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Abstract

The development and deployment of renewable technologies are key to achieving decar-
bonization. Optimal capacity expansion requires complex decision making that accounts
for future cost reduction with increased deployment, which is also termed technology
learning. Having a perfect foresight over the technology cost reduction, however, is highly
unlikely. This has motivated us to develop a capacity planning model that incorporates
such uncertainty. To this end, we apply a multistage stochastic programming approach
with endogenous uncertainty, which results in a mixed-integer linear programming (MILP)
formulation. The proposed model is applied to a case study on power capacity expansion
planning, highlighting the differences in expansion decisions for low- and high-learning
scenarios, which indicates the importance of stochastic optimization.

Keywords: stochastic optimization, endogenous uncertainty, technology learning

1. Introduction

Over the past few decades, the unfavorable shift in global climatic conditions has driven us
to focus on renewable technology development to lower carbon emissions. The increasing
energy demand has further aggravated the need for alternatives to traditional fossil energy
sources. However, in addition to developing new technologies, making them economical
as fast as possible remains a challenging task. In general, the cost of a technology is a
function of several interrelated factors, including pricing and the number of competitors,
government regulations and policies, the scale of production, and demand. The reduction
in the cost of a new technology due to these factors is often termed technology learning.

Of all the stated, the scale of production constitutes a major driving force for cost reduction
in new technologies. The reduction in cost as a function of installed capacity is often
expressed using learning curves. Learning curves have often been used as a tool to estimate
the time for a new technology to become cost-competitive. For example, Rubin et al.
(2007) utilize learning curves for cost projection of power plants equipped with carbon
capture and storage technology.

A less considered aspect is utilizing learning curves to make optimal capacity expansion
decisions for driving down the cost of a plant or a technology in the least possible time.
Most of the literature on optimization concerning learning curves assumes that they can
be constructed deterministically. For example, Heuberger et al. (2017) present a power ca-
pacity expansion formulation assuming fixed learning curves for various power generation
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and storage technologies. However, the lack of reliable historical data, the dependence
of learning on the decisions made in real time, and the influence of other external factors
make it very difficult to predict the learning curves. Therefore, decisions obtained based
on deterministic learning curves may be severely sub-optimal.

To increase the practical relevance of capacity expansion models, our work incorporates
uncertainty in technology learning curves. Uncertainty in learning rates has been ac-
counted for, if at all, using methods such as sensitivity analysis and Monte Carlo sim-
ulation (Kim et al., 2012). Even though such methods provide valuable insights, their
inability to account for non-anticipativity constraints demands a more rigorous optimiza-
tion framework. For this reason, we explore the feasibility of stochastic programming in
incorporating uncertain learning curves for multiperiod capacity expansion problems.

Uncertainty is generally classified as either exogenous or endogenous. The uncertainty
not affected by decisions is termed exogenous, whereas decision-dependent uncertainty
is termed endogenous. Endogenous uncertainty is further classified as type-1 and type-2.
Type-1 uncertainty arises when decisions alter the probability distribution of the uncer-
tain parameters (Peeta et al., 2010), whereas type-2 uncertainty affects the timing of the
realization of the uncertain parameters (Goel and Grossmann, 2006). In a capacity expan-
sion problem with an uncertain learning curve, the uncertainty in expansion cost resolves
only when the capacity is actually increased; thus, the uncertainty here classifies as type-2
endogenous. In this work, we develop a multistage stochastic programming model for
capacity planning with uncertain endogenous technology learning and apply it to a power
expansion case study.

2. Stochastic programming model

To capture the interconnectivity of technologies, model their simultaneous availability to
satisfy product demand, and optimize their selection for capacity expansion and opera-
tions, we consider a general process network comprising process and resource nodes as
illustrated in Figure 1. Processes and resources are denoted by square and circular nodes,
respectively. The arcs in the network denote the directed flow of resources. Process nodes
can represent chemical and manufacturing processes or, generally, technologies. Resource
j ∈ J from a process k ∈ K can either serve as an input resource to process k′ ∈ K\{k},
be discharged from the process network, or be purchased from outside the network.

The goal is to determine optimal capacity expansion decisions during the planning horizon
T , and devise optimal operational decisions in each scheduling horizon Ht based on each
process’s installed capacity, demand of resources, and all the involved costs. Uncertainty
in technology learning curves is accommodated by considering different possible scenarios
(combination of learning curves for multiple uncertain technologies).

2.1. Capacity expansion constraints

Based on the process network in Figure 1, we define binary variable xkits that equals 1
if process k undergoes capacity expansion to (at least) the permissible point i ∈ Ik in
time period t ∈ T of scenario s ∈ S . We further define the variables Ckts and ∆kts such
that they represent the cumulative installed capacity and additional capacity installed of
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Figure 1: A general process network and an illustrative uncertain learning curve. Each
discrete expansion point i acts as a source of uncertainty. In this case, we have two, four,
and eight possible unit expansion costs at i = 1, 2, and, 3 respectively.

a process k in time period t of scenario s, respectively. Then, the following constraints
control the timing and extent of capacity expansion for each technology:

Ck0s = Ck0 ∀k ∈ K, ∀s ∈ S (1a)
Ckts = Ck,t−1,s +∆kts ∀k ∈ K, t ∈ T , ∀s ∈ S (1b)

∆kts =
∑
i∈Ik

xkit∆ki ∀k ∈ K, t ∈ T , ∀s ∈ S (1c)

∆kts ≤ bkt ∀k ∈ K, t ∈ T , ∀s ∈ S (1d)

xkits ≤
t∑

τ=1

xk,i−1,τs ∀k ∈ K, i ∈ Ik\{1}, t ∈ T , ∀s ∈ S (1e)

t∑
τ=1

xkiτs ≤ 1 ∀k ∈ K, i ∈ Ik, t ∈ T , ∀s ∈ S (1f)

g(Qhts, Ckts) ≤ 0 ∀k ∈ K, h ∈ Ht, t ∈ T , ∀s ∈ S (1g)
xkits ∈ {0, 1} ∀k ∈ K, i ∈ Ik, t ∈ T , ∀s ∈ S (1h)
Ckts,∆kts ≥ 0 ∀k ∈ K, t ∈ T , ∀s ∈ S (1i)

Qhts ∈ R|J ||K| × Z|K| ∀t ∈ T , h ∈ Ht, ∀s ∈ S (1j)

where Ck0 denotes the initial installed capacity of process k. The incremental capacity for
process k from point i− 1 to i is denoted by ∆ki. Constraints (1a)-(1c) together represent
the capacity balance. Constraints (1d) limit the capacity expansion of a process k by the
available budget bkt in time period t. Constraints (1e) ensure that we move in the positive
direction on the learning curve in a sequential fashion, i.e., we can only install additional
capacity corresponding to point i if we have already installed the additional capacity cor-
responding to point i − 1. Constraints (1f) imply that investment at any point i ∈ Ik
cannot be made more than once in any time period. Constraints (1g) are a condensed
representation of all the operational constraints, including production scheduling, inven-
tory management, scheduling startup/shutdown of units, limiting emissions and storage,
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to name a few. Operational decision variables Qhts can be both continuous and discrete
and are constrained by the installed capacities of the processes in the network.

2.2. Non-anticipativity constraints

Non-anticipativity constraints (NACs) ensure the equality of decisions for all pairs of in-
distinguishable scenarios at any point in time during the planning horizon. Mathematically,
NACs are represented as follows:

xki1s = xki1,s+1 ∀k ∈ K, i ∈ Ik, s ∈ S, s < |S| (2a)[
Zs,s′

t

xki,t+1,s = xki,t+1,s′ ∀k ∈ K, i ∈ Ik

]
∨
[
¬Zs,s′

t

]
∀(s, s′) ∈ P ′, t ∈ T \{T}

(2b)

Zs,s′

t ⇐⇒
∧

(r,i)∈D(s,s′)

[
t∧

τ=1

(¬xriτs)

]
∀(s, s′) ∈ P ′, t ∈ T \{T} (2c)

Zs,s′

t ∈ {true,false} ∀(s, s′) ∈ P ′, t ∈ T \{T} (2d)

where D(s, s′) is the set containing sources of endogenous uncertainty (expansion points
in our case) that distinguish scenario s from s′. The Boolean variable Zt

s,s′ is true if
uncertainty has not been realized in any of the uncertain parameters that belong to the
set D(s, s′). Further, P ′ denotes the minimum or reduced set of scenario pairs that is
sufficient to express all the NACs. The details on the disjunction and logic-based formula-
tion of NACs for endogenous uncertainty problems can be found in Goel and Grossmann
(2006). Also, we refer the reader to Hooshmand and MirHassani (2016) for redundant
NAC removal strategies in case of endogenous uncertainty and an arbitrary scenario set.

2.3. Objective function

The objective is to minimize the expected net cost over the entire planning horizon; thus,
the overall stochastic optimization problem can be summarized as follows:

min
∑
s∈S

ps
∑
t∈T

αt

[∑
k∈K

∑
i∈Ik

(∫ Φki

Φk,i−1

fks(Φk)dΦk

)
xkits+

∑
h∈Ht

∑
k∈K

∑
j∈J

ujkhts(Qhts, Ckts)

]
s.t. Eqs. (1a) - (1j), (2a) - (2d)

where ps denotes the probability of scenario s and αt denotes the discount factor for time
period t. The learning curve for process k is encoded in the model as fk(Φk) and Φki :=∑i

i′=1 ∆ki. Note that we make no assumptions on the form of the learning curve since the
integral term (expansion cost on increasing capacity from point i−1 to i) is a parameter that
can be pre-calculated. The cost function u captures all operating costs including the cost
of specific modes of operation, utilizing storage, purchasing and discharging resources,
tax on emissions, etc.



3. Industrial case study

The proposed framework is applied to a capacity expansion case study for a network of
power generation technologies. Specifically, we consider seven technologies and cate-
gorize them into one of the following three categories – conventional (no cost reduction),
deterministic (known learning curve), and uncertain technology (uncertain learning curve).
Nuclear, coal, combined cycle gas turbine (CCGT), and open cycle gas turbine (OCGT)
are considered conventional, onshore wind and solar are assumed to be deterministic, and
offshore wind is assumed to have an uncertain learning curve. The model and data for this
case study are partially adapted from Heuberger et al. (2017). The planning problem was
modeled using JuMP v0.21.10 in Julia v1.6.3 and was solved using Gurobi v9.1.2. The
model was solved to optimality (0.01% tolerance) in 3,150 s.

The planning horizon spans eight 5-year time periods from 2015 to 2055. The capacity
expansion decisions are made at the start of each of these time periods. Figure 2 illustrates
the eight possible learning curves for offshore wind technology and the eventual scenario
tree based on the expansion decisions made. The scenario tree indicates that the offshore
wind capacity increases by 2.5 GW at t = 1; however, as expected, we do not see any
further expansion for the low-learning case (high-cost scenarios). On the contrary, for the
high-learning case (low-cost scenarios), at t = 2, the capacity further expands by 5.8 GW,
resulting in four scenario tree nodes. Thus, stochastic programming adapts its decisions to
the future expansion cost, generating practically viable solutions in the process.
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Figure 2: The possible learning curves considered for offshore wind are illustrated on the
left. Scenario tree (right) reveals expansion decisions for offshore wind.

Next, Figure 3 illustrates the distribution of capacity for all technologies throughout the
planning horizon. Clearly, in comparison to the high-learning scenario, the low-learning
scenario does not favor offshore wind expansion. This reduced capacity expansion in
offshore wind is compensated by expansions of conventional technologies such as nuclear
and OCGT. Note that the expansions are governed not only by the expansion cost but
also by the expansion budget, lifetime of each technology, and the time-varying power
generation capacity. The proposed stochastic programming model effectively integrates
the above factors with the uncertain cost to generate the optimal capacity distribution.
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Figure 3: Capacity distribution of power generation technologies under low- and high-
learning scenarios.

4. Conclusions

In this work, we proposed a rigorous optimization framework for a general process net-
work that can be utilized to model energy systems containing both renewable and non-
renewable technologies. We utilize stochastic programming to account for the long-neglected
aspect of uncertainty in technology learning curves. The case study on power capacity ex-
pansion showcases the adaptability of stochastic programming in providing decisions op-
timal to individual scenarios. The difference in decisions also indicates that any solution
obtained through a deterministic model, which essentially is a single scenario case, would
often be sub-optimal for any perturbation in the assumed deterministic learning curves.
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