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Hydrogen atom abstraction
by a high-spin [FeIII=S] complex

Juan A. Valdez-Moreira,1,4 Duleeka C. Wannipurage,1,4 Maren Pink,1 Veronica Carta,1

Pierre Moënne-Loccoz,2 Joshua Telser,3 and Jeremy M. Smith1,5,*
THE BIGGER PICTURE

Late metal sulfides [M=S]n+ are

proposed as intermediates in the

activity of several metalloenzymes

and industrial catalysts. Although

well-defined model compounds

might be expected to provide

insight into these fleeting species,

the intrinsic reactivity of this unit

has hindered efforts to access

complexes containing this entity.

Consequently, there is still limited

understanding of the fundamental

properties and reactivity of the
SUMMARY

Iron-sulfur clusters are critical to a plethora of biological processes;
however, little is known about the elementary unit of these clusters,
namely, the [Fe=S]n+ fragment. Here, we report the synthesis and
characterization of a terminal iron sulfido complex. Despite its
high-spin (S = 5/2) ground state, structural, spectroscopic, and
computational characterization provide evidence for iron sulfur mul-
tiple bond character. Intriguingly, the complex reacts with addi-
tional sulfur to afford an S = 3/2 iron(III) disulfido (S2

2�) complex.
Preliminary studies reveal that the sulfido complex reacts with dihy-
droanthracene to afford an iron(II) hydrosulfido complex, akin to the
reactivity of iron oxo complexes. By contrast, there is no reaction
with the disulfido complex. These results provide important insight
into the nature of the iron sulfide unit.
[M=S]n+ fragment. Here, we show

that an appropriate supporting

ligand allows the elementary unit

of ubiquitous iron-sulfur clusters,

namely, the [Fe=S]n+ fragment, to

be isolated for the first time.

Experimental insights into the

structure and properties of this

terminal iron sulfido complex also

provide a point of comparison

with the analogous iron oxo unit, a

common intermediate in

enzymatic oxidations.
INTRODUCTION

Although best known for their role in electron transfer, iron-sulfur clusters are crit-

ical to many biological processes, including cellular respiration, enzyme catalysis,

sulfur donation, sensing, and gene expression.1–3 In addition to the common

[2Fe-2S], [3Fe-4S], and [4Fe-4S] clusters, more complex iron-sulfur clusters are

also known, such as the [8Fe-7S] double cubane P cluster of nitrogenase.4,5 By

creating well-defined model complexes, synthetic chemistry has played an impor-

tant role in delineating the properties of these clusters.3,6,7 Among these model

complexes are smaller iron-sulfur clusters that provide essential elements of their

higher nuclearity brethren, e.g., low-coordinate [2Fe-1S] clusters model the Fe–

S–Fe belt units of the larger Fe7MoS9C cluster (FeMoco) that is the active site of

nitrogenase.8–14

The elementary unit of all iron-sulfur clusters is the iron-inorganic sulfide fragment,

i.e., [Fe=S]n+—the [1Fe-1S] ‘‘cluster’’; however, there is limited knowledge of its

properties. This is principally due to the lack of terminal iron sulfido complexes

that would serve as appropriate models for the [Fe=S]n+ unit. Although computa-

tional studies of hypothetical iron(IV) sulfido species suggest an oxidizing power

similar to that of the better studied iron(IV) oxo complexes, experimental verification

is lacking.15,16 Indeed, only one example of an iron sulfido complex is known, which

is notable for a stabilizing second coordination sphere hydrogen bond network that

attenuates the iron-sulfur multiple bond character and hence its reactivity.17,18 The

paucity of iron sulfido complexes reflects the rarity of late metal sulfido complexes in

general.19 Apart from unobserved transient species that have been proposed as re-

action intermediates,20–26 to date, all examples of late metal sulfido complexes are

protected by alkali metal ion capping groups.27–29
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Scheme 1. Synthesis of iron sulfido and disulfido complexes
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Building on our extensive investigations of terminal iron nitride complexes, which

are based on strongly donating tris(carbene)borate ligands,30–36 we recently re-

ported the synthesis and characterization of a low-spin (S = 1/2) iron(III) oxo com-

plex.37 The absence of stabilizing second-coordination sphere interactions makes

this complex distinct from other iron(III) oxo species,38–41 leading to greater iron-ox-

ygen multiple bond character and enhanced reactivity. Here, we report that the

same bulky tris(carbene)borate ligand stabilizes an iron(III) sulfido complex that is

similarly free of second-coordination sphere hydrogen bond donors. In contrast to

its oxo congener, the sulfido complex adopts a high-spin (S = 5/2) ground state.

Nonetheless, structural, spectroscopic, and computational investigations provide

evidence for iron-sulfur multiple bond character. Preliminary reactivity studies reveal

that the complex mimics at least one pathway of the corresponding iron oxo, react-

ing with dihydroanthracene to afford the corresponding iron(II) hydrosulfido

complex.
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RESULTS AND DISCUSSION

The iron(I) dinitrogen complex PhB(AdIm)3Fe–N2 (1)42 reacts with 1/8 equiv S8 to

afford the dark brown iron(III) sulfido complex PhB(AdIm)3Fe=S (2) in 84 % isolated

yield (Scheme 1; Figures S1, S8, and S11). Samples of 2 are always contaminatedwith

small quantities of a second product, identified as the disulfido complex 3, which is

discussed in more detail below.

Complex 2 has been characterized by single-crystal X-ray diffraction (Figures 1A and

S31; Table S8), which reveals a trigonally symmetric complex with the Fe–S bond on

themolecular 3-fold axis (B–Fe–S angle = 176.85(7)�). The coordination sphere of the
iron atom is completed by the three carbene donors (Fe–C 2.088(3)–2.139(3) Å).

These distances are significantly longer than for the analogous iron(III) oxo complex,

which is likely a consequence of the difference in spin state (see below). These longer

distances mean that the iron atom is further out the plane defined by the three car-

bon donor atoms than in the case of the oxo complex (z1.2 vs. 1.1 Å).

The Fe–S bond distance in 2 (2.1173(9) Å) is slightly shorter than that observed in

[FeIIIH3buea(S)]
2� (2.211(1) Å), which is the only other structurally characterized iron(-

III) sulfido complex.17,18 However, in contrast to the latter complex, there is no evi-

dence of stabilizing second coordination sphere hydrogen bonding interactions in 2,

with the shortest S$$$H contact greater than 2.9 Å. Complex 2 has good stability in

low temperature (e.g., �35�C) solution, although decomposition to unknown prod-

ucts is observed over 24 h at 30�C. The stability of 2 likely stems from the protective

effect of the tris(carbene)borate ligand, with its large adamantyl groups enveloping

the sulfido ligand, as illustrated by a space-filling diagram (Figure 1B).
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Figure 1. Structural characterization of sulfido complex 2

(A) X-ray crystal structure of PhB(AdIm)3Fe=S, thermal ellipsoids shown at 50 % probability,

hydrogen atoms omitted and most atoms of the tris(carbene)borate shown as wireframe for clarity.

A 5 % component that is attributed to PhB(AdIm)3Fe(k
2–S2) (3) is also not shown.

(B) Space-filling model for the structure of 2.
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The sulfido ligand is further characterized by resonance Raman spectroscopy. Room

temperature resonance Raman spectra of 2 obtained with a 407 nm excitation

(Figures S11 and S13) show a very strong band at 470 cm�1 that downshifts

8 cm�1 with 34S-labeling (Figure 2A), as expected from the calculated 9 cm�1 down-

shift for a harmonic Fe–S oscillator from Hooke’s law. This Fe–S stretching frequency

is �100 cm�1 higher than in [FeIIIH3buea(S)]
2�, which, using Badger’s rule,43 com-

putes to a 0.17 Å decrease in FeS bond length in the absence of hydrogen bond

partners to the sulfido ligand.

Other spectroscopic methods provide insight into the electronic structure of the

iron center in 2. An asymmetric doublet (d = 0.24 mm s�1, |DEQ| = 2.38 mm

s�1) is observed in the solid-state 57Fe Mössbauer spectrum at 80 K

(Figures 2B, S14, and S15). The quadrupole doublet is more symmetric at 150

K, with significantly sharper lines, suggesting that the asymmetry arises from

slow paramagnetic relaxation. It is notable that the isomer shift for 2 is distinct

from that observed for the structurally related tris(carbene)borate iron(III) imido

(d = �0.11 mm/s) and iron(III) oxo (d = �0.15 mm/s) complexes, all of which adopt

a low-spin (S = 1/2) state. Indeed, the observed isomer shift is in the range

observed for high-spin iron(III) complexes, suggesting a high-spin (S = 5/2) iron(III)

center for complex 2. This is supported by the results of electronic structure cal-

culations, see below.

The high-spin-state assignment is supported by electron paramagnetic reso-

nance (EPR) spectroscopy. An axial EPR spectrum is observed in frozen toluene

(12 K), with an effective g0-tensor (g0 = [6.50, 5.50, 2.00]) that is most consistent

with an S = 5/2 spin state (Figures 2C and S17–S19). These observed (effective

S0 = 1/2) g values can be related to the spin Hamiltonian parameters for the real

spin system, i.e., S = 5/2.44,45 Complex 2 is thus nearly axial, gx = 1.99, gy =

2.01, gz = 2.01, E/D = 0.0195 (D > 0 and is much larger than the microwave

quantum energy at X-band: �0.31 cm�1). The high-spin state is maintained in

room temperature solution, as evidenced by the magnetic moment (meff =

5.8 mB at 298 K).

DFT calculations (B3LYP/def2-TZVP) reproduce the observed sextet (S= 5/2) ground

spin state, with the doublet (S = 1/2) and quartet (S = 3/2) states higher in energy

(Tables S2 and S3). In addition, the computed 57Fe Mössbauer spectral parameters

for the sextet state are in reasonable agreement with the experimental values
Chem 9, 1–9, September 14, 2023 3



Figure 2. Spectroscopic characterization of sulfido complex 2

(A) Room temperature resonance Raman spectra in THF (black, natural abundance S; red trace is
34S-enriched.

(B) Zero-field 57Fe Mössbauer spectrum at 80 K (black dots; red trace is simulation).

(C) X-band EPR spectrum in frozen toluene/THF (1:1 v/v) solution at 12 K (black; red trace is

simulation). Spectral features not reproduced by the simulation correspond to contributions from

the disulfide complex 3 as a minor contaminant (Figure S17).
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(Table S4). To a first approximation, the electronic structure for the sextet state cor-

responds to an (dxy, dx2 � y2)
2(dz2)

1(dxz, dyz)
2 configuration (z axis coincident with the

3-fold symmetry axis, see Figures S27 and S28). Because only three electrons are

housed in Fe–S antibonding orbitals, this suggests the presence of a iron-sulfur mul-

tiple bond character.

More detailed insight into the electronic structure comes frommultireference complete

active space self-consistent field (CASSCF) calculations. An active space containing the

iron 3d-orbitals and sulfur 3p-orbitals (11 electrons, 8 orbitals) provides 57Fe Mössbauer

spectroscopic parameters (d = 0.23 mm/s; DEQ = �2.28 mm/s) that are in excellent

agreement with those observed experimentally (Table S5). Subsequent complete active

space self-consistent field/n-electron valence state perturbation theory (CASSCF/

NEVPT2) calculations indicate that the sextet state is 14.1 kcal/mol more stable than

the quartet, and 27.0 kcal/mol more stable than the doublet (Table S6). The dominant

configuration (86 %) of the ground sextet state provides further evidence for Fe–S mul-

tiple bond character (Figures 3 and S29). The calculations reveal a filled Fe–S s-bonding

molecular orbital that is formed from the iron 3dz2 and sulfur 3pz orbitals. The corre-

sponding s* orbital has admixed iron 4pz orbital character, polarizing it toward the

iron atom and reducing its antibonding character. Thep bondingmanifold is composed

of two doubly occupied orbitals that are largely the perpendicular p-bonding combina-

tions of Fe 3dxz/3dyz and S 3px/3py. The corresponding p* orbitals are each singly

occupied. Finally, two electrons are housed in orbitals that are largely the non-bonding

combinations of Fe 3dxy/3dx2 � y2 and S 3px/3py orbitals.
46 It is worth noting that the

sulfur atom character of the singly occupied orbitals results in the transfer of spin density

to the sulfido ligand.

This Fe–S multiple bond character is also supported by the results of a natural bond

orbital (NBO) analysis, which provides an Fe–S bond order of 2 (Wiberg bond index

1.35) resulting from one filled s orbital and two half-filled (b-spin) p-symmetry or-

bitals (Table S7). The computations further indicate that the Fe–S bond is polarized

toward the sulfur atom with most of the spin density located on iron (Löwdin spin

density 3.883) but with a non-negligible amount on the sulfur ligand (Löwdin spin

density 0.696), see Figure S30.

To the best of our knowledge, 2 is the first example of an isolable terminal iron sul-

fido complex that does not require stabilization from second coordination sphere

hydrogen bonding interactions. In contrast to the isoelectronic iron(III) oxo
4 Chem 9, 1–9, September 14, 2023



Figure 3. Dominant electronic configuration for 2 (S = 5/2), as determined by CASSCF(11,8)

calculations, with Fe–S orbital interactions

Hydrogen atoms omitted for clarity. Isodensity 0.05.
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complex, which has a low-spin (S = 1/2) ground state,37 complex 2 is high spin

(S = 5/2), which we attribute to the weaker ligand field strength of the sulfido

ligand. Despite the high-spin state, the trigonal pyramidal geometry leads to an

electronic structure that allows for Fe–S multiple bond character comprising one

s-bond and two half p-bonds.
Chem 9, 1–9, September 14, 2023 5



Figure 4. Hydrogen atom abstraction by 2

(A) Reaction of 2 with dihydroanthracene affords the corresponding iron(II) hydrosulfido

complex, 4.

(B) Molecular structure determined by single-crystal X-ray diffraction. Thermal ellipsoids shown at

50% probability, all hydrogen atoms apart from that on the hydrosulfido ligand omitted for clarity.
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Complex 2 reacts with an additional 1/8 equiv S8 to afford the dark brown, interme-

diate spin (S = 3/2) iron(III) disulfide complex PhB(AdIm)3Fe(k
2–S2) (3). This complex

can also be prepared by reaction of 1 with 1/4 equiv S8 (Figures S3 and S9). Due to

the propensity of sulfur toward catenation (e.g., formation of Sn
2� species) small

amounts (<5%) of 3 are formed in the synthesis of 2 from 1. However, in the other

direction, complex 3 reacts with 1 to provide the sulfido complex 2 (Figure S2). Com-

plex 3 has been structurally characterized by single-crystal X-ray diffraction (Fig-

ure S32; Table S9). The S–S bond distance (2.0339(6) Å) is consistent with the disul-

fide (S2
2�) oxidation state, which is supported by resonance Raman spectroscopy

(nSS = 541 cm�1,D34S =�16 cm�1) (Figures S12 and S13). This S–S distance is slightly

shorter than that for recently reported [Fe(S2)(CN)2(CO)2]
2�, likely due to interactions

with the counterion in the solid state for the latter, dianionic complex.47 The frozen

toluene EPR spectrum (9.4 GHz, 12 K) of 3 confirms the S = 3/2 state (meff = 3.7 mB at

298 K), with observed g0 = [5.87, 2.05, 1.52] (Figure S17). In contrast to 2, complex 3

has maximally rhombic symmetry, i.e., |E/D| = 1/3, and D (and E by convention) < 0

(with gx = 2.050, gy = 2.078, gz = 2.149), also with a magnitude of zero-field splitting

larger than the microwave quantum energy. An asymmetric doublet is observed in

the solid-state 57Fe Mössbauer spectrum at 80 K (Figure S16), with isomer shift

(d = 0.42 mm/s) similar to other five coordinate, S = 3/2 Fe(III) complexes.

The electronic structure of 2, which localizes spin density to the sulfido ligand, sug-

gests that the complex may be reactive toward hydrogen atom transfer. Indeed,

complex 2 reacts with 1/2 equiv 9,10-dihydroanthracene (DHA) to afford the corre-

sponding high-spin (S = 2) iron(II) hydrosulfido complex, PhB(AdIm)3Fe–SH (4), see

Figures 4 and S10. The structure of 4, which has been determined by single-crystal

X-ray diffraction (Figure S33; Table S10), reveals the same coordination environment

around iron as for complex 2, but with a considerably longer Fe–S distance (2.309(2)

Å). This distance is comparable to that reported for the structurally related tris(pyr-

azolyl)borate complex, TptBu,MeFeSH.48 The hydrosulfido proton was located in the

Fourier difference map and was refined freely. The presence of the –SH group is also

supported by the Fe–S bond distance of 2.309(1) Å. However, we have been unable

to assign nS–H in the IR spectrum. The Fe–C distances (2.081(4)–2.130(5) Å) in 4 are

similar to those in 2, whereas the B–Fe–S angle is also linear (178.64(9) Å). The com-

plex has also been spectroscopically characterized by 1H NMR spectroscopy and so-

lution magnetometry as a high-spin (S = 2) iron(II) complex (Figures S4 and S5). By

contrast, the disulfido complex 3 does not react with DHA.

Three isosbestic points are observed when the reaction between 2 and excess DHA is

monitored by UV-vis spectroscopy (Figure S20). The pseudo-first order rate constants
6 Chem 9, 1–9, September 14, 2023
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are proportional to [DHA], leading to the rate law, rate = 2k2[2][DHA], with k2 = 2.3(7)3

10�3 M�1s�1 at 303 K (Figures S21–S25; Table S1). The rate of reaction with

9,90,10,100-tetradeuteroanthracene provides a kinetic isotope effect, kH/kD = 2.1 (Fig-

ure S26), consistent with rate determining C–H bond cleavage. Although additional in-

vestigations are in progress, initial computational investigations point to the viability of a

mechanism involving proton-coupled electron transfer. Specifically, gas phase density

functional theory (DFT) computations (B3LYP/def2-TZVP) provide an estimate of the

S–H bond dissociation free energy for 4 (BDFE = 70 kcal/mol), which is similar to the

revised C–H BDFE for dihydroanthracene (72.9 kcal/mol).49 It is notable that no reaction

is observed with toluene or ethylbenzene, in contrast to the iron(III) oxo analog, which

forms a stronger O–H bond (BDFE = 82 kcal/mol).37 Interestingly, the S–H bond in 4

is only slightly weaker than those in organic hydrosulfides (75–85 kcal/mol), in contrast

to the O–H bonds of iron hydroxide complexes, which are often significantly

weaker than in alcohols.49 To our knowledge, the only other known values for S–H

BDFE in iron complexes are for [2Fe-2S] clusters, specifically Fe2(m-SH)2(CO)6 and

Fe2(m-S)(m-SH)(CO)6, which are calculated by DFT to be 72 and 45 kcal/mol,

respectively.47

Preliminary investigations suggest 2 is a poor sulfur atom transfer reagent. Consid-

ering phosphines as classic S-atom acceptors, there is no reaction with bulkier phos-

phines such as PPh2Me, likely due to steric reasons. Although minute quantities of

S=PMe3 (<1 % yield) are observed in the reaction with PMe3, a number of paramag-

netic products are formed, including 4 (Figures S6 and S7).

Conclusions

Structural, spectroscopic, and computational results show that a very bulky tris(car-

bene)borate ligand stabilizes a terminal iron(III) sulfido complex without the need for

second coordination sphere hydrogen bond donors, in contrast to the only previ-

ously reported example. Despite a high-spin (S = 5/2) ground state, the strongly

axial 3-fold symmetric environment enables Fe=S multiple bond character through

one s- and two half p-bonds, as supported by electronic structure calculations.

Initial reactivity studies suggest the accessibility of proton-coupled electron transfer

reactions. This reveals the inherent reactivity of the [Fe=S] unit, wherein the multiple

bond does not significantly decrease the driving force for S–H bond formation.

EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Further information and requests for resources should be directed to and will be ful-

filled by the lead contact, Jeremy M. Smith (smith962@indiana.edu).

Materials availability

All reagents in this study are either commercially available or can be easily prepared

as indicated in the supplemental information.

Data and code availability

Crystallographic data for complexes 2–4 have been deposited at the Cambridge

Crystallographic Data Center. The CCDC deposition numbers are 2238441–

2238443.

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.chempr.

2023.05.007.
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