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General relativistic treatment of f -mode oscillations of hyperonic stars
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We present a systematic study of f -mode oscillations in neutron stars containing hyperons, extending recent

results obtained within the Cowling approximation to linearized general relativity. Employing a relativistic

mean-field model, we find that the Cowling approximation can overestimate the quadrupolar f -mode frequency

of neutron stars by up to 30% compared to the frequency obtained in the linearized general relativistic

formalism. Imposing current astrophysical constraints, we derive updated empirical relations for gravitational

wave asteroseismology. The frequency and damping time of quadrupole f -mode oscillations of hyperonic stars

are found to be in the range of 1.47–2.45 kHz and 0.13–0.51 s, respectively. Our correlation studies demonstrate

that among the various parameters of the nucleonic and hyperonic sectors of the model, the nucleon effective

mass shows the strongest correlation with mode characteristics and neutron star observables. Estimates for the

detectability of f modes in a transient burst of gravitational waves from isolated hyperonic stars is also provided.

DOI: 10.1103/PhysRevC.106.015805

I. INTRODUCTION

Neutron stars (NS) are natural laboratories to probe the be-

havior of matter under extreme conditions, such as ultra high

densities, rapid rotation, or ultrastrong magnetic fields [1–3].

With the interior composition of the NS core uncertain, it is

conjectured that strangeness in the form of hyperons, meson

condensates, or even deconfined quark matter may appear at

such high densities, which can affect several NS observable

properties. For example, the appearance of hyperons can af-

fect NS maximum mass, radius, cooling, or gravitational wave

(GW) emission from unstable quasinormal modes [4], and one

can then look for the signatures of such exotic matter in NS

observables.

A good theoretical model of NS should be able to explain

basic NS astrophysical observables, such as its mass or radius.

In order to connect the NS internal composition with these

global properties, one requires an equation of state (EoS).

Various EoS models exist that employ ab initio many-body

methods or phenomenological theories in order to extrapo-

late baryon-baryon interaction to densities or neutron-proton

asymmetries relevant for describing NS matter. Among the

different EoS models, one class of realistic phenomenolog-

ical models is based on the relativistic mean field (RMF)

approach, which is a particular self-consistent approxima-

tion to in-medium nuclear many-body forces and contains

density-dependent parameters that are fit to nuclear experi-

mental observables [5,6]. In this work, we adopt one such
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RMF model as a representative of this class of EoS and call it

simply “the RMF model.”

With the current generation of space-based and ground-

based telescopes, neutron stars are observed at multiple

wavelengths of the electromagnetic spectrum from radio

to x-rays to gamma rays. For neutron stars in a binary,

post-Keplerian effects allow the component masses to be de-

termined to high accuracy [7–11]. Radius measurements that

rely solely on thermal emission from the NS surface suffer

from several uncertainties and cannot be determined with

high precision. However, the recently launched Neutron Star

Interior Composition Explorer (NICER) mission [12] has im-

proved radius determination by employing novel techniques

to study pulse modulation profiles, which enables up to 5%

accuracy in the determination of the radius [13,14].

In addition to electromagnetic emission, neutron stars can

also act as sources of GWs. Any nonaxisymmetric pertur-

bation or a merger of neutron stars in a binary can produce

copious amounts of GWs. In the case of mergers, the tidal

deformation of a component NS under the strong gravita-

tional force of the other can constrain the properties of matter

in the interior [15–18]. Recent detections of NS-NS (BNS)

collisions (GW170817) or NS-BH mergers (GW200105 and

GW200115) by the LIGO-Virgo-KAGRA collaboration of

GW detectors have opened up new frontiers in multimessen-

ger astronomy [19].

In the context of GW, the secular quasinormal modes

(QNM) of NS are particularly interesting, since they carry

information about the interior composition and viscous forces

that damp these modes. QNMs in neutron stars are catego-

rized by the restoring force that bring the perturbed star back

to equilibrium [20–22]. Examples include the fundamental
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f mode, p modes, and g modes (driven by pressure and

buoyancy respectively), as well as r modes (Coriolis force)

and pure space-time w modes. Several of these modes are

expected to be excited during SN explosions [23], or in a

starquake [24] or in isolated perturbed NSs [25], or dur-

ing the post-merger phase of a binary NS [26–28], with the

f mode being the primary target of interest. It has been ar-

gued that spin and eccentricity enhance the excitation of the

f modes during the inspiral phase of NS mergers [29,30].

The fundamental f modes are within the sensitivity range

of current generation of GW detectors and are correlated

with the tidal deformability during the inspiral phase of NS

mergers [31–34].The g modes can be excited during inspiral

of a merger event [34] and are also sensitive to the internal

composition of NS [35,36]. However, the impact on GW is too

weak to be noticed by the current generation of instruments

[34]. Which leads us to focus on f mode oscillation of NS.

Among the many studies in the literature that study the

f mode, the pioneering work of Andersson and Kokkotas

[37,38] relating the NS global properties such as mass, radius,

or compactness with the frequency and damping times of

QNMs is the most relevant motivation to our work. However,

the majority of these studies rely on the Cowling approxi-

mation (neglecting perturbations of the background metric),

instead of calculating in full general relativity (GR). While

the Cowling approximation is justified as a first reasonable

estimate of the mode frequency, full GR is required for a more

accurate computation of the mode frequency and to find the

damping time in order to extract reliable information about

the NS EoS from GW data.

In a recent study [39], we performed a systematic inves-

tigation of the role of nuclear saturation parameters on the

oscillation modes for a purely nucleonic nonrotating NS in the

framework of the RMF model. We then extended this investi-

gation [40] to study the effect of the appearance of hyperons

on the f -mode frequencies. Completing the analysis, in this

work, we present the results of calculations of f modes of

hyperonic stars in a fully general relativistic framework.

This paper is organized in the following way. In Sec. II,

we discuss the RMF model Lagrangian and the model’s pa-

rameters. In Sec. III, the resulting macroscopic properties of

the NS are presented, followed by Sec. IV detailing the GR

equations used to determine the global f -mode frequency. We

compile our results in Sec. V and summarize our conclusions

in Sec. VI.

II. MICROSCOPIC MODEL FOR

THE EQUATION OF STATE

A. The relativistic mean-field model

The charge-neutral, β-equilibrated matter in the NS inte-

rior is described by our chosen RMF theory, which provides

a Lorentz covariant description of the microphysics of the

NS interior. In the RMF model, baryon-baryon interaction

is mediated by the exchange of scalar (σ ), vector (ω), and

isovector (ρ) mesons, while hyperon-hyperon interactions are

mediated by additional strange scalar (σ ∗) and strange vector

(φ) mesons [41]. The interaction Lagrangian density (L) can

be written as

L =
∑

B

ψ̄
B
(iγ μ∂μ − m

B
+ gσBσ − gωBγμωμ

− gρBγμ �IB.�ρμ)ψ
B
+ 1

2

(

∂μσ∂μσ − m2
σσ 2

)

− Uσ

+ 1

2
m2

ωωμωμ − 1

4
ωμνω

μν − 1

4

(

�ρμν .�ρμν − 2m2
ρ �ρμ.�ρμ

)

+�ω

(

g2
ρN �ρμ.�ρμ

) (

g2
ωNωμωμ

)

+ LYY + L�, (1)

where

Uσ = 1

3
bmN (gσNσ )3 + 1

4
c(gσNσ )4,

LYY =
∑

Y

ψ̄
Y
(gσ ∗Y σ ∗ − gφY γμφμ)ψ

Y
+ 1

2
m2

φφμφμ

− 1

4
φμνφ

μν + 1

2
(∂μσ ∗∂μσ ∗ − m2

σ ∗σ
∗2

),

L� =
∑

�={e−,μ−}
ψ̄�(iγ μ∂μ − m�)ψ�.

The governing field equations for constituent baryons and

mesons can be found in our previous work [40]. In the

mean-field approximation, meson fields are replaced by their

ground-state expectation values. Replacing the nonvanishing

mean-meson expectation components as [5] “σ̄ = 〈σ 〉, ω̄0 =
〈ω0〉, ρ̄03 = 〈ρ03〉, σ̄ ∗ = 〈σ ∗〉, φ̄0 = 〈φ0〉,” the energy den-

sity for the given Lagrangian density (1) is given by [40]:

ε = 1

2
m2

σ σ̄ 2 + 1

2
m2

σ ∗ σ̄ ∗2 + 1

2
m2

ωω̄2
0 + 1

2
m2

ρ ρ̄
2
03

+ 1

2
m2

φφ̄2
0 + 1

3
bmN (gσN σ̄ )3 + 1

4
c(gσN σ̄ )4

+
∑

B

gsB

2π2

∫ kFB

0

√

k2 + m∗
B

2 dk

+ 3�ω(gρN gωN ρ̄03ω̄0)2

+
∑

�

gs�

2π2

∫ kF�

0

√

k2 + m�
2 dk, (2)

where gsi and kFi represent spin degeneracy and Fermi mo-

mentum of ith species, respectively. m∗
B is the effective mass

for baryon B and given by

m∗
B = mB − gσBσ̄ − gσ ∗Bσ̄ ∗. (3)

The pressure (p) is given by the Gibbs-Duhem relation [6],

p =
∑

i=B,�

μini − ε, (4)

with ni and μi as the number density and chemical potential

of the ith constituent, respectively. The baryon and lepton

chemical potentials can be expressed respectively as

μB =
√

k2
FB + m∗

B
2 + gωB

ω̄0 + gφB
φ̄0 + I3B

gρB
ρ̄03 ,

μ� =
√

k2
F�

+ m�
2. (5)
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TABLE I. Range of saturation nuclear parameters used in this work. Masses of mesons and the nucleon are fixed as mσ = 550 MeV,

mω = 783 MeV, mρ = 770 MeV, mσ∗ = 975 MeV, mφ = 1020 MeV, and mN = 939 MeV. For the masses of the hyperons, we use data from

Ref. [42].

n0 Esat K J L

Model (fm−3) (MeV) (MeV) (MeV) (MeV) m∗/mN

RMF [6] 0.15–0.16 −15.5 ±0.5 230–280 32 ± 2 50 ± 10 0.65 ±0.10

B. Parameters of the RMF model

1. Nucleon couplings

Here we briefly discuss the coupling constants, which

may be regarded as model parameters. The nucleon isoscalar

coupling constants (gσN , gωN , b, c) are set by fixing nuclear

saturation properties: nuclear saturation density (n0), binding

energy per nucleon (E/A or Esat), incompressibility (K), and

the effective nucleon mass (m∗) at saturation. The isovector

coupling constants (gρN ,�ω) are obtained by fixing the sym-

metry energy (J) and its slope (L) at saturation [5,6]. It was

concluded that in RMF models the stiffness of the EoS is

mainly controlled by m∗ [6]. We consider a reasonable range

of m∗ such that the maximum mass is above the observed limit

(m∗ < 0.75) and does not induce the appearance of instabili-

ties in the neutron matter EoS (m∗ > 0.55) [6]. The. effect of

astrophysical constraints on m∗ is discussed in detail at the

end of Sec. III. The range of saturation nuclear parameters

considered in this work have been summarized in Table I.

2. Hyperon couplings

RMF models with attractive hyperon-hyperon interaction

(mediated by the strange meson σ ∗) are incompatible with

the current highest observed NS mass [43]. Thus, we exclude

the attractive hyperon-hyperon interaction. The nonstrange

scalar-hyperon couplings (gσY ) are fitted to available hyperon-

nucleon potential depth in normal nuclear matter [U N
Y (n0)]

using Eq. (6) [41,43] and the vector and isovector hyperon

couplings (gωY , gρY , gφY ) are fixed to their theoretical values

using the symmetries of the SU(6) quark model summarized

in Refs. [41,43],

U N
Y (n0) = −gσY σ̄ + gωY ω̄0. (6)

gω� = gω� = 2gω� = 2

3
gωN ,

gρN = gρ� = 1

2
gρ� gρ� = 0,

2gφ� = 2gφ� = gφ� = −2
√

2

3
gωN . (7)

Among the nucleon-hyperon potentials U N
Y , the best known

potential depth is that of �, U N
� (n0) = −30 MeV [44,45].

Although there is an uncertainty in U N
� , it has been concluded

from experiments that U N
� is repulsive [45–48]. We fix the

U N
� potential to its most commonly adopted value +30 MeV.

However, the value of U N
� is attractive and highly uncertain

[47,49,50]. So we vary the value of U N
� within the range of

−40 MeV to +40 MeV for our investigation. Once all the

coupling constants for a fixed parameters set are determined,

the EoS can be evaluated for the Lagrangian given in Eq. (1).

Each of the saturation parameters is randomly drawn from a

uniform distribution defined in the range of the corresponding

parameter as given in Table I. After applying the astrophysical

constraints (Mmax � 2M� and tidal deformability constraint

from GW170817 [18]), we are left with approximately 1500

(1483 to be exact) microscopic models for pure nucleonic

matter and 1000 (1123 to be exact) microscopic models for

neutron stars with nucleon-hyperon matter. For providing the

asterosismolgy relations in Sec. V, we have obtained f -mode

characteristics for 2.5 × 105 neutron star.

III. MACROSCOPIC FEATURES OF THE NEUTRON STAR

After the EoS is specified, the macroscopic structure of the

NS can be described by solving the Tolman-Oppenheimer-

Volkoff (TOV) equations. Starting with general spherically

symmetric metric (8), the equations describing hydrostatic

equilibrium (TOV) are given by Eqs. (9) and (10) and

the equations governing metric functions �(r) and λ(r) by

Eqs. (11) and (12).

ds2 = −e2�(r)dt2 + e2λ(r)dr2 + r2dθ2 + r2sin2θdφ2, (8)

dm(r)

dr
= 4πr2ε(r), (9)

d p(r)

dr
= −[p(r) + ε(r)]

m(r) + 4πr3 p(r)

r[r − 2m(r)]
, (10)

d�(r)

dr
= −1

ε(r) + p(r)

d p

dr
, (11)

e2λ(r) = r

r − 2m(r)
. (12)

Integration of TOV equations for a given EoS [p = p(ε)] from

the center to the surface with vanishing pressure at the surface

p(R) = 0 provides the stellar radius R and mass M = m(R) for

equilibrium stellar models. Another boundary condition is that

at the surface, �(R) = 1
2

log(1 − 2M
R

). The tidal love number

k2 for a given EoS can be evaluated by solving a set of ad-

ditional differential equations along with TOV equations [51],

which then lead to determination of another important observ-

able quantity, the dimensionless tidal deformability (�̄)

�̄ = 2

3
k2

(

R

M

)5

. (13)

We display the EoSs and corresponding mass-radius rela-

tions used in this work in Fig. 1 and Fig. 2, respectively. Of

the EoSs obtained by randomly varying the saturation param-

eters in Table I, we only consider those which are compatible

with recent astrophysical observational constraints, i.e., the
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FIG. 1. EoSs used in this work. To avoid cluttering we have

displayed here a few of the EoSs with nucleons (solid black lines,

npeμ) as well as models with hyperons (solid red lines, npeμY )

corresponding to the parameter space explained in Sec. II B. Specific

solid (dashed) lines are shown for different effective mass for nu-

cleonic (hyperonic) EoSs with other parameters fixed at n0 = 0.150

fm−3, Esat = −16.0 MeV, J = 32 MeV, L = 60 MeV, K = 240 MeV,

and U� = −18 MeV.

EoS must reproduce the maximum observed neutron star of

2M� mass and also be compatible with the tidal deformabil-

ity estimation from the merger event GW170817 [18]. The

dominant parameter controlling the stiffness of the EoS is

10 12 14 16
R (km)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

M
(
M

�
)

PSR J0740+6620

PSR J0348+0432

GW170817 M1

GW170817 M2

m∗ = 0.55mN

m∗ = 0.60mN

m∗ = 0.65mN

m∗ = 0.70mN

m∗ = 0.75mN

npeμ

npeμY

FIG. 2. Mass-radius relation corresponding to EoSs used in this

work (see Fig. 1). Horizontal bands correspond to masses M =
2.072+0.067

−0.066M� of PSR J0740+6620 [11] (green band) and M =
2.01+0.04

−0.04M� of PSR J0348 + 0432 [8] (yellow band). The mass ra-

dius estimates of the two companion neutron stars in the merger event

GW170817 [17] are shown by shaded area labeled with GW170817

M1 (M2) [52].

found to be the nuclear effective mass m∗ [39], and its range

may be constrained by the maximum observed mass and com-

pactness [53]. We note here that while considering models

with nucleonic matter, the maximum 2M� limit does not put

any constraint on the uncertainty of m∗ while imposing the

constraint of an upper limit of tidal deformability coming

from GW170817 [18] allows us to put a tight constraint on

the lower limit, m∗ > 0.60mN . In the case of models with

hyperonic EoSs, the maximum 2M� puts a constraint on the

upper limit m∗ � 0.70mN along with the lower limit constraint

m∗ > 0.60mN from the upper limit of tidal deformability com-

ing from GW170817. We found that EoS models satisfying

the tidal deformability constraint from event GW170817 also

satisfy NS radius constraint resulting from recent NICER

observations [13,14].

IV. CALCULATION OF OSCILLATION MODES

The theory of perturbed NSs, emitting GWs at the char-

acteristic frequency of its QNM, was introduced in a paper

by Thorne and Campolattaro in 1967 [22]. Many works

[54,55], including our previous work [40], use the simplifica-

tion defined by the relativistic Cowling approximation, where

background metric perturbations are neglected. Frequencies

obtained using the Cowling approximation for fundamen-

tal modes ( f modes) are purely real and differ by 20–30%

compared to frequencies obtained from the linearized equa-

tions of general relativity [56]. The Cowling approximation

precludes a calculation of the damping time of QNMs. To

obtain solutions in the fully general relativistic framework,

different methods such as resonance matching (developed by

Thorne [57] and later by Chandrasekhar [58]), direct integra-

tion [59,60], and the method of continued fractions [61,62]

have been applied.

Complicating effects like rotation are essential for describ-

ing a realistic astrophysical scenario. Recent efforts suggest

that the leading-order spin correction to the mode frequency

is 0.2 (νs/νK ) [63] (νs is the spin frequency and νK is the Ke-

pler frequency). Almost all glitching pulsars have a low spin

frequency (νs < 100 Hz). In contrast, the Kepler frequency

is ∼1 kHz, such that they would have f -mode frequency

correction <2%, this implies that the rotation has a minor

effect on a detection event from transient NS f modes from

glitching pulsars. For a merger scenario, recent efforts are

going on to include the impact of f -mode dynamical tides and

the spin effect on NS f -mode dynamical tide [30]. A recent

article [64] concludes that the spin correction to f modes

has a considerable impact on the gravitation wave for rapidly

rotating stars. However, the effect of rotation is still a matter

of investigation.

In this article, we employ the procedure developed by

Lindblom and Detweiler (hereafter called LD) [59,60] for

finding the QNMs of the f modes for nonrotating NSs. In

short, the perturbation equations are solved inside the star

with appropriate boundary conditions. Then a search for the

complex QNM frequency (ω) is carried out for which one

has only outgoing GWs at infinity. The real part [Re(ω)]

of the obtained complex QNM frequency relates to the

QNM frequency( f ) as Re(ω) = 2π f , and the imaginary part
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represents the reciprocal of the damping time ( 1
τ f

), i.e., the

obtained QNM frequency (ω) has the form, ω = 2π f + i 1
τ f

.

In this section, we present the basic equations that need to be

solved for finding the complex QNM frequencies.

1. Perturbations inside the star

The perturbed metric (ds2
p) can be written as [22]

ds2
p = ds2 + hμνdxμdxν . (14)

Following the arguments given in Thorne and Campolat-

taro [22], we focus on the even-parity (polar) perturbations

for which the the GW and matter perturbations are coupled.

Then hμν can be expressed as [22,62]

hμν=

⎛

⎜

⎜

⎜

⎝

rlHe2� iωrl+1H1 0 0

iωrl+1H1 rlHe2λ 0 0

0 0 rl+2K 0

0 0 0 rl+2Ksin2θ

⎞

⎟

⎟

⎟

⎠

Y l
meiωt ,

(15)

where Y l
m are spherical harmonics and H, H1, and K are per-

turbed metric functions and vary with r [i.e., H = H (r), H1 =
H1(r), K = K (r)]. The Lagrangian displacement vector ζ =
(ζ r, ζ θ , ζ φ ) associated with the polar perturbations of the fluid

can be characterized as [60,65]

ζ r = rl

r
e−λW (r)Y l

meiωt

ζ θ = −rl

r2
V (r)

∂Y l
m

∂θ
eiωt

ζ φ = −rl

r2sin2θ
V (r)

∂Y l
m

∂φ
eiωt , (16)

where W and V are amplitudes of the radial and transverse

fluid perturbations. The equations governing these perturba-

tion functions and the metric perturbations inside the star are

given by [62,65]

dH1

dr
= −1

r

[

l + 1 + 2m

r
e2λ + 4πr2e2λ(p − ε)

]

H1

+ 1

r
e2λ[H + K + 16π (p + ε)V ], (17)

dK

dr
= l (l + 1)

2r
H1 + 1

r
H −

(

l + 1

r
− d�

dr

)

K

+ 8π

r
(p + ε)eλW, (18)

dW

dr
= reλ

[

1

γ p
e−�X − l (l + 1)

r2
V − 1

2
H − K

]

− l + 1

r
W, (19)

dX

dr
= −l

r
X + (p + ε)e�

{

1

2

(

d�

dr
− 1

r

)

H

− 1

2

[

ω2re−2� + l (l + 1)

2r

]

H1 +
(

1

2r
− 3

2

d�

dr

)

K

− 1

r

[

ω2 eλ

e2�
+ 4π (p + ε)eλ − r2 d

dr

(

e−λ

r2

d�

dr

)]

W

− l (l + 1)

r2

d�

dr
V

}

, (20)

[

1 − 3m

r
− l (l + 1)

2
− 4πr2 p

]

H − 8πr2e−�X

−
[

1 + ω2r2e−2� − l (l + 1)

2

− (r − 3m − 4πr3 p)
d�

dr

]

K

+ r2e−2λ

[

ω2e−2� − l (l + 1)

2r

d�

dr

]

H1 = 0 (21)

e2�

[

e−φX + e−λ

r

d p

dr
W + (p + ε)

2
H

]

−ω2(p + ε)V = 0, (22)

where X is introduced as [59,62]

X = ω2(p + ε)e−�V − We�−λ

r

d p

dr
− 1

2
(p + ε)e�H,

(23)

and m = m(r) is the enclosed mass of the star and γ is the

adiabatic index defined as

γ = (p + ε)

p

(

∂ p

∂ε

)
∣

∣

∣

∣

ad

. (24)

While solving the differential equations Eqs. (17)–(20)

along with the algebraic Eqs. (21) and (22), we have to impose

proper boundary conditions, i.e., the perturbation functions

are finite throughout the interior of the star (particularly at

the center, i.e., at r = 0) and the perturbed pressure (�p)

vanishes at the surface. Function values at the center of the

star can be found using the Taylor series expansion method

described in Appendix B of Ref. [59] (see also Appendix A of

Ref. [62]. It is to be noted that the first term in right-hand side

of Eq. (A15) in Ref. [62] misses a factor ε). The vanishing

perturbed pressure at the stellar surface is equivalent to the

condition X (R) = 0 (as �p = −rle−�X ). We followed the

procedure described in LD [59] to find the unique solution for

a given value of l and ω satisfying all the boundary conditions

inside the star.

2. Perturbations outside the star and complex eigenfrequencies

The perturbations outside the star are described by the

Zerilli equation [66],

d2Z

dr2
∗

+ ω2Z = VZZ, (25)
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where r∗ = r + 2M log( r
2M

− 1) is the tortoise coordinate and

VZ is defined as [66]

VZ = 2(r − 2M )

r4(nr + 3M )2
[n2(n + 1)r3

+ 3n2Mr2 + 9nM2r + 9M3], (26)

where n = 1
2
(l + 2)(l − 1). Asymptotically the wave solution

to (25) can be expressed as (27)

Z = A(ω)Zin + B(ω)Zout,

Zout = e−iωr∗
j=∞
∑

j=0

α jr
− j, Zin = eiωr∗

j=∞
∑

j=0

ᾱ jr
− j . (27)

Keeping terms up to j = 2 one finds

α1 = − i

ω
(n + 1)α0, (28)

α2 = −1

2ω2

[

n(n + 1) − i3Mω

(

1 + 2

n

)]

α0. (29)

For initial boundary values of Zerilli functions, we use

the method described in Refs. [60,62,67]. Setting m = M and

perturbed fluid variables to 0 (i.e., W = V = 0) outside the

star, connection between the metric functions (15) with Zerilli

function [Z in Eq. (25)] can be written as

(

rlK

rl+1H1

)

= Q

(

Z

dZ
dr∗

)

Q =
[

n(n+1)r2+3nMr+6M2

r2(nr+3M )
1

nr2−3nMr−3M2

(r−2M )(nr+3M )
r2

r−2M

]

. (30)

The initial boundary values of Zerilli functions are fixed

using (30). Then the Zerilli equation (25) is integrated nu-

merically to infinity and the complex coefficients A(ω) and

B(ω) are obtained matching the analytic expressions for Z

and dZ
dr∗

with the numerically obtained value of Z and dZ
dr∗

. The

natural frequencies of an oscillating neutron star, which are

not driven by incoming gravitational radiation, represent the

quasinormal mode frequencies. Mathematically we have to

find the complex roots of A(ω) = 0, representing the complex

eigenfrequencies of QNMs.

We tested our numerical technique by reproducing the

quadrupole f -mode frequencies (complex) from Ref. [62] for

polytropic stars (i.e., Table V and Fig. 5 of Ref. [62] wherein

the method of continued fractions was used to find the com-

plex eigenfrequencies).

V. RESULTS

A. Universal relations in NS asteroseismology

NS asteroseismology (inverse asteroseismology), the tech-

nique of inferring the NS parameters (internal composition)

from QNM characteristics, was first introduced by Andersson

and Kokkotas [37,38]. Theoretically, it was shown that the

frequency of f mode varies linearly with density, whereas

the damping time varies inversely with stellar compactness

when scaled by M3/R4. Therefore empirical fit relations can

TABLE II. Asteroseismology relation coefficients for f -mode

frequency from different works. The coefficients ar and br are related

to f by Eq. (31).

Reference ar (kHz) br (kHz × km)

Andersson and Kokkotas [38] 0.22 47.51

Benhar and Ferrari [68] 0.79 33

D.Doneva et al. [25] 1.562 25.32

Pradhan and Chatterjee [40] 1.075 31.10

This work 0.535 36.20

be defined as follows:

f (kHz) = ar + br

√

M

R3
, (31)

R4

M3τ f

= ai + bi

M

R
. (32)

where the constants ar, br, ai, bi are extracted from the best

fit to the data. The fits were subsequently improved by other

works by including few selected realistic EoSs or those with

exotic matter (hyperons and quarks) [68,69]. Further, NS ro-

tation was considered by Doneva et al. [25], where empirical

relations for frequency in nonrotating limits are also given.

However, many of the selected EoSs considered in previous

works are now incompatible with the ≈2M� maximum mass

constraint or with the tidal deformability (radius) constraints

from the event GW170817 and are hence ruled out.

It is worth noting that although the empirical relations

obtained previously aim to be independent of the underlying

EoS, all the proposed empirical fit relations are somewhat

model dependent. The knowledge of mode frequencies and

the NS masses (which is among the most precisely determined

global variables) can therefore help to discriminate among the

different EoSs, or to understand the behavior of high-density

NS matter [70]. In other words, these empirical relations can

be used not just to infer mass and radius but also to constrain

the EoS stiffness and the presence of exotic matter [68].

Instead of choosing selected EoSs, we fit asteroseismology

relations to cover the full range of uncertainties in nuclear

and hypernuclear saturation parameters in the EoS subject to

current astrophysical constraints. Empirical fit relations for

frequency and damping time of f -modes from different works

along with this work are tabulated in Table II and Table III, re-

spectively. In this work we found ar = 0.535 ± 7.383 × 10−4,

br = 36.206 ± 0.019, ai = (7.99 ± 0.002) × 10−2, and bi =
−0.245 ± 1.005 × 10−4. One may compare the fit results

TABLE III. Asteroseismology relation coefficients for f -mode

damping time from different works. The coefficients ai and bi are

related to τ f by Eq. (32).

Reference ai bi

Andersson and Kokkotas [38] 0.086 −0.267

Benhar and Ferrari [68] 0.087 −0.271

This work 0.080 −0.245
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linear fit

FIG. 3. The f -mode frequencies as a function of square root of

the mean density. Models with only nuclear (nucleon and hyperon)

matter are shown in orange (blue) lines and the empirical linear fit

relation (31) by black dashed line.

within Cowling approximation [40] and full GR calculations

(this work) for ar and br from Table II. The dependence of

frequency (scaled damping time) with density (compactness)

is displayed in Fig. 3 (Fig. 4), along with empirical fit relation

Eq. (31) [Eq. (32)]. Please note that the coefficients given

in Ref. [38] were incorrect due to a normalization error in

the calculation [71]. These values have now been updated in

Table II.

0.15 0.20 0.25 0.30
M/R

0.00

0.01
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0.03

0.04
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0.06

R
4

M
3
τ f

npeμ

npeμY

linear fit

FIG. 4. Scaled damping time of f mode as a function of stellar

compactness M/R. Models with only nuclear (nucleon and hyperon)

matter are shown in orange (blue) lines and the empirical linear fit

relation (32) by black dashed line.
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)

Tsui & Leung (2005)

This work
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npeμY
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10
5

Im
(M

ω
)

Tsui & Leung (2005)

Lioutas & Stergioulas (2018)

This work

FIG. 5. Dependence of QNM frequency after scaling with NS

mass as a function of stelllar compactness. Scattered orange (blue)

points correspond to models with npeμ (npeμY ) matter. The region

spanned by hyperonic stars comes within the region spanned by the

nucleonic models. The upper panel shows the universality for real

part of Mω, while the lower panel shows the universality of mass

scaled by damping time [ M

τ f
or Im(Mω)].

Contrary to empirical fit relations (31) and (32) which are

model dependent, there are other proposed universal relations

(UR), which are fairly independent of underlying composition

hence, more useful for extracting the NS parameter from

QNM observables. It was shown when the mode characteris-

tics are scaled with NS mass or radius they show correlations

with the stellar compactness [38] and the relations can be

expressed in a universal way. In our previous work [40] we

found the universality between scaled frequency with stellar

compactness holds when ω scaled with NS mass but deviates

from universality when scaled by radius. Tsui and Leung [72]

explicitly demonstrated that the scaled polar QNM frequen-

cies of realistic neutron stars are approximately given by a

universal function of the compactness and improved the linear

UR to quadratic fit, as given in Eq. (33). We note in Fig. 5 that

a similar quadratic fit for Im(Mω) given in Ref. [72] deviates

from universality at large compactness, whereas Eq. (34) pro-

posed by Lioutas and Stergioulas [73] provides a better fit. We

display the dependence of scaled complex QNM frequency

(scaled with NS mass), Mω as a function of compactness

along with the URs from this and past works in Fig. 5. Fit
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TABLE IV. Fit parameters for the URs (33) and (34) obtained in

this work.

Re(Mω) Im(Mω)

a0 0.079 ± 0.002 b0 (9.836 ± 0.003) × 10−2

a1 0.599 ± 0.001 b1 (−4.448 ± 0.002) × 10−1

a2 −0.026 ± 8 × 10−5 b2 (4.915 ± 0.004) × 10−1

parameters corresponding to URs (33) and (34) found in this

work are tabulated in Table IV,

Re(Mω) = a0

(

M

R

)2

+ a1

M

R
+ a2, (33)

Im(Mω) = b0

(

M

R

)4

+ b1

(

M

R

)5

+ b2

(

M

R

)6

. (34)

In a binary NS system, during the inspiral phase, NSs

deform each other by exerting strong gravitational forces and

the deformation depends on the underlying EoS. The anal-

ysis of the tidal deformability from the event GW1701817

plays a crucial role in constraining NS EoS. From our current

understanding of merger simulations, the mass scaled peak

frequency ( fpeak) of the post merger phase shows universal-

ity with tidal deformability or compactness [74–77]. It was

pointed out recently by Chakravarti and Andersson [78] that

the universality between fpeak and tidal deformability can be

explained by adding the rotational and thermal corrections

to the existing universal relation between mode frequency

and tidal deformability of cold nonrotating neutron stars and

the total mass scaled fpeak frequency can be expressed as a

scaling factor times the mass scaled f -mode frequency. Also

during the inspiral phase the f modes are most likely to be

excited and observation of f -mode frequency along with tidal

deformability can be used to probe the NS interior. Analyzing

the event GW170817 along with the universality behavior of

frequency and tidal deformability should allow one to put a

lower bound on the f -mode frequencies for NSs within the

mass range of the two binary components of GW170817 [33].

It was argued that the f -mode frequencies can be detected

very accurately with improved sensitivity of GW detectors,

whereas damping time may not be detected with such good

accuracy [79]; in this case the universal relations can be help-

ful in constraining the damping time. The detection of f -mode

characteristics [70] or fpeak [77] along with tidal deformability

can also be used to verify the presence of quarks in the interior

of NS. We provide the UR between f -mode characteristics

and tidal deformability as suggested in Refs. [31,80]. We tab-

ulate the complex α j from (35) found in this work in Table V
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0.10

0.12

0.14

0.16

0.18

R
e(

M
ω
)

Fit (This work)

npeμ

npeμY

2 4 6 8

ln (Λ̄)

2

4

6

8

10
5

Im
(M

ω
)

Fit (This work)

FIG. 6. Dependence of QNM frequency after scaling with NS

mass as a function of dimensionless tidal deformability. Scattered

orange (blue) points correspond to model with npeμ (npeμY ) matter.

The region spanned by hyperonic stars comes within the region

spanned by the nucleonic models. The upper panel shows the uni-

versality for real part of Mω, while the lower panel shows the

universality of mass scaled by damping time [ M

τ f
or Im(Mω)].

and display in Fig. 6,

Mω =
∑

j

α j (ln �̄)
j
. (35)

We also found that there exists a universal relation between

QNM characteristics (i.e., frequency and damping time) when

they are scaled by NS mass. The universal relation between

mass scaled angular frequency [Re(Mω)] and mass scaled

damping time [Im(Mω) or M/τ f ] can be described by the

following relation:

Im(Mω) =
∑

j

γ j[Re(Mω)] j . (36)

We tabulate the fit parameters of Eq. (36) in Table VI.

Even in a binary NS system, there exists universality be-

tween mode characteristics and tidal deformability in the

inspiral phase [31,70] and between fpeak and tidal deforma-

bility [77]. With future detections of BNS merger events the

TABLE V. Values of the fit parameters α j found in this work for the given equation (35).

α0 α1 α2 α3 α4 α5

1.814 × 10−1 +
i3.362 × 10−5

−5.824 × 10−3 +
i3.993 × 10−5

−4.725 × 10−3 −
i1.0215 × 10−5

6.337 × 10−4 +
i1.270 × 10−7

−2.871 × 10−5 +
i1.230 × 10−7

3.150 × 10−7 −
i7.817 × 10−9
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TABLE VI. Values of the fit parameters γ j found in this work for the given equation (36).

γ0 γ1 γ2 γ3 γ4 γ5

6.002 × 10−6 −4.053 × 10−4 1.339 × 10−2 −6.577 × 10−2 2.620 × 10−1 −1.072

constraint on the tidal deformability will improve, and these

in turn can then be used to constrain the mode characteristics.

Our result for the lower bound on the mode frequency is in

good agreement with the limit obtained from observations of

GW170817 [33]. In order to test this hypothesis, we display

the dependence of f -mode frequency as a function of tidal de-

formability for canonical NSs in Fig. 7. Looking at the points

corresponding to the maximum limit of the tidal deformability

of a 1.4M� in Fig. 7, one can conclude that for a 1.4M� the

lower bound on mode frequency will be around 1.60 kHz.

Similarly, we found the upper bound on τ f for a 1.4M� NS

to be 0.28 s.

B. Correlation studies

The uncertainty in the EoS and hence in mass-radius re-

lations corresponding to uncertainty associated with nuclear

and hypernuclear saturation data are discussed in Sec. II B.

Having tested our numerical scheme for complex f -mode

frequencies, and obtained scaling rbelations with neutron star

global parameters, we now extend our investigation to study

the effect of microscopic (saturation) parameters on the f -

mode observables ( f and τ f ).

1. Nucleonic matter

We first consider only nucleonic EoSs to find the ef-

fect of nuclear saturation data on NS observables and then

400 500 600 700
Λ̄1.4M�

1.60

1.65

1.70

1.75

1.80

1.85

f 1
.4

M
�

(k
H

z)

(720,1.60)

npeμ

npeμY

M = 1.4M�

FIG. 7. Universality between f -mode frequencies and tidal de-

formability (�̄) of a canonical 1.4M� NS. Scattered orange (blue)

points correspond to models with npeμ (npeμY ) matter. The black

dashed line is obtained using the UR (35). The red crossed point is

corresponding to the maximum limit for (�̄)1.4M� .

extend to involve hyperons. For better understanding, we ob-

tained the Pearson’s correlation coefficients (RX1X2
) among

the saturation parameters, NS observables such as radius

and tidal deformability and QNM characteristic for canonical

1.4M�, and massive 2M� NSs. Pearson’s linear correlation

coefficient (RX1X1
) between two random variables X and Y can

be defined as [81]

RX1X2
= Cov(X1, X2)

S(X1)S(X2)
, (37)

where Cov(X1, X2) is the covariance and S(Xi ) denotes stan-

dard deviation of variable Xi. We present the correlation

matrix in Fig. 8. From Fig. 8 the following conclusions can

be drawn:

(i) NS observables show strong correlation among them-

selves as well as with the QNM characterstics. As

expected from (13) �̄ shows a strong correlation with

R (0.97 for 1.4M� and 0.98 for 2M�). Frequency and

damping time also show a strong correlation among

themselves.

(ii) We find strong correlations between f -mode fre-

quency and radius which can be explained by looking

at (31) given in Sec. V A, similarly the high cor-

relation between damping time and radius can be

explained by (32) from Sec. V A.

(iii) Among the saturation parameters m∗ shows strong

correlations with radius and tidal deformability (0.85

FIG. 8. Correlation matrix for nuclear saturation parameters, NS

observables, and QNM characteristics considering models with npeμ

matter after applying astrophysical constraint (Mmax � 2M� and

�̄1.4M� � 720). In the color bar the correlation changes from positive

to negative going from red to blue in color. However, the absolute

value of correlations are written in the correlation matrix.
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FIG. 9. The f -mode frequencies of stable NS configurations as a

function of stellar mass (upper panel) with npeμ matter for different

nuclear effective mass (m∗ at saturation). For comparison, results

obtained using Cowling approximation (dashed lines) and obtained

in full GR (solid lines) are shown. Lower panel shows relative er-

ror for f -mode frequencies obtained using two different methods.

While varying m∗ other parameters are fixed at, n0 = 0.150 fm−3,

Esat = −16.0 MeV, J = 32 MeV, L = 60 MeV, and K = 240 MeV.

with R and 0.93 with �̄ for 1.4M�) which is expected

as m∗ is the dominant parameter controlling the stiff-

ness of EoS and hence the radius.

(iv) Strong correlations exist between mode characteris-

tics ( f and τ f ) and nucleon effective mass (m∗) for

1.4M�(0.91 with f and 0.92 with τ f ) as well as

for 2M� (0.95 with f and 0.97 with τ f ). This leads

us to conclude that the nucleon effective mass has

the most dominant effect on the QNM characteristics

compared to other nuclear saturation parameters.

We display the dependence of frequency and damping time

as a function of stellar mass for variation of m∗ in Fig. 9 and

Fig. 10, respectively. Extension of our previous calculations

from Cowling to involve linearized gravity provides us an

opportunity to compare the f -mode frequencies from the two

different methods. We display a comparison of frequency

obtained by two different methods with variation of nucleon

effective mass m∗ in Fig. 9. We find Cowling approximation

can include error of 10–30% in the quadrupole f -mode fre-

quencies and the error decreases with increasing mass. The

obtained trend of decreasing error with increasing mass is in

good agreement with the previous result from Ref. [56]. A

possible explanation for this trend was discussed in Ref. [82],

given that the f -mode eigenfunction is peaked near the sur-

face, increasing mass (or compactness for the given mass

range and models considered) can make the metric pertur-

bations less relevant for f -mode eigenfunction resulting in a

smaller error compared to the frequency obtained within the

relativistic Cowling approximation.
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m∗ = 0.75mN

FIG. 10. The f -mode damping time as a function of stellar mass

with npeμ matter for different m∗. While varying m∗ other parame-

ters are fixed to n0 = 0.150 fm−3, Esat = −16.0 MeV, J = 32 MeV,

L = 60 MeV, and K = 240 MeV.

2. Inclusion of hyperons

We extend our investigation by including presence of hy-

perons in the NS core and present the correlation matrix in

Fig. 11 in a similar fashion as given for nucleonic models.

Looking at Fig. 11 one can conclude the following:

(i) NS observables show strong correlations among

themselves as well as with the QNM characteristics.
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0.12 0.01 0.18 0.09 0.12 0.77 0.1 0.88 1 1 1 0.92 0.92 0.9 0.92
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FIG. 11. Correlation matrix for nuclear saturation parameters,

NS observables, and QNM characteristics considering models with

npeμY matter after applying astrophysical constraints (Mmax � 2M�
and �̄1.4M� � 720). In the color bar the correlation changes from

positive to negative going from red to blue in color. However, the

absolute value of correlations are written in the correlation matrix.
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(ii) Interestingly the correlation between L and radius of

1.4M� star increases when compared to the nucleonic

case (from 0.24 to 0.52) while the correlation between

m∗ and R1.4M� decreases from 0.85 to 0.57 compared

to the nucleonic case.

(iii) However, when it comes to QNM characteristics, they

show strong correlations with m∗ for a 1.4M� star as

well as for a 2M� star. It is worth noting that the corre-

lations among m∗ and NS observables have decreased

compared to the models with only nucleonic EoSs.

In light of these inferences from the correlation plot

Fig. 11, one can conclude that the m∗ has the most dominant

effect on the QNM characteristics compared to other nuclear

and hypernuclear saturation parameters, even in the presence

of hyperons.

VI. DISCUSSIONS

A. Summary of this work

We revisit the NS asteroseismology problem in this work,

considering realistic EoSs in the RMF framework and cur-

rent astrophysical constraints. In a recent publication [40],

we studied the effect of the influence of the uncertainties in

the underlying nuclear and hypernuclear physics on f -mode

frequencies within the relativistic Cowling approximation.

Here we extend this work to study the effect of uncertainties

in the underlying nuclear and hypernuclear physics on com-

plex f -mode characteristics (frequency and damping time)

of nonrotating perturbed NSs by solving the perturbation

equations based on complete linearized equations in general

relativity. We provide the asteroseismology relations by con-

sidering EoSs with the nuclear and hypernuclear matter in the

NS core.

Previous works on NS asteroseismology or inverse aster-

oseismology involved selected realistic or polytropic EoSs.

Many of the chosen EoSs have now been rendered incompati-

ble with large NS mass observations or the tidal deformability

constraint from merger event GW170817. Hence the empir-

ical relations from past works need to be modified. There

are a few efforts to investigate the effect on f modes of the

inclusion of exotic forms of matter (hyperon or quark mat-

ter) [54,55,68,69,83–85] or to improve the asteroseismology

relations with current astrophysical constraints [80,86–88].

However, the works are either limited to selective EoSs or

used Cowling approximation to find the mode characteristics.

As mentioned, the extension of our previous work [40]

(where relativistic Cowling approximation was used to find

the mode frequency), by involving complete linearized equa-

tions of general relativity, allows us to compare the mode

frequencies obtained within the two different methods. For

the models considered, frequencies obtained using relativis-

tic Cowling approximation can include an error up to 30%

compared to those obtained in full general relativity. Solving

the NS oscillation in full general relativity enables us to in-

vestigate the effect of uncertainties in the underlying nuclear

and hypernuclear physics on both frequency and damping

time of the f mode. The dependence of mode frequencies

on the stellar mass remains qualitatively similar (increasing)

to results obtained using relativistic Cowling approximation

irrespective of the composition of the NS interior. The f -

mode damping time shows an inverse relation with NS mass

for both nuclear and hypernuclear matter EoSs. Considering

NS masses starting from 1M� and up to the possible maxi-

mum stable NS mass configuration of each model along with

current astrophysical constraints, the frequency and damping

time of quadrupole f -mode oscillations are found to be in

the range of 1.47–2.45 kHz and 0.13−0.51 s, respectively.

In this work, we also obtained the UR involving tidal de-

formability and mass scaled f -mode characteristics. We tested

the hypotheses of universality between tidal deformability

for a canonical 1.4M� NS. Using the upper bound of tidal

deformability, we found the lower bound on the f1.4M� to be

1.6 kHz, which is in agreement with the result obtained with

Bayesian estimation from Pratten et al. [33]. We also found

that, using the upper bound of the tidal deformability coming

from the event GW170817 for a 1.4M� (i.e., �̄ � 720), the

damping time of a 1.4M� has an upper limit of 0.28 s. From

Fig. 7, it is evident that frequencies above 1.7 kHz are difficult

to describe with hyperonic EoSs in our model.

We found that while considering nucleonic EoSs and im-

posing current astrophysical constraints, among all the nuclear

saturation parameters, the nuclear effective mass m∗ has the

most dominant effect on f -mode characteristics. We explored

correlations among saturation parameters, NS observables

(radius and tidal deformability), and f -mode characteristics

for a canonical 1.4M� and a massive 2M�. NS observables

show strong correlations among themselves as well as with

f -mode characteristics. The strong correlations of m∗ with

NS observables (R1.4M� , �̄1.4M� ) and f -mode characteristics

( f1.4M� , τ f 1.4M� ) for NS with 1.4M� remain so even for 2M�.

We further investigate the effect of uncertainties in nu-

clear and hypernuclear saturation parameters on the f -mode

characteristics by considering the presence of hyperons on

the NS interior along with the imposition of current astro-

physical constraints. We checked that even in the presence of

hyperons, the nuclear effective mass (m∗) still has the dom-

inant effect on the f -mode characteristics. The hypernuclear

parameter U� was found to have a minor effect on f -mode

characteristics. We also provide correlations among the nu-

clear saturation parameters, hypernuclear parameters as well

as with the NS observables (radius and tidal deformability)

and f -mode characteristics for a 1.4M� and a massive 2M�
for hyperonic stars. Similarly to nuclear-matter models, NS

observables show strong correlations among themselves and

also with f -mode characteristics. Considering the presence of

hyperons in the NS core and imposing the maximum mass

limit of 2M� and �̄1.4M� � 720, the correlation between slope

of symmetry energy at saturation (L) and R1.4M� increases in

comparison with nucleonic models whereas the correlation

between m∗ and R1.4M� decreases.

In our analysis, we provide URs in asteroseismology con-

sidering the entire parameter range of uncertainties within

the framework of the RMF model compatible with state-of-

the-art nuclear and hypernuclear physics subject to current

astrophysical constraints. These empirical relations involv-

ing f -mode frequency and average density or appropriately

scaled damping time and stellar compactness differ in their fit
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parameters compared to those proposed previously in the lit-

erature [37,38,68]. Also in full general relativity, we found

the empirical fits between frequency and density to be depen-

dent on the choice of EoSs considered. We then tested the

hypotheses of universality between stellar compactness and

f -mode characteristics scaled with stellar mass. We provide

a quadratic universal relation among mass scaled angular

frequency and stellar compactness [Re(Mω)=F1(M/R)] and

a universal relation for mass scaled damping time and stel-

lar compactness [i.e., Im(Mω)=Im(M/τ f )=F2(M/R)]. When

the angular frequencies and damping times are scaled ap-

propriately with NS mass, the universality between f -mode

frequency and damping time can be described by the proposed

UR.

B. Future prospects

During the inspiral phase of a binary NS merger, when the

tidal field reaches resonance with the NS internal oscillation

modes, particular new features are created in the GW wave-

form that, if detected, can provide information on the QNMs.

Among these modes, the f mode is the most important one.

Hence studying the effect of dynamical tides can be used to

analyze the influence of QNM modes in the merger waveform

[33,89]. In merger events, tidal deformability is another im-

portant observable parameter. Future detection will put tight

constraints on tidal deformability; hence universal relations

involving f -mode characteristics and tidal deformability are

useful for analyzing the mode characteristics.

To understand the f modes thoroughly, other complicating

effects such as rotation [25,30,63], magnetic fields, the effect

of superfluidity [90], and the presence of deconfined quark

core should be taken into account. Superfluidity will play a

role in the case of cold NSs, whereas rotation will play a cru-

cial role in the hot and differentially rotating merger remnant.

It has been shown that for stars with deconfined quarks in NS

interior, the f -mode vs tidal deformability relation deviates

from the universality in isolated NSs [70] as well as in merger

remnants [77].

C. Detectability

We conclude by making some remarks on the detectability

of the f -mode of hyperonic stars. As the f -mode amplitude

peaks near the star’s surface, it may be excited strongly by

glitching behavior in an isolated star or by tidal forces due

to a companion during the late inspiral in a merger. In the

former case, one would expect a GW burst in the detector,

while in the latter case, the f mode would draw energy from

the orbit, affecting the phase of the gravitational waveform.

The study by Pratten et al. [33] placed a lower bound on the

quadrupolar f2-mode in the region of 1400 Hz, including the

mode excitation directly as a parameter in the analysis of data

from GW170817. Here we will consider isolated hyperonic

stars that emit a burst of GW due to the f mode and estimate

the peak gravitational wave strain and associated energy re-

quired for detection in aLIGO and third generation detectors.

Utilizing the methodology in Ref. [91], wherein the burst

waveform is modelled as an exponentially damped oscillation

with frequency ν f and damping time τ f , we find the peak

FIG. 12. Top panel: Gravitational wave strain corresponding to a

maximum glitch energy observed in Vela pulsar (Crab pulsar) with

distance to be 290 pc (2 kpc) are shown along with the sensitivity

bands of different configurations. The waveforms are generated using

the GW inference package Bilby [92]. Lower panel: Signal-to-noise

ratio (SNR) for a source with f -mode frequency 1.70 kHz and

damping time 0.25 s at different detector configurations as a function

of EGW for sources to be at 10 kpc (solid lines) or at 15 Mpc (dashed

lines).

strain

h0 = 1.46 × 10−13

√

EGW

M�c2

√

1 s

τ f

1 kpc

d

(

1 kHz

ν f

)

. (38)

Choosing a canonical NS mass of 1.4M� at a distance of

10 kpc, an f -mode frequency of 1.70 kHz with a damping

time of 0.25 s, and assuming that EGW is of the order of

a glitch in the Vela pulsar and highly efficient in producing

GW, Figure 12 (top panel) shows the resulting frequency do-

main waveform h̃( f ) against the sensitivity curve of advanced

LIGO (adLIGO) [93], A+ [94] and the Einstein Telescope
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(ET) [95,96] and the EGW (bottom panel) required for the

typical signal-to-noise ratio (SNR ≈ 5) for detection in these

instruments. For sources at 10 kpc for SNR � 5, the en-

ergy EGW should be greater than 5.75 × 10−12M�c2, 2.88 ×
10−11M�c2, and 6.88 × 10−11 for ET, A+ and adLIGO con-

figuration, respectively. For sources at 15 Mpc for SNR � 5

in A+ and ET configuration EGW should be greater than

6.55 × 10−5M�c2 and 1.3 × 10−5M�c2, respectively. As EGW

is a parameter in the waveform, depending on the distance,

GWs induced from (i) NS glitches, (ii) a supernova explo-

sion, or (iii) a prominent phase transition, leading to a mini

collapse in NS are possible sources that could be detectable.

These might be considered optimistic estimates, given that

most glitches are weaker than in Vela pulsar and might not

couple that strongly to GW. In addition, individual sources

may have considerable uncertainty in either the distance or ra-

dius parameters. The statistical approach followed in Ref. [91]

uses the BSk24 EOS (no hyperons or exotic matter) to model

ordinary neutron stars satisfying current observational con-

straints and suggests that third generation detectors like ET

and Cosmic Explorer would offer the best chance to detect

the transient bursts from f modes.
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