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Abstract

Scalar inferences (SI) are a signature ex-
ample of how humans interpret language
based on unspoken alternatives. While em-
pirical studies have demonstrated that human
SI rates are highly variable—both within
instances of a single scale, and across dif-
ferent scales—there have been few proposals
that quantitatively explain both cross- and
within-scale variation. Furthermore, while it
is generally assumed that Sls arise through
reasoning about unspoken alternatives, it re-
mains debated whether humans reason about
alternatives as linguistic forms, or at the level
of concepts. Here, we test a shared mecha-
nism explaining SI rates within and across
scales: context-driven expectations about the
unspoken alternatives. Using neural language
models to approximate human predictive dis-
tributions, we find that SI rates are captured by
the expectedness of the strong scalemate as an
alternative. Crucially, however, expectedness
robustly predicts cross-scale variation only un-
der a meaning-based view of alternatives. Our
results suggest that pragmatic inferences arise
from context-driven expectations over alter-
natives, and these expectations operate at the
level of concepts.

1 Introduction

Much of the richness of linguistic meaning arises
from what is left unsaid (e.g., Grice, 1975; Sperber
and Wilson, 1986; Horn, 1989). For example, if
Alice says ‘‘Some of the students passed the
exam’’, Bob can infer that Alice means not all
students passed the exam, even though Alice’s
utterance would still be logically true if all students
had passed. One explanation of this inference is
that Bob reasons about the unspoken alternatives

Code and data can be found at: https://github
.com/ jennhu/expectations—over—alternatives.
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that were available to the speaker. Under the
assumptions that (1) speakers generally try to be
informative, (2) Alice has full knowledge of the
situation, and (3) it would have been relevant and
more informative for Alice to say ‘‘All of the
students passed the exam’’, Alice’s choice to say
‘“‘some’’ suggests that she believes the sentence
with “‘all’’ is false. This inference pattern is more
generally known as scalar inference (SI), which
arises from orderings between linguistic items
(scales).

SI has often been treated as a categorical phe-
nomenon: When a speaker utters a weaker (less
informative) item on a scale, a listener rules out
the meaning of stronger (more informative) items
on that scale (e.g., Levinson, 2000). However,
empirical studies have demonstrated substantial
variability in the rates at which humans draw SIs,
both within instances of a single scale (Degen,
2015; Eiteljoerge et al., 2018; Li et al., 2021)
and across scales formed by different lexical
items (e.g., Doran et al., 2009; Beltrama and
Xiang, 2013; van Tiel et al., 2016; Gotzner et al.,
2018; Pankratz and van Tiel, 2021; Ronai and
Xiang, 2022). For example, consider the following
instances of the scale (some, all):

(1) a. Ilike some country music.
b. Ilike some, but not all, country music.

(2) a. It would certainly help them to appreciate
some of the things that we have here.

b. It would certainly help them to appreciate
some, but not all, of the things that we have
here.

Degen (2015) finds that humans are highly likely
to consider (1-a) as conveying a similar meaning as
(1-b), but unlikely to consider (2-a) as conveying
a similar meaning as (2-b) (Figure 1a). Similarly,
consider the following instances of the scales
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Figure 1: (a) Distribution of human scalar inference
(SD) ratings (on scale of 1-7) across instances of the
(some, all) scale (reproduction of Figure 1, Degen,
2015). (b) Average SI rates across scales formed by
different lexical items (reproduction of Figure 2,
van Tiel et al., 2016).

(possible, certain) and (ugly, hideous), which
both consist of adjectives ordered by entailment:

(3)  a. Success is possible.

on

. Success is not certain.

“4)

o

. The painting is ugly.

o

. The painting is not hideous.

van Tiel et al. (2016) find that humans are highly
likely to conclude that (3-a) implies (3-b), but
unlikely to conclude that (4-a) implies (4-b)
(Figure 1b).

While cross-scale and within-scale variation
have typically been studied as distinct empirical
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phenomena, they both reflect gradedness in lis-
tener inferences based on alternatives and context.
It therefore seems desirable to explain these empir-
ical findings with a shared account, but there have
been few proposals that quantitatively explain both
within- and cross-scale variation. For example,
cross-scale variation can be explained by intrinsic
properties of the scale (e.g., whether the strong
scalemate refers to an extreme endpoint; van Tiel
etal., 2016), but these factors cannot explain vari-
ation within instances of a single scale. On the
other hand, many factors explaining within-scale
variance are scale-specific (e.g., the partitive ‘‘of
the’” for (some, all); Degen, 2015) and may not

generalize to new scales.
Here, we investigate a shared account of Sl rates

within and across scales. Since the alternatives are
not explicitly produced (by definition), the lis-
tener has uncertainty over which alternatives the
speaker could have used—and therefore, which
strong scalemates ought to be negated through SI.
Building upon constraint-based accounts of hu-
man language processing (Degen and Tanenhaus,
2015, 2016), we test the hypothesis that SIs depend
on the availability of alternatives, which depend
on context-driven expectations maintained by the
listener. For example, if a speaker says ‘‘The
movie was good’’, the listener might predict that
amazing is a more likely alternative than funny to
the weak term good. An expectation-based view
predicts that the listener would be thus be more
likely to infer that the movie is not amazing (ac-
cording to the speaker), and less likely to infer that
the movie is not funny. However, while Degen and
Tanenhaus (2015, 2016) have argued that listeners
maintain context-driven expectations over alterna-
tives, these studies have primarily investigated a
single scale ((some, all)) in small domains, argu-
ing from qualitative patterns and in the absence of
a formal theory.

Furthermore, while it is generally assumed that
Sls arise based on reasoning about unspoken al-
ternatives, it remains debated whether humans
reason about alternatives as linguistic structures
(e.g., Katzir, 2007; Fox and Katzir, 2011), or at
the level of concepts (e.g., Gazdar, 1979; Buccola
et al., 2021). Returning to the earlier example,
if the weak scalemate is good, listeners may
reason about a concept like VErRYGoobp instead
of a specific linguistic expression like amazing.
In this sense, the listener’s uncertainty about
alternatives might arise from uncertainty about
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Dataset Type of variation # participants # scales # contexts per scale # data points per item
Degen (2015) Within-scale 243 1 1363 ~ 10
Ronai and Xiang (2022) Cross-scale 40 57 1 40
Pankratz and van Tiel (2021) Cross-scale 1970 50 1 ~ 40
Gotzner et al. (2018) Cross-scale 220 67 1 40
van Tiel et al. (2016) Cross-scale 28 39 3 10

Table 1: Details of human data used in our analyses. An item is a unique (scale, context) combination.

both the scale itself (Is the speaker implying the
plot wasn’t amazing, or that the jokes weren’t
funny?), as well as the exact word forms under
consideration by the speaker (Is the speaker im-
plying the movie wasn’t amazing, fantastic, or
wonderful?). Despite theoretical debates about
the nature of alternatives, however, the role of
concept-based alternatives in SI has not been
tested in a systematic, quantitative way.

We provide a formalization of an expectation-
based account of alternatives and test it on both
string-based and concept-based views of alterna-
tives. Instead of empirically estimating human
expectations over alternatives (cf. Ronai and
Xiang, 2022), we use neural language models
as an approximation, which allows us to generate
predictions for arbitrary sentences and contexts.
We test the account’s predictions on human SI
rates within the (some, all) scale (Degen, 2015),
and across 148 scales from four datasets (van Tiel
et al., 2016; Gotzner et al., 2018; Pankratz and
van Tiel, 2021; Ronai and Xiang, 2022). We find
support for the expectation-based account, and
also provide the first evidence that concept-based
alternatives may be underlying a wide range of
SIs. Our results suggest that pragmatic infer-
ences may arise from context-driven expectations
over unspoken alternatives, and these expectations
operate at the level of concepts.

2 Background

2.1 Within-scale Variation

Within-scale variation refers to the variation in
SI rates across instances of a single scale, such
as (some, all). To explore SI variation within the
scale (some, all), we use the dataset collected
by Degen (2015), which features 1363 natural-
istic sentences containing a ‘‘some’’-NP from
the Switchboard corpus of telephone dialogues
(Godfrey etal., 1992) (Table 1). For each sentence,
SIrates were measured using a sentence-similarity
paradigm. On each trial, participants saw two
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sentence variants: the original sentence contain-
ing ‘‘some’’, and a minimally differing sentence
where ‘¢, but not all,”” was inserted directly after
““‘some’’. Participants were asked, ‘‘How similar
is the statement with ‘some, but not all’ to the
statement with ‘some’?’’ and indicated responses
(similarity judgments) on a seven-point Likert
scale. If the speaker’s originally intended meaning
clearly includes an implicature, then making the
implicature explicit by inserting ‘‘, but not all,”’
should not change the meaning of the sentence,
so similarity judgments should be high. Thus, a
higher similarity judgment indicates a stronger SI.

Degen (2015) finds substantial variation in SI
rates across contexts, challenging the idea that the
‘‘some, but not all’” inference arises reliably with-
out sensitivity to context (Horn, 1989; Levinson,
2000). She also reports several features that predict
SI rates, such as whether ‘‘some’’ occurs with the
partitive ‘‘of the’’, or whether the ‘‘some’’-NP is
in subject position. However, these features may
be highly specific to the (some, all) scale, and
it is unclear whether a more general mechanism
may also explain variation within or across other
scales.

2.2 Cross-scale Variation (Scalar Diversity)

Cross-scale variation refers to the variation in
SI rates across scales formed by different lexical
items. To explore this, we use SI rates across 148
unique scales from four datasets, summarized in
Table 1. Each scale involves a pair of English
words (adjectives, adverbs, or verbs) of the form
([WEAK], [STRONG]), where [WEAK] is less
informative than [STRONG] (e.g., (intelligent,
brilliant)).! For each dataset, SI rates were mea-
sured through a binary choice task. Participants
saw a character make a short, unembedded state-
ment consisting of a simple noun phrase subject
and a predicate with a weak scalar item (e.g.,
“‘John says: This student is intelligent.””). Their

I'We excluded scales where one of the items was formed
by a multi-word expression (e.g., (may, have to)).
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task was to indicate (Yes or No) whether they
would conclude that the speaker believes the
negation of a strong scalar item (e.g., ‘“Would
you conclude from this that, according to John,
she is not brilliant?’”). The SI rate for a scale is
the proportion of Yes responses.

This method has revealed large variation in SI
rates, ranging from 4% ({ugly, hideous)) to 100%
((sometimes, always)) (van Tiel et al., 2016).
van Tiel et al. (2016) test two classes of factors
that might predict SI rates: the availability of the
strong scalemate given the weak scalemate, and
the degree to which scalemates can be distin-
guished from each other. They find SI rates are
predicted by measures of scalemate distinctness
(e.g., whether the strong scalemate forms a fixed
endpoint on the scale), but not by availability
(but see Westera and Boleda, 2020; Ronai and
Xiang, 2022). Other studies have proposed addi-
tional scale-intrinsic factors (e.g., Gotzner et al.,
2018; Sun et al., 2018; Pankratz and van Tiel,
2021). However, structural properties of a scale
cannot explain variablity in SI rates within a scale,
as these properties do not change across contexts.

While others have proposed context-dependent
factors—which could, in principle, explain both
cross- and within-scale variation—these factors
often lack explanatory power in practice. For
example, Ronai and Xiang (2021) find that the
prominence of the Question Under Discussion
(Roberts, 2012) is correlated with S rates, but only
for unbounded scales (i.e., scales where neither
scalemate has a fixed, extreme meaning).

3 An Expectation-based Account of SI

Theoretically, it is the set of alternative utter-
ances—utterances that the speaker could have
used, but didn’t—that drive scalar implicature, and
in principle every possible utterance in a language
might be an alternative to every other. However,
at an algorithmic level (Marr, 1982), it would
be intractable for listeners to perform inference
over this entire set. Furthermore, the signature
pattern of SI would not arise without restrictions
on the alternatives: otherwise, *‘ [WEAK ], but not
[STRONG]” and ‘““[STRONG]’’ would both be
alternatives to *‘ [WEAK] *’, leading to contradic-
tory inferences without a mechanism for breaking
symmetry (Kroch, 1972; Katzir, 2007; Breheny
et al., 2018).
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To solve this symmetry problem, some ap-
proaches restrict alternatives based on structural
complexity through grammar-internal mecha-
nisms (e.g., Katzir, 2007; Fox and Katzir, 2011).
However, these theories do not capture the uncer-
tainty that listeners maintain, and are difficult
to test quantitatively. Here, we test the view
that listeners form probabilistic expectations over
alternatives, given information from their inter-
action with the speaker. In the remainder of this
section, we first discuss the conceptual predictions
of an expectation-based account of SI, and then
describe how we operationalize these predictions
using neural language models.

Suppose that a listener hears a sentence with
a weak scalar term [WEAK] (e.g., ‘‘This student
is intelligent’’). To rule out the meaning of a
particular strong scalemate [ STRONG] (e.g., the
student is not brilliant), the listener must have
reason to believe that the speaker would have said
[STRONG] if they had intended to convey the
strong meaning. However, since the alternatives
are not explicitly produced, the listener has some
degree of uncertainty over what alternatives were
considered by the speaker. If it is likely that the
speaker would have said [ STRONG] to convey the
strong meaning, then their choice to say [WEAK]
suggests that they did not have grounds to say
[STRONG]—and thus, an SI should be more
likely to arise.

The key question, then, is how listeners esti-
mate which alternatives are likely to be considered
by the speaker. An expectation-based account
proposes that listeners integrate contextual and
grammatical cues to maintain probabilistic expec-
tations over these alternatives. A scalemate that is
more probable (given these cues) should be more
likely to enter the scalar inference computation.
Thus, this account predicts that the more expected
the strong scalemate is as an alternative to the
weak scalemate, the higher SI rates should be.

3.1 String-based View of Alternatives

When an alternative is likely to be a strong scale-
mate, listeners should be more likely to rule out its
meaning, resulting in higher SI rates. Conditioned
on the context and the speaker’s choice to use
[WEAK], the listener must estimate the probability
of [WEAK] and [STRONG] being contrasted in a
scalar relationship. Since it is difficult to directly
estimate this probability, we construct a sentence
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frame where the probability of [ STRONG]—at
the level of forms—approximates the probability
of [STRONG] being in a scalar relationship with
a weak scalemate [WEAK ]. This approach allows
us to re-frame the problem of estimating listeners’
expectations over strong scalemates into a word
prediction problem.

To do this, we use the scalar construction
“X, but not Y’, which in many cases suggests
that Y is a strong scalemate to X (Hearst, 1992;
de Melo and Bansal, 2013; van Miltenburg, 2015;
Pankratz and van Tiel, 2021). For a given utterance

[WEAK] and hypoth-
esized scale ( [WEAK], [STRONG] ), we form a
sentence that explicitly states the SI:

CWEAK] [STRONG]

scalar construction
€]

To test how expected [STRONG] is as an al-
ternative to [WEAK], we need to estimate how
likely a human would predict [ STRONG] to ap-
pear in the [STRONG] position in (1).2 Instead
of attempting to directly measure these predic-
tions (cf. Ronai and Xiang, 2022, see (3)), we
approximate this with neural language models.
We measure how unexpected [ STRONG] is by
computing its surprisal (negative log probabil-
ity) under a language model, conditioned on the
rest of the sentence. Since surprisal measures
unexpectedness, we predict a negative relation-
ship between SI rate and the surprisal of the
strong scalemate.

This predictor is closely related to the notion
of an SI’s ‘‘relevance’’ (Pankratz and van Tiel,
2021). Under usage-based theories of language
(e.g., Tomasello, 2003; Bybee and Beckner, 2015),
if a weak scalar term is encountered frequently in
a scalar relationship with a particular strong term,
then the scalar relationship between these items
will be enforced. Thus, Pankratz and van Tiel
(2021) measure the relevance of an SI by count-

2Another approach would be to measure the ex-
pectedness of [STRONG] in the template
[STRONG] —that is, by replacing [WEAK]
with [STRONG] in the speaker’s original utterance. This
template would instantiate the theory that listeners determine
alternatives based on the context. In contrast, the template
we use in (1) instantiates the theory that listeners form ex-
pectations over alternatives based on the context as well as
the speaker’s usage of [WEAK]. We return to this topic in
Section 7.1.

ing corpus frequencies of the scalemates in the
string *‘ [WEAK], but not [STRONG] . This is
conceptually aligned with our setup, where we
might expect higher corpus frequencies to corre-
spond to lower surprisal under a language model.
However, our predictor differs from Pankratz and
van Tiel’s in an important way: they aim to mea-
sure the ‘‘general relevance’” of an SI, which they
define as ‘‘relevance even in the absence of a
situated context.”” It is unclear how general rel-
evance can explain variation in SI rates within
instances of a scale. By using context-conditioned
probabilities from a language model, our predictor
could account for both the general frequency of
“[WEAK], but not [STRONG]”’ as well as ex-
pectations driven by the context in which the scale
occurs.

3.2 Concept-based View of Alternatives

The method described above implicitly treats lin-
guistic forms as the alternatives driving scalar
inferences. However, recent proposals have ad-
vanced the view that alternatives are not linguistic
objects, but instead operate at the level of more
general reasoning preferences (Buccola et al.,
2021). On this view, alternatives are constructed
by replacing primitives of the concept expressed
by the speaker with primitives of equal or less
complexity.

Here, we test a generalization of this
concept-based view of alternatives. Suppose, for
example, a speaker uses the weak scalar term
big. On a concept-based view, the listener may
infer that the speaker is contrasting big with
a concept like VERYBIG instead of a particular
linguistic expression like enormous. However,
in the experiments mentioned in Section 2.2,
the SI process likely needs to be grounded in
linguistic forms before the listener makes a
judgment about a particular strong scalemate
(in string form). One hypothesis is that upon
hearing an expression with a weak scalemate,
a stronger conceptual alternative is activated,
which in turn probabilistically activates all the
strings that could reflect it. Returning to our
earlier example, if the conceptual alternative
is VERYBIG, and huge, massive, and enormous
are string-based realizations of that alternative,
they may be assigned a high likelihood. When
asked about a specific string-form alternative
(e.g., ““The elephant is big. Would you conclude
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that it is not enormous?’’), humans may endorse
the SI if the probability of conceptually similar
linguistic alternatives is sufficiently high, even
if the probability of the tested alternative (here,
enormous) is low.

If SIs involve reasoning about conceptual al-
ternatives, then surprisal values estimated from
assumed string-form alternatives may be poor es-
timates of the true relevant surprisal, as a single
concept could be expressed with multiple forms.
Therefore, in addition to assessing whether ex-
pectedness of specific linguistic forms predicts SI
rates (Section 3.1), we also test a second predictor
which approximates the expectedness of concep-
tual alternatives. To do this, we need a set of
alternatives A that could serve as potential lin-
guistic scalemates. As described in more detail in
Section 4.3 and 5.3, we obtain A by taking a fixed
set of words with the same part of speech as the
weak scalemate, inspired by grammatical theories
of alternatives (e.g., Rooth, 1985; Katzir, 2007).3

Using this alternative set A, we compute the
weighted average surprisal of A using weights
determined by the conceptual similarity between
each alternative and the tested strong scalemate.
We use GloVe embeddings (Pennington et al.,
2014) as an approximation for conceptual rep-
resentations of scalar items, and cosine similarity
between GloVe vectors to approximate conceptual
similarity.

For each scale ( [WEAK], [STRONG] ), we ob-
tain weights by computing the cosine similarity
between the GloVe embeddings for [ STRONG]
(v(strone)) and each potential alternative a (vg)
in the alternative set 4. We compute the weighted
average probability over A using these weights,
and then take the negative log to obtain the
weighted average surprisal:

_ log <Z(l6A P(CL) . COSSim(’U[STRQNg] ,Ua)>
ZaGA COSSim(’U[STRONg] s ’Ua)

2

If there are many conceptually similar alternatives
with low surprisal, then the weighted average sur-
prisal will be low, even if the surprisal of the tested
scalemate is high. Therefore, weighted average
suprisal forms a proxy for concept-based surprisal,
which we compare to string-based suprisal.

3We adopt a liberal view of alternatives to avoid un-
dergeneration. However, an important open question is how
alternatives are determined, which we leave for future work.

890

4 Predicting Variation Within (some, all)

4.1 Human Data

To investigate variation within the scale (some,
all), we use human SI strength ratings collected
by Degen (2015). These ratings were measured
by asking participants to rate the similarity (1-7)
between a sentence with ‘‘some’’ and a minimally
differing sentence with ‘‘some, but not all’’. See
Section 2.1 for details.

4.2 Model

Following the experiment conducted by Degen
(2015), we construct scalar templates by inserting
‘. but not all,”” after the occurrence of ‘‘some’’ in
each sentence from the dataset. Since this scalar
construction (‘‘some, but not all,””) often occurs in
the middle of the sentence, we use the bidirectional
language model BERT (Devlin et al., 2019) to
measure model expectations at the position of the
strong scalemate. Concretely, we replace ‘‘all’’
with the [MASK] token and measure BERT’s
probability distribution at that token. All models
in our study are accessed via the Huggingface
transformers library (Wolf et al., 2020).

4.3 Candidate Alternatives

For our string-based surprisal predictor
(Section 3.1), we are only concerned with
the surprisal of the alternative all in the
[STRONG] position in (1). However, to compute
our concept-based surprisal predictor Section 3.2),
we need a set of candidate alternatives that could
potentially serve as the strong scalemates implied
by the speaker. Since the alternatives to some are
highly constrained by the grammar, we manually
constructed a set of English quantifiers that can
be used in contrast to some: each, every, few, half,
much, many, most, and all.

4.4 Results

Figure 2 shows the relationship between our
predictors and human SI ratings for Degen’s
(2015) dataset of variation within (some, all).
We find that both string-based and concept-based
surprisal are indeed negatively correlated with hu-
man similarity judgments (string-based: Figure 2a,
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Figure 2: Relationship between human SI strength
ratings within (some, all) scale (Degen, 2015) and
BERT-derived predictors: (a) surprisal of scalemate all
in the scalar construction, and (b) weighted average
surprisal over the full set of candidate alternatives
(Section 4.3). Each point represents a sentence. Shaded
region denotes 95% CI.

Pearson p = —0.400, p < 0.0001; concept-based:
Figure 2b, p = —0.432,p < 0.0001).*

We additionally conducted a multivariate
analysis including our two new predictors (string-
and concept-based surprisal) among the predic-
tors investigated in Degen’s original study. We
centered and transformed all variables according
to Degen’s original analyses. The results are sum-
marized in Table 2. We find that the original
predictors remain statistically significant, and that
concept-based surprisal (but not string-based sur-
prisal) is a significant predictor in the full model.
This suggests that listeners draw stronger scalar
inferences when all—or a conceptually similar
alternative—is more expected in a given context.

5 Predicting Variation Across Scales

5.1 Human Data

To investigate variation across scales, we use hu-
man SI rates collected by four studies (Ronai
and Xiang, 2022; Pankratz and van Tiel, 2021;
Gotzner et al., 2018; van Tiel et al., 2016). SI rates
were measured by showing participants a sen-
tence with the weak scalemate (e.g., ‘“The student
is intelligent’’), and asking whether they would
endorse the negation of the strong scalemate (e.g.,

“We note that the relationship between surprisal and SI
ratings visually appears highly non-linear in Figure 2. We
expect this is because the scalemate all is highly expected in
most contexts, so the surprisal values of all are concentrated
at low values. There is a stronger linear relationship between
SIratings and raw probabilities (string-based: p = 0.482, p <
0.0001; concept-based: p = 0.513, p < 0.0001).
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Predictor I} P
DEGEN (2015) PREDICTORS

Partitive 0.658 < 0.0001
Strength —0.470 < 0.0001
Mention 0.287 < 0.0001
Subjecthood 0.495 < 0.0001
Modification 0.157 < 0.01
Log sentence length 0.189 < 0.0001
OUR PREDICTORS

String-based surprisal 0.008 0.960
Concept-based surprisal —0.782 < 0.001

Table 2: Summary of the full regression model,
including original predictors from Degen (2015)
(see the original study for a detailed description
of each of the predictors).

““The student is not brilliant’’). See Section 2.2
for details.

5.2 Model

We construct scalar templates following the pat-
tern summarized in Table 3. Since in each case the
strong scalemate is the final word in the sentence,’
we use an autoregressive language model to mea-
sure expectations over potential scalemates in the
[STRONG] position. We use the base GPT-2
model (Radford et al., 2019) via HuggingFace and
obtain model surprisals through the SyntaxGym
command-line interface (Gauthier et al., 2020).

5.3 Candidate Alternatives

Recall from Section 3.2 that we need a set of
potential linguistic alternatives to compute the
weighted average surprisal. We take this set of
alternatives to be a set of words with the same part
of speech (POS) as the weak scalemate and obtain
these candidate alternative sets by extracting lists
of English adjectives, adverbs, and verbs from
WordNet (Miller, 1995). We then used NLTK
(Loper and Bird, 2002) to find the words satisfying
finer-grained POS tags (JJ for adjectives, RB for
adverbs, and VB for verbs), and sorted each POS
set according to word frequencies from the Open-
Subtitles corpus (Lison and Tiedemann, 2016).%7

SFor a small number of verbal scales, the strong scalemate
is followed with the pronoun ‘‘it’”’ to make the sentence
grammatical. We don’t expect this to matter for our purposes.

Shttps://github.com/hermitdave
/FrequencyWords.

"Thttp://www.opensubtitles.org.
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POS #unique Form of original sentence Form of scalar construction Example

Adj 120 is [WEAK] is [WEAK], butnot [ STRONG] The elephant is big, but not enormous
Adv 12 is [WEAK] is [WEAK] ,butnot [STRONG] The director is sometimes late, but not always
Verb 16 [WEAK }ed [WEAK }ed, but did not [ STRONG ] The runner started, but did not finish

Table 3: Scalar construction templates for different parts of speech (for cross-scale variation).

(a)
Ronai & Xiang (2022) Pankratz & van Tiel (2021) Gotzner et al. (2018) van Tiel et al. (2016)
r=—0.361,p=0.006 r=-—20.180,p=0.211 r= —0.053,p=0.669 r= —0.045,p=0.788
100
[} . v v ¢ . 00 ¢
o) v ¢ N
© v ¢
= o o
n 'vv' v v \0
c v ﬂ—'\
g i v IRETI
£ v \{ 2 LR Y § ¢
T A AZ v' v Y @0%
0 10 5 10 15 0 20 40 0 10
Surprisal of strong scalemate
(b)
Ronai & Xiang (2022) Pankratz & van Tiel (2021)  Gotzner et al. (2018) van Tiel et al. (2016)
r= -—0.400,p=0.002 r=-0.342,p=0.015 r=—0.415,p=0.0005 r=-0.167,p=0.310
100 . - N
e e v v N A
) ° o e 9 * ¢ 0
© P o o v v ¢
& ¢ ‘ '
c 50 ° Q
g . ¢ A
® A4 Y
¢ LN
j:: @@ 4 ® g0 g 4 Wom LY ¢ G’égé
AR ) %@5 v V§ vy ¢ ¢
0
75 10.0 125 8 10 12 7.5 10.0 125 75 100 125

Weighted average surprisal

Figure 3: Relationship between human SI rates and GPT-2-derived predictors across scales, for four datasets.
Each point represents a single scale. Shaded region denotes 95% CI. (a) SI rate vs. surprisal of strong scalemate
in the scalar construction. (b) SI rate vs. weighted average surprisal over the full set of candidate alternatives
(Section 5.3).

We excluded words in the POS sets that were not ~ We find that surprisal is a significant predic-
in the frequency corpus, resulting in 3204 adjec-  tor only for Ronai and Xiang’s dataset (Pearson
tives, 1953 adverbs, and 226 verbs. We restricted  p = —0.361, p = 0.006).>'°

each POS set to its 1000 highest-frequency words,

and performed some manual exclusions (e.g., re-  Model Surprisal vs. Human Completions. For
moving “‘do’’ and ‘‘be’” from the verb set, which ~ the dataset where we do find a relationship be-
are unlikely to form scales with any of the tested ~ tween surprisal and SIrates, we ask whether model
items and follow different syntactic rules). This  surprisals are correlated with human-derived

finally resulted in our three alternative sets: 1000 ~ measurements of how ‘‘accessible’ the strong
adjectives, 960 adverbs, and 224 verbs.® scalemate is. If model surprisals and human ac-

cessibility scores are strongly linked, this would
5.4 Results

5.4.1 String-based Analyses

9We repeated this analysis after removing an outlier from
Gotzner et al.’s dataset, and again found a lack of relationship
Figure 3a shows our results for cross-scale vari-  between Sl rate and surprisal (p = —0.0452, p = 0.719).

ation, under a string-based view of alternatives. For completeness, we also computed the correlation

between SI rates and raw probabilities for both string-based

8Most words in the alternative sets occur with low fre- and concept-based analyses (cf. Footnote 4). After excluding

quency, but we chose to be liberal when including alternatives outliers, raw probabilities did not achieve stronger Pearson
to ensure broad coverage over potential scalemates. correlations with SI rates than surprisals.
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Ronai & Xiang (2022)
r=-0.357,p=0.006

=
o
o

a1
o

o

"Accessibility" score

0 10
Surprisal of strong scalemate

Figure 4: GPT-2-derived surprisal of strong scalemate
vs. accessibility rating of strong scalemates (Ronai and
Xiang, 2022).

suggest that models and humans are aligned at the
level of predictive distributions over alternatives,
validating our approach of using language models
to approximate human predictions.

To this end, we use data from Ronai and Xiang’s
Experiment 2, which measured the accessibility
of scalemates through a Cloze task. Humans were
presented with a short dialogue featuring a sen-
tence with the weak scalemate, as in (3), and then
asked to generate a completion of the dialogue
in the blank. The ‘‘accessibility’’ of the strong
scalemate is taken to be the frequency with which
it is generated in this paradigm.

Sue: The movie is good. 3)

Mary: So you mean it’s not

We find that model surprisals are negatively
correlated with accessibility scores (Figure 4;
p = —0.357,p = 0.006), suggesting that our
method of estimating expectations over alterna-
tives using artificial language models aligns with
direct measurements in humans.

5.4.2 Concept-based Analyses

Turning to a conceptual view of alternatives,
Figure 3b shows the relationship between hu-
man SI rates and weighted average surprisals
(Equation 2). We find a significant negative cor-
relation for all but one of the tested datasets
(Ronai and Xiang: p = —0.400,p = 0.002;
Pankratz and van Tiel: p = —0.342,p = 0.015;
Gotzner et al.: p = —0.415,p = 0.0005; van
Tiel et al.: p = —0.167,p = 0.310), demon-
strating that similarity-weighted surprisal captures
more variation than raw surprisal (cf. Figure 3a;
Section 5.4.1).
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We additionally included both (centered)
string-based and concept-based surprisal as pre-
dictors in a multivariate model, summarized in
Table 4 (middle columns). As in the within-scale
analysis, for three of the four datasets we find
that concept-based surprisal is a stronger predic-
tor than string-based surprisal. With that said, we
find only a marginal effect of concept-based sur-
prisal in Ronai and Xiang’s data, and no effect of
either predictor in van Tiel et al.’s data. However,
for Ronai and Xiang’s data, this does not mean
that there is no value in either predictor—rather,
the predictors are too closely correlated to defini-
tively favor one over the other. To demonstrate
this, for each dataset we performed an analysis
of variance (ANOVA) comparing the full model
to a null intercept-only model (Table 4, right
columns). We find that for all datasets except that
of van Tiel et al., the model with both surprisal pre-
dictors explains significantly more variance than
the null model. In sum, our results suggest that
the expectedness of the strong scalemate can cap-
ture significant cross-scale SI variation, but these
expectations may operate over groups of semanti-
cally similar linguistic forms instead of individual
strings.

Qualitative Analysis. As a follow-up analysis,
we identified cases where GPT-2 assigns low
probability to the tested strong scalemate, but
high probability to near synonyms. We analyzed
the top 5 alternatives from the full alternative set
(Section 5.3) that were assigned highest probabil-
ity as strong scalemates under GPT-2. Figure 5
shows three examples from Ronai and Xiang’s
dataset. The title of each subplot shows the scalar
construction, with the weak scalemate highlighted
in teal and the tested strong scalemate under-
lined in red. The y-axis shows the top 5 candidate
scalemates, and the x-axis shows the probability
assigned by the model. For the weak scalemate big
(left), GPT-2 assigns highest probability to the al-
ternative huge, which conveys similar information
to the empirically tested alternative enormous. We
see a similar pattern for weak scalemate largely
and alternatives completely and fotally (middle),
as well as for weak scalemate hard and alterna-
tive impossible (right). This is consistent with the
hypothesis that surprisal of a specific string may
not capture surprisal of the underlying concept.
Taken together, these analyses suggest that
a concept-based view of alternatives is better
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Full model ANOVA
Dataset
Predictor 15} P F P
. . String-based surprisal —1.538 0.215
Ronai and Xiang (2022) 3.247 0.012
Concept-based surprisal —4.503 0.065
. String-based surprisal 0.460  0.694
Pankratz and van Tiel (2021) 3.198 0.050
Concept-based surprisal —9.491 0.036
String-based surprisal 0.384  0.545
Gotzner et al. (2018) 2.751 0.019
Concept-based surprisal —8.010  0.0005
. String-based surprisal 0.293 0.858
van Tiel et al. (2016) 1.016 0422
Concept-based surprisal —3.340 0.291

Table 4: Summary of full regression model (middle columns) and ANOVA comparing full model
against intercept-only model (right columns) for each cross-scale variation dataset.

The elephant is big,
but not enormous

The coast is largely flooded,
but not totally

The problem is hard,
but not unsolvable

@ huge completely impossible
;(_.25 large entirely difficult
c bad totally easy
2 massive always unreasonable
< small necessarily unthinkable
0.000 0.005 0.00 0.02 0.0 0.2 0.4

P(alternative | context)

P(alternative | context)

P(alternative | context)

Figure 5: Probability assigned by GPT-2 to top 5 candidate strong alternatives (y-axis) for 3 example weak scalar
items: big, largely, and hard (Ronai and Xiang, 2022). The full scalar construction is shown above each subplot,

with the original tested strong scalemate underlined in

aligned with human inferences than treating al-
ternatives as specific linguistic forms. Testing
additional ways of operationalizing concept-based
alternatives is a promising direction for future
work.

6 Related Work

Prior work has evaluated the ability of compu-
tational models to capture scalar inferences. For
example, the IMPPRES benchmark (Jeretic et al.,
2020) frames SI as a natural language inference
problem: The weak scalar expression (e.g., ‘‘Jo
ate some of the cake’’) is the premise, and the
negated strong scalar expression (e.g., ‘‘Joe didn’t
eat all of the cake’’) is the hypothesis. Under this
setup, an interpretation consistent with the strictly
logical reading would assign a neutral relation-
ship between the premise and hypothesis, whereas
a pragmatic reading would assign an entailment
relationship. Models are evaluated based on how

red.

894

often they assign the entailment label across items,
which treats SIs as a homogeneous phenomenon
and does not capture SI variation.

Another line of work has attempted to predict
within-scale SI variation through a supervised ap-
proach (Schuster et al., 2020; Li et al., 2021).
This approach takes a sentence with a weak scalar
item, and attempts to directly predict the human
SI strength through a prediction head on top of
a sentence encoder. This differs from our ap-
proach in that it requires training directly on the
SI-rate-prediction task, whereas we probe the pre-
dictive distribution that emerges from language
modeling with no task-specific representations.
This allows us to compare model probability
distributions to the expectations deployed by hu-
mans during pragmatic inferences, building upon
a literature linking language models to predictive
processing (e.g., Frank and Bod, 2011; Smith and
Levy, 2013; Wilcox et al., 2020; Merkx and Frank,
2021).
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There have also been several studies extracting
scalar orderings from corpora or language model
representations. For example, de Marneffe et al.
(2010) use distributional information from a web
corpus to ground the meanings of adjectives for
an indirect question answering task. Similarly,
Shivade et al. (2015) use scalar constructions like
“X, but not Y’ to identify scales from a corpus of
biomedical texts. Others have found that adjectival
scale orderings can be derived from static word
embeddings (Kim and de Marneffe, 2013) and
contextualized word representations (Gari Soler
and Apidianaki, 2020; Gari Soler and Apidianaki,
2021).

7 Discussion

We tested a shared mechanism explaining varia-
tion in SI rates across scales and within (some,
all), based on the hypothesis that humans main-
tain context-driven expectations about unspoken
alternatives (Degen and Tanenhaus, 2015, 2016).
We operationalized this in two ways using neural
language models: the expectedness of a linguistic
alternative as a scalemate (string-based surprisal),
and the expectedness of a conceptual alternative
(weighted average surprisal). We found that for
both within-scale and cross-scale variation, ex-
pectedness captures human SI rates. Crucially,
however, expectedness of the strong scalemate is
a robust predictor of cross-scale variation only
under a conceptual view of alternatives (Buccola
et al., 2021). Our results support the idea that
the strength of pragmatic inferences depends on
the availability of alternatives, which depends on
in-context predictability.

One open question is the source of variability
across the tested human behavioral datasets—in
particular, the lack of surprisal effect for van Tiel
etal.’s data (Section 5.4). While we cannot be cer-
tain about why the results vary, we identified a few
differences that might affect data quality across
datasets (see Table 1). van Tiel et al.’s study has
the smallest number of participants (28), smallest
number of ratings per scale (10), and smallest num-
ber of scales (39). In addition, their experiments
presented multiple sentence contexts per scale,
whereas the other experiments only presented one
sentence per scale. Other experimental factors,
such as participant recruitment and exclusion cri-
teria, may have also contributed to differences in
data reliability.
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7.1 How Do Listeners Restrict the
Alternatives?

We now return to the issue raised in Foot-
note 2: what information do listeners use to
form expectations about alternatives? To illus-
trate potential hypotheses, consider the item ‘‘The
soup is warm/hot’” from van Tiel et al.’s exper-
imental materials. In our framework described
in Section 3.1, = ““The soup is’’,
[WEAK] = ““‘warm’’, and [STRONG] = ‘‘hot”’.
One hypothesis is that listeners form expec-
tations over relevant scalar expressions given

alone. On this view, expectations
over strong scalemates could be measured by
computing the probability of [STRONG] in
the template [STRONG];i.e., ““The
soup is [STRONG]’’. In contrast, in this paper
we test expectations of [STRONG] in the tem-
plate ‘“The soup is warm, but not [ STRONG]”’,
which instantiates an alternate theoretical position:
that listeners use not only the context, but also
[WEAK] as information for forming expectations
over alternatives.

We adopt this view for several reasons. First,
it could be the case that the context does not
provide enough information for the listener to
narrow down alternatives. Returning to the run-
ning example, ‘“The soup is’’ could be followed
by many continuations, some potentially relat-
ing to the taste or size of the soup in addition
to its temperature. Taking the weak scalar term
““‘warm’’ into account allows the listener to re-
strict the relevant alternatives to a smaller, more
tractable set, which presents an algorithmic solu-
tion to the computationally challenging inference
problem. However, the underinformativity of the
context may be a problem unique to the simple
stimuli used in the behavioral experiments. It is
plausible that listeners could sufficiently restrict
alternative sets given more naturalistic contexts,
which likely provide more cues to the Question
Under Discussion (Roberts, 2012).

In addition, there could be cues from [WEAK]
that provide information about likely alternatives,
independent of the context. For example, listen-
ers might prefer strong scalemates that match
[WEAK] in register or formality, or in shared
phonological features. This motivates why we
chose template (1) to measure expectations over
alternatives, instead of [STRONG].
However, the extent to which listeners tune their
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predictions based on [WEAK] above and beyond
the context remains an open empirical question.

7.2 From Alternatives to Inference

Conceptually, computing an SIinvolves two steps:
(1) determining the suitable alternatives, and
(2) ruling out the meaning of alternatives to arrive
at a strengthened interpretation of the weak scalar
term. Our results primarily shed light on the first
step, providing evidence that expectations play a
role in determining alternatives, and that alterna-
tives are likely based on meanings in addition to
linguistic forms.

When considering the higher-level reasoning
process, many factors beyond alternatives play
a causal role in SI. One view is that hu-
mans use alternatives in a cooperative reasoning
process, such as that formalized by the Ratio-
nal Speech Act framework (RSA; Frank and
Goodman, 2012; Goodman and Frank, 2016). In
an RSA model, a pragmatic listener Li(m | u)
uses a speaker’s utterance v to update their prior
beliefs P(m) over which meaning m the speaker
is trying to convey. The listener does this by com-
puting the likelihood of a pragmatic speaker S;
producing u given each potential meaning. The
pragmatic S speaker corresponds to the utility U
of the utterance u to convey m, relative to the
utility of the alternative utterances in the set of
alternatives .A:

S1(u | m)P(m)
Llm ) = s ta T Py @
C Ulum)
e s v @

Our findings appear compatible with RSA: Lis-
teners reason about a speaker that normalizes over
alternatives. However, it remains an open question
how variable expectations over alternatives should
be operationalized in an RSA model. One option,
as recently proposed by Zhang et al. (2023), is that
the pragmatic speaker is conditioned on the alter-
native set \A. The pragmatic listener has beliefs
over different sets of .4 and marginalizes over
these beliefs when drawing an inference:

Z P(A Si(u | m, A)P(m)
Z Si(u | m!, A)P(m')
(6)

Li(m | u) =

896

Another possibility is that the variable ex-
pectations are not inputs to the model, but
instead fall out of reasoning about how likely
speakers are to use the weaker versus stronger
terms, given variable contextual priors over mean-
ings and questions under discussion (see, e.g.,
Goodman and Lassiter, 2015; Qing et al., 2016).
We leave a detailed exploration of such a model
to future work.

The Role of Priors. Pragmatic inferences are
influenced by the prior probabilities of the world
states compatible with the weak and strong mean-
ings (Degen et al., 2015; Sikos et al., 2021). For
example, consider the scale (start, finish). If a
human were asked ‘“The movie started at 2:30.
Would you conclude that the movie did not finish
at 2:30?7"’, they would likely answer Yes. This Yes
response would count as an SI under the exper-
imental paradigm, but does not reflect pragmatic
reasoning over scalar alternatives: It is simply im-
plausible for a movie to start and finish at the same
time, given our knowledge of the world."!

These priors have an important connection to
our analyses. As outlined in Section 3.1, we ap-
proximate the expectedness of a strong scalemate
by measuring the expectedness of its linguistic
form. This approach can be seen as reflecting an
implicit assumption that the more likely a certain
meaning is, the more likely it is to be expressed
linguistically. This is likely to be wrong in cer-
tain cases—for example, if a certain meaning is
so likely that it is obvious without being said,
then speakers may avoid the effort of explicitly
producing the linguistic expression (and thus, the
linguistic expression would have low probability).
This could potentially be the case for relatively
common SlIs. For example, a speaker might be
able to get away with only saying some and ex-
pecting a listener to recover the meaning some but
not all.

We believe our estimation method may min-
imize this issue, as we measure expectations
conditioned on an explicit scalar contrast with
the weak scalemate (i.e., ‘‘ [WEAK], but not’’).
Thus, our approach can be seen as approximat-
ing listeners’ expectations, given that the speaker
has already chosen to produce a scalar contrast.
Nevertheless, a complete account of scalar infer-
ences will need to account for the influence of the

'This example is due to Lassiter (2022).
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prior probabilities over world states, which may
explain some of the variance not captured by our
predictors.

7.3 Implications for NLP

While the main role of language models in our
analyses was to systematically test a cognitive
theory, we believe this work also has implications
for NLP evaluation. A growing body of work uses
controlled assessments to evaluate the linguistic
knowledge of NLP models. Many studies test
whether models exhibit a categorical pattern of
behavior that reflects a particular linguistic gener-
alization. For example, in syntactic evaluations, a
model is successful if it satisfies certain inequality
relationships between grammatical and ungram-
matical sentences (e.g., Linzen et al., 2016; Futrell
etal.,2019; Hu et al., 2020). SI (and other types of
implicatures) have largely been treated the same
way (see Section 6).

In contrast, we do not evaluate whether lan-
guage models exhibit a categorical pattern of
behavior (‘Do models interpret Sls pragmati-
cally?’’). Instead, based on the empirical evidence
for scalar variation, we test whether models cap-
ture systematic variability in human inferences
(““Are models sensitive to the factors that modulate
human pragmatic inferences?’’). We urge other
NLP researchers to consider variability in human
behaviors instead of relying on categorical gen-
eralizations (see also Pavlick and Kwiatkowski,
2019; Jiang and Marneffe, 2022; Baan et al., 2022;
Webson et al., 2023). Through this approach, we
can build models that capture the rich variability
of human language, and use these models to refine
our theories about the human mind.

Acknowledgments

We thank the anonymous reviewers and the action
editor for their insightful feedback. J. H. is sup-
ported by an NSF Graduate Research Fellowship
(#1745302) and an NSF Doctoral Dissertation Re-
search Improvement Grant (BCS-2116918). S.S.
is supported by the NSF under grant #2030859
to the Computing Research Association for the
ClIFellows Project and the European Research
Council (ERC) under the European Union’s Hori-
zon 2020 research and innovation programme
(grant agreement no. 948878). J. H. and R. L. also
gratefully acknowledge support from the Simons

897

Center for the Social Brain at MIT. Any opinions,
findings, and conclusions or recommendations ex-
pressed in this material are those of the authors
and do not necessarily reflect the views of the
National Science Foundation nor the Computing
Research Association.

References

Joris Baan, Wilker Aziz, Barbara Plank, and
Raquel Fernandez. 2022. Stop measuring cal-
ibration when humans disagree. In Proceed-
ings of the 2022 Conference on Empirical
Methods in Natural Language Processing,
pages 1892-1915, Abu Dhabi, United Arab
Emirates. Association for Computational Lin-
guistics. https://aclanthology.org
/2022 .emnlp-main.124/

Andrea Beltrama and Ming Xiang. 2013. Is
‘good’ better than ‘excellent’? An experimen-
tal investigation on scalar implicatures and
gradable adjectives. Proceedings of Sinn und
Bedeutung, 17.

Richard Breheny, Nathan Klinedinst, Jacopo
Romoli, and Yasutada Sudo. 2018. The sym-
metry problem: Current theories and prospects.
Natural Language Semantics, 26(2):85-110.
https://doi.org/10.1007/s11050-017
-9141-z

Brian Buccola, Manuel Kriz, and Emmanuel
Chemla. 2021. Conceptual alternatives: Com-
petition in language and beyond. Linguistics
and Philosophy. https://doi.org/10

.1007/s10988-021-09327—-w

Joan L. Bybee and Clay Beckner. 2015.
Usage-based theory. In Bernd Heine and Heiko
Narrog, editors, The Oxford Handbook of
Linguistic Analysis. Oxford University Press.

Judith Degen. 2015. Investigating the distribution
of some (but not all) implicatures using corpora
and web-based methods. Semantics and Prag-
matics, 8(11):1-55. https://doi.org/10
.3765/sp.8.11

Judith Degen and Michael K. Tanenhaus.
2015. Processing scalar implicature: A
constraint-based approach. Cognitive Science,
39(4):667-710. https://doi.org/10.1111
/cogs.12171, PubMed: 25265993

d-a[o11e/[0B)/NPSa W I08.Ip//:dny Woly papeojumod

0 € [08Y/8EG0G12/62500 € [9B}/Z91L 1 01/10P/4P!

€20z ¥snbny 20 uo ysenb Aq ypd 6,50


https://aclanthology.org/2022.emnlp-main.124/
https://aclanthology.org/2022.emnlp-main.124/
https://doi.org/10.1007/s11050-017-9141-z
https://doi.org/10.1007/s11050-017-9141-z
https://doi.org/10.1007/s10988-021-09327-w
https://doi.org/10.1007/s10988-021-09327-w
https://doi.org/10.3765/sp.8.11
https://doi.org/10.3765/sp.8.11
https://doi.org/10.1111/cogs.12171
https://doi.org/10.1111/cogs.12171
https://pubmed.ncbi.nlm.nih.gov/25265993

Judith Degen and Michael K. Tanenhaus.
2016. Availability of alternatives and the
processing of scalar implicatures: A visual
world eye-tracking study. Cognitive Science,
40(1):172-201. https://doi.org/10.1111
/cogs.12227, PubMed: 25807866

Judith Degen, Michael Henry Tessler, and
Noah D. Goodman. 2015. Wonky worlds: Lis-
teners revise world knowledge when utterances
are odd. In Proceedings of the 37th Annual
Meeting of the Cognitive Science Society.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training
of deep bidirectional transformers for language
understanding. In Proceedings of the 2019
Conference of the North American Chapter
of the Association for Computational Linguis-
tics: Human Language Technologies, Volume 1
(Long and Short Papers), pages 4171-4186,
Minneapolis, Minnesota. Association for Com-
putational Linguistics. https://doi.org/10
.18653/v1/N19-1423

Ryan Doran, Rachel E. Baker, Yaron McNabb,
Meredith Larson, and Gregory Ward. 2009. On
the non-unified nature of scalar implicature: An
empirical investigation. International Review
of Pragmatics, 1(2):211-248. https://doi
.org/10.1163/187730909X12538045489854

Sarah F. V. Eiteljoerge, Nausicaa Pouscoulous,
and Elena V. M. Lieven. 2018. Some
pieces are missing: Implicature production in
Children. Frontiers in Psychology, 9:1928.
https://doi.org/10.3389/fpsyg.2018
.01928, PubMed: 30405468

Danny Fox and Roni Katzir. 2011. On the charac-
terization of alternatives. Natural Language Se-
mantics, 19(1):87-107. https://doi.org
/10.1007/s11050-010-9065-3

Michael C. Frank and Noah D. Goodman.
2012. Predicting pragmatic reasoning in
language games. Science, 336(6084):998-998.
https://doi.org/10.1126/science
.1218633, PubMed: 22628647

Stefan L. Frank and Rens Bod. 2011. Insensitivity
of the human sentence-processing system to
hierarchical structure. Psychological Science,
22(6):829-834. https://doi.org/10.1177
/0956797611409589, PubMed: 21586764

898

Richard Futrell, Ethan Wilcox, Takashi Morita,
Peng Qian, Miguel Ballesteros, and Roger
Levy. 2019. Neural language models as
psycholinguistic subjects: Representations of
syntactic state. In Proceedings of the 2019
Conference of the North American Chapter
of the Association for Computational Linguis-
tics: Human Language Technologies, Volume 1
(Long and Short Papers), pages 32-42,
Minneapolis, Minnesota. Association for Com-
putational Linguistics. https://doi.org
/10.18653/v1/N19-1004

Aina Gari Soler and Marianna Apidianaki.
2020. BERT knows Punta Cana is not just
beautiful, it’s gorgeous: Ranking scalar ad-
jectives with contextualised representations.
In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language
Processing (EMNLP), pages 7371-7385, On-
line. Association for Computational Linguis-
tics. https://doi.org/10.18653/vl
/2020 .emnlp-main.598

Aina Gar{ Soler and Marianna Apidianaki. 2021.
Scalar adjective identification and multilingual
ranking. In Proceedings of the 2021 Conference
of the North American Chapter of the Associ-
ation for Computational Linguistics: Human
Language Technologies, pages 4653-4660,
Online. Association for Computational Lin-
guistics. https://doi.org/10.18653/v1
/2021 .naacl-main.370

Jon Gauthier, Jennifer Hu, Ethan Wilcox, Peng
Qian, and Roger Levy. 2020. SyntaxGym: An
online platform for targeted evaluation of lan-
guage models. In Proceedings of the 58th
Annual Meeting of the Association for Com-
putational Linguistics: System Demonstrations,
pages 70-76, Online. Association for Compu-
tational Linguistics. https://doi.org/10
.18653/v1/2020.acl-demos.10

Gerald Gazdar. 1979. Pragmatics: Implicature,
Presupposition, and Logical Form. Academic
Press, New York.

J. J. Godfrey, E. C. Holliman, and J. McDaniel.
1992. Switchboard: A telephone speech corpus
for research and development. In International
Conferenceon Acoustics, Speech and Signal
Processing, pages 517-520. https://doi
.0org/10.1109/ICASSP.1992.225858

d-a[o11e/[0B)/NPSa W I08.Ip//:dny Woly papeojumod

0 € [08Y/8EG0G12/62500 € [9B}/Z91L 1 01/10P/4P!

€20z ¥snbny 20 uo ysenb Aq ypd 6,50


https://doi.org/10.1111/cogs.12227
https://doi.org/10.1111/cogs.12227
https://pubmed.ncbi.nlm.nih.gov/25807866
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.1163/187730909X12538045489854
https://doi.org/10.1163/187730909X12538045489854
https://doi.org/10.3389/fpsyg.2018.01928
https://doi.org/10.3389/fpsyg.2018.01928
https://pubmed.ncbi.nlm.nih.gov/30405468
https://doi.org/10.1007/s11050-010-9065-3
https://doi.org/10.1007/s11050-010-9065-3
https://doi.org/10.1126/science.1218633
https://doi.org/10.1126/science.1218633
https://pubmed.ncbi.nlm.nih.gov/22628647
https://doi.org/10.1177/0956797611409589
https://doi.org/10.1177/0956797611409589
https://pubmed.ncbi.nlm.nih.gov/21586764
https://doi.org/10.18653/v1/N19-1004
https://doi.org/10.18653/v1/N19-1004
https://doi.org/10.18653/v1/2020.emnlp-main.598
https://doi.org/10.18653/v1/2020.emnlp-main.598
https://doi.org/10.18653/v1/2021.naacl-main.370
https://doi.org/10.18653/v1/2021.naacl-main.370
https://doi.org/10.18653/v1/2020.acl-demos.10
https://doi.org/10.18653/v1/2020.acl-demos.10
https://doi.org/10.1109/ICASSP.1992.225858
https://doi.org/10.1109/ICASSP.1992.225858

Noah D. Goodman and Michael C. Frank.
2016. Pragmatic language interpretation as
probabilistic inference. Trends in Cognitive
Sciences, 20(11):818-829. https://doi
.org/10.1016/5.tics.2016.08.005,
PubMed: 27692852

Noah D. Goodman and Daniel Lassiter.
2015. Probabilistic semantics and pragmat-
ics: Uncertainty in language and thought.
In The Handbook of Contemporary Seman-
tic Theory, pages 655-686. John Wiley &
Sons, Ltd. https://doi.org/10.1002
/9781118882139.ch21

Nicole Gotzner, Stephanie Solt, and Anton Benz.
2018. Scalar diversity, negative strengthen-
ing, and adjectival semantics. Frontiers in Psy-
chology, 9:1659. https://doi.org/10.3389
/fpsyg.2018.01659

Herbert P. Grice. 1975. Logic and conversa-
tion. In Peter Cole and Jerry L. Morgan,
editors, Syntax and Semantics: Speech Acts, 3,
pages 41-58. Academic Press. https://doi
.0org/10.1163/9789004368811_003

Marti A. Hearst. 1992. Automatic acquisition
of hyponyms from large text corpora. In
COLING 1992 Volume 2: The 14th Interna-
tional Conference on Computational Linguis-
tics. https://doi.org/10.3115/992133
.992154

Laurence R. Horn. 1989. A Natural History of
Negation. Chicago University Press.

Jennifer Hu, Jon Gauthier, Peng Qian, Ethan
Wilcox, and Roger Levy. 2020. A system-
atic assessment of syntactic generalization in
neural language models. In Proceedings of the
58th Annual Meeting of the Association for
Computational Linguistics, pages 1725-1744,
Online. Association for Computational Lin-
guistics. https://doi.org/10.18653
/v1/2020.acl-main.158

Paloma Jeretic, Alex Warstadt, Suvrat Bhooshan,
and Adina Williams. 2020. Are natural language
inference models IMPPRESsive? Learning IM-
Plicature and PRESupposition. In Proceed-
ings of the 58th Annual Meeting of the
Association for Computational Linguistics,
pages 8690-8705. Online. Association for
Computational Linguistics. https://doi.org
/10.18653/v1/2020.acl-main. 768

899

Nan-Jiang Jiang and Marie-Catherine de
Marneffe. 2022. Investigating reasons for
disagreement in natural language inference.
Transactions of the Association for Compu-
tational Linguistics, 10:1357-1374. https://
doi.org/10.1162/tacl_a 00523

Roni Katzir. 2007. Structurally-defined alternatives.
Linguistics and Philosophy, 30(6):669-690.
https://doi.org/10.1007/s10988-008
~9029-y

Joo-Kyung Kim and Marie-Catherine de
Marneffe. 2013. Deriving adjectival scales
from continuous space word representations.
In Proceedings of the 2013 Conference on Em-
pirical Methods in Natural Language Process-
ing, pages 1625-1630. Seattle, Washington,
USA. Association for Computational Linguis-
tics. https://aclanthology.org/D13
-1169

Anthony Kroch. 1972. Lexical and inferred
meanings for some time adverbs. Quarterly

Progress Reports of the Research Laboratory
of Electronics, 104:260-267.

Daniel Lassiter. 2022. How not to identify a scalar
implicature (The importance of priors). Pre-
sentation at Cognitive Semantic and Quantities
Workshop, University of Amsterdam.

Stephen Levinson. 2000. Presumptive Meaning:
The Theory of Generalized Conversational Im-
plicature, MIT Press. https://doi.org
/10.7551/mitpress/5526.001.0001

Elissa Li, Sebastian Schuster, and Judith Degen.
2021. Predicting scalar inferences from ‘‘or’’
to “‘not both’’ using neural sentence encoders.
In Proceedings of the Society for Compu-
tation in Linguistics, volume 4. https://
doi.org/10.7275/xr01-a852

Tal Linzen, Emmanuel Dupoux, and Yoav
Goldberg. 2016. Assessing the ability of LSTMs
to learn syntax-sensitive dependencies. Trans-
actions of the Association for Computational
Linguistics, 4:521-535. https://doi.org
/10.1162/tacl_a 00115

Pierre Lison and Jorg Tiedemann. 2016. Open-
Subtitles2016: Extracting large parallel corpora
from movie and TV subtitles. In Proceedings
of the 10th International Conference on Lan-
guage Resources and Evaluation. https://
aclanthology.org/L16-1147/

d-a[o11e/[0B)/NPSa W I08.Ip//:dny Woly papeojumod

0 € [08Y/8EG0G12/62500 € [9B}/Z91L 1 01/10P/4P!

€20z ¥snbny 20 uo ysenb Aq ypd 6,50


https://doi.org/10.1016/j.tics.2016.08.005
https://doi.org/10.1016/j.tics.2016.08.005
https://pubmed.ncbi.nlm.nih.gov/27692852
https://doi.org/10.1002/9781118882139.ch21
https://doi.org/10.1002/9781118882139.ch21
https://doi.org/10.3389/fpsyg.2018.01659
https://doi.org/10.3389/fpsyg.2018.01659
https://doi.org/10.1163/9789004368811_003
https://doi.org/10.1163/9789004368811_003
https://doi.org/10.3115/992133.992154
https://doi.org/10.3115/992133.992154
https://doi.org/10.18653/v1/2020.acl-main.158
https://doi.org/10.18653/v1/2020.acl-main.158
https://doi.org/10.18653/v1/2020.acl-main.768
https://doi.org/10.18653/v1/2020.acl-main.768
https://doi.org/10.1162/tacl_a_00523
https://doi.org/10.1162/tacl_a_00523
https://doi.org/10.1007/s10988-008-9029-y
https://doi.org/10.1007/s10988-008-9029-y
https://aclanthology.org/D13-1169
https://aclanthology.org/D13-1169
https://doi.org/10.7551/mitpress/5526.001.0001
https://doi.org/10.7551/mitpress/5526.001.0001
https://doi.org/10.7275/xr01-a852
https://doi.org/10.7275/xr01-a852
https://doi.org/10.1162/tacl_a_00115
https://doi.org/10.1162/tacl_a_00115
https://aclanthology.org/L16-1147/
https://aclanthology.org/L16-1147/

Edward Loper and Steven Bird. 2002. NLTK:
The natural language toolkit. In Proceedings
of the ACL-02 Workshop on Effective Tools
and Methodologies for Teaching Natural Lan-
guage Processing and Computational Linguis-
tics, pages 63-70, Philadelphia, Pennsylvania,
USA. Association for Computational Linguis-
tics. https://doi.org/10.3115/1118108
.1118117

Marie-Catherine de Marneffe, Christopher D.
Manning, and Christopher Potts. 2010. ‘“Was
it good? It was provocative.”” Learning the
meaning of scalar adjectives. In Proceedings
of the 48th Annual Meeting of the Association
for Computational Linguistics, pages 167-176,
Uppsala, Sweden. Association for Computa-
tional Linguistics. https://aclanthology
.org/P10-1018/

David Marr. 1982. Vision: A Computational
Approach. Freeman & Co., San Francisco.

Gerard de Melo and Mohit Bansal. 2013.
Good, great, excellent: Global inference of
semantic intensities. Transactions of the
Association for Computational Linguistics,
1:279-290. https://doi.org/10.1162
/tacl_a_00227

Danny Merkx and Stefan L. Frank. 2021. Human
sentence processing: Recurrence or attention?
In Proceedings of the Workshop on Cogni-
tive Modeling and Computational Linguistics,
pages 12-22. Online. Association for Compu-
tational Linguistics. https://doi.org/10
.18653/v1/2021.cmcl-1.2

G. A. Miller. 1995. WordNet: A lexical data-
base for English. Communications of the ACM,
38(11):39-41. https://doi.org/10.1145
/219717.219748

Emiel van Miltenburg. 2015. Detecting and or-
dering adjectival scalemates. In Proceedings
of MAPLEX, Yamagata, Japan. https://
arxiv.org/abs/1504.08102

Elizabeth Pankratz and Bob van Tiel. 2021.
The role of relevance for scalar diversity: A
usage-based approach. Language and Cog-
nition, 13(4):562-594. https://doi.org
/10.1017/1langcog.2021.13

Ellie Pavlick and Tom Kwiatkowski. 2019. Inher-
ent disagreements in human textual inferences.

900

Transactions of the Association for Computa-
tional Linguistics, 7:677-694. https://doi
.org/10.1162/tacl_a_00293

Jeffrey Pennington, Richard Socher, and
Christopher Manning. 2014. GloVe: Global
vectors for word representation. In Proceedings
of the 2014 Conference on Empirical Meth-
ods in Natural Language Processing (EMNLP),
pages 1532-1543. Doha, Qatar. Association for
Computational Linguistics. https://doi
.org/10.3115/v1/D14-1162

Ciyang Qing, Noah D. Goodman, and Daniel
Lassiter. 2016. A rational speech-act model
of projective content. In Proceedings of the
38th Annual Meeting of the Cognitive Science
Society.

Alec Radford, Jeff Wu, Rewon Child, David
Luan, Dario Amodei, and Ilya Sutskever. 2019.
Language models are unsupervised multitask
learners. https://dd4mucfpksywv.cloudfront

.net/better-language-models/language
models_are_unsupervisedmultitask
_learners.pdf

Craige Roberts. 2012. Information structure
in discourse: Towards an integrated formal
theory of pragmatics. Semantics and Prag-
matics, 5(6):1-69. https://doi.org/10
.3765/sp.5.6

Eszter Ronai and Ming Xiang. 2021. Exploring
the connection between question under discus-
sion and scalar diversity. In Proceedings of
the Linguistic Society of America, volume 6,
pages 649-662. https://doi.org/10.3765
/plsa.v6il.5001

Eszter Ronai and Ming Xiang. 2022. Three factors
in explaining scalar diversity. In Proceedings
of Sinn und Bedeutung 26.

Mats E. Rooth. 1985. Association with Focus.
PhD thesis, University of Massachusetts.

Sebastian Schuster, Yuxing Chen, and Judith
Degen. 2020. Harnessing the linguistic signal
to predict scalar inferences. In Proceedings of
the 58th Annual Meeting of the Association for
Computational Linguistics, pages 5387-5403,
Online. Association for Computational Lin-
guistics. https://doi.org/10.18653/v1
/2020.acl-main.479

d-a[o11e/[0B)/NPSa W I08.Ip//:dny Woly papeojumod

0 € [08Y/8EG0G12/62500 € [9B}/Z91L 1 01/10P/4P!

€20z ¥snbny 20 uo ysenb Aq ypd 6,50


https://doi.org/10.3115/1118108.1118117
https://doi.org/10.3115/1118108.1118117
https://aclanthology.org/P10-1018/
https://aclanthology.org/P10-1018/
https://doi.org/10.1162/tacl_a_00227
https://doi.org/10.1162/tacl_a_00227
https://doi.org/10.18653/v1/2021.cmcl-1.2
https://doi.org/10.18653/v1/2021.cmcl-1.2
https://doi.org/10.1145/219717.219748
https://doi.org/10.1145/219717.219748
https://arxiv.org/abs/1504.08102
https://arxiv.org/abs/1504.08102
https://doi.org/10.1017/langcog.2021.13
https://doi.org/10.1017/langcog.2021.13
https://doi.org/10.1162/tacl_a_00293
https://doi.org/10.1162/tacl_a_00293
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.3115/v1/D14-1162
https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://doi.org/10.3765/sp.5.6
https://doi.org/10.3765/sp.5.6
https://doi.org/10.3765/plsa.v6i1.5001
https://doi.org/10.3765/plsa.v6i1.5001
https://doi.org/10.18653/v1/2020.acl-main.479
https://doi.org/10.18653/v1/2020.acl-main.479

Chaitanya Shivade, Marie-Catherine de Marnefte,
Eric Fosler-Lussier, and Albert M. Lai. 2015.
Corpus-based discovery of semantic intensity
scales. In Proceedings of the 2015 Conference
of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human
Language Technologies, pages 483—493. Den-
ver, Colorado. Association for Computational
Linguistics. https://doi.org/10.3115
/v1/N15-1051

Les Sikos, Noortje J. Venhuizen, Heiner
Drenhaus, and Matthew W. Crocker. 2021.
Reevaluating pragmatic reasoning in language
games. PLOS ONE, 16(3):0248388. https://
doi.org/10.1371/journal.pone. 0248388,
PubMed: 33730097

Nathaniel J. Smith and Roger Levy. 2013.
The effect of word predictability on reading
time is logarithmic. Cognition, 128(3):302-319.
https://doi.org/10.1016/j.cognition
.2013.02.013, PubMed: 23747651

Dan Sperber and Deirdre Wilson. 1986.
Relevance: Communication and Cognition.
Wiley-Blackwell.

Chao Sun, Ye Tian, and Richard Breheny. 2018.
A link between local enrichment and scalar
diversity. Frontiers in Psychology, 9:2092.
https://doi.org/10.3389/fpsyg.2018
.02092, PubMed: 30443233

Bob van Tiel, Emiel van Miltenburg, Natalia
Zevakhina, and Bart Geurts. 2016. Scalar di-
versity. Journal of Semantics, 33(1):137-175.
https://doi.org/10.1093/jos/ffu017

Michael Tomasello. 2003. Constructing A Lan-
guage: A Usage-based Theory of Language
Acquisition, Harvard University Press.

901

Albert Webson, Alyssa Marie Loo, Qinan Yu,
and Ellie Pavlick. 2023. Are language models
worse than humans at following prompts? It’s
complicated. https://doi.org/10.48550
/arXiv.2301.07085

Matthijs Westera and Gemma Boleda. 2020. A
closer look at scalar diversity using contextu-

alized semantic similarity. Proceedings of Sinn
und Bedeutung, 24(2):439-454.

Ethan Wilcox, Jon Gauthier, Jennifer Hu, Peng
Qian, and Roger Levy. 2020. On the pre-
dictive power of neural language models for
human real-time comprehension behavior. In
Proceedings of the 42nd Annual Meeting
of the Cognitive Science Society. https://
arxiv.org/abs/2006.01912

Thomas Wolf, Lysandre Debut, Victor
Sanh, Julien Chaumond, Clement Delangue,
Anthony Moi, Pierric Cistac, Tim Rault,
Remi Louf, Morgan Funtowicz, Joe Davison,
Sam Shleifer, Patrick von Platen, Clara Ma,
Yacine Jernite, Julien Plu, Canwen Xu, Teven
Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020.
Transformers: State-of-the-art natural language
processing. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural
Language Processing: System Demonstrations,
pages 38—45, Online. Association for Compu-
tational Linguistics. https://doi.org/10
.18653/v1/2020.emnlp-demos.6

Zheng Zhang, Leon Bergen, Alexander Paunov,
Rachel Ryskin, and Edward Gibson. 2023.
Scalar implicature is sensitive to contex-
tual alternatives. Cognitive Science, 47(2).
https://doi.org/10.1111/cogs.13238,
PubMed: 36739521

d-a[o11e/[0B)/NPSa W I08.Ip//:dny Woly papeojumod

0 € [08Y/8EG0G12/62500 € [9B}/Z91L 1 01/10P/4P!

€20z ¥snbny 20 uo ysenb Aq ypd 6,50


https://doi.org/10.3115/v1/N15-1051
https://doi.org/10.3115/v1/N15-1051
https://doi.org/10.1371/journal.pone.0248388
https://doi.org/10.1371/journal.pone.0248388
https://pubmed.ncbi.nlm.nih.gov/33730097
https://doi.org/10.1016/j.cognition.2013.02.013
https://doi.org/10.1016/j.cognition.2013.02.013
https://pubmed.ncbi.nlm.nih.gov/23747651
https://doi.org/10.3389/fpsyg.2018.02092
https://doi.org/10.3389/fpsyg.2018.02092
https://pubmed.ncbi.nlm.nih.gov/30443233
https://doi.org/10.1093/jos/ffu017
https://doi.org/10.48550/arXiv.2301.07085
https://doi.org/10.48550/arXiv.2301.07085
https://arxiv.org/abs/2006.01912
https://arxiv.org/abs/2006.01912
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.1111/cogs.13238
https://pubmed.ncbi.nlm.nih.gov/36739521

	Introduction
	Background
	Within-scale Variation
	Cross-scale Variation (Scalar Diversity)

	An Expectation-based Account of SI
	String-based View of Alternatives
	Concept-based View of Alternatives

	Predicting Variation Within "426830A some, all"526930B 
	Human Data
	Model
	Candidate Alternatives
	Results

	Predicting Variation Across Scales
	Human Data
	Model
	Candidate Alternatives
	Results
	String-based Analyses
	Concept-based Analyses


	Related Work
	Discussion
	How Do Listeners Restrict the Alternatives?
	From Alternatives to Inference
	Implications for NLP


