ELSEVIER

Image and Visual Computing
journal homepage: https://wuw.sciencedirect.com/journal/image-and-vision-computing

A Novel Approach for Bias Mitigation of Gender Classification Algorithms using

Consistency Regularization

Anoop Krishnan?, Ajita Rattani*®**

“School Of Computing, Wichita State University, Kansas, USA

bDept. of Computer Science and Engineering, Univ. of North Texas-Denton, Texas, USA

ABSTRACT

Published research has confirmed the bias of automated face-based gender classification algorithms
across gender-racial groups. Specifically, unequal accuracy rates were obtained for women and dark-
-skinned people for face-based automated gender classification algorithms. To mitigate the bias of
gender classification and other facial-analysis-based algorithms in general, the vision community has
proposed several techniques. However, most of the existing bias mitigation techniques suffer from a
lack of generalizability, need a demographically-annotated training set, are application-specific, and
often offer a trade-off between fairness and classification accuracy. This means that fairness is often
obtained at the cost of a reduction in the classification accuracy of the best-performing demographic
sub-group. In this paper, we propose a novel bias mitigation technique that leverages the power of
semantic preserving augmentations at the image- and feature-level in a self-consistency setting for
the downstream gender classification task. Thorough experimental validation on gender-annotated fa-
cial image datasets confirms the efficacy of our bias mitigation technique in improving overall gender
classification accuracy as well as reducing bias across all gender-racial groups over state-of-the-art
bias mitigation techniques. Specifically, our proposed technique obtained a reduction in the bias by
an average of 30% over existing bias mitigation techniques as well as an improvement in the over-
all classification accuracy of about 5% over the baseline gender classifier. Therefore, resulting in
state-of-the-art generalization performance in the intra- and cross-dataset evaluations. Additionally,
our proposed technique operates in the absence of demographic labels and is application agnostic,
compared to most of the existing bias mitigation techniques.
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1. Introduction

As Artificial Intelligence (Al) systems are increasingly used
for decision-making in high-stakes scenarios (Yag and Altan,
2022; Ozcelik and Altan, 2023; Kaur et al., 2023), it is vital that
they do not exhibit discrimination. However, recent research
has raised several fairness concerns, with researchers find-
ing significant accuracy disparities (bias) across demographic
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groups. Fairness is the absence of any prejudice or favoritism
toward an individual or a group based on their inherent or ac-
quired characteristics. Thus, an unfair (biased) algorithm is one
whose decisions are skewed toward a particular group of peo-
ple. The facial analysis-based algorithms are at the center stage
of this discussion (Krishnan et al., 2020; Albiero et al., 2020).
The automated facial analysis-based algorithms include face
detection, face recognition, and visual attribute classification
(such as gender-, ethnicity-, age-classification, and BMI pre-
diction), and other applications such as deepfake detection (Sid-
diqui et al., 2022; Nadimpalli and Rattani, 2022; Levi and Has-
sner, 2015; Almadan et al., 2020; Zhang et al., 2017; Masood
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Fig. 1: Illustration of our proposed consistency regularization technique. This
figure depicts the proposed method of enforcing consistency using augmented
views generated using image-level perturbations and a feature mapping module.
The feature mapping module maps the feature vector of the input image to
the feature vector of one of its multi-views controlled by pitch, yaw, roll, and
field-of-view (fov). This is all possible because these features contain similar
semantic information.

et al., 2018; Salim et al., 2021; Kiruthika and Masilamani,
2021). Most of the existing studies related to examining the
fairness of facial analysis-based algorithms suggested perfor-
mance differences for people of color and females (Grother
et al., 2011; Klare et al., 2012; Best-Rowden and Jain, 2018;
Abdurrahim et al., 2018; Raji and Buolamwini, 2019; Vera-
Rodriguez et al., 2019; Albiero et al., 2020; Krishnan et al.,
2020; Muthukumar, 2019). These facial-analysis based al-
gorithms are deployed for applications ranging from surveil-
lance, border-control, identity recognition, media authenticity,
and consumer products. Thus, bias in these systems is a sig-
nificant social problem that needs immediate attention for the
large-scale deployment of fair and trustworthy facial-analysis-
based algorithms across demographics.

Among various facial image-based visual attributes such
as gender, ethnicity, and age, gender is an essential demo-
graphic attribute (Ricanek and Tesafaye, 2006; Levi and Has-
sner, 2015). Automated gender classification has sparked a
lot of interest in a variety of applications including image re-
trieval, surveillance, and human-computer interaction. Fur-
ther, gender has been regarded as a soft biometric attribute that
has been fused with primary biometric modalities such as face
and ocular, for improving their recognition accuracy. An auto-
mated face-based gender classifier has been made available in
commercial SDKs from tech giants such as Amazon Rekog-
nition (Rekognition, 2022), DeepVision Al (Vision, 2022),
FaceX (FaceX, 2022), and Microsoft Azure Cognitive Services
(Services, 2022).

Over the last few years, published research has questioned
the fairness of these face-based automated gender classifica-
tion algorithms across gender and ethnicity (Buolamwini and
Gebru, 2018; Muthukumar, 2019; Karkkdinen and Joo, 2019).
Specifically, existing gender classification studies obtain un-
equal accuracy rates for women and dark-skinned people such
as African-Americans. Since the majority of the research on
this subject adheres to the idea that “gender” is binary, we also
stick to it for the sake of fair comparison. We do not intend
to belittle people who disagree with this view in the course of
conducting this study. Also, in this study, the gender labels
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were obtained from the gender-annotated publicly available fa-
cial datasets.

To mitigate the bias of gender classification and other facial
analysis-based algorithms, the vision community has developed
several solutions. These solutions are based on regularization
strategies (Kamishima et al., 2012), attention mechanism (Ma-
jumdar et al., 2021), adversarial debiasing (Zhang et al., 2018;
Chuang and Mroueh, 2021), over-sampling the minority class
using Generative Adversarial Networks (GANs) (Ramaswamy
etal., 2021), multi-task classification methods (Das et al., 2018)
and network pruning (Lin et al., 2022).

However, most of these bias mitigation techniques need de-
mographically annotated training sets offer poor generalizabil-
ity, and are computationally expensive. Further, the fairness
techniques based on disentangling the features related to pro-
tected attributes from those related to the main classification
task (Majumdar et al., 2021; Das et al., 2018) may result in
the removal of the features important for the main classifica-
tion task. Further, most of the proposed debiasing techniques
are tailored-made for specific use cases and these techniques
require the presence of demographic attributes (Zhang et al.,
2018; Ramaswamy et al., 2021; Lin et al., 2022; Majumdar
et al., 2021; Das et al., 2018). Also, often the aforementioned
mitigation strategies offer a trade-off (Zhang et al., 2018) be-
tween fairness and classification accuracy. In other words,
overall performance is decreased so as to improve the perfor-
mance of disadvantaged groups where the algorithm would oth-
erwise be less accurate. A recent study also suggests that exist-
ing bias mitigation approaches for facial analysis-based algo-
rithms may improve fairness by degrading the performance of
the classifier across all sub-groups (with increased degradation
to the best-performing sub-groups). This is called as pareto-
inefficiency (Zietlow et al., 2022). An application-agnostic bias
mitigation strategy that enhances fairness as well as perfor-
mance across all inter-sectional subgroups (including the best-
performing sub-group), in the absence of demographic labels is
still an open issue.

We conjecture that one way to improve fairness without de-
creasing the performance across sub-groups is by improving the
feature representation for each sub-group. It is well-known,
and experimentally verified (Li and Vasconcelos, 2019) that
the enhanced feature representation improves the generalizabil-
ity of the classifier and decreases the variance of the worst-off
group(s) and hence the bias. Based on this notion, this paper
proposes a bias mitigation solution for a gender classifier that
leverages the power of augmented views at the image- and fea-
ture level using a consistency-based regularization setting dur-
ing the training stage for enhanced feature representation for
each sub-group. This results in the reduction of the variance of
the worst-off subgroup(s), and hence the bias. With respect to
significance over existing bias mitigation techniques, our pro-
posed bias mitigation strategy has the dual advantage of en-
hancing the classifier’s performance as well as fairness across
all inter-sectional subgroups, as demonstrated through exten-
sive experimental evaluations. Further, our proposed bias miti-
gation approach can be applied in the absence of demographic
labels to any downstream vision-based classification task, not



just gender classification, exhibits faster convergence, and ob-
tains high generalizability in the cross-dataset scenario. Over-
all, the proposed approach presents a promising direction in ad-
vancing representation learning techniques, offering improved
performance as well as fairness. Figure 1 depicts our proposed
approach to enforcing consistency using augmented views at
the image level using image augmentations and at the feature
level using a trained feature mapping module, to transform the
feature vector of the original sample to the feature vector of one
of its multi-views by varying pitch, roll, yaw, and field-of-view
using a pre-trained StyleNeRF model (Gu et al., 2022). Be-
cause these feature vectors contained similar semantic informa-
tion, which in our case is gender information, enforcing consis-
tency regularization was possible which improved the feature
representation of each subgroup. The encoder in a convolu-
tional neural network is composed of convolutional layers with
an activation function after each layer.

To this aim, we evaluate and address the following research
questions (RQs) as follows:

e RQ1: “How effective are augmented views of the train-
ing samples in mitigating bias?”” In other words, could
augmented views applied at the image or feature level ob-
tain a considerable reduction in bias by reducing the vari-
ance of the sub-groups through enhanced feature represen-
tation?

e RQ2: “Could the proposed technique obtain fairness
as well as enhanced performance across several inter-
sectional subgroups (including the best-performing
sub-group)?”’

e RQ3: “Can the combination of image-level and
feature-level augmentations obtain any advantage over
either of them individually?”’

1.1. Our Contribution
In summary, the main contributions of this work are as fol-
lows:

e A bias mitigation strategy based on augmented views
of training samples at the image level in a consistency-
based regularization setting. Image augmentations such
as colorjitter, enhancing contrast and brightness, ran-
dom erasing (Zhong et al., 2020), and random augmenta-
tion (Cubuk et al., 2020) were systematically chosen based
on the ablation study.

o Apart from image-level augmentations, feature-level aug-
mentations were used and obtained from a feature trans-
form model powered by the neural rendering technique
called StyleNeRF (Gu et al., 2022). It combines the neu-
ral radiance fields algorithm with style transfer techniques
to create photo-realistic images and consistent 3D-aware
multi-views.

o The use of the combination of both image-level and
feature-level semantic preserving augmentations for gen-
erating diverse views of the original training samples in
a consistency-based regularization setting for learning en-
hanced and robust feature representation.

3

o Extensive evaluation of the proposed bias mitigation strat-
egy in the intra- and cross-dataset evaluation scenario. To
this front, FairFace (Karkkainen and Joo, 2021) for train-
ing, and FairFace, DiveFace (Morales et al., 2021), and
UTKFace (Zhang et al., 2017) test sets were used for intra-
and cross-dataset evaluations.

o Cross-comparison with the published studies on bias miti-
gation techniques proposed for gender classification tasks
and evaluated on the same datasets.

This paper is organized as follows: The relevant related work
on examining and mitigating bias on face-based gender classi-
fiers is discussed in Section 2. Section 3 discusses the proposed
bias mitigation strategy. Section 4 discusses the datasets used,
implementation details, and the evaluation metrics. Results are
discussed in Sections 5, and further analysis and discussion of
the obtained results are discussed in Section 6. ANOVA-based
hypothesis testing for the statistical significance of the obtained
results is detailed in Section 7. Section 8 discusses the con-
ducted ablation study, and the key findings are reported in Sec-
tion 9. Finally, the concluding remarks are discussed in Sec-
tion 10.

2. Prior Work

In this section, we will discuss the related work on investi-
gating and mitigating bias in facial analysis based on gender
classification algorithms.

On Examining Bias: The following foundational work
has identified the systematic failings of gender classifica-
tion algorithms on particular racial and gender demograph-
ics (Buolamwini and Gebru, 2018; Raji and Buolamwini, 2019;
Muthukumar, 2019; Balakrishnan et al., 2020; Krishnan et al.,
2020).

Specifically, Buolamwini and Gebru (Buolamwini and
Gebru, 2018) and Raji and Buolamwini (Raji and Buolamwini,
2019) evaluated the fairness of five COTS gender classifiers
and suggested unequal accuracy for dark-skinned people and
women on the Pilot Parliaments Benchmark (PPB) dataset.
Muthukumar (Muthukumar, 2019) and Balakrishnan et al. (Bal-
akrishnan et al., 2020) suggested that age, hair length, and
facial hair be the likely cause of the performance differential
for women and dark-skinned people when evaluated on PPB
dataset. Krishnan et al. (Krishnan et al., 2020) evaluated the
efficacy of different CNN architectures (ResNet-50, Inception-
V4, VGG-16/19, and VGGFace) in gender classification across
gender-racial groups when evaluated on the UTKFace and
FairFace datasets, respectively. The authors suggested that ar-
chitectural differences impact unequal accuracy rates. The high
morphological similarity between black males and females is
attributed to the high misclassification error rate of the latter.

On Mitigating Bias: Multiple approaches have been proposed
to mitigate the bias of gender classification algorithms. Teru
and Chakraborty (Teru and Chakraborty, 2019) proposed an
adversarially learned encoder for obtaining ethnicity invariant



representation for gender classification when evaluated on the
UTKFace dataset. Das et al. (Das et al., 2018) proposed a
Multi-Task Convolution Neural Network (MTCNN) to jointly
classify gender, age, and ethnicity, as well as to minimize the
impact of protected attributes. The proposed model was evalu-
ated on UTKFace and BEFA datasets. Majumdar et al. (Majum-
dar et al., 2021) proposed the attention-aware debiasing method
that uses an attention module focusing on the features important
for the main classification task while suppressing the features
related to the sensitive attributes. The experimental evaluation
was performed on UTKFace and Morph datasets.

Ramachandran and Rattani (Ramachandran and Rattani,
2022) and Ramaswamy et al. (Ramaswamy et al., 2021) pro-
posed methods based on generative views obtained using GAN-
based latent vector editing along with structured learning for
mitigating bias on gender classification. Lin et al. (Lin et al.,
2022) proposed a neural-network pruning technique that com-
putes the per-group importance of each model weight. It then
iteratively selects and prunes those weights with small impor-
tance values to reduce performance disparity. The effectiveness
of the proposed method is demonstrated on FairFace, UTK-
Face, and CelebA datasets. Park et al. (Park et al., 2022) pro-
posed Fair Supervised Contrastive Loss (FSCL) that enforces
the representations of the same class to be closer to each other
than that of different classes for fair representation learning.
The effectiveness of the proposed method was demonstrated on
CelebA and UTKFace datasets.

3. Proposed Approach

In this section, we will discuss the consistency-
regularization-based technique used to reduce the bias in
the facial image-based gender classification algorithm.

3.1. Consistency Regularization Basics

The main aim of consistency regularization is to train a
model that is invariant to various data perturbations (Tan et al.,
2022; Englesson and Azizpour, 2021; Saunshi et al., 2022).
This is done by enforcing the model to obtain consistent pre-
dictions for the training sample and its perturbed instances
generated using semantics-preserving augmentations. As the
consistency regularized model can learn a good feature rep-
resentation invariant to various perturbations, this method is
widely used in semi-supervised and self-supervised learning
techniques for harnessing unlabeled data (Nadimpalli et al.,
2021; Assran et al., 2023; Huang et al., 2023). Mathematically,
consistency regularization can be expressed as:

L) =l f0) = f(T@) I 6]

where L.(x) is the consistency loss (which is usually mean
square error), x is the original input data, f(x) is the feature rep-
resentation of x, and 7'(x) is a randomly perturbed version of x.
The consistency loss measures the distance between the feature
representation of x and 7'(x). By minimizing the consistency
loss, the model is encouraged to produce consistent feature rep-
resentations for both x and T'(x). Next, we will discuss how
we incorporated consistency regularization for learning better
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feature representation using both image- and feature-level aug-
mentations.

Let I denote the image sample used for training the model,
and f be the classification model, then f.;(/) denote the output
class probability vector after softmax operation and f.,(/) as
the feature vector from the f. Let I be the augmented view of /
generated using an augmentation. The aim of consistency reg-
ularization is to minimize the distance between the predictions
from these two images, i.e., (f.;;(), fds(f)) and the distance be-
tween the feature embeddings (ffeq: (1), ﬁéa,(f ).

Similarly, at the feature level, the feature embedding of
the original image sample / was transformed into the feature
embedding of one of its multi-views using a learned mapping
function. The new feature embedding obtained was denoted as
Jrew(D)- As these feature embeddings carry semantically similar
information, the distance between the feature embeddings of
Iie., frpa(I) and ];e;”(l) should be minimum. Therefore, the
aim of consistency regularization is to minimize the distance
between these feature embeddings.

Accordingly, for image-level perturbation, the consistency loss
is computed as:

Lossimgcans = disrance(fcls(l),fcls(i)) + disrance(f}eat(l)sﬁeat(j))

(2)
At feature-level perturbation, the loss is computed as:
LOSSfeulcons = diSl‘(lnC@(f_}'em(I),]?g”m(I)) 3)
The overall loss for the classification task is as:
TotalLoss = lclfloss +AX lconsistency (4)

where [.f105s be the classification 10ss, lconsisiency b€ the reg-
ularization loss, (when image-level perturbation was consid-
ered, lconsisiency = Equation 2, and for feature-level perturbation,
Leonsistency = Equation 3 and A is the weightage between the two
loss functions.)

3.2. Consistency Regularization for Bias Mitigation using Aug-
mented Views of Facial Images

In this section, we will discuss the consistency-regularization
enforced through image level augmentations during the training
stage.

Following the existing studies (Buolamwini and Gebru,
2018; Raji and Buolamwini, 2019; Muthukumar, 2019; Balakr-
ishnan et al., 2020) on unequal accuracy rates for facial analy-
sis based gender classification algorithms across demographic
variations. The unequal accuracy rates are attributed to the
under-representation of those specific sub-groups even when
the training set is balanced. The under-representation could
be due to poor quality training data attributed to environmental
conditions such as low lighting conditions, acquisition set-ups
such as sensor quality, skin-tone variations, and other factors
such as make-up and occlusions. Worth-mentioning in our pre-
vious study (Krishnan et al., 2020), we observed that the high
similarity in facial morphology between African-American fe-
males and males contributes to performance differential of gen-
der classification algorithms across gender-ethnicity groups.



Therefore, apart from the aforementioned factors, facial mor-
phological variations across gender and ethnicity could also
contribute to unequal accuracy rates.
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Fig. 2: Box plots of the intensity values of brightness for facial images of fe-
males from the FairFace training set. It can be seen that the images of Black
females have comparatively low brightness. The average luminance of the im-
age was perceived as its brightness.

To account for these variations in the training data across
demographics (across gender and ethnicity), an instance of
each training facial image was perturbed to generate augmented
views with altered hue, saturation, brightness, contrast, and oc-
clusion generated using randomly erased patches.

These augmentations were selected after a thorough in-
vestigation of various semantics-preserving image augmenta-
tions (Cubuk et al., 2020). As per our observation from Fig-
ure 2, the variation in brightness was significant across facial
images from different demographic subgroups such as Black fe-
males and males, and also similar observation was noticed for
contrast value as shown in Figure 3. Therefore, the augmenta-
tions with varying brightness and contrast could enhance the ro-
bustness of the model (classifier) to these variations and hence
reduce the bias across gender and ethnicity. Further, changing

Fig. 3: Example sample images with poor contrast from the FairFace testing
set. The contrast further degrades for darker skin-tone subjects.

the hue, and saturation of the image results in a different skin
color effect, Thus augmentations with varying hue and satura-
tion could enhance the robustness of the model to varying skin
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tones across ethnicities. Occlusion due to random erasing could
help the model learn other cues in the facial image apart from
facial morphology for the downstream classification task. Thus,
all the aforementioned augmentations are intended to render the
model invariant to variation in contrast, brightness, skin tone,
and facial morphology across demographic sub-groups.

Figure 4 shows examples of image samples obtained after
applying color-jitter and random erasing-based augmentations.
These augmentations were applied to training images. The orig-
inal image along with the augmentations was used during the
training stage of the model to enforce consistency regulariza-
tion for the gender classifier using a combination of the loss
functions as given in equation 4. No perturbations were applied
to the test samples during the evaluation stage.

oe o

Image

After applying
ColoJiT transform

After applying
Random Erase

-
-
Fig. 4: Example samples from the FairFace training set along with their aug-

mented views obtained after applying ColorJiT Transform and Random Erase
operations

.[Best viewed in color.]

3.3. Consistency Regularization for Bias Mitigation using Per-
turbations on the Feature Map

In computer vision and computer graphics, photo-realistic
free-view image synthesis of real-world scenes has long been
a challenge. To create high-quality images, generative models
can be trained on a huge number of unstructured images but
the majority of GAN models work in a 2D space. As a result,
GANSs are unable to synthesize images of the same 3D scene
with multi-view consistency due to their lack of 3D knowledge
of the training images. To tackle this lack of multiview knowl-
edge, a recent technique called StyleNeRF (Gu et al., 2022)
was introduced for neural rendering that combines two power-
ful deep learning models, NeRF (Mildenhall et al., 2022) and
StyleGAN (Karras et al., 2019), to generate photorealistic im-
ages of 3D scenes with rich textures and lighting effects.

NeRF (Neural Radiance Fields) (Mildenhall et al., 2022) is
a method for modeling 3D scenes as a continuous function us-
ing a deep neural network. The network maps a 3D point and
a camera viewpoint to the color and opacity of the point. By
integrating the volume of the scene, NeRF can render novel
views of the scene from any viewpoint with high quality and de-
tail. Meanwhile, StyleGAN (Karras et al., 2019) is a generative
model that can synthesize high-quality images of diverse ob-
jects and scenes by learning to model the distribution of images
in a low-dimensional latent space. StyleGAN uses a progres-
sive growing architecture and a style-based generator network
to control the appearance of the generated images in terms of
features such as color, texture, and shape. In StyleNeRF, the



idea is to use StyleGAN to control the appearance of the ren-
dered 3D scene by conditioning the NeRF network on a latent
code that is generated by StyleGAN. Specifically, StyleNeRF
uses a hybrid network that combines a modified NeRF network
with a StyleGAN generator network. The NeRF network takes
as input a 3D point in space and a camera viewpoint and out-
puts the color and opacity of the point. The StyleGAN genera-
tor takes as input a latent code and outputs the style vectors that
control the appearance of the rendered scene.
Mathematically, StyleNeRF can be expressed as:

N
10 =300 Ti®) - C;
i=1

where /(x) is the color of a pixel at 3D point x in the rendered
image, N is the number of views used to capture the scene,
oi(x) is the density of view i at 3D point X, T;(x) is the trans-
mittance of view i at 3D point x, and C; is the style of view
i. The density and transmittance are computed using NeRF,
which learns a function that maps a 3D point to a density and
transmittance value based on the training images. The style C;
is obtained by applying style transfer to the training images of
view i. StyleNeRF trains a network that takes as input a 3D
point x and a view index i, and outputs the color I(x) of the
pixel in the image rendered from view i. The network is trained
using a combination of supervised and unsupervised losses to
ensure that the rendered images match the training images in
terms of content and style.

Fig. 5: High-resolution sample and its multi-views by varying explicit camera
controls namely pitch, roll, yaw, and field of view on FFHQ dataset (Karras
et al., 2021) of size 512 X 512 generated using S tyleNeRF model.

Training the Feature Transform MLP: We aimed to improve
the feature representation of the image sample at feature space.
One way to achieve it with a given dataset was by achieving
random transformations or augmentations on the image level,
which we discussed before. Another way is to generate differ-
ent views of each sample, which comes with a lot of challenges,
like computational complexity, and mode collapse in GANS,
and in StyleNeRF, high computational requirements and sensi-
tivity to changes in the input data, which can result in artifacts
or inconsistencies in the output images. This can make it diffi-
cult to generate high-quality images that are consistent with the
desired style or appearance.

To overcome these limitations and to leverage the effective-
ness of the multi-view consistency of StyleNeRF, we trained
a Multi-layer Perceptron (MLP), which we call a feature trans-
form model to generate the difference in the feature embeddings
from the multi-views generated by varying yaw, pitch, roll, and
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fov. We used the S tyleNeRF model pre-trained on FFHQ 5122
dataset (Karras et al., 2021) in this study. To achieve it, we ex-
tracted the feature of the StyleNeRF generated image (Img 1
in the Figure 6) along with these four variables, namely yaw,
pitch, roll, and fov. The value of yaw and pitch ranges between
—2.51t0 2.5, whereas roll ranges between —1 to 1 and fov ranges
between 9 to 15. The values of these four parameters were
chosen randomly while generating images and then fed to the
feature transform model along with the aforementioned feature
vector of the generated image as shown in Figure 6. Further,
the feature of its StyleNeRF generated multi-view (Img 2 in
Figure 6) was also extracted. The features were generated us-
ing pre-trained gender classifiers (Baseline models) (denoted as
E in Figure 6) as shown in Figure 6. Thus, the feature vectors
(obtained from the pre-trained gender classifier) of the gener-
ated image and its multi-view, obtained from the StyleNeRF,
were used to train a feature transform MLP.

Let d be the size of the feature of the generated image (feat),
along with the four variables (yaw, pitch, roll, and field of view
(fov)) and d as the size of the feature of the newly generated
image (fear) with the given viewing angles applied.

Then feat along with yaw, pitch, roll, and fov is input to the
MLP, which makes the size of input as d + 4, and its generated
multi-view feature vector (feat) of size d as the target. Now
it became a supervised learning problem where we could train
the feature transform model (MLP), which can approximate this
feature mapping from fear and feat.

To train the feature transform model (MLP) (F in Figure 6),
we generated 500,000 pair which included the feature vector
and its transformed feature vector with a dimension of size
1024. On concatenating the other four variables, namely pitch,
roll, fov, and yaw, the size of the input to the feature transform
MLP became 1028 and 1024 was the size of the target. We em-
ployed an empirically chosen three-layer MLP with GELU as
non-linear activation applied after the input and the one hidden
layer. The model was trained using a batch size of 512 using
RTX8000 GPU. The training was performed using an Adam op-
timizer using cosine annealing with a warm restart for a learn-
ing rate schedule with an initial learning rate of 3 x 10™* along
with mixed precision and early stopping mechanism. The mean
square error was used as the loss function.

In this work, we trained the models individually with the
image level consistency regularization using image augmenta-
tion, and with the feature level consistency regularization us-
ing feature transform which was powered by the multi-views
generated by the S tyleNeRF which were controlled by four pa-
rameters namely, pitch, roll, yaw, and field of view as shown
in the Figure 6. This would give an idea of how the fea-
ture representation enhanced when image-level and feature-
level transformations were applied individually. Then we com-
bined the power of image-level augmentation and feature-level
augmentation by generating image-level transformations and
feature-level transformations together to understand whether
the combined effect can improve the feature representation fur-
ther by maximizing the diversity in the data manifold. We also
experimented by combining image-level augmentations with
StyleNeRF-generated image-level multi-views of the original
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Fig. 6: Training and use case depiction of the Feature Transform framework. E:
Encoder; F: Feature Transform MLP. The red line indicates the image flow gen-
erated by the StyleNeRF. The blue line indicates the training flow of Feature
Transform MLP. The green line indicates the use case scenario of the Feature
Transform MLP. The red line indicates the data flow for training the Feature
Transform MLP. = : The only trainable module.

image. However, the results were poor due to the difference in
the data distribution of StyleNeRF-generated multi-view im-
ages and those obtained by image-level augmentations.

3.4. Stabilizing the model training process with spectral weight
normalization.

One of the disadvantages of the consistency regularization
scheme could be the model may be able to generate the same
feature distribution for both the original and perturbed data dis-
tributions (Arjovsky and Bottou, 2017). Such a model may
overfit and lack information about the data distribution. This
motivates us to impose some kind of restriction on the model.

Therefore, on enforcing consistency regularization with aug-
mented views, in order to refrain the model from generating the
same feature vectors, we used a technique called spectral nor-
malization (Miyato et al., 2018), which is computationally light
and easy to incorporate into existing implementation. We incor-
porated it with the feature extraction and classification layer.
Spectral normalization is a technique that can help stabilize
the feature generation by enforcing Lipschitz continuity, which
limits the rate of change of the function. The spectral normal-
ization (SN) normalizes the spectral norm of the weight matrix
A so that it satisfies the Lipschitz constraint o(A) = 1, where
o (A) is the spectral norm of the matrix A. The spectral norm
of a matrix is the maximum singular value of the matrix, which
gives an upper bound on how much the matrix can stretch any
input vector. By constraining the spectral norm of the weight
matrices, spectral normalization can limit the Lipschitz con-
stant of the classifier, which can make the training process more
stable. Spectral normalization also has a regularization effect,
which can help prevent overfitting and improve generalization.
In summary, spectral normalization can stabilize the training by
enforcing Lipschitz continuity, limiting the rate of change of the
function, and enforcing regularization to prevent overfitting.

4. Experimental Setup

In this section, we will discuss the datasets used and the de-
tails of model training.

4.1. Dataset

We used a gender- and ethnicity-balanced fairface dataset for

training the gender classifier (Refer Table 1). The trained gen-
der classifiers (models) are tested on FairFace, UTKFace, and
DiveFace datasets. The images in these datasets vary across
age, gender, pose, lighting conditions, and expression. These
datasets are discussed below as follows:
FairFace: The Fairface dataset (Karkkainen and Joo, 2021)
consists of 108,501 images, with an emphasis on balanced
ethnicity composition in the dataset. The dataset is labeled
with the seven-ethnicity groups, namely White, Black, Indian,
East Asian, Southeast Asian, Middle East, and Latino Hispanic
across male and female and age groups ranging from 0-9,
10-19, 20-29, 30-39, 40-49 and 50+. The training portion of
the FairFace dataset consists of 47% females and 53% males.
Table 1 shows the training set distribution of this dataset.
Figure 7 shows a few sample images from the dataset.
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East Indian Latino
Asian Hispanic

Middle Southeast  White
Eastern Asian

Fig. 7: Sample images from the FairFace dataset (Karkkainen and Joo, 2021).

Table 1: Training Dataset Distribution of FairFace used for training all the mod-
els in this study.

Ethnicity Female Male Total
‘White 7826 (9%) 8701 (10%) 16527 (19%)
Black 6137 (7%) 6096 (7%) 12233 (14%)

East Asian 6141 (7%) 6146 (%) 12287 (14%)
Indian 5909 (7%) 6410 (7%) 12319 (14%)
Middle Eastern 2847 (3%) 6369 (8%) 9216 (11%)
Latino Hispanic 6715 (8%) 6652 (8%) 13367 (16%)
Southeast Asian 5183 (6%) 5612 (7%) 10795 (13%)
Total 40758 (47%) 45986 (53%) 86744 (100%)

UTKFace: The UTKFace dataset (Zhang et al., 2017) is a fa-
cial image dataset with a long age span (ranging from O to 116
years old). It contains over 20,000 face images annotated with
age, gender, and ethnicity, namely White, Black, Asian, In-
dian, and Others (which include Hispanic, Latino, and Middle
Eastern) with significant variations across pose, expression, il-
lumination, occlusion, and resolution. Due to the vagueness of
the “Other” category, we excluded it from this study. Figure 8
shows a few sample images from the UTKFace dataset.

DiveFace: The DiveFace dataset (Morales et al., 2021) is a fa-
cial image dataset and contains a total of 139,677 images. It
contains gender and ethnicity annotations equally distributed to
three ethnic groups (namely East Asian, Sub-Saharan and South
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Fig. 8: Sample images from the UTKFace dataset (Zhang et al., 2017).

Indian, and Caucasian). Figure 9 shows a few sample images
from the DiveFace dataset.

White Sub—Sahara : East
& South Asian Asian

Fig. 9: Sample images from the DiveFace dataset. (Morales et al., 2021)

4.2. Implementation Details

Model Training: Four different architectures pre-trained
on the ImageNet dataset, namely ResNetl18 (He et al., 2016),
DenseNet121 (Huang et al., 2017), EfficientNetv2 (Tan and Le,
2021), and Vision Transformer (Dosovitskiy et al., 2021) were
used for baseline gender classification. Images were input to the
Vision Transformer as a sequence of 32 x 32 fixed-size patches.
For the experiments, all images were resized to 2242

All the pre-trained weights were obtained from the Timm
repository by Ross Wightman (Wightman, 2019) where the
weights are already converted from JAX to PyTorch. To all
the baseline pretrained architectures, we added a dense layer of
size 1024 as a feature extraction layer followed by a final output
layer and fine-tuned them on the FairFace training set. Table 2
shows all the abbreviations used in this study.

e Baseline: The aforementioned models were fine-tuned on
the FairFace training set using the binary cross-entropy
loss as given below. We applied Random augmenta-
tion (Cubuk et al., 2020) to the training samples.

lpce = =(ylog(p) + (1 = y) log(1 - p)) ®)

where log is the natural log, y is the binary label (0 for
Female and 1 for Male) and p is the predicted probabil-
ity. Along with the binary cross-entropy loss, we included
a Dirichlet prior to the softmax output to further improve
the generalization (Sensoy et al., 2018). Incorporating a
Dirichlet prior to the softmax output means that we assume
that the class probabilities follow a Dirichlet distribution
with a fixed hyperparameter. This prior represents our be-
lief about the distribution of class probabilities before ob-
serving any data. When we train the model, we update our

Table 2: Abbreviations used in this study.

Abbreviation
CR Consistency Regularization
Consistency Regularization
with Image Augmentation
Consistency Regularization
with Feature Transform
Consistency Regularization with
Image Augmentation
and Feature Transform
Consistency Regularization
CR-Img Aug(SN)  with Image Augmentation regularized
with Spectral Normalization
Consistency Regularization

CR-Img Aug

CR-Feat Trans

CR-Img Aug+
Feat Trans

CR-Img Aug+ with Image Augmentation and

Feat Trans(SN) Feature Transform regularized
with Spectral Normalization

MLP Multi Layer Perceptron

DoB Degree of Bias

ViT Vision Transformer
t-distributed stochastic

-SNE neighbor embedding

prior belief based on the observed data using the maximum
likelihood estimation or Bayesian inference. By adding
a Dirichlet prior to the softmax output with binary cross-
entropy loss, we can encourage the model to learn class
probabilities that are close to our prior belief. This can be
particularly useful in situations where we have some prior
knowledge about the class probabilities or when we want
to regularize the model towards a particular distribution of
class probabilities.

The final classification loss as used in this study is given
by,
lclfloss = lpcg + /UOg P(P | a) (6)

here lpcp is the classification loss (Equation 5), p =
(p1, P2, - - -, Pk) 1s the vector of class probabilities obtained
by applying the softmax function to the model’s logits z.
a = (ay, @y, ...,ak) is the vector of hyperparameters that
determine the strength of the Dirichlet prior over the class
probabilities. p(p | @) is the probability density function of
the Dirichlet distribution with hyper-parameters «, given
by:

_ 1 £ a;—1
p(pla)—%];[pi (7)

where B(a) is the normalization constant of the Dirichlet
distribution, known as the multivariate beta function. A is
a hyperparameter that controls the strength of the prior and
in our case, K is two (Sensoy et al., 2018). In the Tables 3,
4 and 5, the baseline performance of the models is denoted
as Baseline.

Consistency Regularization (CR) using image augmen-
tation and feature transformation: As mentioned, mod-
els were fine-tuned for gender classification with a penulti-
mate layer as a feature extractor of size 1024, followed by
the output layer. The models were trained separately with
consistency regularization enforced using image augmen-
tations and feature transformations applied individually



(as mentioned in Section 3.2 and Section 3.3, respectively)
and in combination. While the training models with con-
sistency regularization enforced using feature level aug-
mentation, we generated only one transformed feature vec-
tor. In the Tables 3, 4 and 5, these models are denoted
as CR-Img Aug, CR-Feat Trans, and CR-Img Aug+Feat
Trans for Consistency Regularization using Image Aug-
mentation, Feature Transformation, and using combined
Image Augmentation and Feature Transformation, respec-
tively. The loss functions used for different methods are as
follows:

— CR-Img Aug: Eq.2 + Eq.6
— CR-Feat Trans: Eq.3 + Eq.6
— CR-Img Aug+Feat Trans: Eq.2 + Eq.3 + Eq.6

Distance metrics such as L2-norm (Euclidean dis-
tance) (Grill et al., 2020) or Jensen-Shannon divergence
(JSD) (Fuglede and Topsge, 2004), could be utilized as
the consistency regularization loss in equations 2 and 3 .
Jeong et al. (Jeong et al., 2019) suggested that consistency
regularization techniques perform worse when used with
L2-based distance metrics as consistency loss. Therefore
for our experiments, we used Jensen-Shannon Divergence
to calculate the distance between the image embedding
and its augmented embedding, which essentially captures
the information loss between the image and its augmented
view.

A

y+y
2

| A
ISDGIY) = 3 (KLOIPS2) + KLGIS2)  (®)

where,

M A
KLGI) = 3 Sclog ©)
c=1 ¢

where KL is the Kullback-Leibler divergence, § and y
were two feature vectors.

We obtained the best results when equal weightage was
given to each loss component (refer A parameter in equa-
tion 4).

Spectral normalization along with Consistency Reg-
ularization(CR) using image augmentation and fea-
ture transformation: The consistency regularized mod-
els were used along with spectral normalization applied
on the linear layers to stabilize the training process of
the classifier as discussed in Section 3.4. In Tables 3,
4 and 5, these models are denoted as CR-Img Aug(SN)
for consistency regularization using image augmentation
with spectral normalization on feature and output layers,
and CR-Img Aug+Feat Trans(SN) for combining image
augmentation and feature transform along with the spec-
tral normalization. The spectral normalization was only
applied when image level consistency was used because
there could be a chance of overfitting as the feature vec-
tors were generated by the same architecture for the input
image and its perturbed instance. The loss functions for
CR-Img Aug(SN) and CR-Img Aug+Feat Trans(SN) were
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the same as those of CR-Img Aug and CR-Img Aug+Feat
Trans, respectively.

Other implementation details:

For the model’s training, the batch size was set to 128, dis-
tributed across 2 RTX 8000 GPUs. Additionally, label smooth-
ing with a value of 0.1 was applied. The RMSprop optimizer
was used with a cosine annealing learning rate schedule. A
warm restart strategy was employed, starting with an initial
learning rate of 1 x ™. A weight decay of 1 X ¢™ was also
incorporated. To enhance the model’s performance, stochas-
tic weight averaging, as described in (Izmailov et al., 2018),
was utilized along with mixed precision training and an early
stopping mechanism. Optimal hyper-parameters for all exper-
iments were determined using grid search, a systematic tech-
nique that explores different combinations of hyper-parameter
values to identify the best configuration for maximizing per-
formance. All the experiments were implemented using the
PyTorch-lightning framework, which provides a convenient and
efficient platform for conducting the research.

4.3. Metrics

In order to analyze the performance of all the models, fol-
lowing the existing studies on bias (Lin et al., 2022; Majum-
dar et al., 2021; Singh et al., 2022) we evaluated the overall
classification accuracy of the models, the standard deviation of
accuracy across the demographics mentioned as the Degree of
Bias (DoB), and the ratio of maximum and minimum accuracy
values to quantify bias. A model is called fair when it obtains
equivalent classification accuracy values across sub-groups, a
low Degree of Bias which is close to 0, and a ratio of maximum
and minimum accuracy values close to 1.

5. Results

In this section, we will discuss the performance of the
baseline gender classifiers and the proposed bias mitigation
techniques when trained on FairFace and evaluated on Fair-
Face, UTKFace, and DiveFace datasets across gender and
ethnicity.

Intra-Dataset Evaluation: Table 3 showed the performance
of the baseline and proposed methods for gender classification
when trained and tested on the FairFace dataset. Overall on
applying consistency regularization, the Degree of Bias (DoB)
and the ratio of max-min accuracy were significantly reduced
and overall classification accuracy was improved across all the
sub-groups. The Black Female subgroup performed the least
for all the baseline models.

On evaluating the Baseline models based on DenseNet121,
Vision Transformer, EfficientNet-V2 and ResNet-18 models,
DenseNet-121 obtained the highest DoB of 5.05, followed by
2.85 (ViT), 2.69 (ResNet18) and 2.32 (EfficientNet-V2). Simi-
larly, on evaluation of the ratio of max & min accuracy values
across demographics on the Baseline models, DenseNet-121
obtained the highest ratio of 1.29, followed by 1.14 (ResNet18),
1.13 (ViT) and 1.1 (EfficientNet-V2). All four models obtained



higher DoB and max-min ratio. The baseline DenseNet121
obtained the least overall classification accuracy of 88.4%
among the four architectures, followed by 92.5% (ResNetl8),
92.82% (ViT) and 93.67% (EfficientNet-V2).

On applying consistency regularization technique, the
overall classification accuracy of DenseNetl21 increased to
93.59% from 88.4% when CR-Img Aug was applied, followed
by 93.63%, 93.34% and 93.56% when CR-Img Aug(SN), CR-
Feat Trans, and CR-Img Aug+Feat Trans(SN) were applied,
respectively. The highest overall accuracy of 93.8% was ob-
tained when CR-Img Aug+Feat Trans was applied. Similarly,
the DoB reduced to 2.2 from 5.05 when CR-Img Aug and CR-
Feat Trans were applied, followed by 2.02 and 2.03 when CR-
Img Aug+Feat Trans and CR-Img Aug+Feat Trans(SN) were
applied, respectively. The lowest DoB of 1.98 was obtained
using CR-Feat Trans.

Similarly, the overall classification accuracy of ViT increased
to 94.48% from 92.82% when CR-Img Aug(SN) was applied,
followed by 93.84%, 93.89% and 94.06% obtained when CR-
Feat Trans, CR-Img Aug+Feat Trans, and CR-Img Aug+Feat
Trans(SN) were applied, respectively. The highest overall accu-
racy of 94.54% was obtained when CR-Img Aug was applied.
Similarly, the DoB reduced to 1.91 from 2.85 when CR-Img
Aug was applied, followed by 1.95, 1.98, and 1.87 when CR-
Img Aug(SN), CR-Feat Trans, and CR-Img Aug+Feat Trans
were applied, respectively. The lowest DoB of 1.8 was obtained
using CR-Img Aug+Feat Trans(SN).

Also, the overall classification accuracy of EfficientNet-V2
increased to 93.93% from 93.67% when CR-Img Aug was ap-
plied, followed by 93.51%, 93.72% and 93.98% when CR-
Img Aug, CR-Img Aug+Feat Trans, and CR-Img Aug+Feat
Trans(SN) were applied respectively. The highest overall ac-
curacy of 94% was obtained when CR-Img Aug(SN) was ap-
plied. Similarly, the DoB reduced to 1.93 from 2.32 when CR-
Img Aug was applied, followed by 2.25, 2, and 2.04 when CR-
Feat Trans, CR-Img Aug+Feat Trans, and CR-Img Aug+Feat
Trans(SN) were applied, respectively. The lowest DoB of 1.74
was obtained using CR-Img Aug(SN).

Among techniques, CR-Img Aug or CR-Img Aug(SN) ob-
tained the highest overall classification accuracy except on
DenseNet121 architecture and increased by around 1-2%. CR-
Img Aug+Feat Trans obtained the highest on DenseNetl21
and increased by around 5%. Similarly CR-Img Aug+Feat
Trans(SN) obtained the lowest DoB on ViT and ResNet18, on
EfficientNet-V2 and DenseNetl121, the lowest DOB was ob-
tained on applying CR-Img Aug(SN).

Finally, the overall classification accuracy of ResNetl8 in-
creased to0 93.13% from 92.5% when CR-Img Aug was applied,
followed by 92.35%, 93.16% and 93.15% obtained when CR-
Feat Trans, CR-Img Aug+Feat Trans, and CR-Img Aug+Feat
Trans(SN) were applied, respectively. The highest overall ac-
curacy of 93.47% was obtained when CR-Img Aug(SN) was
applied. Similarly, the DoB reduced to 2.53 from 2.69 when
CR-Img Aug, followed by 2.43, 2.82, and 2.49 when CR-Img
Aug(SN), CR-Feat Trans, and CR-Img Aug+Feat Trans were
applied, respectively. The lowest DoB of 2.11 was obtained
using CR-Img Aug+Feat Trans(SN).

10

While looking at the ratio of max & min accuracy val-
ues across different methods, Baseline obtained the high-
est ratio when compared with other methods. The Baseline
DenseNet121 obtained max-min ratio of 1.29, followed by
1.13 (Baseline ViT), then 1.1 (Baseline EfficientNetV2) and
finally 1.14 on Baseline ResNetl8. On applying consistency
regularization methods, on DenseNetl21, the ratio of max &
min accuracy values reduced to the range between 1.07 - 1.1
from 1.29, the lowest was obtained using CR-Img Aug+Feat
Trans. Similarly, on ViT, the ratio reduced to the range be-
tween 1.07 — 1.08 from 1.13, the lowest again was obtained
using CR-Img Aug+Feat Trans. Similarly, on EfficientNetV2,
the ratio reduced to the range of 1.07 — 1.09 from 1.1 after ap-
plying consistency regularization, the lowest was obtained us-
ing CR-Img Aug(SN) and CR-Img Aug+Feat Trans. Finally,
on using ResNet18, the ratio after applying consistency regu-
larization reduced to the range of 1.09 —1.13 from 1.14, and the
lowest was obtained using CR-Img Aug(SN).

Overall, we observed the CR-Img Aug+Feat Trans method
obtained reduced bias and overall improved classification accu-
racy over other methods. Our proposed methods obtained an
overall improvement of about 2 — 3% in classification accuracy,
a reduction in the DoB of about 30%, and a reduction in the
ratio of max-min accuracy values by about 7% as observed on
the intra-dataset evaluation.

Cross-Dataset Evaluation: Table 4 and Table 5 show the
cross-dataset evaluation i.e., the models are trained on FairFace
and tested on UTKFace, and DiveFace. Overall, we observed a
reduction in the DoB and an improvement in the overall classi-
fication accuracy using a consistency regularization-based tech-
nique for most of the models. Asian and White subgroups were
the least and best-performing groups upon evaluation of Base-
line models on the UTKFace dataset. Similarly, for DiveFace,
almost similar classification performance was observed across
demographic subgroups.

UTKFace: Table 4 tabulates the evaluation of the UTKFace
dataset. We observed that for almost all the cases, Baseline
models have the lowest overall classification accuracy, and the
highest DoB, except for the EfficientNet-V2 Baseline model
which obtained the lowest DoB. Across different architectures,
the Baseline DenseNet121 model obtained the highest DoB of
4.93 and the lowest overall classification accuracy (90.43%).
The DoB, on applying different consistency methods reduced
to 2.56 (CR-Img Aug), 2.42 (CR-Img Aug(SN)), 2.6 (CR-Feat
Trans), and 2.73 (CR-Img Aug+Feat Trans(SN)). The lowest
DoB of 2.13 was obtained on CR-Img Aug+Feat Trans. Sim-
ilarly, the overall classification accuracy increased to 93.74%,
93.88%, 93.24%, and 93.95% on applying CR-Img Aug, CR-
Img Aug(SN), CR-Feat Trans, and CR-Img Aug+Feat Trans
respectively. The highest overall classification accuracy of
94.21% was obtained using CR-Img Aug+Feat Trans(SN).

Similar to DenseNet121, the Baseline ViT obtained the least
overall classification accuracy of 93.67% and the highest DoB
of 3.22. The DoB reduced to 2.13, 1.91, 2.02, and 2 when
CR-Img Aug, CR-Img Aug(SN), CR-Feat Trans, and CR-Img
Aug+Feat Trans were applied, respectively. The lowest DoB
of 1.86 was obtained when CR-Img Aug+Feat Trans(SN) was



applied. While the overall classification performance also im-
proved to 94.6%, 94.74%, 94.06%, and 94.11% when CR-Img
Aug, CR-Img Aug(SN), CR-Img Aug+Feat Trans and CR-Img
Aug+Feat Trans(SN) were applied, respectively. The highest
classification accuracy of 95.07% was obtained using CR-Feat
Trans.

Similar to the previous two architectures, Baseline ResNet18
obtained the lowest overall classification and the highest DoB,
92.69% and 3.47, respectively. The overall classification per-
formance increased to 93.40%, 93.64%, 94.01%, and 93.85%,
respectively, using CR-Img Aug, CR-Img Aug(SN), CR-Feat
Trans, CR-Img Aug+Feat Trans(SN), and finally, the highest
accuracy of 94.26% was obtained using CR-Img Aug+Feat
Trans. The DoB reduced to 3.08(CR-Img Aug), 2.46(CR-
Img Aug(SN)), 2.29(CR-Img Aug+Feat Trans) and 2.22(CR-
Img Aug+Feat Trans(SN)). For EfficientNet-V2, contrary to
three previous observations, the lowest DoB of 1.81 was ob-
served using the Baseline but neither the highest nor the lowest
overall accuracy. The CR-Img Aug+Feat Trans(SN) obtained
the lowest overall classification accuracy of 94.01%, followed
by 94.23%(Baseline), 94.41%(CR-Img Aug), 94.27%(CR-Feat
Trans), 94.37%(CR-Img Aug+Feat Trans) and finally, the high-
est accuracy of 94.63% obtained using CR-Img Aug(SN). The
lowest DoB of 2.21 was obtained using CR-Feat Trans. Mean-
while, the highest DoB of 2.83 was obtained using CR-Img
Aug+Feat Trans(SN), followed by 2.67 using both CR-Feat
Trans and CR-Img Aug+Feat Trans, and finally, 1.92 and 1.87
was obtained using CR-Img Aug(SN) and CR-Img Aug, re-
spectively.

With regard to max-min ratio, on DenseNet121, the Baseline
obtained the highest max-min ratio of accuracy values at 1.17,
and similarly, on ViT, it was 1.12, respectively. On applying
consistency regularization on DenseNet121, the ratio reduced
between 1.08—1.11, while using ViT, the ratio reduced between
1.06 — 1.08. ResNet18 obtained 1.11 and 1.12 using Baseline
and CR-Img Aug, respectively. While applying other methods
namely CR-Img Aug(SN), CR-Feat Trans, CR-Img Aug+Feat
Trans, and CR-Img Aug+Feat Trans(SN), the ratio reduced be-
tween 1.07 — 1.09. The ratio of max-min accuracy values for
EfficientNetV2 was similar to the observations on DoB analy-
sis, i.e., the highest ratio of 1.11 obtained on CR-Feat Trans,
CR-Img Aug+Feat Trans and CR-Img Aug+Feat Trans(SN).
The least ratio of 1.07 was obtained on Baseline, CR-Img Aug,
and CR-Img Aug(SN).

Overall, we observed that on enforcing CR-Img Aug+Feat
Trans, an increment of 2% in classification accuracy, a reduc-
tion of about 35% in the DoB, and similarly a reduction of 5%
in the ratio of max-min accuracy values were obtained on UTK-
face.

On DiveFace dataset as well, the overall classification ac-
curacy is increased and the DoB is reduced when consistency
regularization is applied to different architectures as shown in
Table 5. The lowest overall classification and the highest DOB
were observed for all four Baseline models. The Baseline
DenseNet121 obtained an overall accuracy of 96.16% and a
DoB of 1.46, while the Baseline ViT obtained an overall ac-
curacy of 97.97% and a DoB of 0.54. Similarly, the Baseline
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EfficientNetV2 and ResNet18 obtained an overall accuracy of
98.44% and 97.47% and a DoB of 0.63 and 0.88, respectively.

On DenseNetl121, on applying different consistency regu-
larization methods, an increment in the overall classification
and reduction in DoB was observed. The overall accuracy in-
creased to 98.31%, 97.93%, 98.2% and 97.7% when CR-Img
Aug(SN), CR-Feat Trans, CR-Img Aug+Feat Trans and CR-
Img Aug+Feat Trans(SN) were applied, respectively. The high-
est overall classification accuracy of 98.32% was obtained us-
ing CR-Img Aug. The DoB reduced to 0.62 from 1.46, followed
by 0.55, 0.75, and 1.22 when CR-Img Aug, CR-Feat Trans, CR-
Img Aug+Feat Trans and CR-Img Aug+Feat Trans(SN) was
applied, respectively. The least DoB of 0.52 was obtained us-
ing CR-Img Aug(SN).

Similarly, on ViT, the overall accuracy improved to 98.51%
using CR-Img Aug(SN), 98.38% using CR-Feat Trans, 98.41%
using CR-Img Aug+Feat Trans and 98.45% using CR-Img
Aug+Feat Trans(SN). Finally, the highest accuracy of 98.65%
was obtained using CR-Img Aug. In contrary, in DoB re-
duced to 0.57 from 0.97, then 0.63, 0.8, and 0.76 using CR-Img
Aug, CR-Img Aug(SN), CR-Img Aug+Feat Trans and CR-Img
Aug+Feat Trans(SN), respectively. The least DOB of 0.54 was
obtained on CR-Feat Trans.

On EfficentNet-V2, the overall accuracy improved except on
CR-Feat Trans and CR-Img Aug+Feat Trans. These models
obtained 98% and 98.44% respectively. The accuracy improved
t0 98.59% and 98.47% on applying CR-Img Aug(SN) and CR-
Img Aug+Feat Trans(SN), respectively. The highest overall ac-
curacy of 98.77% was obtained using CR-Img Aug. When it
comes to the DoB, it was reduced except for CR-Feat Trans.
On CR-Feat Trans, the DoB increased to 0.83, but it reduced
to 0.57, 0.62, and 0.55 from 0.63 when CR-Img Aug, CR-
Img Aug(SN), and CR-Img Aug+Feat Trans were applied, re-
spectively. The least DoB of 0.36 was obtained using CR-Img
Aug+Feat Trans(SN).

Finally, on ResNet18, the overall classification accuracy in-
creased to 98.31%, 97.49%, 98.27%, and 98.38% when CR-
Img Aug, CR-Feat Trans, CR-Img Aug+Feat Trans, and CR-
Img Aug+Feat Trans were applied, respectively. The highest
overall accuracy of 98.5% was obtained for CR-Img Aug(SN).
In the case of the DoB, it reduced to 0.84, 0.69, 0.63, and 0.58
from 0.88 on applying CR-Img Aug, CR-Img Aug(SN), CR-
Img Aug+Feat Trans, and CR-Img Aug+Feat Trans(SN), re-
spectively. The least DoB of 0.53 was obtained when CR-Feat
Trans was applied.

Overall, we observed an increment in classification accuracy
of about 1%, a reduction of an average of 45% in the DoB, and
a slight reduction of about 1% in the ratio of max & min ac-
curacy was observed when evaluated on DiveFace. The ratio
of maximum and minimum accuracy values across all models
was close to 1 (in the range of 1 - 1.04) when consistency reg-
ularization techniques were applied. Thus, all the models were
fair with respect to the ratio after applying the proposed bias
mitigation techniques.

From the aforementioned results on intra- and cross-dataset
scenarios, it is evident that on applying consistency regulariza-
tion, there is an increment in the overall classification accuracy,



a reduction in the DoB, and the ratio of max&min accuracy
values moved closer to 1. Therefore, it means the consistency
regularization resulted in performance improvement and the re-
duction in the bias on both intra- and cross-dataset evaluation.

Comparative Analysis with SOTA: We have also compared
the performance of our proposed with the popular SOTA bias
mitigation techniques based on multi-tasking (Das et al., 2018),
adversarial debiasing (Zhang et al., 2018), and deep generative
views (Ramachandran and Rattani, 2022), proposed for gender
classification and evaluated on Fairface and UTKFace datasets.
Study in (Park et al., 2022) did not report gender classification
accuracy across gender-ethnicity groups (Park et al., 2022),
therefore we did not use it for cross-comparison. The algo-
rithms were trained namely FairFace and tested namely Fair-
Face and UTKFace using the same dataset. We chose ViT-CR
Img Aug + Feat Trans(SN) as our proposed model for this com-
parative study.

For the comparative analysis, we used overall classification
accuracy, the ratio of maximum and minimum accuracy values,
and the DoB as metrics shown in Table 6. As can be seen in Ta-
ble 6, our proposed model (ViT-CR Img Aug + Feat Trans(SN))
obtained the least DoB, and max-min ratio, and obtained the
highest or the second-highest overall classification accuracy on
UTKFace and FairFace test sets.

On the FairFace test set, our proposed method based on con-
sistency regularization obtained the least DoB of 1.59 and the
ratio of 1.05. Ramachandran and Rattani (Ramachandran and
Rattani, 2022) obtained the highest overall classification accu-
racy of 94.72% on FairFace. While on UTKFace, our proposed
method obtained the highest overall accuracy of 95.03%, the
least DoB of 0.95, and the ratio of maximum and minimum ac-
curacy values of 1.02. Therefore, our proposed method obtains
state-of-the-art performance.

Worth mentioning, an existing technique based on adver-
sarial debiasing (Zhang et al., 2018) obtained a trade-off be-
tween accuracy and fairness. This was due to the addition
of the adversarial component which reduced the generalization
capacity of the model. Also, adversarial debiasing and multi-
tasking (Zhang et al., 2018; Das et al., 2018) based bias mitiga-
tion techniques need demographically annotated data. Further,
the technique based on deep generative views is computation-
ally expensive and is limited in its ability to synthesize images
of the 3D scene with multi-view consistency. Therefore, com-
pared to SOTA, our proposed technique has the advantage of
mitigating bias in the absence of protected attributes, is com-
putationally friendly, and is application agnostic. Further, our
proposed approach has the advantage of enhanced fairness as
well as classification accuracy.

6. Analysis and Discussion of the Results

In this section, we will discuss the three research questions
addressed in this study.
To answer the Research Question 1: “How effective is consis-
tency regularization in mitigating bias?”” The analysis of the
effectiveness of consistency regularization in mitigating bias is
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a crucial aspect of our research. Consistency regularization en-
courages a neural network to generate consistent outputs for dif-
ferent variations in input data. By reducing the intra-class dis-
tance and promoting the clustering of data samples belonging
to the same class in the feature embedding space, consistency
regularization enhances the network’s ability to classify new in-
puts based on their similarity to well-clustered features. This,
in turn, facilitates the linear separation of well-clustered fea-
tures among different subgroups, thereby improving the classi-
fier’s performance by minimizing the overlap between different
classes (Huang et al., 2021).

To evaluate the linear separability of feature embeddings for
two gender classes, we examined the t-SNE (van der Maaten
and Hinton, 2008) plot of feature embeddings obtained from
different models: Baseline, CR-Img Aug, CR-Feat Trans, and
CR-Img Aug+Feat Trans. For this analysis, we utilized a bal-
anced dataset of 2500 image samples, encompassing various
genders and ethnicities, extracted from the FairFace test set.
We computed the feature embeddings from ViT-Baseline, ViT-
CR-Img Aug, ViT-CR-Feat Trans, and ViT-CR-Img Aug+Feat
Trans models.

Analysis of Figure 12 indicates that the feature embeddings
from the ViT-Baseline model do not exhibit linear separabil-
ity between classes, which contributes to performance dispar-
ities. However, when consistency regularization was applied,
as demonstrated in Figures 15 and 14, the feature embeddings
from ViT-CR Img Aug and ViT-CR-Feat Trans models respec-
tively displayed reduced overlap, leading to a decrease in mis-
classification rates compared to the ViT Baseline model. These
findings demonstrate an increase in classification accuracy and
a reduction in bias. Similar trends were observed across differ-
ent architectures and in cross-dataset evaluations.

Furthermore, the results presented in Tables 3, 4, and 5 illus-
trate that the application of consistency regularization (CR-Img
Aug and CR-Feat Trans) resulted in a significant reduction in
Degree of Bias (DoB) ranging from 22% to 60% in intra-dataset
evaluations and 36% to 64% in cross-dataset evaluations across
various architectures. Additionally, the ratio of maximum to
minimum accuracy values decreased by approximately 4% and
3% in intra-dataset and cross-dataset evaluations, respectively.

Hence, based on these findings, it is evident that consistency
regularization is undeniably effective in mitigating bias. En-
hancing the feature representation for each sub-group, not only
enhances classification accuracy but also comprehensively
tackles bias-related concerns. Therefore, we can confidently
assert that consistency regularization is a powerful tool in
combating bias.

To answer the Research Question 2: “Could the proposed
technique obtain fairness as well as enhanced performance
across several inter-sectional subgroups (including the best-
performing group)?”” By employing the proposed technique,
we observed a substantial increase in the average classifi-
cation accuracy of the least-performing demographic group,
amounting to approximately 4%. Furthermore, even the best-
performing group obtained an improvement of around 1% in
their accuracy, both within the dataset under consideration and
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Table 3: Gender Classification Accuracy (%) on FairFace testset across different demographics. M stands for Male, and F stands for Female. Max/Min is the ratio
of maximum and minimum classification accuracy values among gender and ethnicity; Overall and DoB are the overall classification accuracy and the standard
deviation of the accuracy values across gender and ethnicity. The top performance results are highlighted in bold.

Ethnicity Black East Indian Latino Middle Southeast White
Asian I Eastern Asian
Gender M F M F M F M F M F M F M F Max/Min| Overall] DoB|
Densenet121
Baseline 86.86  73.71 87.77 90.04 923 8375 9143 90.01 9533 89.17 89.93 87.66 91.53 88.17 1.29 88.4 5.05
CR-Img Aug 90 88 93.56  94.95 94.16  94.63 93.19  96.38 96.43  95.2 92.65 93.68 94.03  93.46 1.096 93.59 22
CR-Img Aug(SN) 90.74 8824 93.82 9521 9522  94.63 9344 9543 95.57 94.97 9238 9427 94.03  92.84 1.083 93.63 1.98
CR-Feat Trans 89.49 88.24 93.44  93.66 93.89  94.63 93.82  95.06 96.8 9571 92.38 93.53 943  91.8 1.097 93.34 22
CR-Img Aug+Feat Trans 89.86 90.75 9292 9651 9349  96.07 93.19  96.02 95.7 96 91.56 94.26 934 9346 1.074 93.8 2.02
CR-Img Aug+Feat Trans(SN) 89.36  89.3 93.56  93.92 9495 94.63 9344 953 96.31  94.95 91.7  94.12 95.1 9325 1.078 93.56 2.03
Vision Transformer(ViT)
Baseline 89.86 84.94 91.38 93.66 93.09 94.49 9344 9471 96.31 94.46 90.75 94.27 94.56  93.57 1.133 92.82 2.85
CR-Img Aug 90.5  90.22 93.82 94.82 95.62 9581 9445 9579 97.17  95.96 9415 95 9581 944 1.077 94.54 1.91
CR-Img Aug(SN) 90.24  90.75 93.56  94.7 9522 95.54 942 96.51 97.42 9572 93.06 95.74 95.54 945 1.08 94.48 1.95
CR-Feat Trans 91.61 90 94.85 9237 96.06  92.92 9521 9422 9729 93.18 94.15  93.09 96.7  92.11 1.081 93.84 1.98
CR-Img Aug+Feat Trans 90.36  89.83 9292 94.18 9429  94.89 9332 96.02 96.19  95.71 92.65 94.85 9519 94 1.071 93.89 1.87
CR-Img Aug+Feat Trans(SN) 91.24  89.7 93.18 9457 94.82  95.02 9344 9578 96.43  95.71 9279 9441 95.63  94.08 1.075 94.06 1.8
EfficientNet-V2
Baseline 87.86  90.22 9331 956 9429 9528 9243 9554 96.56 96 9238 95.15 93.76  93.04 1.1 93.67 232
CR-Img Aug 90.74  89.7 9331 95.6 9548  92.92 9344 9578 96.8  95.71 92,65 94.71 94.12 94 1.079 93.93 1.93
CR-Img Aug(SN) 90.36  90.49 9434 9444 96.02  93.97 93.95 95.06 96.8  94.95 9295 95 943 9335 1.071 94 1.74
CR-Feat Trans 88.61 90.75 9228 93.92 94.69 95.15 91.8 95.26 96.31 96.21 91.56 95.44 93.14  94.08 1.087 93.51 2.25
CR-Img Aug+Feat Trans 89.86 90 92.54  94.86 95.62  93.97 942 96.02 95.82 9545 91.16  94.56 93.67 943 1.069 93.72 2
CR-Img Aug+Feat Trans(SN) 89.49  90.62 9421 93.79 95.88 93.18 93.69 95.54 96.56  97.22 9252 94.12 9421 947 1.086 93.98 2.04
ResNet18
Baseline 89.61 84.54 92,66 93.01 94.56  92.27 9344  93.86 96.56  93.94 9129 9323 93.85 9221 1.142 92.5 2.69
CR-Img Aug 87.80 88.24 91.51 9534 93.89 9423 93.69 959 96.56  94.95 90.88 93.68 9349  93.56 1.1 93.13 2.53
CR-Img Aug(SN) 89.11 88.9 92.15 94.18 95.35 94.89 9395 96.14 96.92 9545 90.07 93.82 94.03  93.67 1.09 93.47 243
CR-Feat Trans 86.86 86.13 91.38 93.01 93.76  93.84 93.57 93.73 97.17 93.18 89.93 93.38 93.58 93.35 1.128 92.35 2.82
CR-Img Aug+Feat Trans 89.11 86.79 9421 94.05 95.09 9371 9332 95.06 96.92  93.69 91.29 93.68 94.65 92.73 1.117 93.16 249
CR-Img Aug+Feat Trans(SN) 91 87.45 9241 9444 93.76  93.71 93.06 95.3 96.19 93.94 90.88 93.68 94.47 9377 1.1 93.15 2.11

Table 4: Gender Classification Accuracy (%) on UTKFace testset across different demographics. M stands for Male, and F stands for Female. Max/Min is the ratio
of maximum and minimum classification accuracy values among gender and ethnicity; Overall and DoB are the overall classification accuracy and the standard
deviation of the accuracy values across gender and ethnicity. The top performance results are highlighted in bold.

Ethnicity Asian Black Indian White
Gender M F M F M F M F Max/Min| Overalll DoB|
DenseNet121
Baseline 89.18 84.88 98.71 84.62 938 8721 94.15  90.89 1.167 90.43 4.93
CR-Img Aug 9236 90.81 98.7 93.18 95.57  90.64 95.61 93.04 1.089 93.74 2.56
CR-Img Aug(SN) 91.72 91.89 98.7 93.18 95.13  90.64 95.25 94.56 1.089 93.88 2.42
CR-Feat Trans 90.45 91.89 98.27 90 94.69 91.81 96  92.83 1.092 93.24 2.67
CR-Img Aug+Feat Trans 91.08 90.27 97.4  94.54 95.13 94.15 94.88 94.13 1.079 93.95 2.13
CR-Img Aug+Feat Trans(SN) 88.54 9243 98.7  94.1 94.69 95.61 9525 9435 1.114 94.21 2.73
Vision Transformer(ViT)
Baseline 91.07 94.05 99.14 88.68 95.57 92.44 95.79  92.62 1.118 93.67 3.22
CR-Img Aug 91.08 9297 98.7  93.64 95.13 94.15 96.34  94.78 1.084 94.6 2.13
CR-Img Aug(SN) 9236 9243 98.27 93.18 95.13 9474 96.34 9543 1.064 94.74 1.91
CR-Feat Trans 9427 9297 99.13 9273 95.57 95.32 96.89 937 1.069 95.07 2.02
CR-Img Aug+Feat Trans 90.45 9351 97.83 93.18 95.13 9298 95.25 94.13 1.082 94.06 2
CR-Img Aug+Feat Trans(SN) 91.08 9243 974 9273 94.69 94.15 95.61 9478 1.069 94.11 1.86
EfficientNet-V2
Baseli 90.45 95.13 96.1 93.18 94.69 96.49 93.23 9456 1.067 94.23 1.81
CR-Img Aug 91.72 93 98.27 93.18 95.57 94.15 95.25 94.13 1.071 94.41 1.87
CR-Img Aug(SN) 93 92.97 98.7 9273 96.46  94.15 94.88 94.13 1.064 94.63 1.92
CR-Feat Trans 87.9 94.05 974 941 95.58 9591 93.6  95.65 1.108 94.27 2.67
CR-Img Aug+Feat Trans 89.81 90.81 98.7 9591 95.57 94.74 95.25 94.13 1.099 94.37 2.67
CR-Img Aug+Feat Trans(SN) 94.27 89.73 98.7 9227 96.02  90.64 96.34  94.13 1.1 94.01 2.83
ResNet18
Baseline 89.81 88.65 98.7 89.54 97.34  91.81 94.15 91.52 1.113 92.69 3.47
CR-Img Aug 87.9 90.81 98.7 9273 96.02 94.15 947 9217 1.123 93.4 3.08
CR-Img Aug(SN) 91.08 9243 98.7 9227 96.02 91.23 9452 92.83 1.084 93.64 2.46
CR-Feat Trans 91.08 91.89 97.84 91.82 96.46  94.15 947  94.13 1.074 94.01 2.21
CR-Img Aug+Feat Trans 93 91.35 98.27 91.82 96.9  92.98 9543  94.35 1.076 94.26 2.29
CR-Img Aug+Feat Trans(SN) 9045 91.89 98.27 93.18 95.57 9298 9433 94.13 1.086 93.85 2.22

across different datasets during our evaluation process. These
improvements signify the effectiveness of our proposed method
in achieving fairness while simultaneously enhancing perfor-
mance across various inter-sectional subgroups.

Delving deeper, we found that our obtained yielded an over-
all increment in the classification accuracy ranging from 0.23%
to 6% for intra-dataset evaluations and 0.3% to 4% for cross-
dataset evaluations. These figures, as presented in Tables 3, 4,
and 5, highlight the consistent and positive impact of our pro-

posed technique on classification accuracy across diverse sce-
narios. Moreover, our approach demonstrated a significant re-
duction in the Degree of Bias (DoB) by approximately 30%.
This reduction indicates the successful mitigation of biases that
may exist within the dataset, further emphasizing the fairness
obtained by our technique. Additionally, the ratio of the maxi-
mum and minimum accuracy values, which serves as a measure
of performance disparity, moved closer to 1. This reduction
in performance disparity signifies the effectiveness of our tech-
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Table 5: Gender Classification Accuracy(%) on DiveFace testset across different demographics. M stands for Male, and F stands for Female. Max/Min is the ratio of
maximum and minimum classification accuracy values among gender and ethnicity; Avg and DoB are the overall classification accuracy and the standard deviation
of the accuracy values across gender and ethnicity. The top performance results are highlighted in bold.

- East Sub Saharan .
Ethnicity Asian South Indian White
Gender M F M F M F Max/Min| Overalll] DoB|
DenseNet121

Baseline 94.65 98.29 95.94  94.46 96.6 97 1.041 96.16 1.46

CR-Img Aug 98.05 99.26 97.49 98 98.76  98.33 1.018 98.32 0.62
CR-Img Aug(SN) 98.05 99.08 974 98.24 98.67 98.41 1.017 98.31 0.52
CR-Feat Trans 98.19 98.2 9727 97.52 98.76  97.66 1.015 97.93 0.55
CR-Img Aug+Feat Trans 97.42  99.08 97.17 98.78 98.32 98.41 1.02 98.2 0.75
CR-Img Aug+Feat Trans(SN) 97.6  99.17 97.35 98 95.59 98.46 1.037 97.7 1.22

Vision Transformer(ViT)

Baseline 97.14  99.17 96.58  98.06 98.76  98.11 1.027 97.97 0.97

CR-Img Aug 98.28 99.52 97.67 98.65 98.98 98.77 1.019 98.65 0.57
CR-Img Aug(SN) 98 99.39 97.49 98.38 98.98 98.81 1.019 98.51 0.63
CR-Feat Trans 98.64 989 97.31 98.24 98.9 98.28 1.016 98.38 0.54

CR-Img Aug+Feat Trans 97.46 99.43 97.22  98.74 98.98 98.63 1.023 98.41 0.8
CR-Img Aug+Feat Trans(SN) 97.78  99.52 97.22  98.42 98.94 98.81 1.024 98.45 0.76

EfficientNet-V2

Baseline 98.23  99.21 97.26 98.83 98.85 98.24 1.02 98.44 0.63

CR-Img Aug 98.59  99.65 97.72 99 98.85 98.81 1.02 98.77 0.57
CR-Img Aug(SN) 98.46 99.56 97.49  98.92 98.54  98.59 1.021 98.59 0.62
CR-Feat Trans 97 98.73 96.72 98.78 98.36  98.41 1.021 98 0.83
CR-Img Aug+Feat Trans 98.78  99.21 97.63  98.02 98.85 98.15 1.016 98.44 0.55
CR-Img Aug+Feat Trans(SN) 98.82 98.64 98.31 98.02 98.94 98.06 1.009 98.47 0.36

ResNet18

Baseline 97.64 98.47 97.36 96.13 98.54  96.65 1.025 97.47 0.88

CR-Img Aug 97.64 99.47 96.9 98.78 98.23 98.81 1.027 98.31 0.84
CR-Img Aug(SN) 98.05 99.43 97.26 98.51 98.76 99 1.022 98.5 0.69
CR-Feat Trans 97.14  98.25 96.63 97.3 97.79 97.84 1.017 97.49 0.53
CR-Img Aug+Feat Trans 98.19  99.17 97.54 97.52 99 98.19 1.017 98.27 0.63
CR-Img Aug+Feat Trans(SN) 98.55 99.17 974  97.88 98.67 98.63 1.018 98.38 0.58

Table 6: Comparative Analysis. A: Multi-Tasking (Das et al., 2018), B: Ad-
versarial debiasing (Zhang et al., 2018), D: Deep Generative Views based (Ra-
machandran and Rattani, 2022). The top performance results are highlighted in

bination of image-level and feature-level augmentation tech-
niques compared to their individual usage. By employing the

bold. CR-Img Aug+Feat Trans technique across various models, we
observed an average reduction of 8% in the ratio of maximum
A y . . . . .
Method Bl Tafino Middle  Soufhenst DoB|  Max/Minl and minimum accuracy values on intra-dataset evaluations and
Black Asian Indian Hispanic Eastern Asian White . Overall? . .
FairFace approximately 3% on cross-dataset evaluations. In contrast,
A 91.26  94.45 95.05 95.19 97.35 94.2 94.96 94.64 1.81 1.067 : : :

B 87.66 91.93  93.67 93.8 95.96 91.81 93.96 92.69 2.62 1.095 When applylng CR—Img Aug or CR—Feat Trans teChnlques n-
D 91.64 9529 95.38 95.32 97.11 93.5 94.92 94.72 1.72 1.06 11 1 1 1 1 1
B ) dividually, we obtained a 6% reduction in the ratio of max-min

UTKFace accuracy on intra-dataset evaluations and an average of 2% re-
B 94.62 - 93.65 - - 91.89 94.97 93.78 1.38 1.03 . .
Ours 9585 - 95.43 - - 9367 95.16 9503 0.95 1.02 duction on cross-dataset evaluations.

Additionally, the t-SNE plots depicted in Figures 12, 13, 14,
and 15, based on feature embeddings from ViT-Baseline, ViT-

nique in equalizing the performance across different subgroups,
leading to fairer outcomes.

Hence, to address the second research question, we have
obtained compelling and comprehensive results from intra- and
cross-dataset evaluations. These results unambiguously sup-
port our claim that our proposed technique not only achieves
fairness but also significantly enhances performance across
various inter-sectional subgroups, including the top-performing
group. The substantial improvements in classification accuracy,
reduction in bias, and decreased performance disparity serve
as robust evidence of the effectiveness and importance of our
approach.

To answer the final Research Question 3: ‘““Can the combi-
nation of image-level and feature-level augmentation tech-
niques obtain any advantage over either of them individu-
ally?” The experimental results presented in Tables 3, 4, and 5
highlight the substantial advantages gained through the com-

CR-Img Aug, ViT-Feat Trans, and ViT-Img Aug+Feat Trans
models, respectively, further strengthen the significance of the
combined augmentation approach. While the classes were not
linearly separable in the feature embedding space for the former
models, the t-SNE plot obtained from the ViT-Img Aug+Feat
Trans model showcased linear separability between the two
classes (males and females) with minimal overlap. Moreover,
this model effectively distinguished features among different
ethnicities but displayed the most overlap among male and
female kids, indicating that gender-specific features are less
prominent in younger age groups. Similar trends were ob-
served across all architectures and proposed mitigation tech-
niques, both in intra-dataset and cross-dataset evaluations.
Hence, to address the research question at hand, we can con-
fidently state that combining image-level and feature-level aug-
mentations within a consistency-based regularization frame-
work significantly reduces bias. This novel approach enhances
the discriminatory power of the models and diminishes the po-



tential for biases based on gender, ethnicity, or other factors, as
demonstrated by compelling empirical evidence.

Overall, the findings demonstrate that consistency regular-
ization, combined augmentation techniques, and the proposed
framework effectively mitigate bias, enhance performance, and
achieve substantial fairness in classification tasks.

7. Statistical Inference

In this section, we will discuss the performed hypothesis test-
ing for the statistical significance of the obtained results due to
the proposed consistency regularization technique (Image level,
Feature level, and Combination of both) in bias reduction.

Hypothesis testing: In statistics, hypothesis testing is one
way of doing statistical inference by determining if survey
or experiment results are relevant. By calculating the likeli-
hood that the results occurred by chance, it can be determined
whether the observed results are genuine/ significant. The ex-
periments will not be repeatable and therefore will not be of
much help if the results have been obtained by accident/ chance.
Therefore, we used hypothesis testing to validate whether the
claimed bias reduction was obtained by accident or not using
our proposed bias reduction technique.

To begin with, we have to come up with an appropriate null
hypothesis (H,) and an alternate hypothesis (H,). Through our
proposed bias mitigation technique, we aimed to obtain de-
mographic parity, which means an equal proportion of true
positive predictions in each group (in this case, demographics).
Given the aim, the Null Hypothesis, H, and the Alternate Hy-
pothesis, H, for our statistical inference will be,

H,: There is no significant difference in the overall true positive
predictions across the groups;

H,: Overall true positive predictions differs in at least two
groups in the population. Therefore to claim that our results
are fair, we should accept the null hypothesis or reject the alter-
nate hypothesis.

How to know whether the null hypothesis is to be accepted
or rejected?

The p-value or probability value in statistics is the probabil-
ity that the observations have been obtained under the null hy-
pothesis. The p-value is used to determine the smallest level
of significance at which the null hypothesis would be rejected.
A lower p-value indicates that there is more evidence support-
ing the alternative hypothesis. The second step of hypothesis
testing is to collect data. We have used the overall gender clas-
sification accuracy values across demographics as the data. We
chose the overall gender classification accuracy across ethnici-
ties from the ViT architecture, compared across Baseline, CR-
Img Aug, CR-Feat Trans, and CR-Img Aug+Feat Trans from
intra-dataset and cross-dataset evaluations.

The collection of data is followed by performing the statis-
tical test. The statistical test is essentially based on the com-
parison of within-group variance (the spread of the data within
a group) versus between-group variance (how different the cat-
egories are from one another). We used One-Way ANOVA
(ANalysis Of VAriance) test (Girden, 1992) for hypothesis
testing. It uses F-distribution to compare the means of two or
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more independent groups in order to determine whether there is
statistical evidence that associated gender classification accura-
cies from the population are significantly different.

To perform the test, we have split the test datasets into five
equal-sized subsets, also known as folds, and then evaluated the
overall classification accuracy between each subgroup across
five folds as shown in Table 7, 8, and 9. This gives an idea of
how the overall classification accuracy varies between the sub-
group and within the subgroup on intra and cross-dataset eval-
uations. Once the variation between the subgroups and within
the subgroups was obtained, its ratio gave the F-statistic. Then
from the F-distribution table, the p-value was obtained.

Analysis: According to the inferential evaluation on the intra
and cross-dataset evaluations, we have obtained p-values from
the observations of four models when used on ViT namely,
Baseline, CR-Img Aug, CR-Feat Trans, and CR-Img Aug+Feat
Trans given in Table 10.

From Table 10, on the intra-dataset evaluation with the Fair-
Face test set, we observed that the p-value was increased as
consistency regularization was applied, Baseline obtained a p-
value of 2.88 x 1077, followed by 2.27 x 10”7 on CR-Img
Aug. Whereas on applying CR-Feat Trans, p-value increased
to 9.93 x 1077. Finally, when image- and feature-level were
combined together (CR-Img Aug+Feat Trans), the p-value in-
creased by a factor of 10. The Baseline obtained the least p-
value, which means it supports the alternative hypothesis which
indicates the presence of bias. The p-values increased by a fac-
tor of 10? and 103, respectively, when CR-Img Aug and CR-
Feat Trans were applied. When the combination of both CR
was applied, the p-value was further increased by a factor of
103. This indicates CR-Img Aug+Feat Trans has the most im-
pact on bias reduction.

On cross-dataset evaluation with UTKFace, from Table 10,
we observed the Baseline model obtained the second least p-
value of 2.88e — 07, and after combining CR-Img Aug+Feat
Trans, it obtained the highest p-value, which was increased by
a factor of 10 when compared with other models namely, Base-
line, CR-Img Aug, and CR-Feat Trans. This indicates CR-Img
Aug+Feat Trans has resulted in significant bias reduction on the
UTKFace dataset.

But on the cross-dataset evaluation with DiveFace, we ob-
served a difference in the trend. Evaluations across differ-
ent models and across architecture have given near-perfect re-
sults on the DiveFace, from Table 10, we observed the lowest
value for p-value was obtained with CR-Img Aug+Feat Trans
of 0.122, and CR-Img Aug obtained the highest value of 0.678.
This suggests that on DiveFace, CR-Img Aug has more impact
on bias reduction as compared with CR-Feat Trans and CR-Img
Aug+Feat Trans. A similar observation was made for the mod-
els along with spectral normalization applied.

The higher p-value for models based on consistency regular-
ization when compared to the baseline model (Where no con-
sistency regularization was applied) confirms the acceptance
of the null hypothesis. This confirms that the bias reduction
obtained using our proposed consistency regularization-based
techniques is significant and not obtained by chance .



Table 7: Overall Gender Classification Accuracy (%) on FairFace testset across
five folds on each demographic group using ViT architecture across five folds.

East . Latino  Middle Southeast .

Black Asian Indian Hispanic Eastern Asian White
Baseline

Fold1 8644 9204 9447 93.53 95.88 92.9 93.32

Fold2 8697 9345 9445 94.35 95.62 92.84 93.71

Fold3 87.69 92.87 94.7 92.31 95.22 92.54 95.65

Fold4 89.53 93.03 9438 94.87 96.3 93.12 94.53
Fold5 8727 93.82 9445 93.19 96.03 92.42 94.33
CR-Img Aug
Fold1 8785 9408 95.29 94.75 97.18 95.74 94.7
Fold2 89.58 95.63 94.26 95.97 96.72 94.68 95.05
Fold3 90.04 94.65 96.54 95.34 96.52 94.96 95.27
Fold4 9096 9422 95.38 96.65 97.61 93.96 95.31

Fold5 89.1 95.02 9548 93.79 97.36 93.89 95.84
CR-Feat Trans
Fold1 88.26 9347 94.67 94.14 95.88 93.91 94.3
Fold2 89.58 9444  94.85 95.77 95.19 93.66 94.86
Fold3 90.82 9445 9633 94.53 95.43 92.94 95.46
Fold4 90.55 93.62 94.78 95.86 96.52 92.29 94.53
Fold 5 90 9442 9528 93.59 96.47 92.42 94.52
CR-Img Aug + Feat Trans

Fold1 8725 9286 94.67 93.74 96.96 93.91 94.7
Fold2 90.18 9444 93.86 95.36 95.62 93.86 94.86
Fold3 9023 9445 9593 94.33 95.43 93.75 94.9

Fold 4 92 94.62  94.18 96.45 96.96 93.54 94.14
Fold5 903 9422 94.66 94.79 96.26 93.89 96.41

Table 8: Overall Gender Classification Accuracy (%) on UTKFace testset
across five folds on each demographic group using ViT architecture across five
folds.

Black Indian
Baseline
Fold1 9049 9495 95.5 94.02
Fold2 90.59 94.6 93.78  95.56
Fold3 89.27 95.1 9433 9552
Fold4 91.06 9494 9726 93.82
Fold5 89.32 943 94.88 95.2

CR-Img Aug
Fold1 92.14 9567 96.04 9556
Fold2 92.07 9622 9488 95.73
Fold3 904 96.2 95.25  96.21
Fold4 92.15 9729 97.08 95.02
Fold5 92.08 95 95.79  96.56
CR-Feat Trans
Fold1 9269 96.03 9622 95.04
Fold2 91.51 955 94.7 95.56
Fold3 9134 96.19 94.7 96.04
Fold4 9197 9638 96.71 93.65
Fold5 90.24 95.19 96.52 9536
CR-Img Aug+Feat Trans

Fold1 9159 9585 9586 95.04
Fold2 9225 955 9433 9556
Fold3 90.77 9546 9543  96.56
Fold4 91.61 9638 97.08 94.34
Fold5 92.08 94.12 95.8 95.88

Asian White

8. Ablation Study

8.1. How are the models trained with consistency regulariza-
tion performed on facial feature occlusion?

We have evaluated the performance of the baseline models
(Baseline) and consistency regularized models (CR-Img Aug,
CR-Feat Trans & CR-Img Aug-+Feat Trans) on test face images
with occlusions. These occlusions were generated by mask-
ing various facial features such as cheeks, eyes, nose, forehead,
mouth, and chin (See Figure 10) by locating the facial land-
marks using dlib (King, 2009). The intuition behind this study
was to validate the claim that consistency regularization-based
models are more robust to variations, therefore should outper-
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Table 9: Overall Gender Classification Accuracy (%) on DiveFace testset across
five folds on each demographic group using ViT architecture across five folds.

East  Sub Saharan

Asian  South Indian White
Baseline
Fold1 98.6 98.03 98.2
Fold2 9824 96.15 98.05
Fold3 99.11 98.02 98.61
Fold4 97.92 99.28 98.02
Fold5 98.03 97.88 98.39
CR-Img Aug
Fold1 98.78 98.92 98.74
Fold2 99.12 97.72 98.94
Fold3 99.29 98.74 98.96
Fold4 98.61 99.46 98.92
Fold5 98.92 98.76 98.75
CR-Feat Trans
Fold1 98.6 98.03 98.92
Fold2 99.12 96.85 98.94
Fold3 98.94 97.12 98.09
Fold4 98.44 98.74 98.02
Fold5 97.67 98.23 98.57
CR-Img Aug+Feat Trans

Fold1 98.6 98.92 98.92
Fold2 9842 97.38 98.94
Fold3 98.75 98.2 98.61
Fold4 98.61 98.74 98.56
Fold5 9821 98.23 99.28

Table 10: p-values obtained using One-way ANOVA test for statistical valida-
tion of the results for different bias mitigation techniques in intra- and cross-
dataset evaluation.

. CR-Img Aug
Baseline CR-Img Aug CR-Feat Trans Feat Trans
FairFace  6.9e-15 7.24e-13 4.44e-12 2.99¢-09
UTKFace 2.88e-07 2.27e-07 9.93e-07 1.34e-06
DiveFace 0.525 0.678 0.132 0.122

form the baseline models on test samples with occluded facial
features.

Table 11 shows the average accuracy, DOB, and the ratio of
max-min accuracies for the ViT-Baseline model and the ViT
(CR-Img Aug, Img Feat Trans, and CR-Img Aug+Feat Trans).
It can be observed that overall classification accuracy was im-
proved over the baseline after consistency regularization was
applied to the test samples with occluded facial regions. This
indicates the robustness of the model trained with consistency
regularization to the facial region occlusion over the baseline.

Overall classification accuracy was reduced by an average
of 3% when Baseline models were evaluated on occluded test
samples. Using consistency regularization, the average classifi-
cation accuracy increased by an average of 2 — 3% using CR-
Img Aug, CR-Feat Trans & CR-Img Aug+Feat Trans over the
baseline. Further, the reduction in the DOB and the max-min
ratio was about 25%, 5% for CR-Img Aug, CR-Feat Trans, and
CR-Img Aug+Feat Trans with respect to the Baseline.

a b C d e f g
Fig. 10: a. Test Sample; b. Nose region masked; c. Mouth region masked; d.
Forehead masked; e. Eyes masked; f: Chin masked & g: Cheeks masked.




Table 11: Evaluation of the robustness of the gender classification models
trained with CR-Img, CR-Feat Trans, and CR-Img Aug+Feat Trans techniques
against Baseline on test samples with facial region “occlusion”. ViT architec-
ture and FairFace testsets were used for this experiment.

Masked Facial

Feature Cheeks Chin Eye

Forehead Mouth Nose

Baseline
Overall? 87.8 9133 88.92 89.77 91.44  90.62
DoB| 5.58 4.2 5.51 4 4.08 4.48
Max/Min| 1.36 1.24 1.22 1.2 1.23 1.27
CR-Img Aug
Overall? 9134 9326 91.77 92.29 93.11 9253
DoB| 3.85 3.49 4.56 2.76 4.36 4.66
Max/Min| 1.22 1.18 1.26 1.14 1.22 1.24
CR-Feat Trans
Overall? 90.6 93.1 91.82 92.12 92.88  93.03
DoB| 3.57 334 3.04 2.83 3.8 2.74
Max/Min| 1.17 1.18 1.14 1.13 1.2 1.13
CR-Img Aug+Feat Trans

Overall? 90.55 9297 91.52 91.7 93 93.05
DoB| 4.48 3.06 4 32 3.49 2.98
Max/Min| 1.26 1.16 1.16 1.14 1.19 1.15

8.2. Choosing the right set of image augmentations for enforc-
ing consistency regularization.

The aim of this study was to find out the right set of augmen-
tation to improve performance and reduce bias. We did exper-
iment with a different set of augmentations. Table 12 showed
various combinations of augmentations for ViT-CR-Img Aug
against no augmentations (baseline model). The chosen combi-
nation is labeled as “Best” with the lowest DoB and that ratio
of max-min accuracy values. On training with the multiple set
of augmentations, we chose the set with the lowest DoB on
the FairFace test set for all the experiments. The fairest per-
formance was obtained when the combination of random erase,
colorjit augmentations along with enhanced brightness and con-
trast were applied, where we obtained the overall classification
accuracy as 94.48%, the DoB as 1.95, and the ratio of max-
imum and minimum accuracies as 1.08. From Table 12, we
observed the higher values of DoB and the ratio of maximum
and minimum accuracy values on various other combinations
of augmentations. The reason why the combination of random
erase, colorjit along with enhanced brightness and contrast ob-
tained the fair result could be because of reduced similarity in
facial morphology when the random erase was used. Further,
applying colorjit, enhanced brightness, and contrast-based aug-
mentation reduces the impact of skin color. This indicates the
importance of choosing the right set of augmentations for con-
sistency regularization for the downstream classification task.

Worth mentioning we also did an experiment with a
set of augmentations automatically obtained using Auto-
Augment (Cubuk et al., 2019) based pretrained policies. The
obtained results were poor. For instance, we obtained a Degree
of Bias of 2.422, 2.087, and 0.927 on FairFace, UTKFace and
DiveFace testsets using ViT-CR Img AutoAug (ViT with Au-
toAugment). In comparison, using CR-Img Aug, we obtained
a DoB of 1.95, 1.91, and 0.63 on FairFace, UTKFace, and Di-
veFace, respectively. Similarly, CR-Img Aug+Feat Trans ob-
tained a DoB of 1.87, 2, and 0.8 on FairFace, UTKFace, and
DiveFace, respectively. This suggests the efficacy of our ap-
proach over AutoAugment. This could be due to the fact that
Auto-Augment policies learned on ImageNet for general image
classification tasks did not transfer well to obtain significant im-
provements for our case.
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Further, our proposed bias mitigation technique has a sig-
nificant advantage over random data augmentation applied to
the training set. This is because our proposed approach based
on systematic image and feature-level augmentations using
StyleNeRF has a significant impact on enhancing the under-
lying data manifold of the samples. Further, consistency-based
regularization enforces the feature embeddings from these per-
turbations (from the underlying data manifold) to be similar.
This significantly enhances the feature representation for each
sub-group. Consequently, enhancing the accuracy and reduc-
ing the bias of the classifier. These set of best augmentations
were also combined with the transformed feature vector with
the control variables (pitch, yaw, roll, and fov) randomly se-
lected (obtained using the trained MLP) in a consistency-based
regularization setting as a separate experiment.

Table 12: The evaluation of the ViT-CR-Img Aug trained with different combi-
nations of augmentations. The evaluation was performed on the FairFace test
set. We observed similar observations on other models as well. A: Random
Perspective; B: Random Rotate; C: ColorlJitter; D: Random Erase; E: Gaussian
Blur; F: GrayScale; G: Brightness+Contrast; H: Random Flip.

Augmentations Overalll] DoB| Max/Min|
No Au.gmentatlons 93.66 265 114
(baseline)

A 93.33 3.17 1.16
E+F 93.82 2.57 1.09
E+G 93.74 2.54 1.1
A+C 93.51 2.53 1.11
A+D 93.59 2.49 1.12
H+C 93.96 2.38 1.08
H+D 94.3 2.36 1.07
G+D 94.71 2.33 1.08
G+C 93.97 2.31 1.08
H+A 93.78 2.24 1.1
B+C+D 94.25 2.58 1.09
A+G+D 94.05 2.54 1.11
H+D+C 94.45 2.48 1.08
D+G+C (Best) 94.48 1.95 1.08

8.3. On varying the weightage between the consistency regu-
larization loss and the classification loss?

In all the aforementioned experiments, equal weightage was
given to the consistency and classification loss (refer equa-
tion 4). We have evaluated the impact of varying the weightage
between these two loss functions. Table 13 shows the perfor-
mance of the ViT-CR-Img Aug+Feat Trans. As can be seen
from Table 13, overall classification accuracy was consistently
increased for the lambda(A) value in the range of 2 & 12. At the
same time, DOB and the max-min ratio were also reduced for
this range of lambda. The classification accuracy was reduced
and the bias of the classifier was increased on the lambda value
over 12. However, we obtained the best result when the classifi-
cation loss and consistency regularization loss were given equal
weightage. From Table 3, we obtained an overall accuracy of
94.06%, a DoB of 1.8, and a ratio of maximum and minimum
accuracy as 1.075. A similar observation was made for dif-
ferent architectures across proposed bias mitigation techniques
and the datasets.

This experiment validates the importance of balance in the
weightage between the classification loss and the consistency



regularization loss. If the weight constant of the consistency
regularization loss is too low, then the regularization effect may
not be sufficient to prevent overfitting, resulting in poor gener-
alization performance. If the classification loss is too strong,
dominating the training process and causing the network to fo-
cus too much on the training data at the expense of low gener-
alization.

Table 13: Varying the contribution of consistency and classification loss by
changing the lambda value(Refer Eq: 4). These results are obtained for the
ViT-CR-Img Aug+Feat Trans evaluated on the FairFace test set. We observed
the same trend for other models as well.

Lambda 1 2 5 10 12 100 1000
Overalll]  94.06 93.81 9424 9427 9432 9337 835
DoB| 1.8 2.07 2 2 208 275 11.92

Max/Min| 1.075 1.094 1.065 1.085 1.0945 1.143 1.837

8.4. Did Feature Transformer MLP learn the gender cues for
the classification task?

The aim of this experiment was to verify the capability of fea-
ture transformer MLP in retaining the gender cues in the trans-
formed feature vector for the gender classification task. For the
experiment, we used ViT-Baseline and the feature transform
model which was trained with the features extracted from the
FairFace training set using the ViT-Baseline model and evalu-
ated on the FairFace, UTKFace, and DiveFace test sets.

As shown in Figure 11, the feature vector of the input face
image was extracted from the feature extraction layer. This fea-
ture vector of the image along arbitrarily chosen pitch, roll, yaw,
and fov was input to the feature transform model. We generated
only one feature vector for each test image (from the testing part
of the dataset), and then the transformed feature vector from the
feature transform model was used as an input to the classifica-
tion layer (final output layer of the ViT-Baseline model) (Train-
ing of the feature transform was discussed in Section 3.3).

FT output

Fig. 11: Depiction of the experiment. E: Encoder, C: Binary Classification
Layer(Output Layer). E & C were trained together. FT: Feature Transform
MLP (Refer the Figure 6 for more details). The output from the encoder was
concatenated with arbitrarily chosen yaw, pitch, roll, and fov, and it was input
to the MLP to obtain the transformed feature, the output of the feature trans-
form model was then input to the classification layer for binary output (gender
classification).

EByaW’ roll,

Image pitch,fov

From Table 14, it was observed that the classifier was able
to classify the transformed feature vector with an overall ac-
curacy of around 87% on intra-class evaluation. The over-
all accuracy of 93% was obtained with an end-to-end baseline
model. Similarly, on UTKFace, the transformed feature vector
obtained an overall accuracy of 92.3% whereas 93.67% over-
all accuracy was obtained by the end-to-end baseline classifier.
Further on DiveFace, we obtained 97.42% gender classification
accuracy for the feature transform model whereas 97.97% ac-
curacy was obtained by the end-to-end model. It shows that
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the classification layer was able to distinguish the gender class
from the transformed feature which is comparable with the
end-to-end baseline model. This comparable performance indi-
cates that the transformed feature vector has captured relevant
gender cues, thereby supporting the consistency regularization
techniques (CR-Feat Trans, CR-Img Aug+Feat Trans) in using
semantic preserving augmentations for enhanced performance.
We obtained similar observations with other architectures.

Table 14: Evaluation of Gender Classification with the transformed feature
of FairFace(FF), UTKFace(UTKF), and DiveFace(DF) testsets was given as
the input to the classification layer. The evaluation was done using the ViT-
Baseline. A: End-to-end image protocol, B: Transformed feature protocol as
shown in Figure 11.

Ethnicity Black East Indian Latino Middle Southeast White
¥ Asian Hispanic Eastern Asian
Gender M F ™M F ™M F M_F M __F__M__F ™M F
A(FF) 89386 8494 0138 0366 9309 0449 0344 0471 9631 0446 0075 9427 9456 9357
B(FF) 82387601 792 02.126_88.526_ 85954 8797 9002 9278 9224 8333 8945 88493 89,538
A(UTKF) 9914 8868 - — 0551 4 - B B ~ 0107 9405 959 %62
B(UTKF) 9957 8438 - 0424 93019 - B - T 43 0843 071 N6
ADF)__ 0658 9806 - - 97149907 - - B - B ~ 0876 0811
BDF) 9631 97.165 95.163 9947 - B g g B 08689771

9. Key Findings

In this section, we will discuss the key findings derived from
our research.

e Systematic addition of image or feature level augmen-
tations to the training data in a consistency regulariza-
tion framework can enhance the feature representation for
each demographic sub-group, hence, enhancing the per-
formance as well as the fairness of the system.

o The combination of image-level and feature-level augmen-
tations can further enhance the performance and fairness
of image- and feature-level augmentations, individually.
This is due to the enhancement of the data manifold by
combining image-level perturbations with the variations in
pitch, roll, yaw, and field of view (due to feature-level per-
turbations).

o Visual analysis of t-SNE plots of feature embeddings from
our proposed techniques demonstrates the clear linear sep-
arability between the features from each demographic sub-
group, resulting in enhanced performance and reduced
bias.

o ANOVA-based hypothesis testing of the obtained results
confirms that the bias reduction due to our proposed tech-
niques is significant and not obtained by chance.

e Additionally, the ablation studies demonstrate the robust-
ness of our proposed techniques to facial occlusions, the
capability of feature transformer MLP in retaining the gen-
der cues, the importance of the right set of augmentations,
and the optimum weightage to the consistency and classifi-
cation loss for the enhanced performance of our proposed
techniques.



10. Conclusion and Future Work

Much of the existing machine learning-based fairness litera-
ture assumes the presence of protected attributes such as ethnic-
ity and sex for bias mitigation. However, in practice, the collec-
tion of protected features, or their use for training or inference
is often precluded due to privacy and regulation. This severely
limits the applicability of traditional fairness research. Further,
existing approaches to mitigating bias may offer a trade-off be-
tween fairness and classification performance.

We proposed a novel bias mitigation technique based on
consistency-based regularization that can mitigate bias in the
absence of demographic (protected attributes). It leverages the
power of augmented views generated using image perturba-
tion and S tyleNeRF based multi-views. Thorough experimen-
tal validation supported by ablation studies confirms that care-
fully chosen augmentations in a consistency-based regulariza-
tion setting can help improve the fairness as well as classifica-
tion accuracy of the model by enhancing feature representation
and reducing variance for the demographic sub-groups. Our
proposed method obtained an overall reduction in the bias of
about 30% over SOTA bias mitigation techniques and an im-
provement in classification accuracy of about 5% over the base-
line. Thus, obtaining state-of-the-art performance.

Further, our proposed techniques using image- and feature-
level augmentations have an advantage over random augmenta-
tions and AutoAugment, based on pre-trained policies, in sig-
nificantly enhancing the underlying data manifold of the sam-
ples for rich feature representation learning. Thus enhanc-
ing performance as well as reducing bias at the same time.
Further, our proposed technique can be applied to any down-
stream image recognition task. To further validate the pro-
posed bias mitigation technique, additional rigorous empirical
analysis across diverse problem domains is warranted. Fu-
ture work should evaluate the efficacy of alternative biomet-
ric modalities (e.g. ocular biometrics (Krishnan et al., 2020,
2021))), heterogeneous data spectra (Near-Infrared (Krishnan
etal., 2022)), and expanded application areas (such as Deepfake
detection (Nadimpalli and Rattani, 2022)). Thorough inter-
sectional analysis accounting for combinations of demographic
sub-groups should also be undertaken. Insights from expanded
evaluations will inform requisite algorithmic enhancements and
modifications to optimize fairness and generalization perfor-
mance.

11. Acknowledgements

This work is supported in part by National Science Founda-
tion (NSF) award no. 2129173.

19

Fig. 12: t-SNE plot for projection of the feature embedding of the 2500 test
samples from FairFace using the ViT Baseline. The green bounding box indi-
cates correct classification, and the red indicates incorrect classification.[Best
viewed in color.]

Fig. 13: t-SNE plot for projection of the feature embedding of the 2500 test
samples from FairFace using ViT CR-Img Aug. The green bounding box indi-
cates correct classification, and the red indicates incorrect classification.[Best
viewed in color.]
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