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Abstract

Nickel-based superalloys, such as Inconel 718 (IN718), have the unique properties of high
strength, oxidation, and corrosion resistance, hence necessitating their wide use in aircraft engine
structural components, power-generation engines, pressure vessels, high perfo A
automobiles, and rocket engines. Additive manufacturing (AM) of these metal superall@ys ispan
emerging technology, which is being investigated in its capability in dri aterial
microstructural development towards enhanced mechanical performance \Withytorstonal fatigue

as an often underlying cause for failure of components within these lications, this study

investigates the microstructural defects induced through the itiv ufacturing process that
have driven Inconel 718 samples to failure when subjecte ional fatigue loading conditions.
As-built and heat-treated Inconel 718 torsional fatj fracture surfaces were compared through

use of a variety of material characterization tc@ show similarities, or lack thereof, in the

defects formed due to the AM process t a ntributed to torsional fatigue fracture. Results

from both as-built and heat-treated Qtal—laser sintered (DMLS) Inconel 718, manufactured
eters

using optimized processin a@

surface and sub-surfa tsWhere lack of fusion regions and un-melted powder particles are

eal that primary torsional fatigue cracks initiated at

apparent. Thr he yses, a correlation was made between the fracture mechanics response

exhibited by e build orientation/post-processing condition and resulting torsional fatigue

prop
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O

1. Introduction 6

The additive manufacturing (AM) Laser Powder-Bed Fusion (L-PBH) t gies allow for
rapid prototyping of complex geometric structures and haye gainhe popularity due to
improved efficiency in part production, yielding c@mpon enhanced mechanical
performance. Characterized by a layer-by-layer powder me and solidification process carried

out by a focused laser beam, the L-PBF additive mdg

direct metal laser sintering (DMLYS), di@er melting (DMLM), selective laser melting

(SLM), selective laser sintering (S c 18#]. Microstructural-level defects induced through

ing consists of the following processes:

these additive manufacturing sses (i.e., un-melted powder particles, gas pores, lack

of fusion regions, porosi hole defects etc.) have been shown to limit the mechanical

performance of additiyely mantufactured components, specifically the fatigue performance, as they

serve as locali of stress concentrations [ 1]. With the viability of the L-PBF technologies
in rapi anufagturing metal superalloy components, it becomes ever more important to improve
the addi anufacturing process by limiting the presence of these microstructural-level defects,

'S to efsure that manufactured parts meet necessary functional mechanical requirements experienced

\uring in-service loading conditions.
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Inconel 718 (IN718), a nickel-based superalloy, is used in a wide variety of applications from
high performance automobiles and pressure vessels to gas turbine engine components in aircrafts,
of which torsional fatigue is often an underlying cause for structural failure. A summary of sel‘ect
fatigue studies performed on AM Inconel 718 has been presented in Table 1. To date, there \
been many studies that have explored the axial, rotating-bending, and reversed-bendi fax

performance of AM Inconel 718, along with the role of AM microstructural defz verning

failure under these loading conditions [2, 4-6]. Axial high cycle fatigue (HCFjand high cycle

(V-HCF) fatigue studies reported the initiation of majority fatigue@(rom sub-surface

@nconel 718 specimens

n as-built AM Inconel 718

intergranular slip bands in additively manufactured polished

ctural<level defects introduced through the

AM process, specifically lack of fusion (LOF) rcg pas pores and columnar grains [23]. A
method has been developed for assessi manufactured structures for the presence of
lack-of-fusion defects and pores [3 asticity model has also been developed to identify
whether persistent slip bands oStructural induced AM defects dominates fatigue crack
initiation [22]. LOF defec@ when metal particles have not fully melted on the previous layer,

leading to points of failurefdue to the space created, which serve as stress concentration regions

[14]. Another oft defect are keyhole defects, which occur when gas bubbles are trapped
betweeNyer of melting metal. When pressure is applied, the gas bubble in the keyhole defect

coll d escapes, leading to the start of a crack that affects the overall mechanical
O@ance [6, 13-14].
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The role of AM processing parameters, specifically layer thickness, laser power, laser scan
speed and build orientation were explored on the high cycle fatigue performance of as-built L-PBF
Inconel 718 [20]. For those specimens developed with low laser-energy density, lack of fus‘ion \
defects were evident, as compared with those specimens manufactured at high laser-en \
densities in which the presence of secondary cracking and porosity were the primary s -sui
defects evident from the fracture surfaces [6, 20]. Secondary fatigue cracking arid imit@ation of
fatigue cracks at locations of un-melted powder particles and slip bands hav&also¥gen reported
from axial fatigue testing of AM Inconel 718 [10]. Other defects inchadin -melted powder

@ failure through crack

inchuding high porosity enhance

particles, and regions of voids/porosity [21], have been sh

crack propagation, while coarse grain structure and§low porosity delay crack propagation [6], in

which low porosity has been shown to be reduced oh the hot isostatic pressing (HIP) post-
processing [15, 18]. In contrast, HIP pro algo been reported to yield poor low cycle fatigue
performance of AM Inconel 718 [2 specimens that were subjected to axial cyclic loading

also showed that the integrity o@ plays a role in the initiation of fatigue cracks [6, 9, 12,

19], nevertheless a ductileffatigug failure mode was evident by microvoid coalescence apparent in

analysis of overall fr@urfaces [6, 9-10].

ore recent studies have begun to present the torsional fatigue performance of

Only select,

AM 18 [3, 7-8]. Shear moduli and the torsional cyclic response were found for as-built

hi eated DMLS Inconel 718 specimens manufactured along various build orientations

\ er completely reversed angle of twist control torsional fatigue experiments [3, 7]. The impact

of different heat-treatment types on the monotonic and torsional fatigue performance of L-PBF
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Inconel 718 has been explored, which reported the highest torsional fatigue life for the horizontal

build orientation [8]. \

This study is novel in that is uses material characterization techniques to identify ghe
microstructural defects induced through the AM process, that caused torsional fatigue failurgifor
both as built and heat-treated DMLS Inconel 718 specimens, manufactured along va buil
orientations using optimized processing parameters. This study further correl @sewed
torsional fracture mechanics response to shear properties reported on these§amplcs in earlier
studies [3, 7], providing a comprehensive understanding bridgi Qg, structure, and
resulting properties with overall performance of DMLS Incon 1 torsional fatigue.

2. Materials and Methods

2.1 Additive Manufacturing of Incon mens

To investigate the impact of additiveﬁ& ctured induced defects on the torsional fatigue

performance of Inconel 718, specime Q e manufactured using the EOS M290 direct metal laser

sintering (DMLS) system_gwith€o ize€d additive manufacturing processing parameters as
suggested by EOS. A Qprocessing parameters are selected to yield a denser final product
(i.e, optimal | cgnsity) for enhanced mechanical performance, it was the intent of this
study t@ determiie how the presence of any remaining additive manufacturing defects impacts
torsi ue performance. As such, specimens were manufactured using the following

parameters: a scanning speed of 960mm/s, laser power of 285W, layer thickness of

\ m, argon gas chamber environment, and hatch spacing of 0.1 1mm. As-built torsion specimens

were manufactured along horizontal, diagonal, and vertical build orientations [3, 16], and their
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fracture response was compared with heat-treated torsion specimens [7]. To serve as a comparison,
material characterization of the torsional fatigue fracture surface of wrought (soften annealed)

*

Inconel 718, subject to the same experimental testing conditions, was also performed. After

removal of specimen support structures through electrical discharge machining (EDM), Q
treated specimens were subjected to the following heat-treatment process: solution anré
1950°F for 1 hour (air/argon cooling), aging at 1400°F for 10 hours (furnace cooliv@@ F in

2 hours), hold at 1200°F for 8 hours (air/argon cooling) [7].

2.2 Mechanical Testing and Material Characterization Q
(o)

Completely reversed (Rg =-1) room temperature angle of torsional fatigue tests

were performed on the as-built and heat-treated spgcimens‘§pecimens, at an angle of twist range

of A¢ =+15°, and twisting rate of 1.654 deg/sec us @ g MTS EM Bionix torsion test system [3,
7]. The resulting torsional fatigue fractur se as shown in Figure la, and additively
manufactured induced microstructura &esent within the specimens, were examined using
the Zeiss Axio Vert. Al Opticaa (Figure 2b), DinoLite Edge Series Digital Microscope

ning Electron Microscope (SEM) (Figure 1c¢) respectively.

(Figure 1b), and Hitachi S@

Secondary electron , energy levels of 10 to 25kV was used for SEM imaging. The

Buehler Eco anual Grinder/Polisher (Figure 2a) was used to assess the grain

micros% using the grinding/polishing procedure for nickel-based superalloys presented in
[17% iMet 240 grit abrasive disc was used during the grinding process, with a base speed

P @- 0 rpm, base rotation complementary to specimen rotation. Specimen polishing was

\e formed using the ApexHercules S rigid grinding disc with 9um MetaDi Supreme diamond

suspension for 5 min, and VexTex cloth with 3pm MetaDi Supreme diamond suspension for 5
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min, using a base speed of 120-150 rpm, with base rotation complementary to specimen rotation.

This was followed by use of VexTex cloth with 0.05um Masterprep alumina suspension using a

base speed of 120-150 rpm with base rotation contra to specimen rotation [17] for 2 n;in. \
Specimens were etched using the Kalling’s 2 Reagent etchant solution with 35-40 wt.% Eth \Q
~2wt.% Cupric chloride, dihydrate, and 55-60wt.% of Hydrochloric acid [24]. Shear opg

from [3,7] were then correlated to exhibited torsional fracture mechanics responsglo ed and

discussed in the results and discussion section.

3. Results

To correlate torsional fatigue findings reported in [3, 7] ts at the microstructural
level driving torsional fatigue failure, a variety of matcfial CRaracterization techniques were
implored, as discussed in the experimental design , from which the following results were
found and discussed here. Torsional fatigue in terms of shear modulus reported in [3, 7]
has been presented in Table 2, from which%ig is evident that heat-treatment overall was found to

enhance shear moduli, G, with g shear moduli reported for the vertical and horizontal

build orientations, with th ar modulus reported for the diagonal build orientation [3,7].

Heat treatment was sly reported to enhance shear stress range achieved by DMLS

Inconel 718 o rientation [7]. Nevertheless, an analysis of grain microstructure of heat-
treated ple intKigure 2d, reveals the characteristic elongated dendritic microstructure, similarly

obs@ s-built DMLS Inconel 718 samples [3]. This supports findings reported in [1, 25],
n h

eat-treatment to temperatures of 1000°C did not exhibit change in dendritic

‘
\1:rostructure exhibited by additively manufactured Inconel 718. Melt arc pools are evident in
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Figure 2c¢ of a cross-section of the as-built AM IN718 horizontal build sample, as reported in

literature.

In terms of fracture mechanics response, Figure 3 presents optical micrographic ima‘ges \
comparing the torsional fatigue fracture response between as-built and heat-treated D \
Inconel718, with Figure 3a for horizontal-as-built and horizontal-heat treated specimen, Eigur
for diagonal-as-built and diagonal-heat treated, and Figure 3¢ for vertical-as-built a ical-heat
treated specimens respectively. Comparison between the horizontal-as-b andihheat treated
specimens reveals variation in the torsional fatigue fracture response torSignal fatigue crack

@QI‘S for a more brittle

1S¥brittle fracture response was

propagation evident parallel and perpendicular to directio

fracture response [3, 16] for the horizontal-as-built sp
also reported in [8] for as-built additively manufactured [feonel 718 specimens, which was
suggested to be a result of the specimens not be ject to stress-relief post-processing. In

contrast, the horizontal-heat treated sp exhibits the presence of multiple fatigue cracks

initiating at the surface perimeter p % ing inwards within the sample. Also evident is the
coalescence of 2 major fatigu that initiated from the as-built specimen surface of the
horizontal-heat treated sp%, eading to the final torsional fracture zone. With the as-built

surface of the ecim@ntained, and only variation between the specimens being subjected to

the heat-treatm rocess, the phenomena for torsional fatigue crack initiation appears to be
similar, 1nitiating at the surface. This supports findings reported in [1, 26], in which fatigue crack

initiati the as-built specimen condition was found to proceed at the surface regardless of

ocessing heat-treatment for axial fatigue studies on AM metal superalloys. Similar fatigue
\rack initiation sites at the surface are also evident for the diagonal as-built and heat-treated

specimens as well as the vertical as-built and heat-treated specimens. Ductile failure mode appears
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to dominate for the diagonal and vertical build orientations, which is explored further through SEM

analysis. \

SEM micrographic images were taken on samples manufactured along each build orientagon
(horizontal, diagonal, and vertical), and under each post-processing condition (i.e., as-built, A

treated) to identify the microstructural defects induced through the additive manufacturingprocgss

in driving torsional fatigue failure. Figure 4 presents SEM images of surfaces ofizontal-
built samples, in the as-built condition, where torsional fatigue cracks w eryed to initiate
and propagate. Primary torsional fatigue cracks are observed to pr along regions of un-

melted powder particles on the rough sample surface. At high ol , as shown in Figure 4b,

it appears that lack of fusion regions may be apparent, ich torsional fatigue cracks are
commencing. This torsional fatigue crack propagatiefyresponse is similar for all as-built samples,
which were manufactured in the horizontal ne, and supports their exhibited similar
shear properties reported in [3]. Upon SE& i§ of heat-treated DMLS Inconel 718 horizontal-
build fracture surface (Figure 5), mt @ racks initiating at the surface are evident, with crack

sizes varying in size with smallesg/Crafks ranging from approximately 0.10mm to 0.36mm in size

to larger size cracks ra rom 0.84mm to 3.06mm in size. The larger cracks appear to coalesce

and propagat e rsional fracture zone. A similar phenomena was reported on torsional
fatigue gesting ofAM Ti-6Al-4V [28]. In terms of additively manufactured induced microstructural
defe egigns of lack of fusion and un-melted powder particles appears near the sample surface

nd are suggested to have led to torsional fatigue crack initiation. The size of lack of

\ ion regions appears on the order of 38um with un-melted powder particles of approximately 6

to 7um apparent in SEM images.
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SEM analysis of microstructural defects driving torsional fatigue failure of as-built diagonal-
build samples is as shown in Figure 6 and 7 respectively. Compared to the horizontal-build
samples, there is a significant quantity of lack of fusion regions and un-melted powder particles \
evident around the sample perimeter that appear to serve as sub-surface defects at which torsi \
fatigue crack initiation is evident. Un-melted powder particles at the surface ranged in ze&
approximately 18um to 42um. Considerable lack of fusion defects are also evident withisfersional
fatigue crack propagation region of fracture surface for the as-built diagon@l builé, orientation.

SEM images from heat-treated diagonal-build reveal traces of sca@—melted powder

particles on fracture surface. Due to the as-built surface, torsighal fati ack initiation was also

fracture.

Overall, the diagonal-build samp
defects as compared with the zontal*build samples. Given the importance of investigating
anisotropy evident in addifivelyymanufactured metals [32-33], correlating the findings from this
study to she ertigsgreported in [3,7,16] and highlighted in Table 2, the diagonal build
orientation exhiBtted the least torsional fatigue performance when compared with the horizontal

and uild samples. Table 2 presents the shear modulus obtained from the first cycle

tigue data reported in [3,7,16], from which anisotropic shear modulus properties are
\ ident with build orientation, with the diagonal build orientation yielding the lowest shear

modulus. This is supported by least shear modulus reported for the diagonal build orientation
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within literature as well [8]. This can be further supported by SEM micrographic images in the
current study which reveal a greater quantity of additive manufacturing defects present upon \

analysis of the torsional fatigue fracture response.

*
Table 2 also expounds upon the variation in modulus of elasticity, E, and shear modul A

with build orientation (i.e., horizontal, diagonal, and vertical), and post-processing condition (L.,
as-built, heat-treated, and hot-isostatically pressed (HIP)) reported for L-PBF Ingo across
select literature. Overall, heat-treatment is found to improve modulus ti and shear

modulus across build orientations. It is evident from findings repo il able 2, that while the

diagonal build orientation yielded the lowest shear modulu pared with other build

orientations subject to torsional loading conditions, the di ild orientation appears to yield

a high elastic modulus, E, comparable to the horizo uild orientation, when subjected to tensile
loading conditions. A review of tensile pro@ Inconel 718 has reported that higher
elastic modulus is apparent for samples s& “loading perpendicular to the build direction,”

perimeter, fro f fracture surface. Ductile fracture mode dominated failure as evident
by micfevoid coalescence. Analysis of heat-treated vertical-build DMLS Inconel 718 specimen
revedls multiple fatigue crack initiating around surface perimeter where lack of fusion regions are
ev ue to the as-built surface, torsional fatigue crack initiation was also observed to initiate

. .‘ ;N .
\t ub-surface defects of lack of fusion regions, regardless of the applied heat-treatment process.

Microvoid coalescence in final peak fracture region revealed evidence of ductile fracture response.
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Of interest, are traces of un-melted powder particles and lack of fusion regions around dimpled
rupture. The presence of these defects may correlate to the reported lower shear modulus reported \
[7] for heat-treated DMLS Inconel 718 as compared with as-built DMLS Inconel 718 [3],

L 4
manufactured with the same EOS optimized additive manufacturing processing parameters. \

To compare the fracture mechanics response under torsional fatigue loading c@us
exhibited by additively manufactured specimens, wrought Inconel 718, with agemper gating of
softened (annealed) was subjected to similar experimental conditions. It waszrepextedito yield shear

properties similar to the vertical-build as-built DMLS Inconel 718 specitaen [3]. An analysis of

the fracture surface in Figure 11 revealed a ductile fractu , evident by microvoid

coalescence, similar to the final fracture response exhibi e vertical-build DMLS Inconel

718 specimens. An analysis of the surface topogra evealed considerable texture especially in

the region of torsional fatigue crack initiati(@ as in contrast to the surface topography

exhibited by the vertical build DMLS In&

4. Discussion

amples.

This study has invest@ microstructural defects induced through the AM process in
driving torsional fat@lure of as-built and heat-treated DMLS Inconel 718. It has been
previously rep to achieve ideal axial fatigue performance, a laser-energy density of 60-
70J/mm™§s recommended [6, 20] to help mitigate internal defects from impacting axial fatigue
per@ 6], nevertheless surface defects remain to be an eminent concern in impacting fatigue

* er ance. In the current study, in which EOS optimized processing parameters were used to
anufacture as-built and heat-treated DMLS Inconel 718 specimens for torsional fatigue testing,

3

a laser-energy density of 67.47J/mm”’ was determined using laser power of P =285W, hatch
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spacing of h = 0.1 1mm, laser scan speed of V = 960mm/sec, and layer thickness of t= 0.040mm

from Equation (1). \

Energy Density ( / )= o P@w) (®

mm3 E)*h(mm)*t(mm) \

Results from this study suggest that surface roughness of as-built surface, and sup-surfac

defects, specifically lack of fusion regions and presence of un-melted powder patti around
sample perimeter are primary defects governing torsional fatigue crack initigion s-built and
heat-treated DMLS Inconel 718, manufactured using EOS optimized PtocesSing parameters. It

@for the diagonal-build

would appear that the quantity of these defects was most

perimeter at or near the sample surface. Wlis€an be supported by the fact that as-built surface is

As reported in [1, 27-28] on to@a ¢

furthest away from the center offthe sample or at the surface.

ce, serving as locations for high stress concentration.

e studies on AM Ti-6Al-4V, shear stress is maximum

While he m s reported to overall enhance shear modulus and shear stress range,
the torgional fatigue crack initiation response near sites of these microstructural defects appears

n as-built and heat-treated specimens. This supports findings reported in [1, 26],

in the results section, in which fatigue crack initiation for the as-built specimen

dition was found to proceed at the surface regardless of post-processing heat-treatment.

5. Conclusions
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This study has presented novel findings on the microstructural defects introduced through the

AM process in driving torsional fatigue failure of as-built and heat-treated DMLS Inconel 718

samples of horizontal, diagonal and vertical build orientations. These specimens were Q

L 4
manufactured using optimized additive manufacturing processing parameters. Results sugge{\

following: < ’

e The as-built surface roughness, and sub-surface defects including region @ fusion

(i.e., ~38um) and un-melted powder particles (i.e., ~ 6 to 7um i d ~18um to

42um at the surface) that may have led to torsional fatigue cr jation are evident from
SEM micrographic images.

e In most fracture surfaces, multiple torsional fatigu ere observed to initiate around

surface perimeter at or near regions of the ects, with small crack sizes varying from

approximately 0.10mm to O.36m|r® and larger crack sizes varying from

approximately 0.84mm to 3.06m& :

e The quantity of these defects nd to be most apparent in diagonally-built specimens,
which exhibited the orgional fatigue performance as compared with the horizontal
and vertical-bua iggens.

e Thet igue crack initiation response near sites of these AM microstructural

efects appears similar between as-built and heat-treated specimens, even though heat-
afaent was reported to enhance torsional fatigue performance in previous studies
21,16].

0\

6. Future Work
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As the additive manufacturing field advances, future work directions can also explore the
material behavior of Inconel 718 under torsional fatigue loading conditions, including impacts
of temperature, additive manufacturing process (i.e., Wire Arc Additive Manufactur‘ing \
(WAAM) compared to Laser-Powder Bed Fusion Additive Manufacturing Process), and \
processing conditions. For example, studies have begun to explore temperature a&
behavior dependency on the tensile properties of WAAM IN718, including oxide
formation, considering impacts of varying strain rate testing, and heat-tréatmentyprocess [29-
31], which can be extended to study torsional properties as well. It ha§been fegported previously

that while the hot isostatic pressing (HIP) technique orosity in additively

manufactured IN718 components, it yields a r ycle axial fatigue (LCF)

performance [2, 4]. Nevertheless, the role of@HIP onersional fatigue performance and

properties is yet unexplored and will be the fod ature work. Future work will also assess
the role of temperature, and machitedSamaple surface conditions on torsional fatigue

performance and mitigating su fects from driving torsional fatigue failure, given

that the as-built surface @ I b-Sucface defects were most pronounced in contributing

torsional fatigue fract@onse observed in the current study.

Th% is\8upported under the National Science Foundation (NSF) Grant No. (2055027),
L 4
\ a Availability
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The raw/processed data required to reproduce these findings cannot be shared at this time as

the data also forms part of an ongoing study.
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Table 2: Tension an

literature

hea

odulus at room temperature reported for AM IN718 across

Tensile Properties

Results

Reported modulus of elasticity of as-built and heat-treated L-PBF Inconel 718;
Horizontal (010): E =193 + 24 GPa

Horizontal (010)-heat treated: 199 + 15 GPa
Diagonal (011): E =200 + 23 GPa

Diagonal (011)-heat treated: E = 188 + 19 GPa
Vertical (001): E=162 £+ 18 GPa

Vertical (001)-heat treated: E = 163 + 30 GPa

D. B. Witkin et al.,
International Journal of
Fatigue (2020) [37];

Reported modulus of elasticity of L-PBF Inconel 718 HIPed and heat-treated,
Vertical: E =193.8 + 3.4 GPa
Horizontal: E =201.7 +£ 3.2 GPa

Angled 45° from Z: E =206.9 + 1.2 GPa
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Study

Results

Siddiqui et al., Rapid
Prototyping Journal (2020)
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Reported £shear modulus of as-built DMLS Inconel 718 with build orientation;
Horizontal-as-built: G = 58.88 GPa to 60.98 GPa
Diagonal-as-built: G =46.91 GPa to 51.34 GPa

\
Vertical-as-built: G = 70.84 GPa
Wrought (softened annealed): G = 69.5 GPa

Siddiqui et al., Proceedings
of ASME Turbo Expo (2020)

(71

Reported shear modulus of heat-treated DMLS Inconel 718 with bui ientation?
Horizontal-heat treated: G = 69.48 GPa

Diagonal- heat treated: G = 55.34 GPa

Vertical-heat treated: G = 66.097 GPa

Sabelkin et al., Materials
Today Communications
(2020) [8]

Reported shear modulus of as-built, heat-treated, and m eated L-PBF
Inconel 718 with build orientation;
Horizontal-as-built: G =61 + 1 GPa
Horizontal- heat treated: G =63 £ 1 GPa

Horizontal- modified heat-treatment: G=

Diagonal-as-built: G = 58 + 2 GPa
Diagonal- heat treated: G=56+7 G

Diagonal- modified heat-treatiment: G = 1 GPa
Vertical-as-built: G = 80 +

Vertical- heat treated: G.=

Vertical- modified he =72+2 GPa
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Figure 1: a) Sample fracture after torsional fatigue test; b) Wino e Edge digital microscope (left)
used to image fracture surfaces; ¢) Hitachi SU3500%¢anning €lectron microscope.
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) 2
igure 2: Equipment used for metallographic specimen preparation and analysis of grain
icrostructure: a.) Buehler EcoMet30 manual grinder-polisher; b.) AxioV1 optical microscope;
c.) as-built Inconel 718; and d.) heat treated Inconel 718.
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Figure 3: Optical micrographs of specimen fracture surfaces: a) horizontal-as-built & heat
treated; b) diagonal- as-built & heat treated; c) vertical- as-built and heat treated.
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aterial near edge; e.) and f.) multiple fatigue cracks initiating near lack of fusion regions.
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urface; b) un-melted powder particles, balling, and lack of fusion defects evident near sample
edge; c)-d) high resolution image of un-fused metal particle alongside a lack of fusion region; e)
lack of fusion region near the specimen edge; f) region of microvoid coalescence leading to peak

of failure.
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1gure 10: SEM micrographic images of L-PBF Inconel 718 vertical-heat treated: a.) overall
racture surface; b.)-f.) lack of fusion regions and un-melted powder particles apparent in
fracture surface.

©<2022>. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
https://creativecommons.org/licenses/by-nc-nd/4.0/.

34


https://creativecommons.org/licenses/by-nc-nd/4.0/

Siddiqui et al., Journal of Engineering Failure Analysis, 2022

" Beach marks b.).

P ¢ |
b. Final fracture ‘ /

i Peak of failure
region

Dimpled ropture
micrevoid coalescence

fatigue crack

SU3500 15.0kV 9.1mm x42 SE

AP

SU3500 15.0kV 9. 1mm x140 SE 3 : ¢ EUSSOO 15.0kV 8.8mm x85 SE

e.)

5113500 15.0kV 9.b}n x@so»sh&-. ‘  : : ot 00um susé.oi:éqszokv é;"?n"im xsoQéE
igure 11: SEM micrographic images of Inconel 718 wrought (soften annealed): a) overall
fracture surface; b) dimpled and microvoid coalescence region leading to peak of failure, ¢)-f.)

fatigue crack initiation site.

LI} 1
100Hm

©<2022>. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
https://creativecommons.org/licenses/by-nc-nd/4.0/.

35


https://creativecommons.org/licenses/by-nc-nd/4.0/



