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DISEASE DYNAMICS

A transmissible cancer shifts from emergence to
endemism in Tasmanian devils
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INTRODUCTION: Emerging infectious diseases
pose one of the greatest threats to human
health and biodiversity. Phylodynamics is an
effective tool for inferring epidemiological param-
eters to guide intervention strategies, particularly
for human viruses such as severe acute respira-
tory syndrome coronavirus 2 (SARS-CoV-2). How-
ever, phylodynamic analysis has historically been
limited to the study of rapidly evolving viruses
and, in rare cases, bacteria. Nonetheless, applica-
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tion of phylodynamics to nonviral pathogens has
immense potential, such as for predicting disease
spread and informing the management of wild-
life diseases.

We conducted a phylodynamics analysis of
devil facial tumor disease (DFTD), a transmis-
sible cancer that has spread across nearly the
entire geographic range of Tasmanian devils
and threatens the species with extinction.
DFTD is transmitted as an allograft through
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Tasmanian devils and their transmissible cancer. Healthy (top) and DFTD-infected (bottom) Tasmanian devils.
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biting during common social interactions, sus-
ceptibility is nearly universal, and case fatality
rates approach 100%. The goals of our study
were to (i) characterize the geographic spread
of DFTD, (ii) identify whether there are differ-
ent circulating tumor lineages, and (iii) quan-
tify rates of transmission among lineages.

RATIONALE: In principle, phylodynamics should
be readily extended to the study of slowly
evolving pathogens with large genomes through
careful interrogation of genes to identify those
that are measurably evolving. By testing indi-
vidual genes for a clocklike signal, these genes
may then be used for phylodynamic analysis.
‘We demonstrate this proof of concept in DFTD.

RESULTS: We screened >11,000 genes across
the DFTD genome, identifying 28 that exhibited
a strong, clocklike signal, and performed the
first phylodynamic analysis of a genome larger
than a bacterium. We demonstrate here, con-
trary to field observations, that DFTD spread
omnidirectionally throughout the epizootic,
leaving little signal of geographic structuring
of tumor lineages across Tasmania. Despite
predictions of devil extinction, we found that
the effective reproduction number (Rg), a
summary of the rate at which disease spreads,
has declined precipitously after the initial epi-
demic spread of DFTD. Specifically, Ry peaked
at a high of ~3.5 shortly after the discovery of
DFTD in 1996 and is now ~1 in both extant
tumor lineages. This is consistent with a shift
from emergence to endemism. Except for a single
gene, we found little evidence for convergent
molecular evolution among tumor lineages.

CONCLUSION: We have demonstrated that
phylodynamics can be applied to virtually any
pathogen. In doing so, we show that through
careful interrogation of the pathogen genome,
a measurably evolving set of genes can be
identified to characterize epidemiological dy-
namics of nonviral pathogens with large genomes.
By applying this approach to DFTD, we have
shown that the disease appears to be transition-
ing from emergence to endemism. Consistent
with recent models, our inference that Ry ~1
predicts that coexistence between devils and
DFTD is a more likely outcome than devil ex-
tinction. Therefore, our findings present cau-
tious optimism for the continued survival of
the iconic Tasmanian devil but emphasize the
need for evolutionarily informed conservation
management to ensure their persistence.
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A transmissible cancer shifts from emergence to
endemism in Tasmanian devils

Austin H. Patton"?, Matthew F. Lawrance!, Mark J. Margres®, Christopher P. Kozakiewicz,
Rodrigo Hamede*®, Manuel Ruiz-Aravena®®, David G. Hamilton®, Sebastien Comte®”, Lauren E. Ricci®®,
Robyn L. Taylor®, Tanja Stadler®'°, Adam Leaché™, Hamish McCallum™2, Menna E. Jones®,
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Emerging infectious diseases pose one of the greatest threats to human health and biodiversity.
Phylodynamics is often used to infer epidemiological parameters essential for guiding intervention
strategies for human viruses such as severe acute respiratory syndrome coronavirus 2 (SARS-Cov-2).
Here, we applied phylodynamics to elucidate the epidemiological dynamics of Tasmanian devil facial
tumor disease (DFTD), a fatal, transmissible cancer with a genome thousands of times larger than that
of any virus. Despite prior predictions of devil extinction, transmission rates have declined precipitously
from ~3.5 secondary infections per infected individual to ~1 at present. Thus, DFTD appears to be
transitioning from emergence to endemism, lending hope for the continued survival of the endangered
Tasmanian devil. More generally, our study demonstrates a new phylodynamic analytical framework that

can be applied to virtually any pathogen.

merging infectious diseases (EIDs) threaten

the health of wildlife, livestock, domestic

animals, and humans (7). One of the pri-

mary contributors to species endanger-

ment (2), EIDs have also led or contributed
to notable extinctions, including dozens of
amphibian species by chytridiomycosis (3), the
Polynesian tree snail (Partula turgida) by a
microsporidian infection (4), and 16 spe-
cies of Hawaiian honeycreepers (Drepanidini,
Fringillidae) by avian malaria (Plasmodium
relictum) and avian pox [Poxvirus avium (2)].
EIDs also can have profound impacts on so-
ciety; indeed, the emergence of severe acute re-
spiratory syndrome coronavirus 2 (SARS-Cov-2)
has led to socioeconomic consequences that
will surely last for years to come (5).
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Recently, phylodynamics has emerged as an
invaluable tool for the characterization of the
epidemiological dynamics of such rapidly evolv-
ing pathogens (6, 7). By reconstructing pathogen
phylogenies, phylodynamic analyses elucidate
critically relevant epidemiological parameters
such as the effective reproduction number
(Rg) (8) and the effective number of infections
(Ng) (9). Ry is a generalization of the basic
reproduction number (R,) in epidemiological
models, or the expected number of secondary
infections from a single infected individual
entering a wholly susceptible population. Sim-
ilarly, Rg quantifies transmission in popula-
tions already infected, predicts when pathogen
prevalence will increase (Rg > 1) or decrease
(Rg < 1), and helps to estimate the vaccination
fraction necessary to achieve herd immunity.

Although phylodynamics has contributed
substantially to the management of human
diseases, including the responses to SARS-
Cov-2 (10), its application to nonviral patho-
gens such as bacteria has been limited by their
slower rate of molecular evolution and larger
genome sizes (I1). Past efforts to apply phylody-
namic approaches to pathogens other than
viruses have been impeded by the challenges
associated with large genome size and the
identification of a measurably evolving por-
tion of the pathogen genome with which to
reconstruct phylogenies. However, the exten-
sion of phylodynamics to nonviral pathogens
including many wildlife EIDs would prove
invaluable for management and intervention.

A marquee example is Tasmanian devils
(Sarcophilus harrisit; Fig. 1A), which are en-
dangered by an unusual class of emerging in-
fectious disease: a transmissible cancer (12).

11 December 2020

Devil facial tumor disease (DFTD; Fig. 1B) has
spread across 95% of the devil’s geographic
range since its discovery in 1996, causing
localized population declines exceeding 90%
(13) and a species-wide decline of 80% (12, 14,).
DFTD replicates clonally and is transmitted
as an allograft through biting during social
interactions (I5). Case fatality rates are nearly
100%, and devil susceptibility appears to be
largely universal (12) due in part to limited
genetic variation caused by historical popula-
tion bottlenecks (16).

Although efforts have been made to de-
scribe DFTD transmission dynamics early in
the epizootic [e.g., (I7)], little is known how its
epidemiology has changed since emergence.
Despite initial model predictions of devil ex-
tinction resulting from frequency-dependent
transmission (77), populations persist even in
long-diseased areas, and some populations
may even be recovering (14, 18). Clearly, more
analyses are needed to reconcile the discrep-
ancy between model predictions and empiri-
cal observations.

Herein, we characterized the epidemiological
history of DFTD using whole-genome sequenc-
ing of 51 tumor samples selected to maximize
spatiotemporal variation across Tasmania be-
tween 2003 and 2018 (fig. S1). By screening
>11,000 genes distributed across the tumor ge-
nome, we identified a subset that is measurably
evolving, thus demonstrating an approach that
enables the application of a suite of phylody-
namic methods to virtually any pathogen. We
also dated the approximate emergence time
of DFTD, determined the number of lineages
present, tracked the rate and directionality of
lineage spread, and estimated Ny and Rg.

Results
Identification of clocklike genes

We screened 11,359 total genes across the
DFTD genome and identified 28 genes (totaling
431,608 bp) that were sufficiently variable
(>50 parsimony-informative sites) and evolved
at an appropriate clocklike manner for use in
tip-dating our phylogeny (table S1). These
28 genes were distributed widely across the
genome without any discernible pattern with
respect to gene function. Once concatenated
and aligned for the 51 final samples, the aligned
matrix was composed of 431,608 total columns,
2520 parsimony-informative sites, 1893 single-
tons, 802 doubletons, and 2711 variants found
in three or more individuals (fig. S2).

DFTD phylogeography

Using these 28 genes, we estimated the time of
DFTD origination to be between 1977 and 1987
(mean = 1983.93; Fig. 1C and figs. S3, S7, and
S8), which is compatible with its discovery in
1996 (12). Field studies indicate an origin of
DFTD in northeastern Tasmania, with subse-
quent southern and westward spread across the
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Fig. 1. Spread of DFTD lineages across Tasmania. (A) Healthy devil (Photo: David G. Hamilton).

(B) Tasmanian devil infected with DFTD (Photo: Alexandra K. Fraik). (C) Phylogeny of 51 tumor samples;
branch colors indicate the estimated geographic diffusion rate. Shown are branch lengths in units of time;
the x-axis corresponds to year. (D) The same phylogeny mapped in geographic space. Blue circles
correspond to both terminal and internal nodes, with size and color corresponding to age. Inferred locations
of internal nodes correspond to our sampled lineages; no samples exist at the time and location of
disease origination. Red polygons indicate posterior probability locations of historical infections. Dashed blue
arrows indicate omnidirectional DFTD spread.
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Fig. 2. Epidemiological dynamics of DFTD. Red arrows indicate the year of DFTD discovery (1996). Shading
indicates the 95% credible intervals for parameter estimates; thick black lines are medians of the posterior
distribution. (A) Re through time under the birth-death skyline model. Dashed gray line indicates Rg = 1. Above this
line, disease spreads; below it, the number of infections decreases. (B) Ng under the coalescent Bayesian skyline.
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island (73). However, our phylogeographic re-
construction showed a more complex pattern of
DFTD spread (Fig. 1D and movie S1). We found
evidence for two contemporary, monophyletic
DFTD lineages that emerged early in the epizootic
and completely overlapped in their geographic
distributions (Fig. 1, C and D), consistent with
a recent landscape genetics study (19). After
reaching central Tasmania, the cancer subse-
quently recolonized previously infected eastern
and southern populations after their well-
documented and extensive declines [e.g.,
(13, 14)]. Our results suggest that the spread
of DFTD continued omnidirectionally toward
the present.

DFTD phylodynamics

Estimates of Ry through time are consistent
with the discovery of DFTD in 1996; a low Ry,
at the time of disease origination would trans-
late to low prevalence before discovery (Fig. 2A).
The birth-death skyline, which assembles piece-
wise constant estimates of Ry, inferred a sudden,
increased rate of transmission in the late 1990s
(Fig. 2A). Specifically, Ry increased from ~1
around 1980 to a maximum of ~3.5. Currently
Ry is <1, suggesting that DFTD will decrease
in prevalence. The N (Fig. 2B) supports the
same dynamics, showing a rapid increase in
number of infections when Ry was >1, fol-
lowed by a stabilization of the infected popu-
lation size coinciding with an Ry of ~1.

The methods used above rely on the assump-
tion that transmission dynamics do not vary
among tumor lineages. Therefore, we relaxed
these assumptions using a multistate birth-death
model to determine whether tumor lineages
differ in their epidemiological dynamics. We
found that, indeed, transmission rate dynam-
ics were not uniform across tumor lineages
(Fig. 3A and fig. S9), with two detectable shifts
in transmission rate. Ry (as estimated under
the birth-death skyline) declined to just above
or below 1 toward the present in each of the
two, reciprocally monophyletic contemporary
transmission clusters, respectively (Fig. 3B).
Neither transmission cluster was geographically
discrete; each was distributed island wide.

Genomic differentiation among transmission clusters

Our results show that accelerated transmission
rates of DFTD began in the early to mid-1990s
(Figs. 2A and 3B). With our data, we were unable
to unequivocally determine what specifically led
to this change. However, we screened the 51 tumor
genomes and identified 791 unique variants that
differentiated the three identified transmission
clusters found in the top 0.1% of pFsr (a measure
of genomic differentiation) values. Of these var-
iants, 687 were intergenic and the remaining
104 fell within a total of 68 unique genes and
70 unique transcripts (fig. S10).

These genes are associated with regulation
of (i) STAT3 (NFATC3 and PRKG1), a key DFTD
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Fig. 3. Heterogeneous transmission rate dynamics in DFTD. (A) Phylogeny inferred under the birth-death
skyline model. Branch colors show three distinct transmission rate regimes identified under the multistate
birth-death model. Circles show posterior probability of interior nodes. Vertical dashed gray line

indicates year of disease detection (1996). (B) Transmission rates through time as inferred under the
birth-death skyline model for clusters 2 (red) and 3 (green). Median estimates are bold black lines; the 95%
credible interval is shaded. Red arrows indicate the year of DFTD discovery (1996). Inset map shows the
distribution of samples belonging to each transmission cluster, with points colored the same as in (A).

immune evasion protein (20); (ii) Schwann
cell differentiation, the cell type of DFTD origin
(2D); and (iii) Wnt signaling (ARMCS8, CDH17,
DMXLI1, and PKP2), a key process in cancer
progression (22) and identified across previ-
ous DFTD genomic studies (23). The above
genes were found to be highly differenti-
ated between clusters 1 (black; Fig. 3A) and
3 (green), as well as between clusters 2 (red)
and 3, but not between clusters 1 and 2.

Discussion

Herein, we have demonstrated that the phy-
lodynamic analytical framework, although
previously applied exclusively to viruses and
a few bacteria, can be used to assess more
slowly evolving pathogens with larger ge-
nomes. Through careful assessment of clock-
like evolution across the genome, we were
able to extract a measurably evolving signal
across 28 genes totaling 431.6 kb. Note that
this amount of sequence is far greater than
that used in phylodynamic studies of viruses,
including Ebola [~19.9 kb (24)], influenza A
[13.6 kb (25)], and SARS-Cov-2 [~29.8 kb (26)].
Therefore, our approach can be readily ap-
plied to the study of other nonviral patho-
gens that previously fell outside of the scope
of phylodynamic study. When applied to devil
facial tumor disease, our analyses show (i) that
DFTD originated well before its discovery in
1996; (ii) no geographic substructuring among
two extant tumor lineages; (iii) omnidirectional
spread of tumors; and (iv) a precipitous decline

Patton et al., Science 370, eabb9772 (2020)

in transmission to replacement at present, in-
dicating a shift to endemism.

Our study indicates that DFTD may have
originated nearly a decade or more before its
discovery in 1996. These findings are com-
patible with field observations; upon initial
discovery in northeastern Tasmania, tumors
were large and widespread in the population
(12), so the disease had likely been circulat-
ing for some time. Nonetheless, it is possible
that some host variants persisted in our multi-
ple sequence alignments (MSAs) despite our
best efforts to remove potential contamination
(see the materials and methods). Because devil
genomic variants will coalesce earlier than
DFTD variants, a consequence of such contam-
ination is that our inferred dates of disease
origination are likely slightly earlier than the
true origination date.

One surprising finding of our phylogeo-
graphic analysis was the apparent lack of
geographical structuring of DFTD lineages.
Rather, our results indicate that the disease
spread omnidirectionally throughout the epi-
zootic, repeatedly recolonizing previously infected
populations that experienced substantial pop-
ulation declines [e.g., (13, 14)]. That is, as devil
populations reached low densities, they likely
received infected migrant devils from neighbor-
ing areas, which is compatible with the observed
disease-induced metapopulation dynamics (27)
and local patterns of DFTD lineage replacement
(28). Thus, our phylogeographic analysis chal-
lenges the conventional narrative of an east-to-

11 December 2020

west disease wave emanating from northeastern
Tasmania (72) and instead suggests continuous
spread in all cardinal directions (Fig. 1D).

These results differ slightly from those of
Murchison et al. (21), who recovered evidence
of fine-scale geographic structuring with the
Forestier peninsula of southeastern Tasmania.
‘Whereas we sampled 51 tumors across Tasma-
nia between 2003 and 2018, 36 of the 68 tumor
samples in Murchison et al. (2I) came from
the Forestier peninsula over a 4-year period.
Additionally, the tumor phylogeny inferred
by Murchison et al. (21) was based on 16 nuclear
and 21 mitochondrial variants that were pre-
sumably somatic. By contrast, our phylogenies
are based on 5406 total variants distributed
across 28 measurably evolving genes.

Terminal branches of our inferred phylog-
enies are longer than internal branches, dif-
fering slightly from typical viral phylogenies.
High within-host tumor diversity is one poten-
tial explanation, but evidence of this is limited
and preliminary. The only study that com-
pared within-host tumor variation found that
only six tumors from 20 individuals could be
distinguished. Furthermore, three of these six
differed by only a single variant, thus demon-
strating limited within-host variation (21) and
the potential for superinfection by more than
one tumor lineage.

An alternative explanation for long terminal
branches comes from the widespread geo-
graphic distribution and complete geographic
overlap of tumor lineages, which were also
seen in (19). That is, because of the low-density
sampling scheme of our study with respect
to geographic and temporal distribution of
samples, the probability of sampling two close-
ly related samples at any time or place is low.

Although we infer a geographical origin in
north-central Tasmania, this is likely due to
the earliest DFTD samples being collected
from this location. Note that this is not to be
interpreted as the location at which DFTD
originated because it is much more probable
that the disease originated on the eastern
coast, near the site of discovery (72). Our infe-
rence of the root location in central Tasmania
is likely a consequence of the absence of sam-
ples collected at the general location and time
of disease origin in northeastern Tasmania.
Tissue samples of tumors were not collected
until the early 2000s, so no samples exist from
the time and location of disease origin. Further,
the earliest available samples are from central
Tasmania, not the site of disease origination. In
turn, we view the reconstructed geographic
root state as being the location of the most
recent common ancestor of our samples rather
than the location of disease origin.

We found three transmission clusters that
differ in their epidemiological dynamics and
have identified a number of genes that may
contribute to the observed transmission rate
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Fig. 4. Manhattan plot illustrating differentiation of SNPs in pairwise comparisons of transmission clusters using pFsy. The top 0.1% most differentiated
sites are shown in blue, and the top 0.01% most differentiated are shown in red. Select highly differentiated variants including those of functional importance are
annotated. DFTD-associated genes discussed in the text are annotated.

variation. The absence of highly differentiated
sites among clusters 1 and 2 could be caused
by the minimal change in transmission rate at
the time of origination of cluster 2 (Fig. 3B).
These genes may thus contribute to the ob-
served transmission rate variation and are can-
didates in need of further functional validation
in vitro (Fig. 4 and tables S4 and S5).
Molecular evolution among DFTD trans-
mission clusters could occur in two ways. In
the first, convergent molecular evolution would
be evidenced by the same genes becoming
differentiated in each derived cluster (Fig. 3A).
Alternatively, evolution could result in the dif-
ferentiation of unique genes in each cluster. In
general, each derived transmission cluster har-
bors a largely unique set of candidate SNPs,
implicating unique mechanisms by which
transmission rates vary. We only found a single
gene (NAALADLZ2) consistent with the former
(convergent) pattern of molecular evolution
between clusters 2 and 3 (fig. S10 and table
S4). This gene represents the only evidence
recovered for potential convergent molecular
evolution and may be important with respect
to the oncogenicity of DFTD. NAALADL2 has
been demonstrated to be overexpressed in
colon and prostate tumors compared with
benign tumors in humans (29), and it promotes
a tumor phenotype that exhibits greater capac-
ity to migrate and metastasize. Future study
of this gene in the context of DFTD evolution
is thus warranted. Nonetheless, the observed
transmission rate declines could be due to
the accumulation of mutation load, which
has been found in the canine transmissible

Patton et al., Science 370, eabb9772 (2020)

cancer (30). Additionally, study of patterns of
molecular evolution in the 28 clocklike genes
identified in our study presents an exciting
avenue of research.

Contrary to expectations of Tasmanian devil
extinction (13, 17), our results suggest that
DFTD is transitioning from emergence to
endemism. The large decline of Ry in the two
pandemic tumor lineages suggests either co-
existence or DFTD extinction, a result consist-
ently supported by recent models and field data
(27, 31). This decrease in Rg may be a conse-
quence of devil population declines, leading to
fewer transmission opportunities. Current low
Ry, values are consistent with a reduced force
of infection estimated using mark-recapture
field data (32) and possible demographic recov-
ery of some populations (33). Contemporary
transmission dynamics may result in either
the long-term coexistence of DFTD and devils
or DFTD extinction, outcomes predicted by
individual-based models (32). However, the
potential for coexistence does not imply recov-
ery of devils to pre-DFTD population sizes; cur-
rent models predict persistent, substantially
reduced devil densities (31).

Our results support the growing body of
evidence that if DFTD continues to progress
naturally, then devil extinction is unlikely.
Therefore, we urge caution in the considera-
tion of introductions of captive-bred devils to
infected populations, a practice that has already
been set into action (34). If reduced devil
densities are contributing to reduced trans-
mission rates (27), then an artificial increase

of population densities through such intro-
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ductions may be unwise. Further, introduction
of disease-naive devils may swamp adaptation
to this new selective pressure (35). Instead, the
preferred management option may be to allow
natural evolution to occur and only introduce
captive devils as a last resort if demographic
rescue is urgently needed.

The existence of two widespread transmis-
sion clusters with unique epidemiological dy-
namics also suggests that mitigation strategies
such as an oral bait vaccine (36) should ac-
count for this diversity. Unfortunately, a second,
independently evolving transmissible cancer,
DFT2, has been discovered in southeastern
Tasmania (37) and may become a growing
threat. Transmissible tumors may thus be com-
monplace throughout the evolutionary history
of devils, but initial studies do not support this
conclusion (38). Comparative phylodynamics
of DFT2 and DFTD will be essential to under-
stand their relative transmission dynamics.
Our results suggest cautious optimism for the
continued survival of the iconic Tasmanian
devil but emphasize the need for evolutionar-
ily informed management practices to ensure
its persistence (I8).

Materials and Methods
Sample collection

Tumor biopsies were not collected from
Tasmanian devils until the early 2000s, cor-
responding to the time of our earliest samples.
Samples from the University of Tasmania col-
lection were obtained under University of
Tasmania ethics approval A13326 and Wash-
ington State University institutional animal
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care and use committee approval ASAF 6796.
Tumor tissue biopsies were obtained using a
3-mm biopsy punch from wild devils and de-
tailed field trapping protocols that have been
previously described (12, 39).

Early sampling efforts across Tasmania have
historically been heterogeneous, with much
of the effort being focused on collection at
disease fronts. Therefore, we made a concerted
effort to incorporate samples that maximized
the available temporal range (2003 to 2018) and
geographic distribution of samples available
in the two largest sample repositories at the
University of Tasmania and the Tasmanian
Department of Primary Industries, Parks, Water
and Entertainment, Tasmania, Australia. Where
possible, samples were obtained such that
the dataset represented the geographical dis-
tribution of DFTD in Tasmania through time,
with the caveat that samples from eastern
Tasmania are unavailable earliest in the col-
lections, and collection has ceased at a number
of sites in central Tasmania. Further, for devils
that had tumor biopsies taken multiple times,
we selected tumor biopsies that were associ-
ated with the first tumor biopsy for that devil.

Thus, in 2018 we obtained 50 tumor sam-
ples spread both geographically and tem-
porally (2003 to 2018; fig. S1) across Tasmania.
Whole-genomic libraries were prepared using
NEB-next (New England Biolabs, Ipswitch,
MA, USA) kits and sequenced on 26 lanes
of a 10x Illumina Platform at Northwestern
Genomics (Seattle, WA). An additional six
whole-genome tumor samples originally se-
quenced for another study (23) were also in-
cluded (BioProject PRINA4/72767; BioSamples
SAMN09242213, SAMN09242220, SAMN09242222,
SAMNO09242223, SAMNO09242224, and
SAMNO09242226).

Sequencing read assembly

Raw reads were merged using flash2 (40) and
adaptors trimmed with sickle (41). Trimmed
reads were then aligned to the reference ge-
nome of S. harrisii (21) using bwa mem (42).
Bam files produced from this step were sub-
sequently sorted using Samtools (v1.9) sort (43).
Samtools merge was then used to combine the
sorted paired-end and single-end bam files
for each sample; these combined bams were
subsequently merged across lanes. Polymerase
chain reaction duplicates were removed using
Picard Markduplicates (44), and final bam files
were indexed using the Samtools index.

Phylogenetic sequence preparation

To date, most phylodynamic studies have been
conducted on extremely rapidly evolving viruses.
Given that DFTD evolves much more slowly, we
needed to ensure that the loci used to gen-
erate our phylogeny were measurably evolv-
ing. To accomplish this, we used an iterative
approach that first identified a candidate set
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of genes evolving in a clocklike manner in
both devils and tumors.

We first generated consensus sequences for
the 22,391 annotated genes for the Tasmanian
devil genome (Devil_ref v7.0, INSDC Assembly
GCA_000189315.1). We generated consensus
sequences for 48 of the 56 tumor isolates and
14 devil individuals using Samtools faidx. We
then generated individual MSAs for 11,359 of
the 22,391 genes using Clustal Omega (45). We
only generated ~50% of the alignments be-
cause of computational constraints; these
alignments took ~3 months to finish. How-
ever, the aligned genes were distributed across
chromosomes 1 through 6, as well as the
X chromosome, so we are not concerned
that we are including a biased sample of the
genome. We then summarized each alignment
using AMAS (46), which quantifies the num-
ber of variable and parsimony-informative
sites per gene.

Using these aligned genes, we subsequently
inferred individual gene trees using IQ-TREE
(47). Specifically, we fitted models of nucleo-
tide substitution using the -m TEST flag, and
the best-fit model was subsequently used for
tree inference. We then tested, using each of
the 11,359 gene trees, for a clocklike substi-
tution process using the scripts provided by
Murray et al. (48). These scripts regress phylo-
genetic root-to-tip distance against sampling
date in a manner analogous to TempEst (49)
to find the root branch that maximizes the fit
of the regression. Significance was assessed by
randomly permuting sampling dates across the
tips 500 times, with the correlation coefficient
as the test statistic.

We sought to identify a candidate set of
genes that both exhibited a significant and
realistic clocklike substitution process and
harbored a sufficient number of phylogenet-
ically informative sites to resolve the phylo-
geny. Therefore, we filtered these 11,359 genes
such that only 364 were found to be evolving
in a significant, clocklike manner (P < 0.05),
harboring =50 parsimony sites, and with time
to most recent common ancestor (MRCA)
being inferred as <200 years before present
(ybp). From this point forward, an additional
eight tumor samples were included into our
analyses, bringing the total number of sampled
tumors to 56. These eight samples were pre-
viously excluded because of spontaneous regres-
sion [see (23)] but are included herein because
we are specifically interested in broadscale
patterns of transmission across Tasmania.
The phylogenetic positions of these samples
are indicated in fig. S3.

Next, we sought to remove single-nucleo-
tide polymorphisms (SNPs) present in both
devils and tumors, which would be indicative
of potential host contamination in the tumor
sample. To accomplish this, we called SNPs
and indels for all 56 tumor samples using
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bceftools mpileup and beftools call -mv. Indels
were then normalized using beftools norm -m.
‘We then compared these SNPs and indels with
those identified in the available 12 Tasmanian
devil high-coverage (~30x) whole-genome
sequences from Margres et al. (35) using
beftools isec to identify which SNPs and indels
were unique to the tumor samples. We filtered
out all variants shared between devils and
tumors, leaving putatively somatic tumor va-
riants that are not found as standing genetic
variation in devil populations. This approach
has been successfully applied to the study of
DFTD recently (50) and is analogous to the
approach used to study somatic variants in
canine transmissible venereal tumor (51). Per-
sample consensus sequences were then called
using bceftools consensus in the manner de-
scribed above.

We then inferred a final set of MSAs of all
56 tumor samples using MAFFT (52). Specif-
ically, we ran MAFFT using the following
settings: -local-pair -max-iterate 1000 and the
accurate L-INS-I alignment method. We then
repeated the workflow outlined above to infer
gene trees using IQ-TREE, to test for clocklike
signal, and to summarize alignments. As above,
we subsequently filtered resultant MSAs such
that only 28 genes were retained that were
evolving in a significant (P < 0.05) clocklike
manner, harboring >50 parsimony-informative
sites, and exhibiting an MRCA < 200 ybp.

Phylodynamic inference

To expedite tree inference in our Bayesian
phylodynamic analyses, we inferred a starting
tree using concatenated sequences after auto-
mated model selection with IQ-TREE. We
leveraged three complementary Bayesian phylo-
dynamic methods in Beast v2.5.1 (563): Bayesian
continuous phylogeography [visualized in
SpreadD3 (54, 55)], coalescent Bayesian skyline
(9), and birth-death skyline (8) to: (i) charac-
terize the phylogeographic history of DFTD
as it spread across Tasmania, (ii) infer the
demographic history of the disease, and (iii)
quantify the rates of transmission through-
out the epizootic. To test for among-lineage
variation in transmission rates, we applied
the multistate birth-death model (56), as im-
plemented in R v3.6.1 (57), to the birth-death
skyline maximum clade consensus tree. To
quantify transmission rate variation in each
cluster, we used the birth-death skyline model
for the samples within each cluster. To prevent
overfitting, we reduced the number of time
series estimated Ry per cluster to five. We ad-
ditionally used TreeTime (58) to conduct a root-
to-tip regression of molecular divergence in
the ML tree against time of sampling to ob-
tain an estimate of the time of disease origin-
ation. Details specific to each analysis are
described in the extended materials and meth-
ods in the supplementary materials.
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Phylogenetic inference: Starting tree

As before, we implemented model selection in
IQ-TREE on the concatenated sequence before
topology inference. To quantify topological
uncertainty, we conducted 100 rounds of
bootstrapping. The ML tree was then read
into TempkEst to identify problematic sequen-
ces. We identified and removed five tumors
that had outlying residuals or appeared to
have mislabeled tip-dates. These five samples
were excluded from all downstream analyses.
In turn, we generated our final set of 51 tumor
samples presented in the main text. After re-
moval of these tumors, the inferred topology
was subsequently visualized using FigTree (59).

Bayesian phylodynamic inference

For each of the Bayesian phylodynamic analy-
ses described above, the best-fit model of
nucleotide evolution as determined by IQ-TREE
for the concatenated sequence was set in
BEAST. Nondefault priors are shown in table
S2. Four independent Markov chain Monte
Carlo (MCMC) algorithms were run for 50 mil-
lion generations, sampling every 1000 gener-
ations. Individual MCMC traces were compared
to assess convergence using Tracer. Convergent
chains were combined using LogCombiner, dis-
carding the first 20% of samples for each chain
as burn-in. Last, a single chain of 50 million
generations was run, sampling from the prior
only; these MCMC traces were used to assess
deviation of the posterior from the prior for
each estimated parameter. Maximum clade
consensus trees from combined posterior dis-
tributions for each model were obtained using
TreeAnnotater and visualized in FigTree.

Genomic differentiation among
transmission clusters

To characterize genetic differences among
transmission clusters identified under the
multistate birth-death model, we identified
SNPs in the genome exhibiting particularly
strong differentiation among clusters, which
are interpreted as candidates for the explana-
tion of transmission rate variation using the pFgr
association test implemented in the GPAT++
software package (60, 61). Specifically, we used
this approach to identify candidate genomic
variants that could explain the observed trans-
mission rate variation. The pFgr association test
conducts a likelihood ratio test of allele fre-
quency differences among populations, correct-
ing for sequencing error using genotype
likelihood scores in the calculation of model
parameters. This approach has previously been
successfully applied to the study of DFTD (50).
To ensure that only confidently identified SNPs
were retained in this analysis, we filtered the
dataset using VCFtools v0.1.16 (62) using the
following flags: -mac 4, -max-alleles 2, -min-
alleles 2, -minDP 10, -max-missing 0.8, and -
remove-indels. Specifically, we made all pair-
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wise comparisons among identified transmis-
sion clusters and/or regimes. We subsequently
characterized and extracted annotations from
Ensembl for differentiated SNPs using the var-
iant effect predictor (63).
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A transmissible cancer shifts from emergence to endemism in Tasmanian devils
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Emergence to endemism

The emergence of a devastating transmissible facial cancer among Tasmanian devils over the past few decades has
caused substantial concern for their future because these animals are already threatened by a regional distribution
and other stressors. Little is known about the overall history and trajectory of this disease. Patton et al. used an
epidemiological phylodynamic approach to reveal the pattern of disease emergence and spread. They found that low
Tasmanian devil densities appear to be contributing to slower disease growth and spread, which is good news for
Tasmanian devil persistence and suggests that care should be taken when considering options for increasing devil
populations.
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