
IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 31, NO. 7, JULY 2023 917

Efficient Error Estimation for High-Level Design
Space Exploration of Approximate

Computing Systems
Marzieh Vaeztourshizi and Massoud Pedram , Fellow, IEEE

Abstract— This article presents an error estimation technique
for a data-flow graph (DFG) representation of an approximate
computing (AC) circuit. The technique, which may be used
during the high-level design of digital circuits, estimates error
metrics for the outputs of the approximate circuit. The proposed
technique receives as an input, output error characterizations of
arithmetic modules in a high-level library. The error modeling of
a library module is accomplished by dividing the input (operand)
ranges into intervals and then characterizing the output error for
different combinations of these input intervals. Subsequently, the
error for each combination is stored in a lookup table (LUT).
The module error models are integrated into a design space
exploration (DSE) framework to evaluate different combinations
of exact and approximate realizations of various operations
in the DFG. The DSE, which performs error calculation and
propagation from inputs to outputs of the target DFG, may be
used to explore trade-offs between the output error and other
design metrics of the approximate circuit, e.g., energy efficiency.
The efficacy of the proposed method is assessed for three
image processing benchmarks. Results for these benchmarks
demonstrate that the framework can efficiently generate the
Pareto frontier (PF) in the trade-off space of accuracy versus
energy efficiency for the targeted benchmarks. Compared to
a purely simulation-based exploration, the proposed technique
provides an average of 92× speed improvement.

Index Terms— Approximate circuits, data-flow graphs (DFGs),
design space exploration (DSE), error estimation, look up tables
(LUTs), Pareto frontier (PF).

I. INTRODUCTION

POWER efficiency is a critical requirement in the design
of digital systems, especially those that are included

in battery-powered embedded and mobile systems. Running
compute-intensive, data-hungry tasks such as machine learning
(ML) applications on these systems necessitates very high
energy efficiency to be of practical interest [1].

Many applications (including ML ones) have intrinsic tol-
erance to some degree of inaccuracy in their outputs. One
reason for this error tolerance is the fact that the users of
these applications, i.e., humans, may not be able to perceive

Manuscript received 3 August 2022; revised 13 November 2022; accepted
23 December 2022. Date of publication 24 May 2023; date of current version
28 June 2023. This work was supported in part by the Software Hardware
Foundations of the National Science Foundation under Award 1901440.
(Corresponding author: Marzieh Vaeztourshizi.)

The authors are with the Electrical and Computer Engineering Department,
University of Southern California, Los Angeles, CA 90089 USA (e-mail:
vaeztour@usc.edu; pedram@usc.edu).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TVLSI.2023.3273478.

Digital Object Identifier 10.1109/TVLSI.2023.3273478

small imperfections in the quality of the outputs (e.g., the
human visual system does not detect infrequent drop of video
frames) [2]. This application’s tolerance to error opens an
avenue for using the approximate computing (AC) approach
to reduce energy and/or power consumption. In this design
approach, the exactness of the computations can be abandoned
in favor of improving energy efficiency. The extent of employ-
ing the AC approach is determined by a minimum quality of
service (QoS) requirement.

AC can be applied at different levels of design abstraction.
At the hardware level, one may employ functional approx-
imation to reduce the delay and power consumption of the
circuit, where an exact operation may be substituted with
an alternative simplified one. The functional approximation
technique may very well be applied to the design of arithmetic
units (e.g., adders and multipliers) which consume a large
portion of the computing system power [3]. Alternatively, one
may lower the supply voltage (voltage overscaling) of the exact
circuit of the function [4].

At this level of design, different degrees of approxima-
tion may be used. Examples include the use of a differ-
ent number of approximate least significant bits (LSBs) in
a multibit adder or applying different voltage overscaling
levels in a digital design. Different accuracy levels lead to
different energy dissipation values, where a higher degree of
approximation (DOA) (lower accuracy level) tends to result
in higher energy efficiency. Indeed, one may characterize
and store a set of (accuracy, energy) value pairs for each
arithmetic operation in a high-level design library and use
them in a design consisting of these units to obtain diverse
combinations of these two metrics for the whole design.
There is, therefore, a compelling reason to develop elec-
tronic design automation of approximate circuits, which has
been the focus of much attention in the past few years
(e.g., [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15],
[16], [17], [18], [19], [20]).

The automatic mapping of a high-level description of an
input application to the register-transfer level (RTL) repre-
sentation under predefined circuit constraints (e.g., latency
and energy consumption) is called high-level synthesis (HLS).
When using approximate units in this mapping to obtain
an approximate implementation of the target application, the
mapping is called approximate high-level synthesis (AHLS).
Similarly, the automatic generation of approximate circuits
at the gate-level is called approximate logic synthesis (ALS)
(e.g., [5], [6]).

1063-8210 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Southern California. Downloaded on August 07,2023 at 23:30:23 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-2373-4635
https://orcid.org/0000-0002-2677-7307

918 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 31, NO. 7, JULY 2023

At a higher-level design abstraction, an input application
is typically represented by a data-flow graph (DFG) that
is a directed graph with the nodes representing the oper-
ations (e.g., arithmetic units) and edges capturing the data
dependencies between the operations. For a given DFG of
an input application, one may replace some exact arithmetic
operations with their approximate counterparts, resulting in
an approximate DFG (ADFG). Depending on the choice of
exact versus approximate modules (with different accuracy
levels) for the DFG nodes, many designs with different energy
and accuracy levels may be realized. Obviously, a subset of
these designs constitutes a Pareto-optimal curve. The designer
of an approximate circuit should select a “noninferior” design
from among the set of designs that reside on the said Pareto
frontier (PF) in the trade-off space of energy consumption
and QoS.

To determine the Pareto-optimal curve, the whole design
space should be explored. In fact, the search operation,
which is called design space exploration (DSE), forms an
intractable problem [7]. Many heuristic techniques for explor-
ing the design space of approximate circuits have been pro-
posed in the literature ([8], [9], [10], [11], [12], [13], [14],
[15], [16], [17], [18], [19], [20]). These approaches are usually
iterative, where a simulation engine is invoked on a set of
input test vectors to evaluate the quality of each approximate
design visited in the design space. To obtain the other design
metrics (e.g., energy consumption), other calculators (which
are typically integrated into the synthesis tool) may be invoked.
In fact, a key task in the DSE framework of ADFGs is the pro-
cess of determining the accuracy/energy of the designs using a
simulation/synthesis tool [8]. To reduce the computation time,
one should resort to efficient accuracy estimation of ADFGs by
employing less time-consuming techniques. More specifically,
one should replace the brute-force circuit or logic simulation
engines with estimation models when possible.

In this work, we present an efficient technique for estimating
the quality of the output of an ADFG. The technique relies on
output error estimation for different library modules by using
interval-based (piecewise) models. A set of look up tables
(LUTs) are employed to store the error metrics of the library
units. These tables are then employed to quickly evaluate the
output quality of the ADFGs visited in a DSE framework. Key
contributions of this work are the following1:

1) Present an efficient approach to estimate the error at the
output of an ADFG.

2) Incorporate the error model in a DSE framework to
extract the PF of the trade-off space of energy consump-
tion and QoS.

3) Study the efficacy of two error metrics and two error
estimation techniques on the quality of the extracted PFs
of the ADFGs.

The remainder of the article is organized as follows. Section II
presents a brief review of the error metric definitions. The
works related to error estimation techniques at the application/
DFG level and the DSE algorithms employed in approximate
high-level designs are reviewed in Section III. The pro-
posed error model is described in Section IV, and Section V

1This work is the extension of the work described in [19] and [21].

describes the integration of the model in a DSE framework.
The simulation setup and results are discussed in Section VI.
Finally, the article is concluded in Section VII.

II. ERROR METRIC DEFINITIONS

The error characteristic of an approximate design may
be determined by using simulations where the outputs of
the approximate and exact implementations (EMs) of the
design are compared with each other for the same inputs.
Ideally, all combinations of input values should be used in
the error characterization process. For designs with large input
dimensions, the characterization is obtained by choosing and
applying a random subset of input vectors (X).

Next, we describe error metrics that are used in this work.
Error distance (ED), is defined by us as the numerical
difference between the approximate (S′

[i]) and exact (S[i])
output values generated by the approximate and EMs of the
design for the i th input vector of X

ED[i] = S′[i] − S[i]. (1)

Having the set of ED[i] values, one may determine the distri-
bution of the error at the output defined using the probability
mass function (PMF). This function represents the frequency
of error for each possible value, which can be used to obtain
the desired error characteristics. Utilizing the set of ED[i]
values, mean error distance (MED) is obtained from

MED =
1
T

×

T−1∑
i=0

ED[i] (2)

where T is the number of applied test vectors. If instead of the
ED[i] values, the absolute of the ED[i] values are averaged,
mean absolute error distance (MAED) is obtained.

Normalizing the i th ED with respect to the i th exact output
value defines relative error distance (RED) as

RED[i] =
ED[i]
S[i]

(3)

and by averaging the RED[i] values, one obtains mean relative
error distance (MRED). Also, one may use the absolute value
of the |RED[i]| to obtain mean absolute relative error distance
(MARED).

For applications in the domain of image processing, peak
signal-to-noise ratio (PSNR) could be of more interest as
an accuracy metric for output quality. The metric, which is
meaningful at the output of the whole circuit, is defined as

PSNR = 10 × log10

(
max2

pixel

MSED

)
(4)

where maxpixel is the maximum value for pixels of an image
and MSED denotes the mean-squared error distance calcu-
lated as follows:

MSED =
1
T

×

T−1∑
i=0

(
ED2[i]

)
. (5)

Rewriting (1) and (3), the approximate value of the i th output
is determined using ED[i] or RED[i] as

S′[i] = S[i] + ED[i] (6)
S′
[i] = (1 + RED[i]) × S[i]. (7)

Authorized licensed use limited to: University of Southern California. Downloaded on August 07,2023 at 23:30:23 UTC from IEEE Xplore. Restrictions apply.

VAEZTOURSHIZI AND PEDRAM: EFFICIENT ERROR ESTIMATION FOR HIGH-LEVEL DSE OF AC SYSTEMS 919

Obviously, depending on the sign of ED[i] (or RED[i]), the
approximate value can be larger or smaller than the exact
value. These equations will be used in Section IV when we
explain the proposed error model.

III. RELATED WORK

In this section, first, we review some of the relevant work in
the area of error estimation techniques based on computational
models at the DFG level. Next, the related works on the
heuristic approaches used for approximate high-level designs
are reviewed.

A. Error Estimation Techniques at the DFG Level

There are many works that take analytical approaches to
model the error at the operation level (i.e., output error of an
approximate arithmetic unit) (see e.g., [23] and [24]). Since
these works normally do not deal with the error propagation
when the module is used in an ADFG, they are not considered
here. The proposed error analysis techniques at the DFG level
may be categorized into two groups for estimating the PMF
of the output error and estimating the output error metrics.

1) Estimation of P M F of the Output Error: The first
category estimates the PMF of the error at the output of an
ADFG from which the desired error metrics such as MED are
obtained. In [25] and [26], modified interval arithmetic (IA)
and affine arithmetic (AA) were used to represent the PMF
of error at the output of an approximate module. A set of
propagation rules were defined to obtain the PMFs of the exact,
approximate, and error values at the output of an operation
using the PMFs of the inputs, error at the inputs, and generated
(intrinsic) error of the module. In [27], using the convolution
operation, the PMF of the error at the output of a multibit
operation simplified with approximate full adder units was
defined. To estimate the PMF at the output of an ADFG, the
error at the operation level was propagated in the DFG in a
topological order.

A compiler-driven method with a set of heuristic rules to
estimate the PMF of the error at the output of an ADFG was
proposed in [28]. In this work, only unsigned adders were
approximated and the PMF was calculated using convolution
operations. In [29], the authors suggested a semi-analytical
error model for obtaining the error PMF at the output of an
ADFG using input statistics and the error tables storing the
error generated by approximate modules with approximated
LSBs. This model was used in the DSE framework of [19].

2) Estimation of Output Error Metrics: In the second cate-
gory, the required error metrics are estimated without obtaining
the full PMF of the error. In most cases, error metrics may
provide enough information about the output quality and hence
sufficing us to determine the full PMF of the error. This is true
when evaluating the output quality in a DSE framework where
different ADFGs are considered [30].

In the works of [10] and [14], the qualities of the explored
designs in a DSE framework were estimated using pretrained
supervised ML models (e.g., random forest). The models
were DFG-dependent, requiring finding a separate ML model
for each new DFG. In [31], based on the defined error
sensitivity concept, the variance of the error at the output of

an ADFG was modeled. The error model, then, was employed
in an optimization problem which was solved using the ILP
technique. SABER [7], which was an extension to the work
of [31], focused on fine-grain modeling of the error variance
in the case of truncation-based approximation.

In [32], to estimate the error metrics at the output of an
approximate design, a LUT-based method was proposed. For
each module in the library, two types of LUTs were generated.
The first one contained the standard deviations (σ) of the
output of a module based on the σ parameter of the operands
(with normal distribution with mean µ = 0), while the second
one contained the error metrics generated by the approximate
module itself based on the σ parameter of the operands. In the
propagation of the error in an ADFG, first, the σ values of all
the internal signals were obtained from the first LUTs through
topological traversal of the nodes. Then, the intrinsic error
metrics of all the nodes were obtained from the second LUTs.
For each node, a regression model obtained the overall error
metric of the module output using the intrinsic error metrics
of an operation, as well as the operand errors.

In this work, as opposed to [32], a single precharacterization
step is performed to obtain the overall error at the output
of a module. More specifically, our proposed technique does
not need to individually obtain the error generated from the
approximate module itself and then use a separate model
to calculate the final output error (e.g., a regression model
in [32]). Also, in [32], only approximate adders were modeled.

B. DSE Algorithms for Optimization of Approximate Circuits
DSE algorithms may be used to find better approximate

designs. For this purpose, a number of algorithms have been
proposed in the literature, which may be categorized into two
groups of local search and evolutionary approaches. Next,
we review these works based on their categories.

1) Local Search Approaches: In the DSE algorithms of this
group, in each iteration, the design space is expanded from
one design point (called a parent point) to other points in the
space. From the parent point, either one or multiple new design
points in the design space are generated. Heuristic techniques
are mostly used to choose this parent design point for the
subsequent iteration.

ABACUS [9] used a linear ranking heuristic in each itera-
tion to choose the parent design of the next iteration. The next
parent design was chosen from the generated new designs of
the current iteration obtained by applying some transformation
operators to the current parent design. The autoAx tool in [10]
employed ML models to choose a pseudo-PF (PPF) set of
the design space by using a modified stochastic hill-climbing
algorithm. In the end, simulation and synthesis tools were
invoked on the designs in PPF to extract the final PF set of
the design space among the PPF designs. The work in [11]
proposed a method in which different approximate techniques
were applied at different design abstraction levels. The design
was approximated sequentially at each level (including soft-
ware, HLS, RTL, and gate levels). Based on a linear cost
function, a greedy method, which chose the parent design for
the next iteration, was performed at each level.

Some works have considered the design space as a search
tree where the tree nodes correspond to different approximate

Authorized licensed use limited to: University of Southern California. Downloaded on August 07,2023 at 23:30:23 UTC from IEEE Xplore. Restrictions apply.

920 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 31, NO. 7, JULY 2023

versions of the original design, with the original design located
at the root of the tree and exploring the space via branch and
bound [12], [13] or greedy [8], [14] algorithms.

2) Evolutionary Approaches: The second category of DSE
algorithms for optimizing approximate circuits is based on
expanding the design space from multiple design points in
each iteration of the algorithm. In each iteration, in contrast
to the algorithms of the first category, a set of parent design
points in the design space (called a population) is used to
generate a set of new approximate designs.

The ABACUS tool [9] was improved in [15] where instead
of utilizing a single linear ranking heuristic to choose a
single parent design for the next iteration, multiple parent
designs were selected with the use of the linear method [9]
and NSGA-II algorithm [21]. E-IDEA [16] was an extension
to [12] with an evolutionary search engine to obtain the PF
of the design space. The work in [17] and [18] used the
NSGA-II algorithm [21] to solve the optimization problem
with the two mutation and crossover operators to create the
new population from the parent designs. In [19], initializing
the PF pool with the original design, the heuristic applied all
possible approximations separately to the ADFGs in the PF
pool to generate new designs.

IV. PROPOSED ERROR MODELING APPROACH

In this section, we present our error modeling approach to
estimate the error metrics at the output of a given ADFG.
For any node in the ADFG, the output error is induced by
two sources, which are the DOA of the node (if the node is
mapped to an approximate module) and any errors in the input
operands.

The estimation approach consists of two main steps. In the
first step, which is performed once, the error at the operation
level is precharacterized and stored in a set of LUTs. In the
second step, which is invoked during the exploration of a
DSE process, by propagating the errors of the operands and
operators (using the precharacterization of the first step) from
primary inputs (PIs) to the primary outputs (POs), the output
accuracy of the ADFG is determined.

In this work, first, we use the MARED as the error metric
to evaluate the output quality of an ADFG. Next, to overcome
a possible MARED shortcoming in some cases, which will
be described later, we also consider the MAED as the error
metric to estimate the output quality.

For the quality evaluation of some image processing appli-
cations, other metrics such as PSNR are of more interest. Find-
ing a technique to model the relationship between the errors
at the output of the ADFG nodes and the application-level
QoS metric is a complex task [33]. Not having this technique
available to us at this stage, we assume that in the DSE pro-
cess, an ADFG design with a smaller output MARED/MAED
value would provide us with a design with a larger PSNR
value. While the assumption is not necessarily valid for all
the cases, our simulations show that using MARED/MAED
as the quality metric with simulations in a DSE framework
provides almost the same PF set (set of suggested designs)
compared to the PFs obtained by using PSNR as the quality
metric. The comparison of the two PF curves is presented in

Fig. 8 (in Section VI-B) for the case of MARED. Note that the
same holds for MAED as the quality metric in the exploration.

A. Error Characterization at the Operation Level

In the first step of the proposed estimation technique,
we precharacterize the output error of any arithmetic unit
modules in the library (with a specific DOA value) considering
their operand errors. Obviously, for an exact arithmetic unit
whose operands are erroneous, there is still some error present
at the output of the module caused by the error of input
operands. The arithmetic units considered in this work include
adders, subtractors, and multipliers.

To precharacterize the output error metric of a module,
different combinations of the operand error metric values
should be considered separately. Evidently, the output quality
of a module is highly input dependent. In other words, for a
given amount of operand errors, having different exact operand
values can result in very different amount of output error.
Different combinations of the exact operand interval ranges,
therefore, should also be considered when doing output error
characterization for a module.

As mentioned before, MARED is first used as the metric to
characterize a module’s output error. Our studies show that
using MRED as the operand error metric leads to a more
accurate error model. Therefore, we use this parameter as the
metric for the operands of the module.

To obtain the output error metric of the module under a
specified operand error values and interval ranges (R j for
operand j), first, the set of error-free operand test vectors (X)

to the module is generated. When generating each vector of
X , the value of each operand j is chosen randomly from the
interval R j . Using set X and specific error metric values for
the operands, the set of erroneous/approximate operand values
(X ′) to the module is generated. More specifically, for the
i th vector of X ′, to generate the approximate value for the
j th operand (X ′

[i, j]), we use the value for the j th operand
in the i th vector of X (X [i, j]) and the MRED of operand
j (MRED j) in

X ′
[
i, j
]
=
(
1 + MRED j

)
× X

[
i, j
]
. (8)

Unlike (7), where the corresponding RED value is used to
obtain each approximate value from the exact one, in (8), the
same MRED j value is used for all exact values for operand
j in X . Using a single positive (negative) MRED value,
however, results in over (under) estimation of the X ′ values.
To overcome this issue, two positive and negative MRED j
values, represented by ϵ+j (≥0) and ϵ−j (<0) are defined
as the specified error metric of the operand j . This means
that the operand error metric ϵ+j (ϵ−j) should be chosen by
sweeping the range of [0,ϵ+max]([ϵ

−

min, 0)) where ϵ+max (ϵ−min) is
determined by the user. A larger value (absolute value) for
ϵ+max (ϵ−min) means the user needs to consider more values for
the operand errors. Therefore, the two parameters should be
chosen depending on the resource and runtime requirements.
Obviously, adding more operand error values means more
entries for the LUTs, which would increase the accuracy of
the model while adding more time to the precharacterization
step and increasing the size of the LUTs.

Authorized licensed use limited to: University of Southern California. Downloaded on August 07,2023 at 23:30:23 UTC from IEEE Xplore. Restrictions apply.

VAEZTOURSHIZI AND PEDRAM: EFFICIENT ERROR ESTIMATION FOR HIGH-LEVEL DSE OF AC SYSTEMS 921

The operand errors are considered as random variables
(RVs) with the average/mean value of ϵ+j and ϵ−j . To generate

each X ′
[i, j] value, a random binary number h is generated.

If h is zero, X ′
[i, j] is obtained using e (instead of MRED j)

and X [i, j] [in (8)] where e is generated by a random generator
from a normal distribution (µ = ϵ+j with a small standard
deviation σ = σ+

j). On the other hand, if h is one, X ′
[i, j] is

obtained from X [i, j] and e where e, is randomly extracted
from a normal distribution (µ = ϵ−j and again a small
σ = σ−

j). Our results show that considering a small σ (σ+/−

j
∼=

0.1×ϵ
+/−

j) for the operand errors of a DFG node is sufficient.
This is because, based on our studies, the distribution of the
positive/negative RED values at the output of the operation
nodes of the ADFGs typically follows a normal distribution
with a small standard deviation.

There may exist some approximate modules in the library
where the output errors cannot be modeled by a single normal
distribution. For these modules (called mixed modules), the
error may be modeled as a set of Gaussian distributions, i.e.,
Gaussian mixture (as observed in [34]). If an ADFG node n
is mapped to a mixed module for the subsequent DFG node
(which has node n connected to its j th operand), the positive
and negative operand errors cannot be sufficiently represented
by a single ϵ+j and ϵ−j value. In fact, a set of ϵ+j and ϵ−j values
should be used, where each element in the set represents the
mean of one Gaussian component.

Applying the error-free operands (X), we denote the output
of the EM of the module as S. The output of the actual
module [which may be exact or approximate (EAM)] with
the erroneous operands applied (X ′) is denoted by S′. From
the set of S and S′, the RED values for each input vector are
obtained using (3). The positive (negative) RED values are
averaged to create the positive (negative) MRED at the output
denoted by ϵ+o (ϵ−o). Moreover, the absolute values of RED
are averaged to generate the MARED at the output denoted by
ϵ
||

o , which is used for the application-level quality estimation at
the PO of the ADFG. As will be discussed in Section IV-B,
the calculated ϵ+o and ϵ−o values become the operand error
metrics for a subsequent node in the ADFG. Additionally,
the maximum of the positive (ϵ+,max

o) and minimum of the
negative (ϵ−,min

o) RED values are generated for the next step
(see Section IV-C). The error values for the output represented
by the tuple of ϵo = (ϵ+o ,ϵ−o ,ϵ

||

o ,ϵ+,max
o ,ϵ−,min

o) are stored in an
entry of the module LUT with I = (R0,R1,ϵ

+

0 ,ϵ−0 , ϵ+1 ,ϵ−1).
In this work, we partition the whole data value range into

a collection of intervals (buckets) with fixed and variable
sizes. We obtain the ϵo values for different combinations of
the operand interval ranges (R j for the operand j) when
precharacterizing the arithmetic modules in the library for
different operand error values. The former technique, which is
called the fixed (F) interval method, divides the whole value
range into intervals with a size of 256. The reason for choosing
256 as the size of the intervals is that the PIs to the DFGs of
the error-resilient applications (which are, e.g., pixels of an
image) in this work are 8-bit unsigned numbers.

An example of the intervals for the fixed interval method
is shown in Fig. 1(a) for positive operand values. Considering
positive values, in this method, for the fixed range of 256,

Fig. 1. Interval ranges for the (a) fixed and (b) variable (with v_w = 8)
interval methods for positive data values.

the fixed interval l (represented by Rl,F) covers the range
of [l × 28, (l + 1) × 28

− 1]. Similarly, the negative value
ranges can be defined. To precharacterize a module with a
dynamic range of [0, 216

−1] for the two operands, for each
set of operand error values, (216/28)× (216/28) = 216 interval
combinations should be considered for the exact operand val-
ues. In this situation, which also happens in the case of a DFG
with multiplier units, the precharacterization step becomes
impractical. The reason is that the multiplication operation
increases the range of the output and when the number of
the multiplication stages increases (series multiplication), the
output range and number of intervals and hence the number of
combinations of the operand intervals of the following DFG
nodes potentially follows geometric progression making the
fixed interval method impractical (infeasible). We overcome
this problem by a technique (namely, variable (V) interval
method), where the whole value range is divided into intervals
with variable sizes.

In this work, without loss of generality, we divide the whole
range into variable intervals of [V1, V2−1] where both V1 and
V2 are considered as power of two numbers (as well as zero)
and defined as below for positive value ranges for interval l
as {

V1 = 0, V2 = 2v_w l = 0
V1 = 2v_w+(l−1), V2 = 2v_w+l l > 0

(9)

where v_w is chosen empirically. Similarly, the negative value
ranges can be defined. An example of the intervals for the
variable interval method with v_w = 8 for positive operand
values is shown in Fig. 1(b) where interval l is represented
by Rl,V . This way, to precharacterize a two-operand mod-
ule with the dynamic range of [0, 216

−1] for the operands,
(16 − 8 + 1) × (16 − 8 + 1) = 81 interval combinations for
the operands for each set of operand error values should
be considered. Compared to 216 intervals, which we had to
consider in the case of the fixed interval method, this number
is significantly smaller considerably improving the efficiency
of the method. Note that lowering the value v_w leads to
considering more intervals in the precharacterization step.
Although this may increase the accuracy, it does increase the
runtime of this step.

The use of variable sizes for the intervals decreases the
accuracy compared to the case of the first method. Our results,
however, show that the adverse impact on the performance of
the proposed method is small (see Figs. 9 and 10).

Authorized licensed use limited to: University of Southern California. Downloaded on August 07,2023 at 23:30:23 UTC from IEEE Xplore. Restrictions apply.

922 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 31, NO. 7, JULY 2023

Fig. 2. Precharacterization step for a two-operand module from the library
for a specified operand interval ranges and error values.

In addition, our simulations show that the estimated ϵ
||

o at
the output of the 3 × 3 smoothing DFG (see Section IV-B for
details) had 16 × higher error of modeling defined by MSED.
The MSED was calculated with respect to the simulation
values when the LUTs for the modules in the library were
obtained with operands that were not bucketized compared to
the fixed interval method.

In conclusion, in the precharacterization step of a
two-operand module in the library, the output values of the
tuple ϵo are obtained for different values in the tuple of
I . Note that in I , R j for each operand j is chosen from
different intervals defined by fixed (Rl,F) or variable (Rl,V)

interval methods. The results are stored in different entries
of the module LUT along with I to be used in the next
step (Section IV-B). Note that the tuple I for the two-operand
modules with always one constant (i.e., error-free) operand
becomes I = (R0, R1, ϵ

+

0 ,ϵ−0). The size of the LUT depends
on the number of different values considered for each param-
eter in I . For each module in the library, a separate LUT is
required. For the LUT, the DOA of the module can be added
as a parameter to I if the module provides different degrees of
approximation. The pseudocode of the precharacterization step
for a two-operand module under the specific operand errors
and interval ranges are shown in Fig. 2. The proposed flow
can also be applied to multioperand modules.

B. Propagation of the Error Within the ADFG
In this step, with the aid of LUTs generated from the pre-

vious step (obtained from fixed or variable interval methods),
the error values are propagated through each ADFG to reach
the ADFG POs. Let us explain the error propagation using the
example shown in Fig. 3.

The DFG has three adder nodes implemented as a lower-part
OR adder (LOA) [35] with four approximate LSBs (this design
will be called LOA4 in the remainder of this article). We denote
the tuple of ϵ values (ϵ+,ϵ−, ϵ||, ϵ+,max,ϵ−,min) for operand j
and output of each node n as ϵ j,n and ϵo,n , respectively. The
value range of the operand j (output) of node n is denoted by
R j,n (Ro,n).

Let us assume that in the precharacterization step, the LUTs
were obtained by bucketing the whole data range of [0, 216

−1]

Fig. 3. ADFG with three approximate adder nodes.

into fixed intervals [see Fig. 1(a)]. The algorithm traverses the
DFG nodes in the breadth-first approach [36], and thus, it starts
from the DFG nodes, which have PIs as their operands (i.e.,
first-level DFG nodes).

Assuming that the PIs are error-free, ϵ+j and ϵ−j for each
operand j of the first level DFG nodes (adders a and b in
Fig. 3) are zero (ϵ+/−

0,a = ϵ
+/−

1,a = ϵ
+/−

0,b = ϵ
+/−

1,b = 0). In this
work, we consider the PIs as 8-bit unsigned numbers, which
are in the range of [0, 255]. Therefore, for the adders of a and
b in the DFG of Fig. 3, R0,a = R1,a = R0,b = R1,b = R0,F .
This means that, the ϵo,a and ϵo,b values can be extracted
from the LUT of LOA4. The ϵo,a and ϵo,b values constitute
the operand errors of the adder c where ϵ

+/−

0,c = ϵ
+/−
o,a and

ϵ
+/−

1,c = ϵ
+/−

o,b . Furthermore, to extract the ϵo,c value from
the LUT of LOA4, the intervals of the operands to c are
required. Since the node a(b) adds two numbers in the range
of [0, 255], the output is always within [0, 510] (i.e., Ro,a =

Ro,b = [0, 510]). Therefore, the exact operands to c, can be
in either R0,F or R1,F . This means that for the adder c, there
are M combinations of input intervals with M = 4. All these
combinations are considered and four separate values for ϵo,c
are extracted from the corresponding LUT (each represented
by ϵo,c,m with 0 ≤ m < M). The values of the final ϵo,c are
obtained from

ϵ+o,c =

(
1
M

) M−1∑
m=0

ϵ+o,c,m, ϵ−o,c =

(
1
M

) M−1∑
m=0

ϵ−o,c,m

ϵ||o,c =

(
1
M

) M−1∑
m=0

ϵ||o,c,m

ϵ+,max
o,c = max

0≤m≤M

(
ϵ+,max

o,c,m

)
, ϵ−,min

o,c = min
0≤m≤M

(ϵ−,min
o,c,m). (10)

If the DFG has a larger depth, the ϵ values may be propagated
in a similar way in the topological order (using a breadth-first
search traversal algorithm [36]) of the DFG. The pseudocode
for propagating the error values in a general ADFG is shown
in Fig. 4. In Fig. 4, for each node n in the DFG (with N
nodes), first, for each operand j , ϵ

+/−
o from the predecessor

node p j are set as the operand errors (ϵ+/−

j,n), where PIs are
error free. The interval range of each operand (R j,n) is also
equal to the Ro of the predecessor node. The interval range of
the operands needs to be translated to the interval ranges stored
in the corresponding LUT (different for fixed and variable
interval methods). Based on ϵ

+/−

j,n of the operands, for each
combination m of interval values (the interval of operand j
for the mth combination is denoted as R j,n,m), Im is defined
and the ϵo,n,m values are extracted.

Note that if the operand error values, Im is not present in
the LUT, the error values should be rounded to the nearest

Authorized licensed use limited to: University of Southern California. Downloaded on August 07,2023 at 23:30:23 UTC from IEEE Xplore. Restrictions apply.

VAEZTOURSHIZI AND PEDRAM: EFFICIENT ERROR ESTIMATION FOR HIGH-LEVEL DSE OF AC SYSTEMS 923

Fig. 4. Pseudocode of propagating the error values in an ADFG.

values stored. The ϵo at the output of the node n(ϵo,n) is
estimated from ϵo,n,m values [using (10)]. The interval range of
the exact output value of the node n(Ro,n) is also determined
for subsequent nodes.

C. Shortcomings of the M ARE D Metric

In this section, the shortcoming of estimating MARED at
the output of an ADFG is discussed, and two possible solutions
are presented.

Consider the case of an approximate subtractor (or an
approximate adder with operands that have different signs).
When obtaining the output quality in the precharacterization
step, the RE D values may become (much) larger than the
value “1” (>100%) for some input vectors. In these cases,
the ED of the module will be larger than the exact value of
the subtraction (e.g., when the values of the operands are close
to each other, and both have the same sign). An example of
the histograms of RED at the output of an approximate LOA4
subtractor and adder is shown in Fig. 5. Error-free operands of
both modules are in the interval [0, 255]. For the subtractor,
the large output RED values make the value of MRED also
large.

If we consider this large positive and negative MRED as
the operand errors for a subsequent node in an ADFG, the

Fig. 5. Histogram of an approximate (a) adder and a (b) subtractor.

error will accumulate and become unrealistically large as it
traverses the ADFG, especially for larger values of the exact
operands. As the first solution, we consider normalizing the

ϵ+j (and/or ϵ−j) value with respect to ϵ
+,max
j (and/or ϵ

−,min
j) as

ϵ+j =
ϵ+j

ϵ
+,max
j

, ϵ−j =
ϵ−j

|ϵ
−,min
j |

. (11)

Therefore, when estimating MARED at the output of an
ADFG, the said normalization technique must be applied when
needed (line 5 in Fig. 4). While this solution solves the
error accumulation problem, it decreases the accuracy of the
estimated error at the output of the ADFG.

As the next solution, which controls the increase in the inac-
curacy of error estimation of the ADFG output, we suggest
changing the output error metric from MARED to MAED.
To incorporate this change, we have to modify some parts of
the two steps of Sections IV-A and IV-B as will be explained.
To distinguish these two different techniques, we denote the
technique that estimates the MARED at the output of an
ADFG as MR and the other one that uses MAED as MD. For
the MD method, in the precharacterization of a specific module
in the library under given operand error values and interval
ranges, for the error of each operand j , three error metrics are
required (compared to two for the MR method). These include
the positive and negative MED values and standard deviation
σ of the ED values for operand j (σ j).

We represent the positive (negative) MED values for
operand j with δ+j (δ−j) to distinguish it from ϵ+j (ϵ−j). In the
case of MR, due to the small variation of relative errors,
a small σ was used. The reason that the σ values for the
operand errors are required in the case of MD is that the
scattering of the ED values across the MED is larger compared
to that for MRED. Therefore, a single δ+o (δ−o) value is not
sufficient to estimate the positive (negative) ED values at
the module output when the errors are propagated across
the ADFG. Using a similar approach to the one explained
in Section IV-A, after generating the set X , we obtain each
X ′
[i, j] from X [i, j] and the operand errors. More specifically,

if the generated h is zero, a RV e with a normal distribution
(µ = δ+j and σ = σ j) is extracted and used in

X ′
[
i, j
]
= X

[
i, j
]
+ e. (12)

If h is one, X ′
[i, j] is obtained from (12) where e is randomly

extracted from a normal distribution (µ = δ−j and σ = σ j).
After obtaining S and S′, which are the output values from
EM and EAM, respectively, the ED values for each input

Authorized licensed use limited to: University of Southern California. Downloaded on August 07,2023 at 23:30:23 UTC from IEEE Xplore. Restrictions apply.

924 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 31, NO. 7, JULY 2023

Fig. 6. REGAN steps to extract the PF of the design space.

vector are obtained using (1). The positive (negative) ED
values are averaged to create the positive (negative) MED
output value denoted by δ+o (δ−o). The maximum of the σ

values of the positive and negative ED values is also obtained
and denoted by σo. Also, to generate the MAED value of
the module output, the absolute values of the ED values are
averaged. It is denoted by δ

||

o and used for the application-level
quality estimation at the PO of the ADFG. Error values for
the output, which will be stored in one entry of the module
LUT for I = (R0,R1,δ

+

0 ,δ−0 , σ0,δ
+

1 ,δ−1 ,σ1) are represented
by the tuple of δo = (δ+o , δ−o , σo, δ

||

o). For a two-operand
module with always one constant operand, I is considered
as (R0,R1,δ

+

0 ,δ−0 , σ0).
In the error propagation step within the ADFG, similar to

the procedure explained in Section IV-B, for each node n in
the DFG, the δo(Ro) values from the predecessor nodes are
set as the operand errors (intervals) as δ

+/−

j,n and σ j,n (R j,n)

for each operand j . Based on the δ
+/−

j,n and σ j,n values of
the operands and the combination of all possible M interval
values, M separate δo,n,m values are extracted from the LUT
and the δo value at the output of n(δo,n) is estimated using

δ+o,n =

(
1
M

) M−1∑
m=0

δ+o,n,m, δ−o,n =

(
1
M

) M−1∑
m=0

δ−o,n,m

σo,n =

(
1
M

) M−1∑
m=0

σo,n,m, δ||o,n =

(
1
M

) M−1∑
m=0

δ||o,n,m . (13)

Note that in (13), the σo,n value is approximated. The interval
of the output of n (i.e., Ro,n) is also obtained for the subse-
quent nodes.

V. PROPOSED DSE FRAMEWORK

In the final step, the proposed error model is integrated in
the quality evaluation step of an ADFG exploration frame-
work. In this work, without loss of generality, we adopt and
modify the DSE framework of [20], named EGAN, such that
when a new ADFG is visited, the quality of the design is
obtained by the error model instead of a simulator. We name
the modified EGAN framework as rapid EGAN (REGAN).

The REGAN framework belongs to the category of evo-
lutionary approaches for the DSE algorithms (explained in
Section III-B2). It automatically extracts approximate circuits
with their corresponding configurations (i.e., the DOA of the

modules mapped to the DFG nodes) that are located on the PF
of the trade-off space of accuracy versus energy consumption.
By using the proposed error model, REGAN achieves a signif-
icant reduction in the number of explored ADFGs compared to
that of the EGAN approach while achieving reasonable results.

Key steps of the REGAN framework, which is depicted in
Fig. 6, start with a random initial set of P ADFGs (denoted
as Q), including the fully exact and fully ADFGs. The fully
exact design refers to the original DFG, whereas the fully
approximate circuit refers to the ADFG, where all DFG nodes
are replaced by the approximate arithmetic unit (of compatible
operation type) with the highest DOA from the library. Based
on the chosen DOAs for the modules to be assigned to the
DFG nodes, the configuration of an ADFG in REGAN is
represented by an N -word vector (denoted as C) of integer
numbers, where N is equal to the number of nodes in the DFG,
which are amenable to approximation (i.e., adder/subtractor
and multiplier nodes in this work). Each element in the vector
represents the DOA (e.g., the number of approximate LSBs in
the LOA adder) of the corresponding DFG node. For instance,
for the input DFG in Fig. 6 with 13 nodes, the DOA of all the
DFG nodes can take values from the set of D = {0, 4}, where
a DFG node with the degree of zero (four) is represented by
the green (red) color.

For the ADFGs in Q, the corresponding energy consump-
tion and the output error (accuracy) of each ADFG are
determined, and the sampling space (the space containing the
design points) is generated. The energy consumption of a given
ADFG is obtained using the precomputed energy consumption
values of the arithmetic units in the library. Ignoring the
scheduling step and resource sharing in the HLS process,
the energy costs of the arithmetic modules assigned to the
ADFG nodes are accumulated to estimate the total energy
consumption of the design.

To obtain the output accuracy of an ADFG in REGAN,
we use the error models explained in Section IV, where the
exploration process uses MARED (or MAED) as the output
error metric. Using different combinations of fixed/variable
interval and MR/MD methods, we end up with four different
error models that can be incorporated into REGAN.

Subsequent steps of REGAN are iterative. First, the design
points in the initial sampling space are clustered based on
their similarities into κ clusters by employing the k-means
clustering algorithm [37]. Three parameters are considered

Authorized licensed use limited to: University of Southern California. Downloaded on August 07,2023 at 23:30:23 UTC from IEEE Xplore. Restrictions apply.

VAEZTOURSHIZI AND PEDRAM: EFFICIENT ERROR ESTIMATION FOR HIGH-LEVEL DSE OF AC SYSTEMS 925

Fig. 7. Pseudocode of generating a set of neighbors from the two configu-
rations of CH and CL with N elements.

for determining the degree of similarity between the ADFGs
consisting of the integer representation (C), the output error,
and the energy cost (hamming distance between the vectors
where each vector is constituted from the three corresponding
parameters).

Next, in each iteration, a set of new ADFGs is generated.
To generate a new set of approximate designs, two different
existing parent design points with the configuration vectors
of CL and CH (where CL has lower output error and higher
energy consumption than CH) are considered. The expansion
process aims to generate a set of configurations (considered
as the set of neighboring configurations and denoted as G)

with lower energy consumption compared to CL while having
higher energy consumption compared to CH . The pseudocode
for this process is shown in Fig. 7.

Next, ζ percentage (0 < ζ ≤ 100%) of all possible new
configurations is selected as the set of neighboring config-
urations G to be evaluated and added to the design space.
The parameter ζ is tuned in a way that a good trade-off
between the framework runtime and the accuracy of the final
PF obtained can be achieved. The energy consumption of each
ADFG in G is estimated by accumulating the energy costs of
the arithmetic modules assigned to the ADFG nodes while the
proposed error models are used to estimate the quality of the
output of the ADFG. With the use of the aforesaid method,
the expansion of the design space in REGAN has two steps
(using the pseudocode of Fig. 7).

1) In the first step, called intracluster exploration, each
cluster is expanded separately, where every combination
of two configurations, which are located on the local
PF of that cluster, are considered for generating addi-
tional configurations. The amount of the expansion is
determined based on parameter ζ1 (ζ = ζ1 in Fig. 7).
The local PF of a cluster includes the design points that
dominate all other points in that cluster.

2) While the intracluster exploration step helps in exploring
the unobserved configurations, it may lead to getting
trapped in the saddle point of the design space. Thus, in
the next step, named the intercluster exploration step,

the union of two different clusters is expanded. The
combinations of each two configurations (i.e., each of
the two configurations is chosen separately from each
cluster in the union) on the local PF of the union cluster
are considered for generating new configurations. In this
step, ζ2 percent (ζ = ζ2 in Fig. 7) of all the possible
generated configurations are added to the design space.

In REGAN, the total number of iterations to terminate the
exploration process is considered similar to that of EGAN [20].
If the heuristic is not terminated, the set of all design points
so far (both dominated and nondominated) is considered as
the initial sampling set for the subsequent iteration.

At the end of the last iteration of the exploration, the PF of
all the points in the design space (including the initial set and
the newly generated points) is extracted and denoted as the
initial PF (IPF). Since the output quality of the designs on the
IPF was obtained via the error models (which is not as accurate
as the simulation approach), the designs on the IPF set are
simulated to extract more accurate (final) PF of the trade-off
space of MARED/MAED versus energy consumption. The
REGAN DSE with this extracting final PF method is called
Basic REGAN (B-REGAN).

In the proposed error model, since precomputed LUTs are
used to estimate the error values at the node outputs, it is
possible that many ADFGs visited in the exploration have
the same error values for their outputs. The reason is that
LUTs are characterized with discrete values, and if, in the
propagation step, the input operand errors of an ADFG node
(which are obtained from the output error of the corresponding
predecessor nodes in the ADFG) are not present in the cor-
responding LUT, the operand error values would be rounded
to the nearest existing values stored in the LUT (line 12 in
Fig. 4). This means that, by using the error model (instead of
the simulation approach), we may dismiss some good ADFGs
that would have been in the final PF set of simulations were
performed. To address this issue, a modification to B-REGAN
is needed.

Once the exploration is completed and the IPF set is
obtained, some extra designs are selected and added to the
IPF set. To generate these extra points, for each energy
consumption value, λ percent of all the explored designs
with similar energy consumption having the lowest estimated
MARED/MAED values are selected. This way, a certain
percentage of the higher quality explored designs for each
energy consumption value are added to the IPF set. Designs
on the new IPF set are simulated, and the final PF of the
trade-off space of MARED/MAED versus energy consump-
tion is obtained from all the simulated designs. When this
method of extracting the final PF is used in REGAN, the
DSE approach is called Enhanced REGAN (E-REGAN), which
generates more design points than the PF extracted by B-
REGAN.

As mentioned before, for image processing applications,
PSNR is of high interest. The final PF set extracted using
B-REGAN (or E-REGAN), represents the designs, which
are located on the PF curve of the trade-off space of
MARED/MAED and energy consumption. To extract the PF
curve of the trade-off between PSNR and energy consumption,
the simulation engine is invoked on the PF obtained by

Authorized licensed use limited to: University of Southern California. Downloaded on August 07,2023 at 23:30:23 UTC from IEEE Xplore. Restrictions apply.

926 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 31, NO. 7, JULY 2023

TABLE I
NUMBER OF DFG NODES, NUMBER OF ADDITION (OR SUBTRACTION)

AND MULTIPLICATION OPERATIONS, DATA-PATH DYNAMIC RANGE
AND QOS METRIC IN EACH BENCHMARK

B-REGAN (or E-REGAN) to obtain the corresponding PSNR
values.

VI. RESULTS AND DISCUSSION

A. Simulation Setup and Benchmarks
To assess the efficacy of the proposed method, the bench-

marks from the image processing domain, including the image
smoothing filter (3 × 3 and 5 × 5 kernels) and Sobel
edge detector were considered. Table I shows the number
of DFG nodes, addition/subtraction and multiplication oper-
ations, data-path dynamic range, and QoS metric for these
benchmarks in the REGAN framework. We implemented the
framework in Python and employed Synopsys VCS tool as the
simulation engine.

For implementing the ADFGs, the libraries of approximate
adders and multipliers comprised of LOA adders [35] and
TOSAM multipliers [38] were employed. To realize different
accuracy levels of the arithmetic units, in LOA, a different
number of approximate LSBs were replaced with OR gates,
while in TOSAM, a different number of LSBs were kept in
for implementing the ADFG of the benchmarks.

In the case of 3 × 3 smoothing and Sobel, we assumed that
the employed adder could support |W | approximation degrees
where |W | = 3 (exact, LOA with 2 (LOA2) and 4 (LOA4)
approximate bits) and |W | = 4 (exact, LOA2, LOA4 and LOA
with 6 (LOA6) approximate bits). For the 5 × 5 smoothing
benchmark, the adder and multiplier were assumed to have
|W | approximation degrees where |W | = 2 (one exact and
one approximate implementation) and |W | = 3 (one exact and
two approximate implementations). In the case of |W | = 2
(|W | = 3), for the approximate adder, LOA4 (LOA2 and
LOA4) was considered. In the case of the approximate
TOSAM multiplier, for the multiplicand operand, 8 (8 and
12) LSBs were kept, while for the multiplier operand, 4
(4 and 6) LSBs were used. The multiplier with x/y LSBs
for the multiplier/multiplicand operand is denoted by TOSAM
x−y. The operation principles of the approximation in
TOSAM are based on truncating both the operands regardless
of their errors.

The REGAN framework was implemented with the param-
eters of P = 10, κ = 3, ζ1 = ζ2 = 100% [20]. The
inputs to the considered benchmarks were images obtained
from the USC-SIPI image database [39]. To evaluate the
output accuracies of the image processing applications for
REGAN, the output image of the EM of the application was
considered as the golden output and P SN R was considered
as the accuracy metric.

As was explained in Sections IV-A and IV-C, the error
LUTs of the arithmetic units in the library could be obtained
through fixed (F) or variable (V) intervals and the MR or MD
techniques.

Fig. 8. Extracted PF by EGAN [20] for 3 × 3 smoothing benchmark
with PSNR (EGAN-PSNR) and MARED (EGAN-MR) metrics used in the
exploration.

The combination provided us with four different error
models that can be incorporated in the REGAN framework.
We denote these four techniques by F-MR, V-MR, F-MD,
and V-MD, where the notation is self-explanatory. Also, the
REGAN framework itself was implemented as B-REGAN
or E-REGAN (as was explained in Section V). Also, the
parameter λ , which controlled the extra designs added in
E-REGAN, was considered as 50% for all the benchmarks.

In order for the fixed interval method to be practical (due
to the runtime complexity), based on our simulations, the
dynamic range of the DFG should be considered within
[−211, 211

−1]. The LUTs, therefore, obtained with the fixed
interval method could not be used for the 5 × 5 smoothing
benchmark due to the larger dynamic range of this application.
Thus, in this case, the variable interval method should be
used. For the variable interval method, the dynamic range of
[−215, 215

−1] was considered.
In the precharacterization step for the MR method, the

value of ±10% was considered for ϵ
+/−

max/min when sweeping
the operand error values with a step of 1%. For each operand
error value, a small σ+/− ∼= 0.1 × ϵ+/− was considered.

For the MD method, to avoid large precharacterization step
runtime, the δ and σ values were chosen as power of two
numbers. The maximum absolute value of 16 was considered
for both δ and σ . In addition, we assumed that the σ value
for each operand error could take values larger or equal to its
corresponding δ absolute value. The values for the operand
errors in the precharacterization step for both MR and MD
methods were chosen empirically based on the benchmarks.
Obviously, adding more different operand error values to the
LUTs would increase the accuracy of the model while adding
more time to the pre-characterization step and increasing the
size of the LUTs.

B. Results

In this section, first, we show that the MARED of the
output of an ADFG can be used as the accuracy metric in the
exploration framework for obtaining the PF in the trade-off
space of PSNR versus energy dissipation in image processing
applications.

In Fig. 8, for the 3 × 3 smoothing benchmark with
|W | = 3, the PF extracted by EGAN [20] utilizing the
simulated PSNR values (EGAN-PSNR) is represented by
green squares. The orange diamonds depict the PF obtained
by using the simulated M ARE D values (EGAN-MR) in the
exploration. This means that in the latter, the designs located
on the PF of the trade-off between MARED and energy

Authorized licensed use limited to: University of Southern California. Downloaded on August 07,2023 at 23:30:23 UTC from IEEE Xplore. Restrictions apply.

VAEZTOURSHIZI AND PEDRAM: EFFICIENT ERROR ESTIMATION FOR HIGH-LEVEL DSE OF AC SYSTEMS 927

Fig. 9. PFs extracted by EGAN [20] and REGAN for 3 × 3 smoothing benchmark with |W | = 3 for the B-REGAN framework with (a) MR and (b) MD
method, and E-REGAN framework for the (c) MR and (d) MD method.

Fig. 10. PFs extracted by EGAN [20] and REGAN for Sobel benchmark with |W | = 3 for the B-REGAN framework with (a) MR and (b) MD method,
and E-REGAN framework for the (c) MR and (d) MD method.

Fig. 11. PFs extracted by EGAN [20] and REGAN for 5 × 5 smoothing benchmark with |W | = 2 for the variable interval method for the (a) B-REGAN
and (b) E-REGAN frameworks.

consumption were again simulated to determine the PSNR
values for these configurations. It can be seen that the PFs are
almost identical, and the orange diamonds cover all the green
squares.

Next, we present results for evaluating the efficacy of
the proposed REGAN framework to efficiently extract the
PF curve representing the trade-off between PSNR and
energy consumption for the benchmarks of Table I. The PF

Authorized licensed use limited to: University of Southern California. Downloaded on August 07,2023 at 23:30:23 UTC from IEEE Xplore. Restrictions apply.

928 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 31, NO. 7, JULY 2023

TABLE II
NUMBER OF DOA VALUES FOR EACH DFG NODE (|W |), DIFFERENT DSE FRAMEWORKS, NUMBER OF SIMULATIONS, (|SIM|), EXECUTION RUNTIME

(|TIME|), RUNTIME SPEEDUP WITH RESPECT TO EGAN (SPEEDUP) AND THE NUMBER OF ADFGS ON THE EXTRACTED
PF FOR THE BENCHMARKS (|PF|)

curves generated by the different frameworks are depicted
in Figs. 9–11 for the 3 × 3 smoothing, Sobel (with |W | =

3), and 5 × 5 smoothing (with |W | = 2) benchmarks,
respectively.

For all the benchmarks, the PF obtained by exhaustive
exploration of the design space is impractical and the PF
generated by EGAN was considered as the reference set,
which is depicted by green squares in Figs. 9–11. As was

also observed in [20], EGAN is able to generate reasonable
PFs of the design space when the exhaustive exploration of
the design space is impractical.

In Figs. 9(a) and 10(a), the PFs generated by the B-REGAN
framework for the MR method and in Figs. 9(b) and 10(b)
for the MD method for both the fixed (F) and variable
(V) interval methods are represented by purple triangles and
red dots, respectively for the 3 × 3 smoothing and Sobel

Authorized licensed use limited to: University of Southern California. Downloaded on August 07,2023 at 23:30:23 UTC from IEEE Xplore. Restrictions apply.

VAEZTOURSHIZI AND PEDRAM: EFFICIENT ERROR ESTIMATION FOR HIGH-LEVEL DSE OF AC SYSTEMS 929

benchmarks. The extracted PFs by the E-REGAN framework
for the MR method is depicted in Figs. 9(c) and 10(c) while
Figs. 9(d) and 10(d) show the results for the MD method for
both the cases of the fixed and variable interval methods by
purple triangles and red dots, respectively.

For the 5 × 5 smoothing benchmark, since the dynamic
range of the DFG is outside [−211, 211

− 1], the fixed interval
method LUTs could not be used. Hence, in Fig. 11(a), the
extracted PFs by B-REGAN and in Fig. 11(b), the extracted
PFs by E-REGAN for the MR and MD methods are repre-
sented only for the variable interval method by purple triangles
and red dots, respectively.

It can be deducted from Figs. 9–11, compared to
B-REGAN, E-REGAN generates closer PFs to the PFs gener-
ated by EGAN. This is due to the higher number of simulations
in the case of E-REGAN, compared to that of B-REGAN,
increasing the ability of extracting better PF curves. In the case
of the 3 × 3 Smoothing benchmark, in both B-REGAN and
E-REGAN, for both the MR and MD models, the fixed interval
method generates slightly better PFs compared to those of the
variable interval method. More specifically, the average of the
Euclidian distances between each point on the PF obtained
by EGAN and the closest point on the PF curve obtained by
E-REGAN (for MD and fixed interval method) shows 14%
reduction compared to E-REGAN when the variable interval
method is employed.

For the Sobel benchmark, however, in the case of the MR
models, for the B-REGAN, the variable method generates bet-
ter PFs (on average, 5% smaller Euclidian distance) compared
to that of the fixed interval method. This may happen because
of the normalization operation explained in Section IV-C.

For the 3 × 3 smoothing and Sobel benchmarks, the MD
method generates slightly better results (on average, 23% and
68% smaller Euclidian distances) compared to those of the
MR method for both B-REGAN and E-REGAN frameworks.
For the 5 × 5 smoothing benchmark, in B-REGAN, the
MR method works better (on average, 47% smaller Euclidian
distance) while in E-REGAN, the MD method outperforms
(on average, 24% smaller Euclidian distance). This happens
because of the randomness in the REGAN framework, as well
as the small number of simulated designs compared to the
design space of the 5 × 5 smoothing benchmark.

Table II reports the number of DOA values for each
DFG node (|W |), different DSE frameworks (B-REGAN,
E-REGAN, F-MR, V-MR, F-MD, and V-MD), the number
of simulations (|Sim|), execution runtime (|Time|) in minutes,
runtime speedup with respect to EGAN (Speedup) and the
number of ADFGs on the extracted PF for the benchmarks
(|PF|). The runtime speedup is calculated from the ratio of
EGAN runtime with respect to the runtime of the REGAN
framework.

As was expected, in Table II, the number of simulations for
the B-REGAN is smaller than that of E-REGAN for all the
benchmarks, which results in higher speedup for B-REGAN.
On the other hand, E-REGAN finds larger number of designs
on the Pareto curve compared to those of B-REGAN.

For different benchmarks, increasing the size of the design
space (as a result of increasing |W |) had different impacts
on the runtime speedup of the REGAN framework compared
to EGAN. For instance, in the Sobel (5 × 5 smoothing)

benchmark, on average, for the case of |W | = 4 (|W | = 3),
the speed up of REGAN with respect to EGAN is 2.6× (5×)

of the case of |W | = 3 (|W | = 2). For the 3 × 3 smoothing
(which has a smaller design space compared to those of the
other two benchmarks), the average speed up is almost similar
in the case of |W | = 3 and |W | = 4. Observing the speedup
values in Table II, the REGAN framework provides on average
92 × speed improvement compared to the case of purely
simulation-based EGAN framework.

It should be mentioned that the low quality of the obtained
PF curves generated by REGAN are acceptable when consider-
ing the large runtime speedups. Considering a smaller speedup
in the framework can lead to improvements in the quality of
the obtained PF if it is required. This can be obtained by for
example increasing the λ parameter in E-REGAN. In the case
of 5 × 5 smoothing (V-MD), increasing λ by 20% results
in increasing the size of the PF set by 14%, with only 6%
increase in the runtime.

VII. CONCLUSION

In this work, we proposed an efficient technique to estimate
the error at the output of an approximate data-flow graph
(ADFG). The technique, which relied on bucketizing the
input dynamic range into intervals, was integrated in a DSE
framework to determine better ADFGs faster. The realization
of ADFG was based on replacing some of the exact arithmetic
nodes by their approximate counterparts. The error estimation
technique employed a precharacterization step, which was
performed on the arithmetic units in the library to generate a
set of LUTs. The LUTs stored the output error of the modules
based on the operand errors and interval ranges. From the
values extracted from the LUTs, the error was propagated for
ADFGs to estimate the output error.

The effect of utilizing four different error models, including
the combinations of using two different input bucketizing
techniques along with two different error metrics integrated
in two modified DSE frameworks were investigated. The
efficacies of the proposed methods in the framework were
assessed using three image processing benchmarks. The results
showed that all methods generated the corresponding PFs
with a very good accuracy compared to those obtained by
the simulation approach with an average of 98% runtime
reduction.

REFERENCES

[1] R. T. Kouzes, G. A. Anderson, S. T. Elbert, I. Gorton, and D. K. Gracio,
“The changing paradigm of data-intensive computing,” Computer,
vol. 42, no. 1, pp. 26–34, Jan. 2009, doi: 10.1109/MC.2009.26.

[2] G. Armeniakos, G. Zervakis, D. Soudris, and J. Henkel, “Hardware
approximate techniques for deep neural network accelerators: A survey,”
ACM Comput. Surv., vol. 55, no. 4, pp. 1–36, Apr. 2023.

[3] H. Jiang, C. Liu, L. Liu, F. Lombardi, and J. Han, “A review, classifi-
cation, and comparative evaluation of approximate arithmetic circuits,”
ACM J. Emerg. Technol. Comput. Syst., vol. 13, no. 4, pp. 1–34,
Aug. 2017, doi: 10.1145/3094124.

[4] H. Afzali-Kusha, O. Akbari, M. Kamal, and M. Pedram, “Energy and
reliability improvement of voltage-based, clustered, coarse-grain recon-
figurable architectures by employing quality-aware mapping,” IEEE J.
Emerg. Sel. Topics Circuits Syst., vol. 8, no. 3, pp. 480–493, Sep. 2018,
doi: 10.1109/JETCAS.2018.2856838.

[5] S. Venkataramani, K. Roy, and A. Raghunathan, “Substitute-and-
simplify: A unified design paradigm for approximate and quality config-
urable circuits,” in Proc. Design, Autom. Test Eur. Conf. Exhib. (DATE),
2013, pp. 1–6, doi: 10.7873/DATE.2013.280.

Authorized licensed use limited to: University of Southern California. Downloaded on August 07,2023 at 23:30:23 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/MC.2009.26
http://dx.doi.org/10.1145/3094124
http://dx.doi.org/10.1109/JETCAS.2018.2856838
http://dx.doi.org/10.7873/DATE.2013.280

930 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 31, NO. 7, JULY 2023

[6] S. Venkataramani, A. Sabne, V. Kozhikkottu, K. Roy, and
A. Raghunathan, “SALSA: Systematic logic synthesis of approximate
circuits,” in Proc. 49th Annu. Design Autom. Conf., Jun. 2012,
pp. 796–801, doi: 10.1145/2228360.2228504.

[7] D. Sengupta, F. S. Snigdha, J. Hu, and S. S. Sapatnekar, “SABER:
Selection of approximate bits for the design of error tolerant circuits,”
in Proc. 54th ACM/EDAC/IEEE Design Autom. Conf. (DAC), Jun. 2017,
pp. 1–6, doi: 10.1145/3061639.3062314.

[8] L. Witschen, H. G. Mohammadi, M. Artmann, and M. Platzner, “Jump
Search: A fast technique for the synthesis of approximate circuits,”
in Proc. Great Lakes Symp. VLSI, May 2019, pp. 153–158, doi:
10.1145/3299874.3317998.

[9] K. Nepal, Y. Li, R. I. Bahar, and S. Reda, “ABACUS: A technique for
automated behavioral synthesis of approximate computing circuits,” in
Proc. Design, Autom. Test Eur. Conf. Exhib. (DATE), 2014, pp. 1–6, doi:
10.7873/DATE.2014.374.

[10] V. Mrazek, M. A. Hanif, Z. Vasicek, L. Sekanina, and M. Shafique,
“AutoAx: An automatic design space exploration and circuit building
methodology utilizing libraries of approximate components,” in Proc.
56th ACM/IEEE Design Autom. Conf. (DAC), Jun. 2019, pp. 1–6, doi:
10.1145/3316781.3317781.

[11] S. Xu and B. C. Schafer, “Exposing approximate computing optimiza-
tions at different levels: From behavioral to gate-level,” IEEE Trans.
Very Large Scale Integr. (VLSI) Syst., vol. 25, no. 11, pp. 3077–3088,
Nov. 2017, doi: 10.1109/TVLSI.2017.2735299.

[12] M. Barbareschi, F. Iannucci, and A. Mazzeo, “Automatic design space
exploration of approximate algorithms for big data applications,” in
Proc. 30th Int. Conf. Adv. Inf. Netw. Appl. Workshops (WAINA),
Mar. 2016, pp. 40–45, doi: 10.1109/WAINA.2016.172.

[13] M. Barbareschi, F. Iannucci, and A. Mazzeo, “A pruning technique for
B&B based design exploration of approximate computing variants,” in
Proc. IEEE Comput. Soc. Annu. Symp. (ISVLSI), Jul. 2016, pp. 707–712,
doi: 10.1109/ISVLSI.2016.110.

[14] M. Awais, H. G. Mohammadi, and M. Platzner, “LDAX: A learning-
based fast design space exploration framework for approximate circuit
synthesis,” in Proc. GLSVLSI, 2021, pp. 27–32.

[15] K. Nepal, S. Hashemi, H. Tann, R. I. Bahar, and S. Reda, “Automated
high-level generation of low-power approximate computing circuits,”
IEEE Trans. Emerg. Topics Comput., vol. 7, no. 1, pp. 18–30, Jan. 2019,
doi: 10.1109/TETC.2016.2598283.

[16] S. Barone, M. Traiola, M. Barbareschi, and A. Bosio, “Multi-objective
application-driven approximate design method,” IEEE Access, vol. 9,
pp. 86975–86993, 2021, doi: 10.1109/ACCESS.2021.3087858.

[17] F. Vaverka, R. Hrbacek, and L. Sekanina, “Evolving component library
for approximate high level synthesis,” in Proc. IEEE Symp. Ser. Comput.
Intell. (SSCI), Dec. 2016, pp. 1–8, doi: 10.1109/SSCI.2016.7850168.

[18] M. Barbareschi, S. Barone, A. Bosio, J. Han, and M. Traiola, “A genetic-
algorithm-based approach to the design of DCT hardware accelerators,”
ACM J. Emerg. Technol. Comput. Syst., vol. 18, no. 3, pp. 1–25,
Jul. 2022, doi: 10.1145/3501772.

[19] S. Lee, L. K. John, and A. Gerstlauer, “High-level synthesis of approx-
imate hardware under joint precision and voltage scaling,” in Proc.
Design, Autom. Test Eur. Conf. Exhib. (DATE), Mar. 2017, pp. 187–192,
doi: 10.23919/DATE.2017.7926980.

[20] M. Vaeztourshizi, M. Kamal, and M. Pedram, “EGAN: A framework
for exploring the accuracy vs. energy efficiency trade-off in hard-
ware implementation of error resilient applications,” in Proc. 21st Int.
Symp. Quality Electron. Design (ISQED), Mar. 2020, pp. 438–443, doi:
10.1109/ISQED48828.2020.9137041.

[21] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: NSGA-II,” IEEE Trans. Evol. Comput.,
vol. 6, no. 2, pp. 182–197, Apr. 2002.

[22] M. Vaeztourshizi and M. Pedram, “An efficient error estimation tech-
nique for pruning approximate data-flow graphs in design space explo-
ration,” in Proc. 23rd Int. Symp. Quality Electron. Design (ISQED),
Apr. 2022, pp. 102–107, doi: 10.1109/ISQED54688.2022.9806280.

[23] Y. Wu, Y. Li, X. Ge, Y. Gao, and W. Qian, “An efficient method
for calculating the error statistics of block-based approximate adders,”
IEEE Trans. Comput., vol. 68, no. 1, pp. 21–38, Jan. 2019, doi:
10.1109/TC.2018.2859960.

[24] D. Sengupta and S. S. Sapatnekar, “FEMTO: Fast error analysis in
multipliers through topological traversal,” in Proc. IEEE/ACM Int.
Conf. Comput.-Aided Design (ICCAD), Nov. 2015, pp. 294–299, doi:
10.1109/ICCAD.2015.7372583.

[25] J. Huang, J. Lach, and G. Robins, “A methodology for energy-quality
tradeoff using imprecise hardware,” in Proc. 49th Annu. Design Autom.
Conf., Jun. 2012, pp. 504–509, doi: 10.1145/2228360.2228450.

[26] J. Huang, J. Lach, and G. Robins, “Analytic error modeling for imprecise
arithmetic circuits,” in Proc. SELSE, 2011, pp. 64–69.

[27] D. Sengupta, F. S. Snigdha, J. Hu, and S. S. Sapatnekar, “An analytical
approach for error PMF characterization in approximate circuits,” IEEE
Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 38, no. 1,
pp. 70–83, Jan. 2019, doi: 10.1109/TCAD.2018.2803626.

[28] J. Castro-Godínez, S. Esser, M. Shafique, S. Pagani, and J. Henkel,
“Compiler-driven error analysis for designing approximate accelerators,”
in Proc. Design, Autom. Test Eur. Conf. Exhib. (DATE), Mar. 2018,
pp. 1027–1032, doi: 10.23919/DATE.2018.8342163.

[29] S. Lee, D. Lee, K. Han, E. Shriver, L. K. John, and A. Gerstlauer,
“Statistical quality modeling of approximate hardware,” in Proc. 17th
Int. Symp. Quality Electron. Design (ISQED), Mar. 2016, pp. 163–168,
doi: 10.1109/ISQED.2016.7479194.

[30] C. Dharmaraj, V. Vasudevan, and N. Chandrachoodan, “Optimization
of signal processing applications using parameterized error models for
approximate adders,” ACM Trans. Embedded Comput. Syst., vol. 20,
no. 2, pp. 1–25, Mar. 2021, doi: 10.1145/3430509.

[31] C. Li, W. Luo, S. S. Sapatnekar, and J. Hu, “Joint precision optimization
and high level synthesis for approximate computing,” in Proc. 52nd
ACM/EDAC/IEEE Design Autom. Conf. (DAC), Jun. 2015, pp. 1–6, doi:
10.1145/2744769.2744863.

[32] W.-T.-J. Chan, A. B. Kahng, S. Kang, R. Kumar, and J. Sartori,
“Statistical analysis and modeling for error composition in approximate
computation circuits,” in Proc. IEEE 31st Int. Conf. Comput. Design
(ICCD), Oct. 2013, pp. 47–53, doi: 10.1109/ICCD.2013.6657024.

[33] C. Liu, J. Han, and F. Lombardi, “An analytical framework for
evaluating the error characteristics of approximate adders,” IEEE
Trans. Comput., vol. 64, no. 5, pp. 1268–1281, May 2015, doi:
10.1109/TC.2014.2317180.

[34] A. Ghasemazar and M. Lis, “Gaussian mixture error estimation for
approximate circuits,” in Proc. Design, Autom. Test Eur. Conf. Exhib.
(DATE), Mar. 2017, pp. 302–305.

[35] H. R. Mahdiani, A. Ahmadi, S. M. Fakhraie, and C. Lucas, “Bio-
inspired imprecise computational blocks for efficient VLSI imple-
mentation of soft-computing applications,” IEEE Trans. Circuits Syst.
I, Reg. Papers, vol. 57, no. 4, pp. 850–862, Apr. 2010, doi:
10.1109/TCSI.2009.2027626.

[36] R. Sedgewick and K. Wayne, Algorithms. Reading, MA, USA: Addison-
Wesley, 2011.

[37] C. Elkan, “Using the triangle inequality to accelerate K-means,” in Proc.
20th Int. Conf. Mach. Learn., 2003, pp. 147–153.

[38] S. Vahdat, M. Kamal, A. Afzali-Kusha, and M. Pedram, “TOSAM:
An energy-efficient truncation- and rounding-based scalable approximate
multiplier,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 27,
no. 5, pp. 1161–1173, May 2019, doi: 10.1109/TVLSI.2018.2890712.

[39] (2022). The USC-SIPI Image Database. [Online]. Available: http://sipi.
usc.edu/database

Marzieh Vaeztourshizi received the B.S. degree in
electrical engineering from the University of Tehran,
Tehran, Iran, in 2014 and the M.S. degree from
the University of Southern California, Los Angeles,
CA, USA, in 2018, where she is currently working
toward the Ph.D. degree in electrical engineering.

Her research interests include approximate com-
puting, low power designs, and design space explo-
ration of approximate circuits.

Massoud Pedram (Fellow, IEEE) received the
B.S. degree in electrical engineering from the
California Institute of Technology, Pasadena, CA,
USA, in 1986, and the M.S. and Ph.D. degrees in
electrical engineering and computer sciences from
the University of California at Berkeley, Berkeley,
CA, USA, in 1989 and 1991, respectively.

In 1991, he joined the Ming Hsieh Department
of Electrical Engineering, University of Southern
California (USC), Los Angeles, CA, USA.

Authorized licensed use limited to: University of Southern California. Downloaded on August 07,2023 at 23:30:23 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1145/2228360.2228504
http://dx.doi.org/10.1145/3061639.3062314
http://dx.doi.org/10.1145/3299874.3317998
http://dx.doi.org/10.7873/DATE.2014.374
http://dx.doi.org/10.1145/3316781.3317781
http://dx.doi.org/10.1109/TVLSI.2017.2735299
http://dx.doi.org/10.1109/WAINA.2016.172
http://dx.doi.org/10.1109/ISVLSI.2016.110
http://dx.doi.org/10.1109/TETC.2016.2598283
http://dx.doi.org/10.1109/ACCESS.2021.3087858
http://dx.doi.org/10.1109/SSCI.2016.7850168
http://dx.doi.org/10.1145/3501772
http://dx.doi.org/10.23919/DATE.2017.7926980
http://dx.doi.org/10.1109/ISQED48828.2020.9137041
http://dx.doi.org/10.1109/ISQED54688.2022.9806280
http://dx.doi.org/10.1109/TC.2018.2859960
http://dx.doi.org/10.1109/ICCAD.2015.7372583
http://dx.doi.org/10.1145/2228360.2228450
http://dx.doi.org/10.1109/TCAD.2018.2803626
http://dx.doi.org/10.23919/DATE.2018.8342163
http://dx.doi.org/10.1109/ISQED.2016.7479194
http://dx.doi.org/10.1145/3430509
http://dx.doi.org/10.1145/2744769.2744863
http://dx.doi.org/10.1109/ICCD.2013.6657024
http://dx.doi.org/10.1109/TC.2014.2317180
http://dx.doi.org/10.1109/TCSI.2009.2027626
http://dx.doi.org/10.1109/TVLSI.2018.2890712

