2mi J, P,;_H(z) (z —x)?’

where the integration contour is positively (i.e. counter clock-wise) oriented and includes all
poles at points of Xy, but does not include z. Indeed, taking into account (4.1), the sum of the
residues of (4.2) at points y € Xj, matches the sum in the definition of Dy. Second, for x € X} 1,

13Before reaching Corollary 7.5, the reader might assume that we deal with the process of (3.6) whenever we
mention ¢¥.
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using Pyy1(x) = 0, we can deform the integration contour in (4.2) through the simple pole at
z = z picking up the residue f(z) there and get

Pk+1 (2) dz

43 D - ,

(43) IDufIe) = 1) = g SO 520 oy

where the integration now goes in positive direction over a very large contour enclosing all
singularities of the integrand. Let us emphasize that equality between (4.2) and (4.3) holds only
for x € Xj11. We now specialize to f(z) = 2™ and compute the integral in (4.3) as a residue at
oo. For that we expand for large z

1 1 2t 2P

4.4 —— = 27 37 47
(4.4) e =at25+ +

Note that 2™ - ?5“8 grows in the leading order as Z,:LT Hence, only the first m + 1 terms in

(4.4), which are

1 m

?+'--—|—(m+1) 2
contribute to the residue. We conclude that this residue is a degree m polynomial of the form
P 0

4.2. Lattices with 3—term recurrence. Our next task is to introduce a basis in Fj, such that
the action of Dy is diagonal with respect to this basis. We were unable to present a satisfactory
definition for generic choices of P, and need to restrict ourselves to the following class':

Definition 4.5. We say that polynomials Py(z) are classical if

(4.5) P!(2)ag(z) + P(2)Be(2) + Pi(2) =0,

where ag(z) is a polynomial of degree at most 2 and Bi(z) is a polynomial of degree at most 1.
Examples are given by classical orthogonal polynomials, see, e.g., [Ma] and Section 4.3.

Definition 4.6. Fiz k and equip X with the weight

(4.6) wily) = ——— B Peny)

kk+1) Poaly) PLo(y)

Consider a scalar product on Fy:

(4.7) (f.90k =Y FW9W)we(y).

YyEX,

Define ng) (), m = 0,1,2,....k — 1, to be the monic orthogonal polynomials with respect to
this scalar product.

Remark 4.7. Due to interlacing between the roots of Py and its derivative, the weight wy(y),
y € X} is positive.

Remark 4.8. For each y € Ay, due to (4.5) and vanishing of Py (y), we have wg(y) = ax11(y).

Theorem 4.9. Suppose that polynomials Py(z) are classical. Then for 0 < m < k — 1 we have
(4.8) DRQW = (1 1) QUiY.

Mg of 2021, we do not know other classes of Py leading to explicit identification of a basis. A possible another
good case for future investigations is 8 = oo version of the ergodic measures on eigenvalues of corners of general
B-random matrices of infinite size, see, e.g., [AN] and [BCG, Section 4.4] for discussions about these measures
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Proof. Proposition 4.3 implies that Dng’f) is a degree m polynomial with leading coefficient

— ?Tﬂl) Hence, it remains to prove that:
(4.9) (DRQW 29), 01 =0, 0<j<m—1.

We are going to use the following contour integral representation of the scalar product (f,g)
for polynomial functions f and g:

1 1 Py1(2)

Tkl 2mi S (2)9(2’)7&(2) dz,

(4.10) (fr90k =
where the integration contour is counter-clockwise oriented and encloses all singularities of the
integrand, which has k& poles at the points of X — roots of Py(z). Sum of the residues at
these poles matches the definition of scalar product. The formula (4.10) remains valid even for
non-polynomial functions f and g as long as these functions have an analytic continuation to a
small complex neighborhood of A%; in this situation the integration contour should be a union
of small loops around points of X}.
Combining (4.2) with (4.10), we need to prove:

(4.11) j{ [ Q%)(Z) . Piii(z)  dz o Pryo(u) wlo
X1 LS X

Pi(z) (z=u)?] " Pryi(u)

Note that the internal integral might fail to be a polynomial as a function of u. The u—integral
in (4.11) is over a union of k + 1 small loops around points of Xy and the z—integral is over a
union of k small loops around points of X},

We would like to deform the u—contour in (4.11) to make it a large circle. In this deformation
we encounter singularities at the double pole u = z resulting (up to 27i factor, which we omitted)
in an additional residue term given by the following integral

ai) f oo R (FRn) e f, e R R
B (2) L ),y . Der1(2)  Prya(2)(k + 1) Pi(2)
R L MO o owwie):

Let us show that each of the integrals in the right-hand side of (4.12) vanishes. In the last one
the factor Py(z) cancels out and there are no singularities inside the integration contour. The

dz.

+¢ QW(z)
Xk

middle integral is a scalar product of Qgi) and 2/ (k + 2) and, thus, vanishes. For the remaining
first integral we use the three-term relation (4.5):

~ (B) (-1 . Der2(2) (k) () 501 . (k+2)(k + 1) Pp(2)agy2(2) 3

(4.13) . Q' (2) P (2) dz =j . Q' (2) ) d
, (R) (1) 01 . (k + 2) Pry1(2) Brra(2) s
+j Xka()] P2) dz.

For the last two integrals, the first one has integrand with no singularities, hence, it vanishes®.

The second integral is a scalar product of Qg,]f) with polynomial 2/ ~1(k + 2)By2(z) of degree at
most j, hence, it also vanishes.

L5Note that this is the only place where ary2(z) appears and we do not need it to be a polynomial in order
for this argument to work. Yet, it is unclear, whether this observation can be used to add any generality to the
theorem that we are proving.
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Now (4.11) got converted into

0,y Den(2) dz 1 Peya(w) 2
(4.14) 7{0 [ . @m'(2) —p R ij+1(u) dulo
2

Let us integrate in w first by computing the u-residue at co. For that we expand 1/(z — u)® in

1/u power series. Since uj;’:ifgzg grows as (k + 2)u’T1, we only need terms up to 1/u?*? in the
expansion, i.e. we need
1 1 z 2
49 (i)
e u2+ u3+ +(y+)uj+2+( )

where the (---) terms can be ignored. We conclude that the u—integral is a polynomial in z of

degree at most j. Hence, the z—integral becomes a scalar product of ngf) with this polynomial
and vanishes. I

4.3. Hermite, Laguerre, and Jacobi examples. In this section we list the classical polyno-
mials, for which (4.5) is satisfied. We take the formulas directly from [KLS].

First, the (monic) Hermite polynomials form an Appell sequence, H}(z) = kHj_1(z), and
also satisfy a differential equation

H}/(z) — zH},(2) + kHy(z) = 0.
Hence, they fit into Definition 4.5. The weight is constant in this case:

(4.15) wi(y) :

= X
[ Y e A

The second example is given by the generalized Laguerre polynomials L,(f) (z), which solve

the following second order differential equation:

(4.16) 2f"(2) + (a+1—2)f(2) + kf(z) =0, k=0,1,2,....
The leading coefficient of Lgf)(z) is usually chosen to be ﬂ and in this normalization they
satisfy the relation

0

aLg@ (2) = =LV (2).

Hence, the polynomials
Pu(z) = (=1 - LM (), k=0,1,2,...,
are monic, form an Appell sequence, and fit into Definition 4.5. The weight is linear in this case:

wi(y) y € Aj.

_ Y
k+1’
The third example is given by the Jacobi polynomials J,Ea’ﬁ )(z), which solve the following

second order differential equation:

(4.17) (1- 2 f7(2) + (B—a—(a+B+2)z2)f(2)+k(k+a+B+1)f(z)=0.

If we use the normalization of [KLS], then the leading coefficient is

F(a+p+2k+1)
Tkt D@t B+ k+1)

and the polynomials satisfy the relation:

—m

0 (@) (2) = k+a+p8+1 J(a+1’6+1)(z).

& k 2 k—1
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Hence, the polynomials

Fk+1D)T(a+B+E+1) (a—kp—k

4.18 Py(z)=2™ J, z), k=0,1,2,...
(4.18) +(2) T(a+B8+2k+1) F (=)

are monic, form an Appell sequence, and fit into Definition 4.5. The weight is quadratic:

1—y2
(k+1)(k+a+5+2)

(4.19) w(y) = y € Ay

We remark that if « > —1 and § > —1, then Jacobi and Laguerre polynomials are orthogonal
(with respect to weights (1 — 2)*(1 + 2)? on [~1,1] and 2%~ on [0, +00), respectively), yet,
this restriction on the parameters is not necessary for the polynomials to be well-defined and
for the above identities to hold. Note, however, that we need the polynomials to be real-rooted,
which is always true for a > —1, § > —1, but fails for some values of a < —1, § < —1, see, e.g.,
[Law, Be].

4.4. Consequences of orthogonality. Our main motivation for the introduction of the or-
thogonal polynomials Qg-k) is that they are helpful in analyzing the covariance (3.5).

Theorem 4.10. Suppose that polynomials Py(z) are classical and let ng) be as in Definition
4.6. Then the stochastic process {dj}lgaSkSN admits the following formula for the covariance:

N—1 min(kq,k2)—

(4.20)  Cov(&h, &l2) = 2wy, (xf)wp, (aF2) > Z Q’“( 1) QU2 (zk2)

¢=max(k1,k2)

-1 -1
g s I 3).

k k
Q%Y QN Q%2 QP )i, 2k, -

Further, if Py(z) are the Hermite polynomials and we deal with {¢¥}1<q<k, then

00 min(kq,k2)—1
(4.21)  Cov(¢h,¢k2) = 2wy, (wh wp, (22) D > Q@) Q) (#k2)
¢=max(k1,k2) m=0
/—1 /—1
< %)a %)M m+1 m+1
m 7 m m ywm ke j=k; Jj=ko

Proof. The diffusion kernel of Definition 3.3 admits a spectral representation. Using the notation
1, for the delta-function at z¥ we have:

k-1
(4.22) K"(a = b) = [Dy_1 -+ Dyy1Dp1,] ZM

= Q. QW)
E—l

:wk<a>sz”“ DT (1),

m=0 < m o j=k

[DyDys1 -+ De—1QF)) (2f)]
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Using (3.5) and Varnj = 2w,(z}), we further write

N—-1
(4.23) Cov(eh ely=2 3" (KM¥ay =), K" (az — )
t=max(k1,k2)

N-1 k1—1 ko—1

&) ~H®
= 2wk1( k1)wk2(ajlég) Z Z Z Q(kl m2 (:L‘l;g) o <Qm1,Qm2>

k2)
¢=max(ky,ko) m1=0m2=0 (Qmi” m1 > <Qm2 ) mz Dk
-1 -1
_ omg+1 H _ mo+1
<11 (1 J+1 ) (1 i )
j=k1 Jj=k2

Orthogonality implies m; = mg and the last expression simplifies to

(4.24)
N-1 min(k1,k2)—1 0 (0
<Qm 7Qm >€
2wk1( kl)ka( kz) Z Q(k1)< )Q( )(xk2) k k L I
" ¢=max(k1,k2) m=0 <Q$ﬂl)a £n1)>k1< £n2),Q7(n2)>k2
-1 -1
m+1 m+1
x (_j+1>H(_j+1>'
j=k1 J=k2
For {¢*}1<4<k the argument is the same. O

4.5. Duality property. In previous subsection we explained how {£¥}1<,<x<n can be analyzed

using orthogonal polynomials Qg,’f)(z) of Definition 4.6. Our next aim is to collect the necessary
tools for obtaining the asymptotic theorems about these polynomials.

Although polynomials ng)(z) are not well-known, but they have appeared in the literature
previously. Some of their properties are explained in [VZ] with certain elements of the construc-
tions going back to [BS], [B] and others being rooted in classical orthogonal polynomial topics:
associated polynomials (we rely on [AW]), quadrature formulas, and Christoffel numbers. Let
us present a general framework.

Suppose that we are given a sequence of monic orthogonal polynomials'® P, (z),n = 0,1,2,...
satisfying a three-term recurrence:

(4.25) Pri1(z) + by Pr(z) + unPr—1(z) = 2Pp(x)

with an initial condition
Po(z) =1, Pi(x) =z — by.
One way to think about (4.25) is by considering a tridiagonal matrix of the form

bo Ul 0 .
1 bl u9 0

(4.26) 0 1 b

Then (4.25) says that the operator of multiplication by x is given by the matrix (4.26) in the
basis of orthogonal polynomials Py(x), Pi(z),.... Simultaneously, denoting through M,, the
top-left n x n corner of (4.26), we see that the recurrence (4.25) is solved by

(4.27) Pp(x) = det(x — M,,).

16We do NOT assume these polynomials to form an Appell sequence.
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Fix N > 0 and define dual polynomials Qy(x), n =0,1,..., N — 1 through the dual recurrence:

(4.28) Qnt1(2) + bN—n—19n(x) + unN—nQn—1(x) = 29, (x)
with the initial condition
Qo(z) =1, Qi(r) =2 —by-1.
In other words, the N x N tridiagonal matrices corresponding to (4.25) and (4.28) differ by
reflection with respect to the / diagonal.

It turns out that polynomials Q,, have an explicit orthogonality measure, which is supported
on the N roots of Py and has weight:

(4.29) w*(z) = w, for = such that Py(x) = 0.
[VZ, (1.20)] explains that
(4.30) Z W (1) Om () Qn(x) = Lpem - hp, 0<n,m <N —1.

z|Pn (2)=0

Let us compare the weight w*(x) of (4.29) with wg(z) of Definition 4.5. In general, the formulas
are different, however, it is important to recall that we actually deal with classical polynomials.
Indeed, [AC] suggested to define classical orthogonal polynomials as those satisfying a relation

(4.31) 7(2)Ph(x) = (anz + Bn) Pu(z) + ¥ Pn_1(z), n>1,

where 7(x) is a polynomial (which then has to be of degree at most 2). The relation (4.31)
readily implies that w*(z) is a polynomial of degree at most 2 (and the latter fact can be used
as yet another definition of classical orthogonal polynomials, see [VZ]), matching the examples
of Section 4.3. In particular, for the monic Jacobi polynomials (4.18) the relation (4.31) takes

the form
62 _ 052

(22 = 1)P! () = (nx + n(a A @t at )

)Pt

In(n+ a+ B)(n+ a)(n+ B)

_ (2n+ a+ 68— 1)(2n+ Q _|_5)27Dn—1($)7

giving the match between w*(x) and wg(z) of (4.19) up to a constant factor. Hence, monic
orthogonal polynomials with respect to these weights coincide.

We also rely on a link between dual and associated polynomials. Fix a parameter ¢ =

0,1,2,..., and define the associated polynomials 73,(16) (z) as a solution to the three-term re-
currence:
(4.32) P @) + b P (@) + tnt P, () = P (a)

and the initial condition
PO@) =1,  P)=2z—b..

In terms of the tridiagonal matrix (4.26) we deleted the first ¢ rows and the first ¢ columns.
Then, either using [VZ, Theorem 1] or comparing (4.27) for dual and associated polynomials,
one identifies

(4.33) Qu(z) =PN"™(z), 0<n<N.

In particular, Qn = PO = Pn-
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For us the most important case is When Pr(x) are the Hermite polynomials. In this situation,
we saw in Section 4.3 that wy(z) = k+1 On the other hand, P/ (z) = nP,_1(z) and, therefore,
w*(x) is also a constant. Taking into account the three—term relation for the Hermite polynomials

Hpii(z) +nHy—1(x) = xHy(2)
and for the associated version
H) (2) + (n+ ) HY | (z) = 2HP (),
we record the conclusion:

Proposition 4.11. Let Py(z), k =0,1,2,... be the Hermite polynomials Hy(z). Then orthog-

onal polynomials ng)( ) of Definition 4.6 satisfy the three-term recurrence:

(4.34) QWL () + (k=m)QY) 1 (2) = 2QP(2), 0<m<k—1
and the initial conditions
(4.35) Wiy=1, QP () ==
We also have an identity with the associated Hermite polynomials:
Y pboty
(4.36) QW (2) = HE"™(2), 0<m<k.
Corollary 4.12. We have
(4.37) (QW, Wy, = MEZ Dk =2) - (k= m)

kE+1

Proof. For any sequence orthogonal polynomials satisfying a three-term recurrence of the form
(4.25), the ratio of the norm of the m-th polynomial and the norm of the Oth polynomial is
ULUL * * * Uy« O

Here is one more ingredient that we need.

Proposition 4.13. The associated Hermite polynomials have an explicit generating function:

e (c) v
(4.38) gv”m = cv “exp (—% + xv) /0 uexp (—2 — xu) du,

which can be rewritten using (4.36) as a contour integral

(4.39)
k) (k m)m-‘rl —(k—m 02 v k—m—1 2 dv
QW () = 27rijq€v ( )exp(—7+xv) {/Ou exp(—xu)du} s

Proof. See [AW, (4.14)], but note a different definition of the Hermite polynomials used there
— they are orthogonal with respect to exp(—z?) in [AW] rather than exp(—x2/2) used here. [

Remark 4.14. One can directly check the that the right-hand side of (4.39) satisfies the relations
(4.34) and (4.35).

5. GooE LIMIT: PROOF OF THEOREM 2.12

The proof relies on several lemmas. We use the notations of Section 3. As before, for
1 <k < N, z¥ are the roots of Py(x) ~ ((%)N_k Py(z) and K**(a — b) are diffusion kernels of
Definition 3.3.

Lemma 5.1. The matriz elements of the diffusion kernel of Definition 3.3 satisfy

k
(5.1) K0 —b) < ;o >k
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Proof. Applying Proposition 4.3 with m = 0, we get for each b € {1,2,...,¢}:

Sren= (1= k) () (1) =%

In words, the above formula says that the uniform measure on X} is mapped to the uniform
measure on A by our diffusion. It remains to use the non-negativity of K**(a — b). 0

Lemma 5.2. For each 1 < k < N we have
k+1 k+1

2
(5.2) Z Var (77Z ) k—?— e i . Z(ajkﬂ) (k:—li—l fo“)

i=1
Proof. We write using (3.4):
k
Py (2} Pyi1(z) L [ Peyi(2)
(5.3) Var (nf) -2 —_— = —— dz,
; Z P,g’ Z () m Joo Py (2)

.fU
+1 x: P/Jrl(a:) 0 k+1

where the integration goes over a large positively-oriented contour enclosing all singularities of
the integrand. We further compute the last integral as the coefficient of 1/z in the following
power series expansion at z = oo:

k+1 -1 k+1 -1
Pria(z) _ Yol oy L
Plé-s-l(z) Pl $f+1 — 1- xf“/z
~1

k+1  pa1 k+1 / gy1 2
z 1 T 1 "
——" 11 ) ) O -3
el ER e D D +k+1z< P ) +0(")

= =1

__~ 1§:1 kel % k+1 ) _ 1 §(xk+l)2 +O(272)
k+1 k+1 k+n k414 k140 '

The coefficient of % in the last expression matches the desired formula. O

N N
Lemma 5.3. If > ¥ =0 and % Y (z])? = 02, then for all1 <k < N we have

%
=1 i=1

k
1 k—1
k _ k\2 __ 2
E ;=0 and kzgl(xz) = w17

Proof. We proceed by induction in (N — k) with the base case N —k = 0 being obvious. Suppose
that the statement is true for some k. Then

k k
o= I -sty= = (Lot ) o+ (ot )
‘ i=1

1<jg
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Differentiating, we get

k
10 _ _ k—2 _
Poi(2) = 75 Pulz) = 2471 =022 - 222 (2 :<x§>2) Fa

Comparing the coefficient of =2 with the expansion of Py_1(2) = Hf;ll(z — 1), we conclude
that ZZ i m = 0. Then comparing the coefficient of z¥~3 and dividing by (k — 1) we deduce

w \

Proof of Theorem 2.12. We are going to assume that uy = 0 and oy = v/ N. All other cases
can be obtained by shifting and rescaling the relevant variables. Theorem 2.9 then implies the
convergence of xf ,i=1,...,k, towards the roots hi-“ of the Hermite polynomial Hy.

We further use the expansions (3.3) and (3.16). We have

N—-1 ¢

(5.4) &= K"a—=b)-n,

l=k b=1

where 77£ are independent centered Gaussians with variances (3.4). Also

(5.5) => Y EK"(a—1b) -,

=k b=1

where the variances of the noises 7, and kernels K**(a — b) are now constructed using the
roots hf of the Hermite polynomials instead of wf .

Convergence of ¥ towards h¥ readily implies that the expansion (5.4) converges to (5.5)
term by term. It remains to produce a tail bound showing that the terms with large ¢ do not
contribute to (5.4) (and similar argument would work for (5.5)).

For that we write using Lemmas 5.1, 5.2, 5.3:

N—-1 ¢ -1 ¢
(5.6) Var (Z > E*(a—1)- ) = > > (KM (a— b))* - Var(n)
)4

(=L b=1 =L b=1
N-1 2 N-l,2 o , N 4
k7e . E _— e — f — . 2 —
< (lrggng( (a — b)) > Var(nj) < mr v VS > 7
(=L b=1 (=L (=L
which converges (uniformly in N) to zero as L — oo. O

6. EDGE LIMIT: PROOF OF THEOREM 1.1 AND PROPERTIES OF 3(i,1).

This section has four parts. First, we analyze orthogonal polynomials Qgi)(z) in the
asymptotic regime relevant to Theorems 1.1 and 1.2. Then we prove Theorem 1.1. In the
third subsection we explain how the limiting object (Airys line ensemble) can be identified
with a partition function of a polymer whose trajectories travel over the roots of the Airy func-
tion. Finally, in the last subsection we apply Kolmogorov continuity theorem to deduce the
regularity of the trajectories of 3(i,t).
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6.1. Asymptotic theorem for polynomials quf)(z). Recall that the Airy function Ai(z) is
defined as a solution to the differential equation
(6.1) Ai"(2) = zAi(z),

given explicitly by the contour integral

. (Z2) = omi exXp 3 A v,

where the contour in the integral is the upwards-directed contour which is the union of the lines
{e=/3t .t >0} and {e/3t : ¢t > 0}.

Theorem 6.1. Let polynomials quf) be as in Definition 4.5 for Py being the Hermite polynomials
Hy. Let :Ei“fZ be the ith largest root of Hy. Then for each fized i = 1,2,..., as k — oo we
have

k 1 . _m_
—1/3 an)(xﬁ—&-l—i) _ Al (al * ’“1/3> (1+o(1))
Q% Qhy, |

Ai'(ai)
where a; is the ith largest real zero of the Airy function and convergence is uniform over m such

that the ratio k{’}s belongs to compact subsets of [0,+00). In addition, there exists C' > 0, such

that we have a uniform bound

(6.3)

(k) k _1
(6.4) po/s @ @) <C(1+ﬁ) L 0<m<k-1, k=1,2,....
QW oMy, k1/3

We present two proofs of Theorem 6.1. The first one shows that the relation (4.34) after
proper rescaling of variables converges to the Airy differential equation (6.1). This is how we
first arrived at the asymptotic statement (6.3). In principle, the convergence of the equations
should imply the desired convergence of their solutions, yet, additional technical efforts are
needed (the Airy differential equation has a second solution, which is explosive at 400 and
may potentially lead to large errors in approximations). Simultaneously with our work (and
independently) Theorem 6.1 was obtained in [AHV]: they also rely on (4.34) and use several
clever analytic tricks to show convergence of its solution to the Airy function.

In our second proof we provide a very different argument and arrive at an integral represen-
tation for the right-hand side of (6.3) (different from (6.2)) by applying the steepest descent
analysis to the generating function of (4.38).

Remark 6.2. While it does not matter for the validity of the statement, but from the numeric
point of view, we found that if we replace the right-hand side of (6.3) with

Ai (Cli + %)
Ai’(ai) ’
then we get a better agreement for the finite values of k, see Figure 5.

Remark 6.3. Here is a way to check normalizations in (6.3). Note that the matrix

1 Q%’f)(wﬁﬂ_i)
SNy

1<i<k, 0<m<k—1
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0.6 ....'

0442"%

—04 al J.

(k)
FIGURE 5. Blue points are (kg’}s,k 1/3W) for k = 200 and m =
@,

A1(a1+y+k_1/3)

0,1,...,100. Gray thick line is the graph of AV (D) , green dash-dotted

A1(a1 +y)

line is the graph of A (ay) "

is orthogonal. Hence,

k-l ( (k)($k+1 z))Q
o >, =1 @

As k — oo the sum becomes integral. Hence, if the normalization in (6.3) is correct, then we

should have ,
< (Ai(a; +y)
— 27| dy=1.
/o ( Ai'(a;) ) y

But indeed, integrating by parts, using Ai(a;) = 0 and the Airy differential equation, we have

66 [ ARGy =2 [ ATy = -2 [ AT )y

= (A'(»)?] | = (A¥'(m)*.

+oo
The same orthogonality implies that we should also have

[ (B0 (500)4 0 s

aay [Ai(a; + y) AT (a; +y) — Ai'(a; + y)Ai(a; +y)]

= (aj +y)Aiai +y)Ai(a; +y) — (ai +y)Aia; +y)Ai(a; +y) = (a; — @) Ai(ai +y)Ai(a; + ).

And indeed,
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Hence,

Jiai [Ai(a; + y)Al'(a; +y) — Ai'(a; + y)Ai(a; +y)] is an  antiderivative  of
Ai (a; + y) Ai (a; + y), which implies (6.3).

Sketch of the first proof of Theorem 6.1. We start by noting that as k — oo
(6.7) af o= 2VE + kY 0a,(1 + o(1)),

as follows from the Plancherel-Rotach asymptotics (going back to [PR]) for the Hermite poly-
nomials Hy(z) for z close to 2v/k. Using (4.37) we transform (4.34) into

(6.8) k—m—1 ng)ﬂ(%];iﬂ z) + m ng) 1(x§+1 z)
\/<Qm+17 C2m+1> \/<me17 Qm71>k
(k) (x )
= (2VEk + kY01 + o1 )))¢.
<627n ) WI >k
Dividing (6.8) by vk and Taylor-expanding square roots using v/1 — ¢ =1 — 4 24 0(q), we get
69y _Qmmiltbn) o <mk+l ), Quhalha)
\/<Q +1’Qm+1 <Qm ) m >k \/ Qm—l’Qm—l k

(k) (k) k (k) k
= k201 o(1)) A 10 +;'Z<1+o<1>>< D) | FmorCend) )
<Qm ) m )k \/(anl-l7Q£anl>k \/<Qm—1=Qm—1>k

Next, let y = be finite. Then in the leading order (6.9) becomes

k1/3

\/(ngpoff)mk \/< gf)a 57’2)> \/<Q£n71’ mfl k
~a 7(7?)@71%1 i) +y( Qm+1($k+1 i) n Q$)1($II§+1 i) )
@, 2 \V@B oW Vel

k k k
(6.10) kw( nilchn) _p Ok | Quiilebin )
)

Qn’(oh 1 )

(@) Q")
proximation of the differential equation (6.1) upon identification z = y + a;.

It remains to match the boundary conditions and normalization. Note that the right-hand
side of (6.3) as a function of y has value 0 and derivative 1 at y = 0. For the left-hand side,

(()k) (xk_H ;) =1, and, therefore, as k — oo

(6.11) k- 1/3M — k_l/?)\/kk:?—)o‘

<Q07 o >k

If we now treat as a function of y, then (6.10) is precisely a finite-difference ap-
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On the other hand, ng)(z) = z and its norm is k%k;ll) according to (4.37). Hence,

L—1/3 ng)(ngrlfi) _ Qék)(xiJrlfi)
VP eP.al),

— 13 (2\@(1 + OOD\/E — ﬁ) = k7131 +0(1)).

55) (x:Jrl*i)

(6.12)

This means that k—1/3Q7 1/3
@,

k=13 (near y = 0). Thus, we have a match with unit derivative at y = 0. O

as a function of y grows by k~'/° when y is increased by

Second proof of Theorem 6.1. The proof splits into two parts. First, we explain how to find the
leading asymptotics giving the answer for a fixed y = k% € (0,400) and then we explain how
to achieve the desired uniformity over all y € [0, +00).

Part 1. We use the contour integral representation (4.39) written as:

6.13) QW (z) = m %v_k_l exp (—% + xv) [/v uF =" Lexp (“72 — xu) du] dv.
0 0

27i
Throughout the proof we always assume that x = xﬁ 41_; for some ¢ =1,2,.... Note that
k!
(6.14) pyr ﬁvkl exp <—§ + xv) dv=Hy(z) =0, at . = 2}, _;.

Thus, the lower limit of the u—integral can be changed from 0 to any other point without changing
the value of the double integral. Let us change this limit to 1 and then integrate by parts in
(6.13). We get:

(6.15) QW () = —(k:_m)m“% [/U uF Lexp (—%2 + xu) du} vF ML exp (% — xv) dv.
0 1

27

The transition from (6.13) to (6.15) uses the fact that the internal u-integral is a meromorphic
single-valued function of v, which follows from the independence of the value of the integral from
the choice of integration path implied by (6.14) (otherwise, integration by parts would have led
to the appearance of an additional term).

The lower limit 1 of the u—integral in (6.15) again can be changed to any other point (this

k—m—1

time, because of v exp (% — xv) having no singularities in the complex plane leading to

vanishing of its contour integrals). It is convenient for us to change this point to —oo, leading
to the final expression:

(6.16) QM (x) = —(kj_m)m“% [/U uF " exp <—“72 + xu) du} v exp (% — xv) dv.
0

27i oo

Next, we apply a version of the steepest descent method to the integral (6.16). This method
guides us to deform the integration contour to pass through the critical points of the integrand
and to localize the integration to neighborhoods of these points.

Denote

F(v):=—In (v_k exp (—%2 + 2\/Ev>) = kln(v) + % — 2Vkv.

Then using the asymptotic expansion (6.7) for x, the u—dependent part of the integrand in (6.16)
becomes

= exp(~F(u)) - exp(k™/%(a; + o(1))u),
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FIGURE 6. The graph of RF(z) of (6.17) globally on the left panel and locally
near the double critical point at z = 1 on the right panel.

and the remaining explicitly depending on v factors in (6.16) admit a similar representation in
terms of F'(v). While it might seem that F' changes with k, but, in fact, the dependence on k is
very simple:
2
(6.17) F(v) = kF(0) + kIn(VE), F(0)=1n(0) + = — 26, o= .
2 Vk
Thus, all the properties of F(v) can be read from analyzing a single explicit function F/(©).
Further, notice

k k k
F'(v) = —tu— Wk,  F'(v)= — 5+l F"(v) = 25

Hence, v = vk is a double critical point of the function F (v). We are going to deform the
v—integration contour to pass near this point, so that the asymptotic of the integral is given by
the contribution of a small neighborhood of the critical point. It is helpful to take a look at the
graph of RF(v) before explaining the geometry of the contours and we refer to Figure 6.

The desired integration contours are shown in Figure 7. The v—contour in the upper half-plane
is chosen so that it starts from vk under the angle % and has growing |v| as we move away from
Vk until we reach the line Im (v) = 2\/%, at which point the contour follows this line to the left
until the point v = —2+2i and then proceeds vertically till the real axis. In the lower-half plane
the v—contour is given by the mirror image. Figure 8 shows the graph of ®F'(v) (in the changed
coordinates of (6.17)) along the v-—contour: the real part is minimized at points vk, vk and
maximized at the intersections of the contour with the real axis.

Further, when v is on the part of the right part of the contour between 6 and 6 (in particular,
when it is close to v/k), the u—contour (which we explain here in the reverse direction from v to
—00) starts from v and first follows the v—contour to the point vk, then it continues from vk
under the angle 2° by another level line Im (F(z)) = 0 until it gets back to the real axis far left
from the origin, at which point it proceeds to —oo via a horizontal line. When v is on the left
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FIGURE 7. The v—contour is shown in solid black. The u—contour for points v
close to vk is shown in dashed blue. The points vk and 8vk give the minima
of RF(v) on the v—contour.

6 6/

v

FIGURE 8. Three panels show the graph of RF(9) with & = 75 and v as in
Figure 7. Left panel: REF(1 + texp(in/3)). Middle panel: RF(1 + % —t+ 2i).

Right panel: RE (=24 2i—ti). The minimum in the middle graph is attained at
the point o = 6.

part of the contour, we instead follow the v—contour to the point —2v/%k and then continue to
—00.

The choice of the contours achieves the following goal: the absolute value of the u—integrand,
which is

% cexp(—F(u)) - exp(k~ 5 (a; + o(1))u)],
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starts from being very close to 0 when u = oo, and then grows as we approach v and has a
sharp extremum near v. Hence, the absolute value of the v—integral can be upper bounded by
!%exp(—F(v)) exp(k=1/5(a; + o(l))v)’. This implies that the v-integrand is upper-bounded by
|v|~™ and, therefore, since |v| is minimized near V'k, the integrand is sharply decaying as v
moves away from k. In more details, the part of the v-integral outside ev/k-neighborhood of
V'k is upper bounded by

(6.18) const - Vk - k™2 (1 + %)_m ;

where vk factor arises from the length of the integration contour. Since we are interested in the
regime when m is proportional to k/3, (6.18) is exponentially small compared to the leading
contribution which comes next.

The overall conclusion is that the integral is dominated by the contribution of a small neigh-
borhood of the point vk. We can Taylor expand F(v) in such a neighborhood:

_ R EAY/RE (v —Vk)*
F(v)—F(\/E)—i—g\/E( \/E>+o< p )

We further introduce the new variables:
o=k —-VE), a=k"Yu—-Vk).

The contour integral (6.16) then asymptotically behaves as

(k — m)m+1 \/6‘%100 v 1~3 ~ kY/6da
.1 - . — 35 ) ’) k Y
C1) " e | Lo exp (=4° + it + a,V) VE + /54

7Tr'oo e 3 oo
X exp (%53 b — a,»x/E) (Vi + kY6g) vk =1 1/645,

Equivalently, this is

(6.20) (hmpa L[ /ﬁ exp (—34° + a;) dit | exp (30° — a;0 — yd) o
k1/6 . k‘mTH 27i 67%00 eQTﬂoo 3 ’ 3 *

In the last integral the v—contour is an upwards-directed contour which is the union of the lines
{e77/3¢ . t > 0} and {e"/3t : t > 0}. The internal @i-integral has quickly growing integrand
and, therefore, it is dominated by the end-point ¥ giving the value ~ exp (—%63 + aif)), which
cancels. As a result, the integrand is exponentially decaying in © for each y > 0. Combining
with an explicit expression for ( &’i), $f§)> k of (4.37) we conclude that the left-hand side of (6.3)
converges as k — oo to

27Ti e—im/3 50 2i7/3 5o

1 ei‘rr/SOO 5
(6.21) - — / exp (—3@° + ;@) dit | exp (39° — o;0 — y¥) do.
€

%. For that we analyze the double

It remains to identify the last double integral with
contour integral as a function of y. Let us denote this function through A(y + a;).
Let us apply the Airy operator to (6.21), i.e. we compute aa—;A(y +a;) — (a; +y) Ay + a;),

getting

in/3
1 € [e.e] v
(6.22) ——— l/ exp (—2@° + o;1) da] (0% — a; — y) exp (3° — a;0 — y0) d.

27Ti e—im/30 2im/3 5g
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3

We now recognize % exp (%f} —a;0 — ny) and can integrate by parts, noticing that

v
[/ exp (—2@° + o;@1) di | exp (39° — a;0 — y?)
e2im/3 50
vanishes at both infinities by the previous arguments. We get
1 ei™/3 50

(6.23) i exp (—20° + a;0) exp (30
e~ 17/200

P — a0 — yo) do,
which is 0. In addition it is clear from (6.21) that lim,_,; A(y) = 0, since the integrand is fast
converging to zero.

We conclude that A(y) is a solution to the Airy equation, which vanishes at +oco. This implies
(see, e.g., [VS])

Ay + a;) = ¢+ Ai(y + @)

for some constant ¢ € R. This constant is fixed by the argument of Remark 6.3, as soon as we
have uniformity of convergence in m and the tail bound (6.4) justifying the convergence of the
sum (6.5) to the integral (6.3). This finishes part 1 of the proof.

Part 2. We now explain an extension of the argument of the first part giving the uniform
convergence over y € [0,+00) and the tail bound (6.4). Notice that in the previous arguments
uniformity of the asymptotics for y in compact subsets of (0, 400) is obtained for free. Thus,
we only need to investigate y — 0 and y — oo boundary points. We start from the latter.

For large y = ;75 we need to establish the uniform bound (6.4). For that the first step is to

figure out a similar bound for the asymptotic expression (6.21)17. Take a radius 1 neighborhood
around 0. The part of the ¢ integral in (6.21) outside this neighborhood decays exponentially
fast as y grows. Inside the neighborhood we can upper-bound the magnitude of the integral by

/01 exp(—y exp(iw/S)t)dt‘ _0 (;) .y oo,

Switching to the prelimit asymptotic expression given by (6.19) and (6.20), notice that the

const -

prefactor (after dividing by kY 3(@%6), ng))i/ 2) is decreasing monotonously in m and, therefore,
we can ignore it for the large m asymptotic upper bound. After getting rid of the prefactor, the
only m—dependent factor in the integrand is

(1 + k—l/?;@)—m _ (1 + k—1/3@)—yk1/3‘

Hence, the prelimit expression is upper-bounded for large y exactly in the same way as the
limiting expression (6.21).

Proceeding to y close to 0 we need to explain that the expression (6.21) is a convergent
integral, i.e., that the v—integrand decays fast enough as ¥ goes to infinity along the integration
contour. For that we use the following transformation (obtained integrating by parts) of the
integral over a part of the real axis:

q q
(6.24) / exp(—ou® — fu)du = / —3041;[2—ﬂ . (;1 [exp(—au® — Bu)] dy
¥ v
B exp(—aq® — Bq)  exp(—ay® — By) q 6au 3
= 30— 3 Ba@ B /7 m exp(—au’ — fu)dy.

17A much faster decay is known for the Airy function as its argument tends to 4oo, but it is harder to see
from our formulas.
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In the part of @ integral in (6.21) from 0 to o, the direction of the integration is exp(=£in/3), and,
therefore, the parameter « in the last formula is a = %exp(iiﬂ) = —%. Hence, the integrands
in (6.24) are fast growing in u and the formula implies an upper bound on the integral of the

form O (ﬁ exp(—aq® — ﬁq)). The large positive real number ¢ corresponds to |0| in (6.21)

and we conclude that the integrand in v-integral decays as O(ﬁ) or faster for any value of
y > 0. Therefore, the integral is uniformly convergent in y > 0.

The next problem is that for small y (or small m), we can no longer guarantee the exponential
decay of (6.18). Note that if m > k° for some small § > 0, then (1 + £)~™ is fast decaying and
our arguments go through. Thus, it remains to study the case m < k?, corresponding to very
small positive values of y. Note that according to (6.3) we expect to see the Airy function at a
point close to its zero a; in the limit. Hence, we need to show that for m < k% the left-hand side

of (6.3) converges to zero. Let us denote this left-hand side through ng). We now reexamine
the equations which we developed in the first proof of Theorem 6.1. In particular, (6.11) and
(6.12) yield that

(6.25) A =k 1831 +01), QP -—al =k 1B1+0(1), k- o

The recurrence (6.8) in the asymptotic form (6.10) then implies the following bound valid for
all 0 < m < kY/3, in which C' > 0 is a constant that can be made explicit:

(6.26)  k*|(alk, - W) - (a® -l )| < c- (1% + 9P+ 1l ).
We now show that the following two inequalities hold for all large enough k and all 0 < m < k'/6,
(6.27) QW <2 m2+1)- k73, 1Q® —Q® | < (m4 1)k

We prove (6.27) by induction in m. For m = 1 this is implied by (6.11) and (6.12). Suppose
that the statement holds up to some value of m and let us prove it for m + 1. Using (6.26) we
write

k k — k k
9%, - a® < 1a® - al) |+ ok (188 + 9P + 1251
< 1% - ol [+ ok (1%, |+ 219 ) + k1l - o).
Hence, for large k

Q%% — 2l < (- k)7 1ol - al)+ ok (120 |+ 2201

< (1—Ck™2/31 [(m + 1)k 4 ;k:_l/3] < (m+2)k~1/5.
Simultaneously,
Q% 1< 198 1+10%, —a®| < 2-(m? 1) kP 4 (m42) kY3 < 2 (m41)2 1)k,

which finishes the proof of (6.27). Since (6.27) implies that limy_, o |Q,(7{f)| = 0 uniformly over
0 < m < kY%7 for any v > 0, we are done. O

6.2. Proof of Theorem 1.1. We deal with the consecutive N — 0o, 8 — oo limit and compute
the latter first, as in Section 2.2. The § — oo limit is already a Gaussian process, hence, it
remains to study the behavior of its covariance as N — oo. For that we are going to pass to
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the limit in the formula for the covariance of (4.21). Let us first simplify it by plugging in the
expressions for the weight and norm from Sections 4.3 and 4.5. We have:

(6.28)
min(k1,k2)—1 (k1) (k2)
Cov(Cay, Caz) = %2 (o] Z iQ m' () m (242)
kl + 1 k2 + (= max kl k2) m=0 \/<Qm ) ’nlil)> \/<Qm ) ’ITI,Z‘Q)>}€2
(L —m) -1 -1
— m+1 m+1 m+1
X — L1 - 1 .
(+1)- \/(kl _ m)m+1\/(/€2 — M)t Jl_gl ( j+l ) j1:_£ ( J+l )

Next we would like to study the asymptotics of the last line in (6.28) in the regime!®
(6.29) ki =N +2N?3t), ko= N+2N?Pty, £=N+2N?32\, m=yN'3 N - .
We write using In(1 +u) = u+ O(u?) and the notation f =~ g whenever the ratio f/g tends to 1:

(€ = m)pr = £ ﬁ (1 ) =" exp < iz <TZ;>>

2 3 yN/341
_ pm—+1 m m ~ pym+1 __ m+1 2\
=/ exp<0<€>+0<€2>>~f =N <1+N1/3>

~ N™ exp(2yN).

Similarly, we have

m+1
(k1 —m)my1 =~ N 2 exp(yt1), (k2 — m)ms1 ~ N™2 exp (yt2).
Further,
-1 -1
m m+1 0 — k1)m?
H ( _gT+11) = exp —27. 1 —I—O<( k;) ) %exp(2y(t1—)\)).
Jj=k1 Jj=k1 It 1

And similarly
H ( — %) ~ exp(2y(ta — A)).
Jj=k2

Altogether, the second line in (6.28) behaves as N — oo as

1 1
N exp(y(Q)\ — 11—ty + 2t1 — 2\ + 2ty — 2)\)) = N exp(y(t1 + to — 2)\))

Summing over ¢ the second line in (6.28), we see an approximation of a computable integral:

00 /—1 /-1

(0 —m)mi1  m+l  m+tl
2 )(5+1)‘\/(kl—m)m+1\/(k2—m)m+1 H ( jH) 11 <1 Hl)

l=max(k1,k2 j=k1 j=ko

& 1
2 2N_1/3/ exp(y(t1 +t2 — 2X))dA = N_1/3§ exp(—ylt1 — t2]),
max(t1,t2)

18We omit integer parts in order to shorten the notations.
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where the prefactor 2 appears because of 2 in (6.29). Further, the m—sum in (6.28) becomes as
N — oo:

(6.30) N3 Cov(¢h, k2

al’ daz
min(k1,k2)—1 (k2) ko
— m a — m a 1
—aNV3 N e Q' (a ;) iy M/ - (3) — exp(—ylt1 — t2).
m=0 (@Y, Q) Q% Q)

Plugging in k1 = k(t1), k2 = k(t2), a1 = i, ag = j and using Theorem 6.1 we recognize a
Riemann sum approximating as N — oo the integral in the right-hand side of (1.4). (The tail
part corresponding to the large values of m is being controlled by the uniform bound (6.4).)
This finishes the proof of Theorem 1.1.

6.3. Random walk representation. Consider the matrix

P = [ DN +)
MU AT AT ()
Theorem 6.4. The matrices Py(i — j), t >0, i,j € Zso form a stochastic semigroup, which
means that:
(1) P(i—j) >0 for each t >0 and Py(i,7) = 1i—;;
(2) For eacht >0

exp(—ty) dy, a;, a; are zeros of Ai(z).

o
(6.31) Y P —j) =1
(3) For each t,s >0 and each i,j € Z~g
(6.32) ZPt i — q)Ps(q — j) = Pits(i = j).

Proof. The proof is based on the combination of two ideas. First, Pi(i — j) is a limit of the
diffusion kernels K**(a — b) of Section 3, which shows that it is non-negative. In principle,
stochasticity and semigroup property might have been lost in the limit transition: the equalities
(6.31) and (6.32) might have turned into inequalities. In order to rule out this possibility we
find explicit eigenfunctions of P;(i — j) with eigenvalues arbitrarily close to 1.

Step 1. Consider the Gaussian oo—corners process with z¥ being the roots of the Hermite
polynomials. Then (4.22) yields an expression for the corresponding diffusion kernels:

k=1 (k) (0
1 Qm’ (2g)Qm’ (x7)
K" — b) = 3 b H(l—m—ﬂ).
k) +1
k + 1 m=0 <Q7(TL 9 m >k ]:k !
Set £ =k + [2tk*3], a =k+1—1i, b=/+1—j and send k — 0o in the last formula using
Theorem 6.1, formula (4.37) and computation for m ~ yk'/3

— m -1
T3 = (T () TG
Jj=k J= Jj=

< (k)

Q%
~ exp(ty) exp(—2ty) = exp(—ty).

We get

(6.33) lim KEARAE e G 5041 — ) = P(i = j).

k—o0
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Since the matrices K*‘(a — b) are stochastic, we conclude that P,(i — j) > 0 and
Z?‘;l P(i—j) <1

Step 2. For y > 0 denote
Ai(a; +y)

Ai’(ai) '
As functions of y these are eigenfunctions of the Sturm-Liouville operator corresponding to the
Airy differential operator on [0, +00) with Dirichlet boundary condition at y = 0:

Ai(y) =

2
62

We also know that they are orthonormal (see Remark 6.3):

/ Ai(y)A;(y)dy = 0i—;.

The general theory of Sturm-Liouville expansions (see [T1i, Section 2.7 and Section 4.12] or [VS,
Section 4.4]) yields that the functions A;(y), ¢ = 1,2,..., form a complete orthonormal basis.
In particular, we can expand function 4; exp(—ty) in this basis, yielding

5 Ai(Yy) +yAi(y) = i Ai(y), y=>0; A;(0) = 0.

(6.34) Ai(y) exp(—ty) = ZA / Aj( y) exp(—ty))dy.

Let us now change the point of view, fix some y > 0 and treat 4;(y) as a function of i. Then
(6.34) means that this is an eigenvector of the matrix P;(i — j) with eigenvalue exp(—ty). Note
that we can not take y = 0 here, since A;(0) vanishes.

The definition of A; implies that for each i =1,2,...

. li
(6.35) Jiny yA i(y) =
In addition, there is a uniform bound:
6.36 lim su A' =1,
( ) y—0 1,>Il) Y Z(y)’

which follows from the known asymptotic expansions for Ai(z), z — —oo, and for Ai'(a;), i — oo,
see, e.g., [VS, (2.48) and (2.58)].
We can now apply (6.34) to get an inequality

Z.Ptl—>j

Sending y — 0 using (6.35) and (6.36) we conclude that >222, P;(i — j) > 1. Combining with
the opposite inequality established on the first step we conclude that Z]Oil P(i—j)=1.

Step 3. It remains to prove the semigroup property. By definition, it is satisfied by the
matrices K**(a — b) and we have

1 1 o
(6.37) —A;(y) exp(— ' — ZAJ YP(i — j)| <sup |-
Y ) = Jj>1

¢
(6.38) > KM (a— )K" (c = b) = K" (a = b).
c=1
We now set £ =k + [2tk*/3|, r =0+ |2sk*/3|, a=k+1—i,c=0+1—q b=r+1—j and
send k — oo. Using (6.33) we see that the terms of the series (6.38) converge towards those of
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(6.32). It remains to notice an asymptotic tail-bound: for any fixed M we have

(6.39)

—M —M ¢ M
K*(a = )K" (¢ = b) < ZKM(a—Hz) =1- Z K*(a — ¢) —>1—2Pt(i%q).

c=1 c=1 c=0—M+1 q=1

Since 230:1 Pi(i — q) = 1, by choosing large enough M we can make (6.39) arbitrarily small.
Hence, k — oo limit of (6.38) gives (6.32). O

Let us consider a continuous time homogeneous Markov chain X(xo)(t), t > 0, taking values
in the state space Zxo. The initial value is zo, i.e. X{(4)(0) = wo. The transitional probabilities
are given by P;:

Pl”Ob(X(xO)(t) = a) = Pt(.%‘(] — a).

Next, we take a countable collection of standard Brownian motions W (t), i € Z-o. For

each x € Z~¢ and t € R define a random variable

3(i,t) =2 Z /too P_i(i — AW (r).

An alternative expression for 3(i,t) was given in (1.5). In words, we start the Markov chain X’
from 4 at time ¢t and add the white noises W along its trajectory. 3(i,t) is the expectation
of the sum over the randomness coming from X; it is still random variable with randomness
coming from the Brownian motions. We can also view 3(i,t) as the partition function of a
directed polymer in additive Gaussian noise.

Theorem 6.5. The finite-dimensional distributions of 3(i,t) are the same as ones of the limit
in Theorems 1.1, 1.2, i.e. the covariance E3(i,t)3(j, s) matches the right-hand side of (1.4).

Proof. Since Ito integral is a Lo—isometry, we have

(6.40) E3(i,t)3(j, s) —4EZ/ Pr_y(i — a)dW@ Z/ P_y(i — b)dw® ()

o0

:4/ > Pri(i = O)Py(j = O)dr.
max(t,s) y_1

Using the symmetry Py(x,y) = P:(y, ) and the semigroup property (6.32), we compute the sum
over £ and get

o0 o o0 > Ai(a; + y)Ai(a; +y)
4/ Py s(i — j)dr = 4/ dr/ - el exp(—(2r —t — s)y) dy.
max(t,s) ( ) max(t,s) 0 Al/(a’i)All(aj) ) )

Changing the order of integration and computing the dr integral we finally get

Al +y)Ails; +y) —(2max(t,s) —t—s %
2/0 Ai/(ai)Ai,(aj) eXp( (2 (t,s) —t )y) v U

Our next aim is to compute the intensities of the Markov chain X'(*)(¢), matching its descrip-
tion at the end of Section 1.2.

Proposition 6.6. We have

0 - 2 32 { 7é j7
41 pi— ‘ = )
(6 ) 6t t(l ]) t=0 {%ai, ' 1= ]

For the proof we need two computations of indefinite integrals.
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Lemma 6.7. Fiz any a € R and introduce the notation
Ai, = Ai(y + a).

Then we have

D (%-y 0y Lirr  HOE-2), ) .
(6.42) (3y< 3 AlaA1a+3A1aA1a+ 3 Ai Al | = yAigAl,,
Also for any a,b € R

(6.43)

b—a
= (a — b)*yAi,Aip.

. o/ o o/ .
; <2Ai;Ai§, + (a — b)(yAi, Ay — yAigAif) — 2yAi, Aiy — (a + b)AigAly + o Al AlaA1b>
Y

Proof. The method for finding such identities is suggested in [Al]. The identities themselves
are checked by direct differentiation using (6.1). The left-hand side of (6.42) is transformed as
follows:

2a

-1 — 1 1
<3A1;Ai; 2092 yA1;A1a> + <3(a ) AiaAi, + SAi;Aig>

+ <2 (y + a)(y - 20‘) AI;AIa + y—i_a—l_y_QaAiaAia> = yAiaAia.

3 3
The left-hand side of (6.43) is transformed as follows:

(2(y+a)AigAly+2(y+b)AiL Aly) + (a—b) (AL, Al — AigAly) +y((y +a) AigAly — (y+b) AigAly))
— (2AigAly + 2yAi, Aiy 4 2yAigAiy) — (a + b) (AQ, Al + AigAiy)

+ <b2(<y + ) AiaAip — (5 + a)AiaAib)> — (a— b2yAi Al O
—a

Proof of Proposition 6.6. Differentiating under the integral sign, we get

o, . ¢ Ai(a; + y)Ai(a; +y)

6.44 Zp | =- 109 gy,

(6-44) ki Una 2l /0 VA () AT (o) Y

For the case i = j we apply (6.42) converting the last expression into
y=0

1 20 —Y o oa L Ly ae L W)y —2m) 2

(6.45) AV (a) AT () < 3 Aip Aiy + gAlgiAlai + 3 Aig, Ay, = 3%
y=00

When i # j, we apply (6.43) instead. O

We end this section by noting conservativity of the semigroup P;(i — j), i.e., that the sum of
its intensities over j vanishes.

Lemma 6.8. We have ] 1
2 (—a)2 3%

. PG

Jz1|j#i
Proof. This is just one of many similar identities found in [BR]. Alternatively, it can be proven
as k — oo limit of the identity of Lemma 4.4 specialized by (4.6) and (4.15)

k 1

=k
% -1 g
j=1 I Tp_;)?
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k

where x,,

are the roots of the Hermite polynomials. O
6.4. Holder-continuity of 3(i,t).

Theorem 6.9. The process 3(i,t) has a continuous modification, such that for each i =1,2,...
the process 3(i,t) is almost surely a locally vy—Holder continuous function of t for all 0 < v < %

Proof. By the Kolmogorov continuity theorem (see e.g. [Ka, Theorem 3.23]) it suffices to check
that for each i = 1,2,... and each d = 1,2,... there exists a constanct C(i,d), such that

(6.46) E(3(i,t) — 3(i,5))* < C(i,d)|t — s|?,  t,s€R.

Because (3(i,t) — 3(4,s)) is a mean 0 Gaussian random variable, (6.46) for d = 1 implies it for
all d = 2,3,.... For d = 1, we recall the formula for the covariance obtained by substituting
i=jin (1.4):

2

B3(.0305) = 7y /O " LA + )] exp (—t — sy) =3

Using the inequality exp(—a) > 1 — a, valid for a > 0, we get
. . 2 > . dy 2‘t — S‘ ee . 2
E3(i,t)3(¢, s 2,/ Ai(a; +y))*— — s Ai(a; +y)]"dy.
(0369 > s [ i+ - sy [ aiGr )

The first integral in the last formula is E32(4,¢) = E32(i, s) and the second integral is computed
by (6.6). We conclude that

ES(Zat)S(Za 5) > ESQ(i7t) - 2|t - S|'
Hence,
E(3(i,t) — 3(i, 5))* < 4t — ],
which implies (6.46) for d = 1. O

7. THE 8 = co DYSON BROWNIAN MOTION: PROOF OF THEOREM 1.2

The proof is split into two parts. First, we express the covariance of the § — oo limit of the
Dyson Brownian Motion (as in Theorem 2.2) through the orthogonal polynomials Q¥(x). Then
we use the asymptotics of these polynomials established in Theorem 6.1 to finish the proof. This
section also contains the proofs of Lemma 2.3 and identity (3.19) (see Remark 7.6).

7.1. Covariance of the g = co Dyson Brownian Motion. The aim of this section is to solve
inhomogeneous linear equations (2.8). By the well-known algorithm for finding the solutions to
inhomogeneous differential equations, we need to start by identifying N linearly independent
solutions to the homogeneous version of (2.8).

Theorem 7.1. Consider a linear N —dimensional system of differential equations

_ zi(t) — z;(t) .
gFe Nt J
where a:ZN is the ith zero of the Hermite polynomial Hy(x). Let Qg\}n) be the m—th orthogonal
polynomial with respect to the uniform measure on {x{v, e ,x%}, as in Definition 4.6. Then for
eachm =0,1,2..., N — 1, the N—dimensional vector
(7.2) () =2 QW (o), i=1,2,...,N,

is a solution to (7.1).
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Remark 7.2. The statement of Theorem 7.1 is closely related to that of Theorem 4.9. In random
matrix terminology, Theorem 4.9 corresponds to the changing matrix size, while Theorem 7.1
is about time evolution of a matrix of a fixed size. Our proofs of these theorems follow similar
schemes: essentially we are showing that the dynamics (7.1) preserves both polynomiality and
orthogonality with respect to the counting measure on the set {\/ijlv , \/fatév e \/ix%}

Proof of Theorem 7.1. The statement would follow as soon as we show that

Q) - Q)

m A(m) ( Ny _
(7.3) QN (=) _Z N ol , 0<m<N-L
JF#i ¢ J
In order to prove (7.3) we set L to be the linear operator in N-dimensional Euclidean (with
respect to counting measure) space fo(z, 22, ... ,m%) with matrix m, i,j=1,...,N,in
i T

the standard coordinate basis. Let Lg be the matrix of the same operator L in the orthonormal
basis of functions

QY (@) QY (@) B Q““)( )
Vel o Jovr el oMy Jov+ned o0 )

The relation (7.3) is readily implied by the following three properties that we will prove:

(1) The matrix L¢ is symmetric.
The matrix Lg is triangular.
Q

( ) The diagonal elements of the matrix Lg are 0, 3, 2, 3 , AL

’ 20 2’ 20000072
For the first property note that L is symmetric in standard coordinate basis. Hence, its matrix
in any orthonormal basis is also symmetric and so is Lg. For the remaining two properties we

fix 0 <m < N — 1 and consider a function R(™ : {20V ... )} — R given by
m) ) (m)( M)
(2 xh
7.4 R™ (2N = — PP N\
( ) (xZ ) + jF#i xé\/)2

The desired two properties of Ly would follow immediately, if we manage to prove that R(M s
a polynomial of degree at most m — 1 of real argument :EfV ,t=1,2,...,N. In fact, the exact

nature of the polynomial QS\T) is irrelevant here. Expanding Qg(,n) into monomials, it suffices to
check that the function

()" = ()"

(3
(va Ty 2

(7.5) o] H—T () +Z
J#i

is a polynomial of degree at most m — 1. The last expression transforms into

(7.6) +Z )y @) @) 4 (@)

i=1,2,...,N.

N _ N ’
oz T — T
Let us use an identity which is implied by (2.11):
Nym—1
m, m(z;") B .
(7.7) E(xi )m_ZW_o, i=1,2,...,N.

g J
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Subtracting (7.7) from (7.6), we convert the latter into

o)t = @) )R a) - @) ) )

(7.8) Z [( 7

N_ N
J#i i T
== 0+ @)™+ @) [ a2+ (@) @) @) @) ),
JF#i
which is a (minus) sum of the expressions of the form
(7.9) (@)Y @) = @) (om—2—e — 2,

J#i

where 0 < ¢ <m—2and p; = Zjvzl(xjv)k The expression (7.9) is a polynomial in z¥ of degree

m — 2, whose coefficients do not depend on i. Hence, (7.5) is a polynomial in a; of degree at
most m — 2 (which is even better than the degree at most m — 1 that we wanted to have). O

We can now write down an explicit formula for the solution to (2.8).

Theorem 7.3. The system of SDEs (2.8) is solved by

= QY (@) brs\m/2
7.10 Nty =2 (m T} ) awy(s),
S Y ;NH 0w o >/O(t) (5

where the scalar product <Q§(,n), Q&n >N is as in Definition 4.6 and Corollary 4.12, so that

N
(N+1)(f,9)y =D Flad)g(zy)
a=1

Proof. Using the result of Theorem 7.1 we have:

N-1 N (m), N
(7.11) d¢N () = v2d | Y 2\ (@) S O (” / 2w (s)
0

m—0 j=1 (N+1)<QN ; N >N
N—1 N Q(m)(x]-v) ¢
:\/i d 7ffm/2 (m) iV N J m/2dW
Eoar’ e )};<N+1><Q§6"%QSG”>>N/O B
N-1 N (m), 4 t
+V2 3 QN ) o d[ Sm/QdW‘(S)}
= " 321<N+1><QN ,@N o /0 ]
¢N(t) ¢V (t) plag NN (=)
_— t(mN—:rJN VY S o 3 W;(#)
i U\ J m=0 =1 (N +1)( QN 7QN>

Nt Nt
:_ZC C()—F\[W()
JFi Z J)

where the last identity is obtained by changing the order of summation and using the fact that
(m)(.N
N (1'7, )

Jovenda ey

We further show that (7.10) is the unique solution of Lemma 2.3.

the matrix (i, m) — is orthogonal. O
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Proof of Lemma 2.3. In Theorem 7.3 we checked that (7.10) solves the SDE (2.8). It is also
clear that this solution satisfies the initial condition: lim;_¢/V(#) = 0. Thus, it remains to
check the uniqueness. Let (¢N(¢))Y, and (CN(t))Y, be two stochastic processes satisfying
conditions of Lemma 2.3 with the same Brownian motions (W;(¢))Y;. Then their difference
solves a deterministic homogeneous linear differential equation:

YA N il o it A

d[l 3 N N\2 dt, t>0, 12172,,]\7
o t(x;" — ;)
A complete basis of solutions of this equation was found in Theorem 7.1. None of the non-zero
solutions tends to (0,...,0) at t — 0. Hence, ¢V () — ¢V (t) must be almost surely equal to zero
foralli=1,...,N and all t > 0. (]

Lemma 7.4. (CZN(t))fil, t >0, of Theorem 7.3 is a mean 0 Gaussian process with covariance

N-1 (m), N\~(m), N ]
ov(¢Y N(s)) = N ()@ (z) . (min(t, s))™+!

Proof. Using the isometry property of stochastic integrals

t s min(t,s)
E /0 F()dWa(r) /0 9(0)dWi(0) = bacs /0 f(r)g(r)dr
and (7.10), we have

N1 N Qi) (2N oy
(7.13) E<§V<t><;-V<s>=2E[ Q) a () N i, ()
SN e b (O

N-1 N

X§QN(J)b TN+ 1) N),QN> /0(8> AWa(r) (N +1)2

—1N-1 N (m), N . .N min(t,s
. () QY (z) (t,s) m/2 2/2
xE ZZQ (@R (@) Y- D /O 7)) dT]‘

m=0 ¢=0 a= 1<QN 7Q >N<QN)’QN>N

It remains to compute the T—lntegral and to use the orthogonality relation

N+1ZQN Lg ( a):5m25‘<Q§\77n),QS\Tfn)>N. ]

Corollary 7.5. The fized t covariance of the process (CZN(t))N

.—1 0f Theorem 2.2 (equivalently,
of the Gaussian vector of (2.12)) is given by

o NZ QW (zM)QN (&)
NA+1 = m+1)(QW. Q%"

At t =1 the same formula also computes the covariance Cov (¢, CJN) for the double infinite sum
(3.6) of Theorem 3.5.

Remark 7.6. Comparing (2.4) with (2.12), we conclude that the left-hand side of (3.19) coincides
with the variance of ¢¥(1). Hence, the last statement of Corollary 7.5 implies (3.19).

(7.14) Cov(¢V (1), ¢ (1) =

Remark 7.7. The formula (7.14) was also proven in [AV, Theorem 3.1]: the proof there is based
on an explicit diagonalization of the quadratic form in the exponent of (3.19).
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Proof of Corollary 7.5. The formula (7.14) is obtained by substituting ¢t = s into (7.12).
On the other hand, the covariance of the infinite sum (3.6) is computed by setting k1 = k; = N
n (4.21). Using (4.15), it becomes:

(7.15)  Cov(¢cY,¢N)

0o N-—1 " ( (© (€)>£ -1 1\ 2
m m _M
N+12gZNmZoQ a) O (7o )<Q ) @MWy <Q£§>,Q£ZP>NJHV(1 )

In order to match (7.15) with (7.14) at ¢ = 1, we interchange the order of the summa-
tions in the former and compute the sum > ,°\ for each 0 < m < N — 1, using the

explicit formula for <Q5f;), Qg,?) ¢ from Corollary 4.12 and the Pochammer symbol notation
(@) =z(x+1)---(x+n—1):

(e 9]

(7.16) > (Q Z)Q%H( )

(=N

°°M—1 (l=m) [((N=m)(N+1—=m)---(L—m—1)\?
Z (+1 < (N+1)(N+2)---£ )

;’3 ]:7 m)(N—m+1)---({—1)¢ (N—=m)(N+1—m)---({ —m—1)

DN+2)---((+1) (N+1)(N+2)--¢
N—-m)---N N —m)y_ N—m)(N-m+1)---N
:( N—f—)l Z ((N-FQ));_]]\;[ :( )(N+1 ) 2F1(1,N—m;N—|—2;1)7

(=N
where oF7 is the Gauss hypergeometric function. Its value can be computed using the Gauss’s
summation theorem:

T'(e)'(c—a—b)

2Fi(a,bie 1) = I'(c—a)l(c—b)

Hence, we further transform (7.16) into
(N=m)(N=m+1)- N T(N+2T(m+1) (N-m)(N-m+1)---N
N+1 T(N + 1)I(m + 2) m+ 1 '
Plugging the result back into (7.15) and using Corollary 4.12 again, we arrive at (7.14) with
t =1, as desired. ]

7.2. Proof of Theorem 1.2. The theorem deals with the iterative limit N — oo, § — oo.
The latter limit is computed in Theorem 2.2, it is a Gaussian process and we use the result of
Lemma 7.4 for its covariance. It remains to send N — oo in (7.12), i.e. to compute the limit

(7.17) lim E[Nl/?’cﬁﬂ,i(l + 2tN*1/3)g}¥+1,j(1 +2sN-V3)] =

. s QN ( N+1fz')QS\T[ﬂ)( N+1*j) (1+ oN—1/3 min(¢, s))m+1
lim 2N E ‘ —1/31\m/2 —1/3gym/2"
N—oo — N+1)<QN ’QN > (m+1)(1+2N-3¢t)m/2(1 4 2N—1/3s)
We use Theorem 6.1 to compute the asymptotic behavior of Q ( Ntl- %) and Q ( %H_j ),

transforming (7.17) into

. im _ .
N—oo o Ai’(ai)Aj’(aj) (m + 1)(1 + 2N—1/3t)m/2(1 + 2N_1/3s)m/2
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_m_

The terms in the last sum rapidly decay as 7

the N — oo asymptotic approximation

— +400. Hence, denoting y = ﬁ and using

(1+2N~Y3 min(t,s))™*!
(m+1)(1 + 2N-1/3¢)ym/2(1 4+ 2N —1/35)m/2

1
~ N~Y3= exp (2y min(t, s) — yt — ys)
Yy

el
=N 1/35 exp(—ylt — s|),

(7.18) becomes a Riemann sum approximating as N — oo the integral

> Ai(a; +y)Ai(a; +y) dy
2 —ylt — s|)—
/0 All(aZ)All(aJ) exp( y‘ S|) y )

thus, matching (1.4) and finishing the proof.

8. APPENDIX: STEEPEST DESCENT ANALYSIS

Proof of Theorem 2.9. Rescaling and shifing the variables y;, we can (and will) assume without
loss of generality that uy =0 and oy = 1.
We use the contour integral representation of the derivative to write

N\' 1 [Py(z+v)
8.1 P, = C— P ———d
where the integral goes over a positively oriented loop enclosing 0. We further set
o
VUN

Our aim is to show that up to certain factors, which have no zeros, Pk(\/z—ﬁ) becomes the degree

k Hermite polynomial as N — oo. By the Hurwitz theorem, this would imply the desired
convergence of zeros.
Using (8.1) and adopting the notation ~ to indicate an equality up to factors independent of

xz, we have
N T
x —Yit+t 75\ dz
P|— |~ 1 .
‘ <¢N> féE( T > A

Note that |y;|/v N — 0 uniformly in i as N — oo due to Assumption 2.4. Hence, we can change

the variable z = —Vuiv and use the Taylor series expansion In(1 + ¢q) = ¢ — % + O(q?) to get
T N w x dw
Pol—=]~¢exp|>d (14— (-vi+—))| 57
k(\/»l\/) jg pLZl < VN < Y \/TV>>] whkt!

= fgexp [f: <\/HJJV . <—yi + \/ZCN>> - % 'N %(—yz‘)z - ;g: ’w;m;

=1

. w xi -+1§N:O((— )?) +o(1) _dw
2 NVN i:1yz NV N Yi wktl’

By Assumption 2.4 and our choices of uy and oy
N N

N
1 1 K3
E i =0, *E D =on =1, 75 2= A = o(1).

i=1
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Hence, we conclude that after factoring out the x-independent constants Pk(ﬁ) converges
(uniformly over z belonging to a compact subsets of the complex plane) to

k! w2] dw

— pexp|lwr — — | ——
27 J p! 2 | whtl”

which is a known contour integral representation for the Hermite polynomial Hy(x), see [KLS,
(9.15.10)]. O

Proof of Theorem 2.14. Since we deal only with roots of the polynomials, but not with their
values, we can and will omit various multiplicative constants. We would like to investigate the
zeros of the function Py(x+ %X) of a complex variable y as N — oco. Using the contour integral
representation of the derivative, we have

Pn(z+ )
1 N
Pr(z + §xx) ~ j{ (z— %X)N—k—i-ldz’

where the integration contour encloses the unique pole of the integrand at z = %X- We would
like to apply the steepest descent method to the last integral. For that we write the integrand
as

(8.2) exp(NG(2) - (1~ %)_N”H ,
where
G(z) = %ID(PN(2+J})> - Wlnz.

The second factor in (8.2) converges as N — oo, and we are led to study the first oscillating
factor. The steepest descent method suggests to deform the contours of integration so that they
pass through the critical points of G(z). Thus, we arrive at the equation G’(z) = 0, which
is (2.17). We deform the contours to pass through its complex critical points z. and Z.. The
contour itself is then the union of curves Im G(z) = const along which RG(z) has maxima at
z = 2. and z = Z.. The result is that the dominating contribution to the integral is given by
small neighborhoods of these critical points. Near the critical point z. we have

G//éZC) (z — ZC)2 +o((z — 20)2)-

Note that G”(z.) is non-zero, since its vanishing would mean a double critical point for G(z),

which is impossible, as the argument of Lemma 2.13 explains'®. Hence, making a change of

variable z = z, + ————w, the integral near z, becomes a Gaussian integral and evaluates

VN /G”(zc)

explicitly as N — oo to

G(2) = G(z) +

1 27
I el NG .
\/N G,/(ZC) eXp( (ZC)) eXp (
where the last factor arose from the limit of the second factor in (8.2). In principle, one should
be careful in choosing the branch of \/G"(z.) in (8.3), but the final asymptotic theorem is not
sensitive to this aspect and we will not detail it. Similarly, the contribution of the neighborhood
of z; is

(8.3) w . X> ’

N Ze

(8.4)

-exp(NG(%)) - exp (AH"H : X) :

2
G"(z) N Ze

19We also would like G"(z.) to remain bounded away from 0 as N — oo, which follows from its convergence
to a limiting value under Assumption 2.6.
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Note that G(Z) = G(z). Hence, we conclude that

(8.5) Py(z+ +x) ~ Glll(z)exp(iNIm G(zc)) - exp <N_]<;+1 . i) (1+7r1(x))
1 . N-k+1 x
+ m exp(—lNIm G(zc)) - exp <N . Zc> (1 +72(x)),

where ~ hides xy—independent factors and r1(x), r2(x) are complex remainders, which tend to 0
as N — oo (uniformly over y belonging to compact sets). By the Hurwitz’s theorem (or by the
Rouche’s theorem) zeros of a uniformly convergent sequence of holomorphic functions converge
to those of the limiting function. Applying this statement to Py(z + %X) as a function of y
(after multiplication by a proper constant to get the right-hand side of (8.5), and noting that
the exponent iNIm G(z.) in exp (iNIm G(zc)) can be made bounded by using 27i periodicity of
exp(-)), we conclude that the zeros of Py(z + +) as N — oo are the same as those of
N—-k+1 x N—-Fk+1 X>

(8.6) exp(iNImG(z.)) - exp <N z) + exp(—iNIm G(z.)) - exp < N =

For fixed ratio N_TI“H

the latter zeros form a lattice on the real line with step

wn (Nokt1 1\
-7 N Ze '

On the other hand, if we increase k by 1, then the change in is negligible, however, the
definition of G changes: exp(NG(z)) is multiplied by z. We can still use the same critical point
zc in the asymptotic computation and only change NG(z.) in (8.6) by adding a new term In(z.).
We conclude that k& — k 4 1 results in the shift of the lattice of zeros to the left by

N—k+1
N

1 1
== * 7:[ 1 C == D c)- D
v=1u m In(z.) = u- —arg(z.)

Proof of Theorem 2.17. We follow the same approach as in Theorem 2.14. The only difference
is that now we have a double critical point z. on the real line, instead of a pair of complex
conjugate critical points. Our first task is to identify the location of this point. Here we rely on
lemma, which we prove a bit later.

Lemma 8.1. Under assumptions of Theorem 2.17, the (unique) double critical point z. of (2.17)
satisfies z. > yny — x > 0, and moreover the difference z. — (yn — ) stays bounded away from 0
as N — oo. The third derivative G (z.) is positive and stays bounded away from 0 and oo as
N — o0.

Next, we write:

X —N+k—1
(8.7) Po(z + hx) ~ ?{exp(zvc;(z)) (1- o552 dz,
where 1 N k41
—k+
G(2) = yIn(Pr(z +2) - —F— Iz

We deform the integration contour to pass through z. and the integral becomes dominated by
a small neighborhood of this point?°. In this neighborhood we have:

ek ( Zc)

G(z) = G(z.) + (z — 2% 4+ o(z — 2.)%.

20We omit a standard justification of this fact.



UNIVERSAL OBJECTS OF THE INFINITE BETA RANDOM MATRIX THEORY 53

We make a change of variable
z=Z:.+ N3,
We need to find the asymptotic expansion of the second factor in the integrand of (8.7):

( X )—N+k—1 _ < X >—N+k—1 | ((N2/3z _ X)(N2/3zc)> —N+k—1

1——2 1—
N2/3; N2/3,, (N2/32. — x)(N2/3z)

—N4k—1
o o NI (e N B - N 2B ) )
N2/3z, (2ze — N=2/3x) (2 + N~1/3w)

e X ~N+k-1 - N-1yw —N+k—1
N N2/3z, 22+ N-13wz, — N=2/32, — N~1yw )

As N — oo, the first factor is a function of (finite) x, which has no zeros and therefore can be
ignored for our computations. The second factor asymptotically becomes
N—-k+1 xw
oo (-5 )
We conclude that up to factors, which have no zeros (as functions of ),

G" (z) N—-k+1 xw
1 c) 3
(8.8) Py(z + mx) ~ /eXP < s VTN ) dw

C

We have some freedom in choosing the contour of integration, as long as it extends to infinity

in both directions in such a way that the integrand decays. Our choice is to integrate over the

unions of two rays arg(w) = +%, which gives real negative values for w? (recall that G"(z.) > 0).
We now recall the contour integral representation of the Airy function:

(8.9) Ai(e) = % / exp (“;’3 _ gw) b,

where the integration contour is the same as in (8.8). Changing the integration variable in (8.8)
by
5 3
(o) ®
we conclude that

~3 1/3 ~
1 w 2 N—-kE+1 xw) , _
Pp(x + N2/3X) ~ /eXp <3 - (G”’(ZC)> N ) 762 dw

, 2 \"*N-k+1 1
NAI(”(GW@) Nooz) "

Proof of Lemma 8.1. Note that roots of a polynomial smoothly depend on the coefficients of
this polynomial as long as roots do not merge together. We use this observation to deform from
the = +o00 case down to the first # when a double root of (2.17) arises. Recall from Lemma
2.13 that (2.17) has N roots (with multiplicity). When z is large positive, we can pin down all
these roots on the real line: following the sign changes of (2.19), we locate N — 1 roots inside
segments (y;+1 — z,y; — ), 1 < i < N, and another root inside the ray (0, +o00). This remains
true as long as « > yy. Let us investigate what happens when z becomes slightly smaller, i.e.
for x = yny —e. We claim that we now have two distinct roots on the segment (yy — z, +00).
Indeed, the function in the left-hand side of (2.19) is positive at z = ynx —x+0, becomes negative

for slightly larger z (because of the contribution of —% . %; in this part the lower bound on
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the spacings yn+1—; — ¥; in Assumption 2.7 becomes important), and then it is again positive
for very large z — +00. When we further decrease x, all other roots continue to belong to the
segments (y;+1 —z,y; — ) and, therefore, the first appearance of a double root is when the above
two roots on (yy — x, +00) merge. Hence, z. > yy — x > 0.

Now set 0(N) = z. — (yny — x). Our aim is to show that §(IV) is bounded away from 0 as
N — oo. We argue by contradiction and assume that 6(N) can become arbitrary small, i.e.
there is a growing sequence N, such that lim,, ~ §(V,,) = 0. Then one can find a constant
D > 0 such that yy,, — 2 > D for all m. (Indeed, otherwise, passing to a further subsequence,
if necessary, we would get lim,, o (yn,, — ) = 0, and consequently the left-hand side of (2.19)

would be negatlve at z. due to dominating contribution of — k“ 1.) But then we can upper
bound G”(z.) as
N
N-k+1 1
1
(8.10) G"(z.) = g 7 + 2
N
1 1 N-k+11
<-—= + =.
N; (O(N) +yn — vi)? N D?

Since by Assumption 2.7, the empirical measure of {y;} converges to a measure p supported on
[A, B], yn converges to B, and

B
/A mﬂ(d@:ﬂ%oa

the inequality (8.10) implies that G”(z.) goes to —oo as N — oo, which contradicts G”(z.) = 0.
Hence, our assumption was wrong and 6(N) is indeed bounded away from 0.

Next, G"'(z.) is non-negative, since G’'(z) is a non-negative function on 2 € (yy — x, +00)
with a minimum G'(z.) = 0. G (,zc) is bounded away from oo immediately from the formula

1 N-k+1 1
TS g kel
N =1 + YN — yz) N Ze

and the facts that 6(N) is bounded away from 0 and z. > §(V).
It remains to show that G"'(z.) is bounded away from 0. Indeed, otherwise, passing to a

subsequence, if necessary, we would see a triple root at z. for the function G(z). But (by the
Hurwitz or by the Rouchet’s theorem) this is impossible, since for finite N we have shown that

G(z) has only a double root at z. and no other roots in a neighborhood. O
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