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ABSTRACT: The cross-metathesis reactions of trans-tetrafluoro-
(trifluoromethyl)-A5-sulfanyl (CF;SF,)-containing olefins expand the
repertoire of synthetic transformations of CF;SF,-substituted
molecules. Treatment of a primary alkene and 3-CF,;SF,—propene
with a second-generation Hoveyda—Grubbs catalyst yielded the
cross-metathesis product in good yield under very mild conditions

R
FICFiS L + SUR U FiCFS AR

R = alkyl, ester, ketone,
carboxylic acid, saccharides

10 (room temperature). CF;SF,—propene undergoes cross metathesis with substrates containing electron-withdrawing groups or

=
—_

electron-donating groups at room temperature or under dichloromethane reflux. The formation of the CF;SF,—propene homodimer

12 and the utility of that dimer to undergo selective cross-metathesis reactions are described.

13 he chemistry of the trans-tetrafluoro(trifluoromethyl)-A°-
14 sulfanyl group (CF,SF,) is little explored. The preparation
15 of tetrafluoro(trifluoromethyl)-A%-sulfanyl chloride (CF;SF,Cl)
16 and the addition of CF;SF,Cl to aliphatic compounds was
17 described in four accounts from the 1970s,'~* but recently,
18 CF3SF,Cl addition reactions to alkenes® and diazoalkanes® have
19 received considerable attention. On incorporation in peptides,”
20 the CF;SF, group has been shown to have remarkable effects on
the secondary structure. Unfortunately, the reactions of CF;SF,-
22 containing building blocks have received little attention.

23 The tetrafluoro(trifluoromethyl)-1-sulfanyl group (CF;SF,)
24 belongs to the same class of fluorinated functionality as the
25 pentafluorosulfanyl (SFs) and trifluoromethyl groups. Incorpo-
26 ration of the CF;SF, group into a molecule profoundly changes
27 the physicochemical properties of the compound. Characteristic
28 of these substitutions are increased lipophilicities, enhanced
29 group dipoles, reduced heats of vaporization, and diminished
30 dielectric constants.

31 The Connelly volume, 138.93 A3 and surface area, 156.76 A2,
32 of the trans-CF;SF, group are greater than the corresponding
33 values of the pentafluorosulfanyl (SF;) group,” 102.96 A® and
34 122.71 A% The CF,SF, substituent is reported to be the most
hydrophobic group in existence with a lipophilicity (,) of2.13.”
36 The CF;SF, group has a Hammett substituent parameter o, of
37 0.68, among the highest o, values for electron-withdrawing
38 functional groups with a predominant inductive (—I) effect. The
39 calculated (B3LYP/cc-pVTZ) dipole moment of CF,SF,CHj of
40 2.301 D is comparable to that of CF;CH; (2.267 D) and
41 reduced relative to the dipole moment of SF;CH; (3.310 D).
42 As part of our effort to expand our understanding of the
43 influence of the CF;SF, group on reactivity and to enhance the
44 utility of CF;SF,-containing building blocks, we have inves-
45 tigated the utility of 3-trans-CF;SF,—propene in cross-meta-
46 thesis reactions.
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Olefin cross metathesis has found many applications in 47
synthesis.”~'' Grubbs’ transformative discoveries of novel 43
catalysts' " facilitated many new synthetic strategies. Recently, 49
there has been interest in reactions of perfluorinated olefins or so
partially fluorinated olefins as these olefins have shown promise s1
in pharmaceutical agents and agrochemicals,'* having been s2
introduced to steroids,"” antiprogestines,16 fulvestrants,'” and s3
O-allylcyclodextrins'® among other agents. The electron s4
deficiency'® of fluorinated alkenes renders cross-metathesis ss
reactions of these olefins particularly challenging. 56

Mes™ N\‘Y‘/N‘Mes Mes/N“Y"N‘ Mes

Cl Cl
Ru= RUA
crr CI" i pp
$ PCy3
1a 1b

Cy = cyclohexyl Mes = 2,4,6-trimethylphenyl

The Blechert'* group has shown that catalyst ligands strongly s7
impact metathesis reactions with second-generation Hoveyda— s8
Grubbs catalysts demonstrating better results. Fluorinated so
alkenes effectively underwent cross-metathesis reactions with 6o
second-generation Hoveyda—Grubbs catalyst 1a." It was also 61
observed that (perfluoroalkyl)propenes such as
CF;CF,CF,CH,CH=CH, formed homodimers in the pres- 63
ence of Grubbs second-generation catalyst 1b. The homodimer 64
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Table 1. Yields for Cross Metathesis of CF;SF, Olefin (3) with Selected Substrates

Trial Substrates 1a (mol%) Temperature Product® Isolated yield (%)
(o} o
10 s~ 20
1 ©/\ OJ\/\ ©ﬂ o X SF,
4 5
A
2 CreHa 10 CreHas SF,CF, 40
6 7
3 BSOS 10 TBSO" ;T SFCF, 55
8
9
4 C6H13/\ 10 reflux CGH13/\/\SF4CF3 20
1
10
5 (o} 10 reflux o 40
\/\)J\ FSCFAS\/M
12 13
6 (,)>/\O/\/ o C,)>/\O/\/\/SF4CF 50
14 15
7 OAc OAc
AcO 10 reflux AcQ 73¢
AcO ) AcO. (o} SF4CF
N
OAc™ ™ OAc
17
16
8 o O o O
10 reflux 34
EtO OEt EtO OEt
— = SF,CF;
18 19
9 X ~_-COH 40 reflux F3CF4S X ~_-COzH 44
20 21
10 o o
10 reflux 94
0 O
SF,4CF.
22 23 s
14 F3CRS 10 reflux SF4CF3 700
3 F3CF4S X
24

“Only the trans product was found. "NMR yield. “16 and 17 in 11:1, a:$, mixture™

C;F,CH,CH=CHCH,C;F,, formed by reaction of
C;F,CH,CH=CH, with 1b, undergoes cross metathesis with
second-generation Hoveyda—Grubbs catalyst 1a.

Various trans-CF;SF,-containing functionalized olefins
(Table 1) were prepared by cross-metathesis reactions
promoted by the second-generation Hoveyda—Grubbs catalyst
la.

The 3-trans-CF,;SF,—propene 3 was readily prepared as
shown below (see Supporting Information for experimental

details)

Cl
C.SF,CI + vTMS Et;B, pentane T™S
0°C
SF,CF3
CsF, DMSO 2
—_— - -5 CF3SF4\/\
-198 °C- -78°C 3

The cross-metathesis reaction of 3 with a variety of terminal
olefins formed the products (Table 1) at room temperature or
under dichloromethane reflux. Conducted in sealed tubes under
an argon atmosphere, electron-rich substrates with relatively
long chains (6, 8, and 14) underwent cross metathesis under
mild conditions. Formation of 21 required the use of a 4-fold
increase in catalyst concentration. Among the successful cross

metatheses, the reaction of ester 4, diester 18, and short-chain
alkene 10 with 3 proceeded in lower yields than the other
examples.

While the CF;SF,-containing olefin (3) chemoselectively
underwent cross metathesis with a diverse set of primary alkenes,
there were several instances where the cross-metathesis process
was not successful with 1a or 1b (see chart below). It has been
suggested that the destabilization of a metallacyclobutane
metathesis intermediate formed on reaction of a fluorinated
olefin®" is a result of a 7 back bonding that increases the
activation energy. In contrast, metallacyclobutanes are stabilized
by the electron donation of strong ¢ donors.

The susceptibility of trans-CF,SF, olefin (3) to undergo cross
metathesis with vinyl boronate 25 was investigated.

O~B X
o
TMS A S N0Ac
25 26 27

O/\/
©/\ ©/O\/\ W
28 29 30 31
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96  Unfortunately, cross metathesis was unsuccessful in the
97 presence of either second-generation Grubbs catalyst (1b) or
98 second-generation Hoveyda—Grubbs catalyst (1a); only the
99 homodimerization product of 3, 24, was formed. Based on the
100 observation that 3 underwent rapid homodimerization, we
101 concluded that this fluorinated olefin can be classified as a type I
102 olefin (fast homodimerization).”> While conditions for for-
103 mation of the cross-metathesis product of 25 with 3 have not yet
104 been identified, previously it has been reported that the cross
10s metathesis of vinyl boronate 25 with olefins can be promoted by
106 first-generation Grubbs catalysts.”> Exploration of the utility of
107 other catalysts is in progress.

108 Surprisingly, allyl trimethylsilane 26 and allyl acetate 27 failed
109 to undergo cross metathesis with either 3 or the homodimeriza-
110 tion product 24. The failure of allyl 26 to undergo cross
111 metathesis with 3 in the presence of 1a was anticipated as cross-
112 metathesis reactions of type I olefins such as 26 with a second
113 type I olefin such as 3 are predicted to occur readily. Previously,
114 modified Grubbs catalysts,”> molybdenum-containing™* or
115 tungsten-containing catalysts,”> have been utilized to promote
116 the cross metathesis of allyl trialkylsilanes.

=t

Rs SF,CF,
F3CF4S\/\ + = — =
3 Rs s
SF4CF3 SF,CF3
X + N Rs — =
CF3SF4 24 RS
26 Rg=TMS
27 Rg = OAc

117 The attempted cross metathesis between allyl acetate and 3
118 yielded the allyl acetate homodimerization product 1,4-
119 diacetoxy-but-2-ene (as detected by TLC) and the homodime-
120 rization product of 3, 24. As mentioned earlier, this result was
121 surprising as both allyl acetate and the homodimer 14-
122 diacetoxy-but-2-ene are type I olefins that would be predicted
123 to undergo cross metathesis readily. The failure of cross
124 metathesis was suggested to be a consequence of the difficulty
125 of the allyl acetate ruthenium adduct to interact with the readily
126 formed homodimer of 3, 24.

127 As the participation of f-pinene 31 in la-promoted cross-
128 metathesis reactions is known,*¢ the challenge of reaction of 31
129 with 3 was not unexpected. Successful cross metatheses of 31
130 required very large excesses of the alkene partner, excesses that
131 were not possible with the limited availability of 3. But, the
132 failure of 3 to undergo cross metathesis with styrene 28, phenyl
133 allyl ether 29, or the naphthyl allyl ether 30 was surprising.
134 However, 1-(but-3-enyloxy)naphthalene 22 did react to form 23
135 in very good yield (Table 1, trial 10). In the attempted reactions
136 0of 29 and 30, only the homodimers were formed. The success of
137 1-(but-3-enyloxy)naphthalene, naphthyl ether 22 (trial 4), to
138 yield products of cross metathesis with 3 in light of the failure of
139 29 and 30 is difficult to rationalize. When the chain is elongated,
140 the metallacyclobutane required for the cross metathesis
141 effectively formed. The origin of the unusual selectivity
142 associated with reactions of 3 is not at all clear. Combination
143 of the steric demand of the CF;SF, group and the profound
144 lipophobicity of this group may be influencing the required
145 intermolecular interactions in an unforeseen manner. Further
146 investigation of the origin of the unusual selectivity of 3 is under
147 active investigation.

—

—

In summary, trans-CF;SF, olefin (3) can undergo second-
generation Hoveyda—Grubbs catalyst-promoted cross meta-
thesis with substrates containing acid, ester, and ketone
functional groups. The limitations of the utility of CF;SF, olefin
3 in cross metathesis are likely related to the novel substituent
effects of the CF,;SF, group, including the steric demand and
fluorophilicity.
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