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In this study, we explore the similarities and differences between variational Monte
Carlo techniques that employ conventional and artificial neural network
representations of the ground-state wave function for fermionic systems. Our
primary focus is on shallow neural network architectures, specifically the
restricted Boltzmann machine, and we examine unsupervised learning
algorithms that are appropriate for modeling complex many-body correlations.
We assess the advantages and drawbacks of conventional and neural network
wave functions by applying them to a range of circular quantum dot systems. Our
findings, which include results for systems containing up to 90 electrons,
emphasize the efficient implementation of these methods on both
homogeneous and heterogeneous high-performance computing facilities.
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1 Introduction

Solving the Schrödinger equation for systems of many interacting bosons or fermions is
classified as an NP-hard problem due to the complexity of the required many-dimensional
wave function, resulting in an exponential growth of degrees of freedom. Reducing the
dimensionalities of quantum mechanical many-body systems is an important aspect of
modern physics, ranging from the development of efficient algorithms for studying many-
body systems to exploiting the increase in computing power. To write software that can fully
utilize the available resources has long been known to be an important aspect of these
endeavors. Despite tremendous progress having been made in this direction, traditional
many-particle methods, either quantum mechanical or classical ones, face huge
dimensionality problems when applied to studies of systems with many interacting particles.

Over the last 2 decades, quantum computing and machine learning have emerged as
some of the most promising approaches for studying complex physical systems where several
length and energy scales are involved. Machine learning techniques and in particular neural-
network quantum states Goodfellow et al. [1] have recently been applied to studies of many-
body systems, see, for example, Refs. Carleo and Troyer [2]; Carrasquilla and Torlai [3]; Pfau
et al. [4]; Calcavecchia et al. [5]; Carleo et al. [6]; Boehnlein et al. [7]; Adams et al. [8]; Lovato
et al. [9], in various fields of physics and quantum chemistry, with very promising results. In
many of these studies, results have aligned well with exact analytical solutions or are in close
agreement with state-of-the-art quantum Monte Carlo calculations.
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The variational and diffusionMonteCarlo algorithms are among the
most popular and successful methods available for ground-state studies
of quantum mechanical systems. They both rely on a suitable ansatz for
the ground-state of the system, often dubbed the trial wave function,
which is defined in terms of a set of variational parameters whose
optimal values are found by minimizing the total energy of the system.
Devising flexible and accurate functional forms for the trial wave
functions requires prior knowledge and physical intuition about the
system under investigation. However, for many systems we do not have
this intuition, and as a result it is often difficult to define a good ansatz for
the state function.

According to the universal approximation theorem, a deep
feedforward neural network can represent any continuous function
within a certain error Hornik et al. [10] — see also Refs. Murphy
[11]; Hastie et al. [12]; Bishop [13]; Goodfellow et al. [1] for further
discussions of deep learning methods. Since the variational state in
principle can take any functional form, it is natural to replace the trial
wave function with a neural network and treat it as a machine learning
problem. This approach has been successfully implemented in recent
works, see, for example, Refs. Pfau et al. [4]; Carleo and Troyer [2];
Cassella et al. [14]; Adams et al. [8]; Lovato et al. [9], and forms the
motivation for the present study. Here, the neural network of choice was
derived from so-called Gaussian-binary restricted Boltzmann machines,
much inspired by the recent contributions by Carleo et al., see, for
example, Refs. Carleo and Troyer [2]; Carleo et al. [6]. Unlike binary-
binary restricted Boltzmann machines Sieber and Gehringer [15], the
approximation properties of Gaussian-binary restricted Boltzmann
aren’t yet well-understood. However, they are considered highly-
expressive networks for certain problems, such as dimensionality
reduction and continuous probability density estimation. Note that
neural-network representations of variational states are more general,
as they don’t in principle require prior knowledge of the ground-state
wave function, thereby opening the door to systems that have yet to be
solved. Particular attention however has to be devoted to the symmetries
of the problem, whose inclusion is critical to achieve accurate results.

In this work, we will focus on systems of electrons confined tomove
in two-dimensional harmonic oscillator systems, so-called quantum
dots. These are strongly confined electrons and offer a wide variety
of complex and subtle phenomena which pose severe challenges to
existing many-body methods. Due to their small size, quantum dots are
characterized by discrete quantum levels. For instance, the ground states
of circular dots show similar shell structures and magic numbers as seen
for atoms and nuclei. These structures are particularly evident in
measurements of the change in electrochemical potential due to the
addition of one extra electron. Here, these systemswill serve as our test of
the applicability of restricted Boltzmann machines as artificial neural
network variational states.

The theoretical foundation and the methodology are explained
in Section 2. The subsequent sections present our results with an
analysis of computational methods and resources. In the last section
we present our conclusions and perspectives for future work.

2 Materials and methods

For any Hamiltonian Ĥ and trial wave function ψT, the
variational principle guarantees that the expectation value of the
energy ET is greater than or equal to the true ground state energy E0,

E0 ≤ET � 〈ψT|Ĥ|ψT〉
〈ψT|ψT〉

. (1)

Thus, approximate solutions to the time-independent Schrödinger
equation can be obtained by choosing a careful parameterization of
the wave function and minimizing the energy ET with respect to the
parameters. Since the integrals representing ET are normally high
dimensional, it is most efficient to evaluate them by means of Monte
Carlo methods

ET ≈ 〈EL〉 � 1
n
∑n
i�1

EL Ri( ), Ri ~|ψT R( )|2. (2)

This involves collecting n samples of configurations and averaging
over the so-called local energies

EL R( ) � 1
ψT R( ) ĤψT R( ). (3)

We apply the variational Monte Carlo (VMC)method to various
circular quantum dots systems. These are systems of interacting
electrons confined to move in a two-dimensional harmonic
oscillator well. The (scaled)1 Hamiltonian is given by

Ĥ � 1
2
∑
i

−∇2
i + ω2r2i +∑

j≠i

1
rij

⎡⎢⎢⎣ ⎤⎥⎥⎦, (4)

where ω is the oscillator frequency, ri is the distance between
electron i and the origin, and rij is the distance between electrons

FIGURE 1
Architecture of a restricted Boltzmann machine. Inter-layer
connections between the visible and the hidden layer are represented
by the solid lines, where, for instance, the line connecting x1 to h1

represents the weight w11. The dotted lines represent the visible
biases, where the line going from the bias unit to the visible unit x3
represents the bias weight a3. The dashed lines represent the hidden
biases, where the line going from the bias unit to the hidden unit h3

represents the bias weight b3.

1 Natural units are used with energy given in units of Z and length given in
units of

				
Z/m

√
.
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i and j. We will henceforth assume the total number of electronsN to
be even and the total spin of the system to be zero.

A simple ansatz can be built starting from the analytical
solutions to the non-interacting case. The harmonic oscillator
eigenfunctions are given by

ϕm,n x, y( )∝ e−ω x2+y2( )Hm

		
ω

√
x( )Hn

		
ω

√
y( ), (5)

whereHn are the Hermite polynomials of degree n. To constrain the
antisymmetry of the many-body wave function, products of the
lowest N/2 spatial states and the two spin states ξ±(σ) are used as a
basis for a Slater determinant

ψSD R( ) � det ϕm,n xi, yi( )ξk σ i( ){ }[ ],
wherem, n, k label the single-particle state, i labels the particle, and R
contains all coordinates of the N particles. As an aside, we do not
include the spin projections σi as explicit inputs to the wave function
as we will describe how to treat them separately in Section 2.2. We
then define a reference state by pulling the common exponential
term out of the determinant and inserting a single variational
parameter α

ψRef R; α( ) � e
−αω∑

i

x2i +y2i( )
det Hm

		
ω

√
xi( )Hn

		
ω

√
yi( )ξk σ i( ){ }[ ].

(6)
Correlations among electrons can be handled by a Padé-Jastrow
factor Drummond et al. [16],

g R; β( ) � exp ∑N
i�1
∑N
j>i

aijrij
1 + βrij

⎛⎝ ⎞⎠, (7)

where β is a variational parameter and

aij � 1/3 if σ i � σj
1 if σ i ≠ σj

{ ,

in order for the Kato cusp condition to be satisfied Huang et al. [17].
The product of the Slater determinant and the Padé-Jastrow factor is
commonly named the Slater-Jastrow ansatz,

ψSlater−Jastrow R; α, β( ) � ψRef R; α( ) × g R; β( ). (8)

2.1 Gaussian-binary restricted Boltzmann
machine

There are many possible choices for a machine learning inspired
wave function, but using an artificial neural network has recently
been demonstrated to give remarkably good results in studies of
quantummechanical many-body systems Cassella et al. [14]; Adams
et al. [8]; Lovato et al. [9]; Fore et al. [18]; Rigo et al. [19]. Inspired by
Ref. Carleo and Troyer [2], our choice is to start from a restricted
Boltzmann machine (RBM) configured for continuous inputs,
illustrated in Figure 1. The inputs x ∈ R2N are the ravelled
particle positions and interactions between the particles are
mediated by H hidden binary nodes. After summing over all the
possible values of the hidden nodes, the marginal distribution of the
inputs to the Gaussian-binary RBM takes the form

P R; a, b,w( ) � exp −∑2N
i�1

xi − ai( )2
2σ2

i

⎛⎝ ⎞⎠∏H
j�1

× 1 + exp bj +∑2N
i�1

xiwij

σ2i
⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦.

(9)

Here, a ∈ R2N and b ∈ RH are the bias parameters of the input
and hidden nodes, respectively. The weights between the input and
hidden nodes are w ∈ R2N×H, while σ ∈ R2N are the widths of the
Gaussian input nodes (not to be confused with the spin projections).
It is possible to train these widths by reparameterizing them as σi =
exp(si), but in this work all of the widths were fixed to σ � 1/

		
ω

√
and

only the biases and weights are treated as variational parameters.
This allows us thus to reduce the number of parameters to the biases
and weights only. See Appendix B for the derivation of the marginal
probability.

Notice how the marginal distribution in Eq. 9 mimics the
Gaussian parts of our aforementioned ansatzes in Eqs 6, 8. Based
on such observations, our next step is to construct two
corresponding ansatzes

ψRBM R; a, b,w( ) � P R; a, b,w( )
× det Hm

		
ω

√
xi( )Hn

		
ω

√
yi( )ξk σ i( ){ }[ ], (10)

and

ψRBM+PJ R; a, b,w, β( ) � P R; a, b,w( ) × g R; β( )
× det Hm

		
ω

√
xi( )Hn

		
ω

√
yi( )ξk σ i( ){ }[ ]. (11)

The two trial wave functions above apply different levels of
physical intuition. While ψRBM doesn’t contain specific
information about the electron-electron interactions, ψRBM+PJ

contains a correlation factor that explicitly upholds the cusp
condition. Both ansatzes contain knowledge about the required
antisymmetry and the Gaussians in the marginal distribution
help localize the wave functions to satisfy the boundary
conditions far from the oscillator well. Also, as the marginal
distribution is positive definite, these ansatzes will never collapse
into the bosonic state even if the marginal distribution is not
symmetric.

2.2 Code optimization

Parallel computing is an important part of our efforts for
developing an efficient VMC solver. However, increasing the
available computational resources alone is often not sufficient.
One should also consider developing sophisticated algorithms
that deliberately minimize the number of floating point
operations, cache misses, and communication between parallel
processes. Reducing the number of floating point operations is
important in Monte Carlo calculations, in particular for the
calculations reported here where we produce a large quantity
(typically close to a billion) of samples. To see this, one can
consider the evaluation of the kinetic energy. The kinetic energy
term of the Schrödinger equation is usually one of the more
computationally expensive parts to compute in terms of
computing cycles. It includes, amongst other elements, the
computation of the Laplacian of the wave function. The
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Laplacian term in the expression for the local energy can be
written as

∇2
i ψT

ψT

� ∇2
i lnψT + ∇i lnψT( )2.

This way of writing the kinetic energy term is beneficial for two
reasons: First, our trial wave function has normally an exponential
shape, which is taken care of by the log-function. This is often the
case for many other ansatzes for the trial functions. Secondly, this
form allows for separating various elements of the trial wave
function and reducing thereby the number of floating point
operations. Evaluating the left-hand side of the above equation
directly as it stands requires more floating point operations than
evaluating the first and second derivatives of the logaritmic function.
Moreover, with a logarithmic function and exponential functions as
ansatzes for the trial wave function, this facilitates the use of
automatic differentiation Neidinger [20]; Baydin et al. [21].

By writing the trial wave function as a product of various terms,
here ψT =∏jψj, the kinetic energy terms from each particle i can be
written as a sum of their corresponding Laplacians and gradients

∇2
i ψT

ψT

�∑
j

∇2
i lnψj + ∑

j

∇i lnψj
⎛⎝ ⎞⎠2

. (12)

Obtaining analytical expressions of the gradient and Laplacian for all
the wave function elements is usually computationally advantageous.
However, in many Monte Carlo studies they are normally evaluated
numerically using automatic differentiation Neidinger [20]; Baydin et al.
[21]. Nowadays, automatic differentiation algorithms are employed
routinely in VMC calculations.

The computational complexity of calculating the determinant in the
näive way is proportional to O(n3). This calls for a reduction of
dimensionality as well as efficient evaluations of the Slater determinant.
In this work we do not consider open systems and assume that all single-
particle states up to the Fermi level are filled up. We can then split the
Slater determinant in a spin-up and a spin-down part Pfau et al. [4]
without affecting the expectation value of the energy, that is

ψRBM � det ϕnm r↑( )ξ σ↑( ){ }[ ] × det ϕnm r↓( )ξ σ↓( ){ }[ ].
The gradient and Laplacian of the logarithm of a determinant

with respect to particle i are given by

FIGURE 2
Flow chart of the solver with emphasis on the parallel processing. The sampling is parallelized acrossm processes, where the trial wave function (WF)
is broadcast from process 0. Then EL, ∇θ lnψT and EL ·∇θ lnψT are sampled independently on each process, and an average is taken after all processes are
done with sampling.
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∇i ln det � ∑
j

∇idjid
−1
ij ,

∇2
i ln det � ∑

j

∇2
i djid

−1
ij ,

where dji is element (j, i) of the matrix and d−1ij is the corresponding
element of the inverse matrix Hammond et al. [22]. The general
solution requires inversion of the matrix, which is known to be
costly. Fortunately, we can use a trick to reduce the cost: If we
move one particle at a time in our sampling over configurations,
this means that we change either the elements of one row or
alternatively one column of the Slater matrix. In this case, there is a
simple relation between the old and the new inverse matrix

d−1
kj �

1
Ri
d−1
kj if j � i

d−1
kj −

Sij
Ri
d−1
ki if j ≠ i,

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
such that the new inverse Slater matrix can be found by a few
operations when the previous is known. Here, Ri is the ratio between
the new and the old determinant and Sij is the cross product between
columns in the new rows and the old matrix,

Ri � ∑
j

dijd
−1
ji ,

Sij � ∑
l

dild
−1
lj .

By using these expressions, the entire Slater determinant matrix is
inverted only once per simulation. We also avoid including spin flips
in the simulations. We limit ourselves in this work to systems where
we can use these approximations. For systems where all single-
particle states up to the Fermi level are filled, the above serves as a
useful approximation if the Hamiltonian does not contain spin-
dependent terms. If not, every suggested move should include
possible spin flips as well.

Like most other Monte Carlo schemes, the algorithm can be split
into smaller individual parts and run efficiently in parallel. For each
optimization step, the system is sampled independently in several
processes, and the results from all the processes are averaged before
performing the parameter optimization. In this way, we achieve near
perfect parallelization with message passing interface (MPI). A flow
chart of the simulation code can be found in Figure 2. Notice that the
parameters are updated with respect to the gradients of the
expectation value of the local energy. The latter is given by

∇θ〈EL〉 � 2 〈EL∇θ lnψT θ( )〉 − 〈EL〉〈∇θ lnψT θ( )〉( ),
as discussed by Ref. Umrigar and Filippi [23], among others. When
the simulations are run with a burn-in period2, each process should
have a burn-in time equal to the burn-in time for a single process.
The theoretical parallelization efficiency is then given by (tburn-in +
tsample)/(mtburn-in + tsample) where m is the number of parallel
processes, tburn-in is the burn-in time and tsample is the total
sampling time. Additionally, the weight optimization can’t be
parallelized, but has a negligible computational cost compared to
the sampling. The communication can also be neglected even with
low communication speed. The type of Markov-chain Monte Carlo
simulations discussed here are rather simple to parallelize with
almost no cost from communication between processes.

3 Results and discussions

In this section we compare the computational complexity,
ground state energy, energy convergence, contribution from the
different Hamiltonian terms and electron densities for various trial
wave function ansatzes. The RBM ansatz consists of a Slater
determinant with Hermite polynomials as the basis, multiplied
with the RBM marginal distribution, as presented in Eq. 10 We

FIGURE 3
CPU time per iteration as a function of the number of electron N
in a quantum dotwell. Herewe have employed 104Monte Carlo cycles
per iteration (with 103 iterations in total to reach an acceptable
statistical error). The number of hidden nodes in the Boltzmann
machine was set to H = 6.

TABLE 1 CPU time per iteration in seconds for various system sizes and
ansatzes. The table compliments Figure 3, and computational details are given
in the main text.

N RBM RBM + PJ Slater-Jastrow Ref

2 0.013517 0.017304 0.011518 0.010029

6 0.027193 0.040015 0.028200 0.022379

12 0.054788 0.078638 0.066240 0.043121

20 0.10498 0.17428 0.14075 0.075787

30 0.15861 0.32107 0.28436 0.12629

42 0.24249 0.55319 0.52828 0.19511

56 0.35651 0.90180 0.77236 0.29539

72 0.45964 1.4112 1.3279 0.43174

90 0.66245 2.4634 2.0244 0.61491

2 A burn-in period or time refers to the amount of time which is needed
before a steady state is reached in a Markov-chainMonte Carlo simulation.
When the most likely or steady state has been reached, one can start
collecting samples for the stochastic evaluation of the various integrals.
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TABLE 2 The ground state energy of two-dimensional quantum dots with N electrons and frequency ω. Other references include diffusion Monte Carlo results
taken from Høgberget [24] and semi-analytical results obtained by Taut [25]. The energy is given in Hartree units, and the numbers in parenthesis are the
statistical uncertainties in the last digit. Bold values correspond to the lowest ground-state energy obtained in this work. For abbreviations see the text.

N ω RBM RBM + PJ Slater-Jastrow Ref DMC (Ref. Høgberget[24]) Semi-analytical (Ref. Taut[25])

2 0.1 0.46774(5) 0.440975(8) 0.44129(1) 0.5279(1) 0.44079(1)

1/6 0.70389(7) 0.666665(1) 0.66710(1) 0.7693(1) 2/3

0.28 1.07100(6) 1.021668(7) 1.02192(1) 1.1388(1) 1.02164(1)

0.5 1.72343(7) 1.659637(6) 1.65974(1) 1.7983(3) 1.65977(1)

1.0 3.0789(1) 2.999587(5) 2.99936(1) 3.1484(3) 3.00000(1) 3.0

6 0.1 3.6971(1) 3.5700(2) 3.5695(1) 3.8552(5) 3.55385(5)

0.28 7.9318(3) 7.6203(2) 7.6219(1) 8.0517(9) 7.60019(6)

0.5 12.2640(6) 11.80494(7) 11.8104(2) 12.2799(9) 11.78484(6)

1.0 20.5635(6) 20.1773(1) 20.1918(2) 20.697(1) 20.15932(8)

12 0.1 12.6772(4) 12.3416(4) 12.29962(9) 12.9742(9) 12.26984(8)

0.28 26.389(2) 25.7266(2) 25.7049(4) 26.625(2) 25.63577(9)

0.5 40.375(1) 39.2348(2) 39.2421(5) 40.227(2) 39.1596(1)

1.0 67.620(3) 65.7911(7) 65.7026(4) 66.744(3) 65.7001(1)

20 0.1 30.7906(8) 30.1444(2) 30.0403(2) 31.253(2) 29.9779(1)

0.28 63.592(3) 62.1445(5) 62.0755(7) 63.681(3) 61.9268(1)

0.5 96.356(5) 94.101(1) 94.0433(9) 95.755(4) 93.8752(1)

1.0 159.428(3) 156.104(1) 155.8900(4) 157.904(6) 155.8822(1)

30 0.1 61.853(2) 60.774(2) 60.585(1) 62.449(4) 60.4205(2)

0.28 126.891(8) 124.437(2) 124.195(2) 126.717(5) 123.9683(2)

0.5 191.455(9) 187.488(2) 187.325(3) 189.977(6) 187.0426(2)

1.0 315.364(8) 308.989(2) 308.576(1) 311.70(2) 308.5627(2)

42 0.1 109.767(7) 108.128(2) 107.928(2) 110.630(7) 107.6389(2)

0.28 224.257(9) 220.588(3) 220.224(2) 223.837(8) 219.8426(2)

0.5 337.43(1) 331.410(3) 331.276(3) 335.18(1) 330.6306(2)

1.0 553.40(1) 543.746(3) 542.977(2) 548.07(2) 542.9428(8)

56 0.1 179.035(8) 176.659(2) 176.221(1) 180.08(1) 175.9553(7)

0.28 364.52(2) 359.456(6) 358.470(2) 363.81(1) 358.145(2)

0.5 547.20(3) 538.666(5) 537.841(4) 544.12(3) 537.353(2)

1.0 894.12(2) 881.010(5) 879.514(3) 887.20(5) 879.3986(6)

72 0.1 274.12(1) 270.870(3) 270.296(3) 275.34(2)

0.28 556.63(2) 549.899(8) 548.315(4) 555.45(2)

0.5 833.85(3) 822.78(2) 821.089(6) 829.31(3)

1.0 1355.37(2) 1341.54(2) 1339.85(1) 1349.65(6)

90 0.1 399.84(1) 395.486(4) 394.621(4) 401.19(2)

0.28 809.99(2) 800.504(6) 799.187(5) 808.35(2)

0.5 1211.92(5) 1198.12(3) 1195.025(9) 1205.65(4)

1.0 1973.95(5) 1948.75(2) 1946.27(1) 1958.58(5)
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have not made any attempt to include optimized single-particle state
functions through mean-field optimizations like Hartree-Fock
theory. The second ansatz is the RBM ansatz with a correlation
factor described in Eq. 7, abbreviated RBM + PJ. We have also
include results obtained using a traditional Slater-Jastrow ansatz
(Eq. 8), and as reference we use a plain Slater determinant (without a
correlation factor, Eq. 6). The diffusion Monte Carlo (DMC) results
obtained by Høgberget [24] are our main reference for the ground
state energy. For quantum dots with two electrons we compare our
results with corresponding analytical ones from Ref. Taut [25].

Figure 3 displays the average CPU time per iteration as a
function of system size for the different wave function ansatzes.
To obtain these estimates, we averaged the CPU time per iteration
over 103 iterations. The RBM + PJ and Slater-Jastrow ansatzes are
the most computationally demanding due to the Padé-Jastrow
factor, which depends on the relative distance between electrons
and requires updating of a matrix containing electron-electron

distances. Each process has its own memory, and the matrix is
not shared across processes.

The impact of parallel processing on computational overhead is
minimal compared to other aspects of the code, except for the burn-
in period. In fact, the variation in CPU time as a result of noise is
much more important than the variation due to parallel processing.
Additional information on CPU time per iteration for different wave
function ansatzes is presented in Table 1. The reported calculations
were performed for 104 Monte Carlo cycles and an oscillator
frequency of ω = 1.0, with similar results for other values of ω.
Each benchmark simulation was run on a single core without a
burn-in period. Production runs require more cycles and
consequently longer CPU times per iteration. For instance, for a
system size of N = 90 with 220 Monte Carlo cycles run on 30 nodes
(960 threads), the RBM, RBM + PJ, and Slater-Jastrow ansatzes
required 0.55960, 2.7345, and 1.3001 s per iteration, respectively,
with approximately 50,000 iterations needed for convergence.

The ground state energies of two-dimensional quantum dots of
various sizes and frequencies are presented in Table 2. The RBM+ PJ
and Slater-Jastrow ansatzes provide the lowest ground state energies
as expected as the correlation factor does explicit satisfy the Kato’s
cusp conditions. The relative errors with respect to diffusion Monte
Carlo (DMC) calculations tend to be less than 0.2% for both
methods. The various results obtained with the RBM + PJ ansatz
show that this ansatz dominates for small quantum dots, but is
outperformed by the Slater-Jastrow ansatz for larger systems. We
suspect this is due to the fact that the former ansatz is more complex
and contains significantly more parameters than the latter, and has
therefore a hard time finding the global minimum. The optimization
could be improved with a more sophisticated optimization
algorithm.

For low frequency dots (ω < 0.28), the RBM produces ground
state energies lower than the reference energy, but fails for large high
frequency dots (N > 6, ω > 0.28). For low frequency dots the
interaction energy dominates, and the RBM manages to learn the
correlations. For high frequency dots, it is the one-body part of the
Hamiltonian which dominates and the interaction part is less
important for the final expectation value of the energy. For these
systems, the Slater determinant part of the wave function ansatz is
the most important one, meaning in turn that the RBM ansatz we
have used may not capture well the structure of the single-particle
states that define the Slater determinants.

We also note that the reference values are similar to
corresponding Hartree-Fock energies up to 30 particles
Mariadason [26], which is expected as both approaches try to
find the optimal single Slater determinant without a correlation
factor.

Some simulations were also performed for the RBM and RBM +
PJ ansatzes with sorted network inputs to enforce anti-symmetry
under exchange of two particles, as suggested by Ref. Saito [27],
among others. Sorted inputs showed promising results, where the
ground state energy typically dropped in the fourth or fifth digit. For
example, the RBM + PJ ansatz found the ground state energy of a
system with N = 30 electrons and ω = 0.5 to be 187.311(1) Hartree.
This is lower than the Slater-Jastrow energy. We will investigate this
further in a follow-up paper [28].

For the traditional ansatzes that do not contain artificial neural
networks, the learning rate determines to a large extent how fast the

FIGURE 4
Energy convergence for quantum dots with N = 2 and ω = 1/6.
The figure shows how the ground state energy approaches the
analytical value (Ref. Taut [25]) for various ansatzes.

FIGURE 5
Energy convergence for quantum dots with N = 56 and ω = 0.1.
The reference value was obtained by Ref. Høgberget [24] using
diffusionMonte Carlo. The labeling of the various results is the same as
in the previous figure.
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trial wave function converges towards the true ground state wave
function. However, for the RBM and the RBM + PJ approaches, the
results are sensitive to the chosen learning rate values. A too large
learning rate can easily cause exploding energies, and with a too
small learning rate the obtained energies with a given trial function
might not converge at all. Our strategy is to find the highest learning
rate that does not lead to exploding energies. In general this requires
efficient grid searching methods. Here, when the energies have
converged, we decrease the learning rate by a factor of 103 and
let it run until it converges again. Also, the RBMs tend to converge
step-wise, making it hard to know whether or not they have
converged.

In Figure 4, the convergence of the local energy is plotted for our
four ansatzes forN = 2 electrons. Here the results are compared with
analytical calculations forN = 2. A similar behavior is shown forN =
56 electrons and ω = 0.1 in Figure 5. For the N = 2 electrons case,
RBM + PJ turns out to be the most accurate ansatz with small
absolute errors. During training, the Padé-Jastrow parameter is
rather constant, but the adjustment of weights seems important
for the model to reach the energy minimum. For larger systems, the
Slater-Jastrow ansatz provides a slightly lower energy than the RBM
+ PJ ansatz. Since the number of inputs for the RBM increases with
number of particles, the network contains additional training
parameters as we increase the number of electrons. Therefore,
the networks get more complex for large quantum dots, and they
are naturally harder to train.

The spatial one-body density plots for ω = 1.0 and the RBM and
RBM + PJ ansatzes are presented in Figures 6, 7. The electron
densities have a wave shape for both ansatzes, with two nodes for
N = 2, three nodes for N = 6 and so on similar to those observed in

FIGURE 6
Electron density profiles, ρ(x, y), for two-dimensional quantum dots with frequency ω = 0.5 and N = 2, 6 and 12 electrons seen from the top. The
surface plot and the contour plot on the xy-plane illustrate the density, and the graph on the yz-plane represents the cross-section through x = 0. They
were obtained using RBM (left column) and RBM + PJ (right column), with M = 230 Monte Carlo cycles after convergence. The plots are noise-reduced
using a Savitzky-Golay filter. For abbreviations and description of the natural units used, see the main text for more details.

3 We have employed a grid of learning rates in terms of powers of ten with
negative exponents. Since we have not implemented an adaptive
calculation of the learning rates, we search for the optimal results using
a grid of decreasing learning rates.
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Refs. Ghosal et al. [29]; Høgberget [24]. The RBM seems to
exaggerate the states with more distinct peaks (higher peaks and
lower wave valleys) compared to the RBM + PJ results. This can be
explained by more localized electrons, which becomes even more
apparent in low frequency dots (see Figure 8), as the interactions are
modelled differently. The RBM would hardly be able to model the
correct electron-electron distances, as the network itself is purely
linear. The electron density was found to be shape-invariant for high
frequency dots (ω > 0.28), with decreasing spatial range as the
frequency increases.

When reducing the frequency further, the interaction energy
dominates over the kinetic energy and harmonic oscillator energy
(see Figures 10, 11), and the electrons naturally become more
localized. The Padé-Jastrow factor solves this by radially
localizing the electrons and conserving the circular symmetry,
such that the electrons are confined to specific orbitals. This can
be seen from Figure 8, where the spatial one-body density is plotted

for low frequency dots (ω = 0.1) and system sizes N = 2, 6 and 12.
Radial localization is also what we would expect from the
Hamiltonian, which is strictly circular symmetric. On the other
hand, the RBM seems to localize the electrons both in radial and
angular direction, with the number of electrons corresponding to the
number of peaks. This is a nonphysical solution to the problem, and
shows that the RBM ansatz breaks down for low frequencies. The
RBM + PJ ansatz, on the other hand, confines the electrons in
orbitals. Distinct peaks in radial direction is what is expected from
Wigner crystallization, which we might see indications of with
density parameters rs ≈ 6.7, rs ≈ 1.2, and rs = 0.3 respectively for
the three system sizes with the RBM + PJ ansatz. Notice for instance
the small “pit” on top of theN = 2 plot for RBM+ PJ, which isn’t seen
for higher oscillator frequencies. In Figure 9, we have decreased the
one-body density even further to ω = 0.01 forN = 2. As expected, the
electrons become even more localized and are clearly showing
Wigner crystallization effects with a density parameter of rs ≈ 29.

FIGURE 7
Electron density profiles, ρ(x, y), for two-dimensional quantum dots with frequency ω = 0.5 and N = 20, 30 and 42 electrons seen from the top. The
surface plot and the contour plot on the xy-plane illustrate the density, and the graph on the yz-plane represents the cross-section through x = 0. They
were obtained using RBM (left column) and RBM + PJ (right column), with M = 230 Monte Carlo cycles after convergence. The plots are noise-reduced
using a Savitzky-Golay filter. For abbreviations and description of the natural units used, see main text.
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For the RBM ansatz, the electrons are strongly localized (in all
directions) and the electron densities barely overlap. For the RBM +
PJ ansatz, we observe strong orbital confinement where the Wigner
crystallization wasn’t the target of this study, but the framework
seems capable of a profound study of this phenomenon.

To understand the behavior of the one-body density for various
frequencies, we investigate the expectation values of the kinetic
energy (〈T̂〉), the harmonic oscillator potential energy (〈V̂ext〉) and
the two-body interaction energy (〈V̂ext〉). The energy distribution is
plotted for the RBM + PJ ansatzes for N = 2 and N = 20 (Figures 10,

11) for frequencies ω ∈ {0.01, 0.1, 0.28, 0.5, 1.0, 2.0, 3.0, 5.0, and
10.0}. For large values of the oscillator frequency it is the one-body
part of the Hamiltonian which dominates in absolute value (kinetic
energy and harmonic oscillator potential energy) compared with the
expectation value of the two-body interaction. For such frequencies
we notice also that the results can almost be interpreted in terms of
the virial theorem. This theorem provides a useful relation between
the kinetic and potential energy Fock [30]. For circular quantum
dots without the two-electron interaction, the theorem reads
2〈T̂〉 � 2〈V̂ext〉. From our results we notice that, due to the

FIGURE 8
One-body density profile, ρ(x, y), of two-dimensional quantum dots with frequency ω = 0.1 andN = 2, 6 and 12 electrons seen from left to right. The
ansatzes used are RBM (upper panels) and RBM + PJ (lower panels). The surface plot and the contour plot on the xy-plane illustrate the density, and the
graph on the yz-plane represents the cross-section through x=0. The surface plots are noise-reduced using a Savitzky-Golay filter. For abbreviations and
description of the natural units used, see main text.

FIGURE 9
One-body density profile, ρ(x, y), of two-dimensional quantum dots with frequency ω = 0.01 and N = 2 electrons. The ansatzes used are RBM (left)
and RBM + PJ (right). The surface plot and the contour plot on the xy-plane illustrate the density, and the graph on the yz-plane represents the cross-
section through x = 0. The surface plots are noise-reduced using a Savitzky-Golay filter. For abbreviations and description of the natural units used, see
main text.
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interaction energy, the ratio between kinetic and harmonic oscillator
energies are not exactly equal to two for large frequencies. However,
for such frequencies the interaction energy plays a less prominent
role, resulting thus in a ratio which is close to the ideal value. When
we decrease the frequency however, and the system becomes more
dilute with an increase of the mean distance between particles, one
notices a somewhat counter intuitive behavior. The expectation
value of the kinetic energy and the harmonic oscillator potential
energy decrease (and the electrons become more localized as seen in
the one-body densities above). However, many-body correlations
increase in importance with decreasing frequency. This is reflected
in the increased role of the expectation value of the two-body
Coulomb interaction, an effect which is simply due to the infinite
range of the Coulomb interaction. If we were to multiply the

Coulomb interaction with a finite range factor, this effect would
disappear. Figures 10, 11 show this behavior rather clearly.

4 Computational details

The quantum dot systems were studied using a general framework
for variational Monte Carlo simulations (The code is available on
github.com/evenmn/VMaChine). Importance sampling was used to
accelerate the simulations Metropolis et al. [31]. To minimize the
local energy, we applied the Adam optimizer with β1 = 0.9 and β2 =
0.999 as suggested by Ref. Kingma and Ba [32]. We use an adaptive
number of cycles, starting from 220 and then increased to 224 for the ten
last iterations after the energy had converged, and further to 230 for the
very last iteration to reduce the statistical uncertainty and noise in
electron density. The particle step length was chosen to get an acceptance
ratio close to 99.5%, spawning from 101 for the smallest and weakest
systems to 10–3 for the large and narrow oscillators. The optimal learning
rate was found by grid searches, and varied from 101 to 10–5. Both the
step length and the learning rate depend strongly on the system and the
trial wave function.

For the RBM and RBM + PJ ansatzes, only the raw particle
positions were input to the RBM. This choice was made for
performance reasons, as inputting processed positions like the
electron-electron distances would lead to significantly larger
computational efforts, with an increased network complexity.

The Gaussian parameter was initialized to α = 1.0, which is the
analytical optimumwithout interaction. We use Xavier initialization
for the RBM weights, putting them all close to zero Glorot and
Bengio [33]. The special case with all weights set to zero corresponds
to our reference ansatz with α = 1.0. For all the RBMs but the most
narrow ones (ω = 1.0), the number of hidden nodes was set to 6,
giving 40 to 1272 parameters for the various system sizes. For ω =
1.0, we used H = 12 hidden nodes to achieve a lower energy.

All the simulations were run on Intel Xeon E5-2670 CPUs. In
total the computational cost of this project was of the order of 106

CPU hours with largest amount of cycles spent, for obvious reasons,
on the largest systems.

5 Conclusion and perspectives

We found that the RBM ansatz gives a significantly lower ground
state energy than the reference ansatz for low frequency quantum dots.
This may indicate that the RBM manages to capture some of the
electron-electron correlations. Based on the one-body density plots, the
RBM found the electrons to be localized both angularly and radially
compared to the ansatzes containing a Padé-Jastrow factor, which
confine electrons radially only. For high frequency dots, the RBM
fails in the sense that the obtained ground state energy is larger than
the reference energy. This can be explained by the fact that when the
interactions get less important, the reference ansatz is a good guess. The
RBM + PJ ansatz gives energies close to the DMC energies for small
quantum dots. The ansatz performance needs to be seen in light of the
computational cost, as the ansatzes containing a Padé-Jastrow factor are
far more computationally intensive.

From the one-body density and energy distribution plots, it is
apparent that the RBM ansatz isn’t able to capture the

FIGURE 10
Energy distribution for N = 2 electrons for the RBM + PJ ansatz,
with frequencies ranging from ω = 0.01 to 10.0.

FIGURE 11
Energy distribution for N = 20 electrons for the RBM + PJ ansatz,
with frequencies ranging from ω = 0.01 to 10.0.
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correlations at the same level as the Padé-Jastrow factor. Because
of the linearity of the network, it is impossible for it to compute
the distance between the particles, which is crucial to model the
interactions correctly. One solution to this could be to input the
electron-electron distance into the network, as discussed by Pfau
et al. [4], but this would increase the computational intensity.
Also, despite including a Slater determinant, the trial wave
function is not necessarily anti-symmetric when including an
RBM. We performed some simulations where anti-symmetry was
forced by sorting the network inputs, which showed promising
results in terms of the ground state energy. However, although
promising results can be obtained, RBMs are less flexible than
general neural networks that make fewer assumptions about the
specific mathematical forms of the trial functions. We have
encoded explicitly the anti-symmetry via a Slater determinant.
Furthermore, two-body correlations are constructed using a
Jastrow factor. An RBM with Gaussian distributions is capable
of capturing the one-body part of the problem, but is less flexible
in finding two-body or more complicated many-body
correlations. Although the RBM results reported here are
promising compared with existing VMC calculations, recent
results with neural networks like those presented in, for
example, Refs. Pfau et al. [4]; Cassella et al. [14]; Lovato et al.
[9]; Adams et al. [8]; Carrasquilla and Torlai [3] offer much more
flexible and promising research venues for deep learning methods
applied to many-body problems. Results obtained with deep
neural networks for these systems will be presented in a future
work [28].
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Appendix A Derivation of RBM
distributions

In this , we will derive the marginal and conditional distributions
of a Gaussian-binary restricted Boltzmann machine with the system
energy

E x, h( ) �∑2N
i�1

xi − ai( )2
2σ2

i

−∑H
j�1

bjhj −∑2N
i�1
∑H
j�1

xiwijhj
σ2i

.

There are 2N visible units xi with related bias weights ai and H
hidden units hj with related bias weights bj. wij are the weights
connecting the visible units to the hidden units. The joint probability
distribution is given by the Boltzmann distribution

P x, h( ) � 1
Z
exp −βE x, h( )( ),

where Z is the partition function,

Z � ∫∫ dxdhP x, h( ),

and β = 1/kBT is the reciprocal temperature that will be fixed to 1. As
the marginal and conditional distributions are closely related both
for the visible and hidden layer, we present the distributions in
sections respective for the two layers.

Appendix B Distributions of visible units

The distributions of the visible units are used to find properties
related to the visible units. If we recall a restricted Boltzmann
machine, the transformation between the visible units and the

hidden units is fj(x; θ) � bj +∑2N
i�1wijxi/σ2i . By this expression,

we can express the joint probability distribution as

P x, h( ) � 1
Z
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� 1
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2σ2 +∑H
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hjfj x; θ( )⎛⎝ ⎞⎠.

(B1)
The marginal distribution of the visible units is given by the sum
over all possible hidden states, {h} ∈ {0, 1}:

P x( ) �∑
h{ }
P x, h( ),

as the hidden units can take binary values only. By inserting the
expression of the joint probability distribution from Eq. B1, we
obtain

P x( ) � 1
Z
∑
h{ }
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� 1
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1 + exp fj x; θ( )( )[ ].
This is what we will use as the marginal distribution of the visible
units.

Frontiers in Physics frontiersin.org14

Nordhagen et al. 10.3389/fphy.2023.1061580

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1061580

	Efficient solutions of fermionic systems using artificial neural networks
	1 Introduction
	2 Materials and methods
	2.1 Gaussian-binary restricted Boltzmann machine
	2.2 Code optimization

	3 Results and discussions
	4 Computational details
	5 Conclusion and perspectives
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References
	Appendix A Derivation of RBM distributions
	Appendix B Distributions of visible units


