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Dilute neutron star matter from neural-network quantum states
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Low-density neutron matter is characterized by fascinating emergent quantum phenomena, such as the
formation of Cooper pairs and the onset of superfluidity. We model this density regime by capitalizing on
the expressivity of the hidden-nucleon neural-network quantum states combined with variational Monte Carlo
and stochastic reconfiguration techniques. Our approach is competitive with the auxiliary-field diffusion Monte
Carlo method at a fraction of the computational cost. Using a leading-order pionless effective field theory
Hamiltonian, we compute the energy per particle of infinite neutron matter and compare it with those obtained
from highly realistic interactions. In addition, a comparison between the spin-singlet and triplet two-body
distribution functions indicates the emergence of pairing in the 1S0 channel.
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I. INTRODUCTION

Multimessenger astronomy has opened new windows into
the state of matter at densities and isospin asymmetries that
cannot be directly probed by terrestrial experiments [1–4].
Concurrently, nuclear many-body theory has made consider-
able progress in computing the nucleonic-matter equation of
state at densities corresponding to the inner core of neutron
stars starting from realistic Hamiltonians [5–10]. Com-
parisons between theoretical predictions and astrophysical
observation pose stringent constraints on models of nuclear
dynamics, particularly three-nucleon forces [11].

In this work, we focus on lower densities, ρ � 0.08 fm−3,
which are relevant to the phenomenology of the stellar inner
crust at the boundary with the outer core. In this region,
matter consists of a Coulomb lattice of neutron-rich nuclei,
relativistic electrons, and a superfluid neutron gas [12]. In
this region, both conditions for superfluidity—strong Fermi
degeneracy and an attractive interaction between neutron pairs
in the 1S0 channel—are believed to be met [13–15]. In addition
to lowering the system’s energy, the formation of Cooper
pairs plays a critical role in neutrino emission [16,17] and the
phenomenology of glitches [18]. Pairing is also relevant in
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modeling neutron-rich nuclei, which are the subject of intense
experimental activities [19].

Quantum Monte Carlo approaches [20], and in particular
the auxiliary-field diffusion Monte Carlo (AFDMC) method
[21], have been extensively applied to accurately compute
neutron-matter properties [6,7,22]. In the low-density regime,
AFDMC calculations have convincingly shown a depletion
of the superfluid gap with respect to the Bardeen-Cooper-
Schrieffer theory [23,24]. However, because of the fermion
sign problem, AFDMC predictions depend upon the start-
ing variational wave function. For instance, the superfluid
phase must be assumed a priori by using Pfaffian wave
functions [25].

Neural-network quantum states [26] (NQS) have gained
popularity in solving the Schrödinger equation of atomic nu-
clei both in real space [27–31] and in the occupation-number
formalism [32]. In this work, we introduce a periodic NQS
suitable to model both the normal and superfluid phases of
neutron matter. The ansatz is based on the “hidden-nucleon”
architecture, which can model the ground-state wave func-
tions of nuclei up to 16O with high accuracy [30]. Inspired
by chemistry applications [33,34], we further improve the
expressivity of the hidden-nucleon NQS using generalized
backflow correlations, which generalize both the Pfaffian and
the spin-dependent backflow of Ref. [35].

Our model of nuclear dynamics is the leading-order pion-
less effective field theory (/πEFT) Hamiltonian of Ref. [36],
which qualitatively reproduces the binding energies of nu-
clei with up to A = 90 nucleons. Arguments based on the
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expansion around the unitary limit [37], and Brueckner-
Hartree-Fock calculations of infinite nuclear matter [38],
indicate that /πEFT should provide accurate energies of di-
lute neutron matter. We quantitatively address this point
by carrying out variational Monte Carlo calculations based
on NQS that are specifically designed to model wave
functions of nuclear systems in the presence of spatial
periodicity. We compare the /πEFT energy per particle
against the phenomenological Argonne v18 [39] plus Urbana
IX [40] (AV18+UIX) Hamiltonian used in the Akmal-
Pandharipande-Ravenhall (APR) [41] equation of state. We
additionally consider the local, �-full chiral-EFT potentials
that include tritium β decay in the fitting procedure and do
not yield self-bound neutron matter [6,22].

To better quantify the role of dynamical correlations, we
evaluate the two-body spatial distribution functions, separat-
ing the spin-triplet and spin-singlet channels. We analyze the
self-emergence of pairing correlations, not explicitly included
in the NQS ansatz, as a function of neutron-matter density.

II. METHODS

We model the interactions among neutrons through the
leading-order /πEFT Hamiltonian “o” of Ref. [36]. The
two-body contact potential is designed to reproduce the np
scattering lengths and effective ranges in the S/T = 0/1 and
1/0 channels. Thus it yields a neutron-neutron scattering
length of ann = −22.5 fm, slightly larger than the experimen-
tal value of −18.9(4) fm, see [42] and references therein,
while the effective range is well reproduced. The Hamiltonian
also contains a repulsive three-body force that ensures the
stability of nuclei with A � 3 nucleons. As for the latter, we
take the parametrization with R3 = 1.0 fm, as it reproduces
the binding energies of nuclei in the A � 90 mass range rea-
sonably well. For benchmarking purposes, we also consider
the leading-order /πEFT Hamiltonian “a” with R3 = 1.0 fm,
which describes the trend of binding energies of light and
medium-mass nuclei.

We approximate the ground-state solution of the nuclear
many-body problem with an NQS ansatz that belongs to the
hidden-fermion family [43], recently generalized to contin-
uum Hilbert spaces and applied to atomic nuclei in Ref. [30].
In addition to the visible spatial and spin coordinates of the A
neutrons, R = {r1 . . . rA} and S = {sz1 . . . szA}, the Hilbert space
contains fictitious Ah hidden-nucleon degrees of freedom. In
this work we use Ah = A = 14 so that the system is as flexible
as possible, but in practice we have also found using as few
as eight hidden nucleons gives very similar results. The wave
function can be conveniently expressed in a block matrix
form as

�HN (R, S) ≡ det

[
φv (R, S) φv (Rh, Sh)
χh(R, S) χh(Rh, Sh)

]
. (1)

As in Ref. [30], φv (R, S) is the A × A matrix representing
visible single-particle orbitals computed on the visible co-
ordinates, while the Ah × Ah matrix χh(Rh, Sh) yields the
amplitudes of hidden orbitals evaluated on the coordinates of
the Ah hidden nucleons. Finally, χh(R, S) and φv (Rh, Sh) are
Ah × A and A × Ah matrices giving the amplitudes of hidden
orbitals on visible coordinates and visible orbitals on hidden

coordinates, respectively. All the above matrices are expressed
in terms of deep neural networks with differentiable activation
functions—see Ref. [30] for additional details. To respect the
Pauli principle, the coordinates of the hidden nucleons must
be permutation-invariant functions of the visible ones. We en-
force this symmetry by using a Deep-Sets architecture [44,45]
with logsumexp pooling. Additionally, the discrete parity and
time reversal symmetries are enforced in the same manner as
Ref. [30].

Inspired by recent developments in quantum-chemistry
NQS [33,34,46], we augment the flexibility of the ansatz
by performing a generalized backflow transformation to the
visible coordinates of the hidden-nucleon matrix: (R, S) →
(R̃, S̃). The backflow transformations generate new coordi-
nates that are equivariant with respect to the original one,
ensuring that the NQS ansatz maintains fermion antisymme-
try. This is accomplished by using the Deep-Sets architecture
to define

	i = ln

( ∑
j

exp
[
φbf,i

(
r j, szj

)])
. (2)

Because of the sum over all particles, 	i is independent of
their ordering. The latter is restored by concatenating it with
the corresponding particle coordinates(

r̃i, s̃zi
) = ρbf,i

(
ri, szi ,	i

)
. (3)

To enhance the expressivity of the ansatz, separate ρbf and φbf

neural networks are used for each of the A visible orbitals.
We simulate infinite neutron matter using 14 particles in a

box with periodic boundary conditions. Following Ref. [47],
the latter are imposed by mapping the spatial coordinates onto
periodic functions by

ri →
[
sin

(
2πri
L

)
, cos

(
2πri
L

)]
, (4)

which ensures the wave function is continuous and differen-
tiable at the box boundary. Here L is the size of the simulation
periodic box and the sin and cos functions are applied ele-
mentwise to ri. Finite-size effects due to the tail corrections of
two- and three-body potentials are accounted for by summing
the contributions given by neighboring cells to the simulation
box [48].

Evaluating the expectation values of quantum-mechanical
operators, including the Hamiltonian, requires carrying out
multidimensional integration over the spatial and spin coor-
dinates of the neutrons. To this aim, we exploit Monte Carlo
quadrature and sample R and S from |�HN (R, S)|2 using the
Metropolis-Hastings algorithm [49]—additional details can
be found in the Supplemental Material of Ref. [28]. The
best variational parameters defining the NQS are found by
minimizing the system’s energy, which we carry out using
the R(oot)M(ean)S(quared)Prop(agation)-enhanced version
of the stochastic-reconfiguration optimization method intro-
duced in Ref. [30]. The parameters are updated as

p ← p− ηS−1∇pE , (5)

where E = 〈�HN |H |�HN 〉/〈�HN |�HN 〉 is the Hamiltonian
expectation value, η is the learning rate, and S is the quantum
geometric tensor [50].
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FIG. 1. NQS training data in neutron matter at ρ = 0.04 fm−3

(data points) compared with Hartree-Fock (dotted line), conventional
VMC (dashed line), constrained-path ADMC (dash-dotted line), and
unconstrained-path ADMC results (solid line).

III. RESULTS

We first benchmark the expressivity of the hidden-nucleon
NQS for periodic systems by comparing the energy per
particle of infinite neutron matter against “conventional” vari-
ational Monte Carlo (VMC) and both constrained-path and
AFDMC results. The variational wave function used in state-
of-the-art neutron-matter studies, see for example [7,22],
contains a spin-independent Jastrow factor that multiplies a
Slater determinant augmented by spin-dependent backflow
correlations. The constrained-path approximation, commonly
employed to alleviate the AFDMC fermion-sign problem [20],
brings about a bias in the ground-state energy estimate [6,22].
Exact results can be obtained by performing unconstrained
propagations, but the statistical error grows exponentially with
the imaginary time.

As shown in Fig. 1 for ρ = 0.04 fm−3, after �2000
stochastic-reconfiguration steps, the NQS ansatz converges
to the virtually exact unconstrained AFDMC energy, using a
fraction of its computing time: about 100 h on NVIDIA-A100
GPUs vs approximately 1.2 million h on Intel-KNL CPUs.
Notice that the constrained-path approximation violates the
variational principle. In contrast, variational Monte Carlo cal-
culations based on the NQS never yield energies below that of
the Hamiltonian’s ground state. Comparing with the Hartree-
Fock approximation, it appears that the hidden-nucleon
ansatz captures the overwhelming majority of the correlation
energy.

In Fig. 2, we compare the /πEFT energies obtained with the
NQS ansatz against AFDMC calculations of 14 particles with
periodic-box boundary conditions, so that finite-size effects
are the same in both approaches. To mitigate these effects, in
addition to the tail corrections of two- and three-body poten-
tials, we subtract the kinetic energy of 14 particles in a box and
add the kinetic energy computed in the thermodynamic limit
[51]. We assess the accuracy of this procedure by comparing
the Hartree-Fock energy in the thermodynamic limit with
calculations performed using 14 particles in a periodic box
and plane-wave orbitals, with the kinetic energy contribution

FIG. 2. Low-density neutron-matter /πEFT equation of state as
obtained with the hidden-nucleon NQS for /πEFT potential “o” (blue
circles) and /πEFT potential “a” (orange squares) compared with
interactions which retain pion-exchange terms (green band).

corrected as described above. The “corrected” energy closely
aligns with the thermodynamic limit for all densities consid-
ered, with a maximum deviation remaining below 1%.

The AFDMC takes as input the AV18+UIX Hamiltonian
used in the celebrated APR equation of state [41] and the lo-
cal, �-full chiral-EFT potentials that include tritium β decay
in the fitting procedure and do not make neutron-matter col-
lapse, i.e., models NV2+3-Ia*/b*, and NV2+3-IIb* [6,22].
Since for all the densities we consider, the AV18+UIX,
NV2+3-Ia*/b*, and NV2+3-IIb* are in excellent agreement,
they are collectively displayed by the “π -full” band, stress-
ing that all these interactions explicitly retain pion-exchange
terms.

The /πEFT Hamiltonian “o” is in excellent agreement with
the π -full models—both providing energies much below the
noninteracting Fermi gas (not shown in the figure). These mi-
nor differences are likely because model “o” yields a slightly
larger nn scattering length than the experimental value and,
therefore, more attraction in neutron matter. For benchmark
purposes, we also consider the /πEFT model “a” of Ref. [36],
which provides a slightly stiffer equation of state than model
“o.” By checking the individual expectation value of the two-
and three-body potentials, we find that this behavior is pri-
marily due to the three-body force contribution that is more
repulsive in model “a” than model “o,” which arises from a
more bound 3H when the two-body force alone is employed.

Once trained on the system’s energy, the NQS can be
used to accurately evaluate a variety of quantum-mechanical
observables, such as the spin-singlet and -triplet two-body dis-
tribution functions defined in Ref. [52]. Figure 3 shows these
distributions at ρ = 0.01 fm−3 [panel (a)], ρ = 0.04 fm−3

[panel (b)], and ρ = 0.08 fm−3 [panel (c)]. The significant
increase in the spin-singlet channel compared to the nonin-
teracting Fermi gas indicates that the NQS wave function can
capture the emergence of the 1S0 neutron pairing, despite not
being explicitly encoded in the ansatz. Consistent with the
behavior of the pairing gap [14,23], the enhancement is more
prominent at low densities and vanishes at higher densities.
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FIG. 3. Spin-singlet and triplet two-body distribution functions
at ρ = 0.01 fm−3 [panel (a)], ρ = 0.04 fm−3 [panel (b)], and ρ =
0.08 fm−3 [panel (c)] vs pair distance in units of the Wigner-Seitz
radius. The NQS calculations (solid symbols) are compared with
noninteracting Fermi gas results (solid lines).

On the other hand, at these densities, no pairing correlations
are present in the spin-triplet channel.

IV. CONCLUSIONS

In this work, we have put forward an NQS suitable to
model the normal and superfluid phases of infinite neutron
matter in a unified fashion. We improve the expressiv-
ity of the hidden-nucleon ansatz of Ref. [30] by adding
state-dependent generalized backflow correlations, whose
inclusion has proven beneficial in condensed-matter applica-
tions [33,34]. Periodic-box boundary conditions are imposed

by mapping the spatial coordinates of the neutrons onto peri-
odic functions.

Combined with Monte Carlo techniques to sample the
Hilbert space and the stochastic-reconfiguration algorithm to
optimize the variational parameters, the NQS yields energies
per particle of low-density neutron matter that are in excel-
lent agreement with unconstrained AFDMC calculations at
a fraction of the computational cost. In contrast, the com-
putationally inexpensive AFDMC constrained-path approxi-
mation brings about appreciable violations of the variational
principle.

We have shown that /πEFT yields a low-density neu-
tron matter equation of state that is remarkably close to
those obtained from AFDMC calculations that take as
input highly realistic phenomenological and chiral-EFT in-
teractions [6,22,41]. This finding paves the way for more
systematic comparisons between dilute neutron matter and
Fermi gas around the unitary limit. In addition, it enables
studies of phenomena relevant to understanding the inner
crust and the outer core of neutron stars, such as pairing
and superfluidity, using relatively simple models of nuclear
dynamics.

Finally, we have analyzed the possible onset of Cooper
pairing in the neutron medium. Specifically, the NQS two-
body distribution functions corresponding to pairs of neutrons
in the spin-singlet 1S0 channel exhibit a clear enhancement at
small interparticle distances with respect to the noninteracting
case, which is absent in the spin-triplet channel. Consistent
with pairing-gap calculations [14,23,24], this behavior is more
prominent at smaller densities. Note that this feature has
not been encoded in the NQS; rather, it is a self-emerging
quantum-mechanical phenomenon.

As a future development, we plan on including more
sophisticated interactions, including highly realistic phe-
nomenological ones, including AV18+UIX and the local,
�-full chiral-EFT potentials of Refs. [6,22,53]. The flexibility
of the NQS ansatz will also be tested in isospin-asymmetric
nucleonic matter at low densities, where strong clustering is
expected to occur [54].
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